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In view of various field-theoretic reasons, in the present work, we study the question of if the usual
dimensional regularization can be extended to quantum field theories with an ultraviolet cutoff (Poincare-
breaking scale) in a way that preserves all the properties of the dimensional regularization. And we find
that it can indeed be achieved. The resulting extension gives a framework in which the power-law and
logarithmic divergences get detached to involve different scales. This new regularization scheme, the
detached regularization as we call it, enables one to treat the power-law and logarithmic divergences
differently and independently. We apply the detached regularization to the computation of the vacuum
energy and to two well-known quantum field theories, namely the scalar and spinor electrodynamics. As a
case study, we consider Fujikawa’s subtractive renormalization in the framework of the detached
regularization, and show its effectiveness up to two loops by specializing to scalar self energy. We
discuss various application areas of the detached regularization.
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I. INTRODUCTION

Quantum field theories (QFTs) develop divergences at
the loop level. The ultraviolet (UV) divergences refer to
infinities arising at large loop momenta. The methodology
to deal with the divergences—renormalization—requires the
divergent and finite terms to be separated appropriately—
regularization. Various regularization methods have been
proposed since the early days of the QFTs [1]. The simplest
and physically most intuitive regularization scheme is the
cutoff regularization in which QFTs are ascribed a Poincare-
breaking UVedge. In this scheme, QFTs are endowed with a
hard momentum cutoff so that loop integrals run up to the
cutoff not to the infinity [2]. The effective QFT at the end
can have quartic, quadratic, and logarithmic dependencies on
the UV cutoff [3]. The most conspicuous drawback of this
scheme is that it breaks explicitly all the gauge symmetries in
the QFT because each gauge boson acquires a mass propor-
tional to the UV cutoff [4–7]. (For clarity, one can consider
the symmetric phase of the QFT in which none of the gauge
symmetries is broken spontaneously so that the entire gauge
breaking comes from the UV cutoff.)

The cutoff regularization has a Poincare-conserving
alternative: the Pauli-Villars regularization [8]. In this
scheme, one introduces a soft momentum cutoff M (which
is the mass of an auxiliary field) instead of the hard
momentum cutoff Λ (which is not a particle mass though
it can be numerically equal to a particle mass). Practically,
in Pauli-Villars regularization one makes the replacement
ðp2 −m2Þ−1 → ðp2 −m2Þ−1 − ðp2 −M2Þ−1 in the loop
integration so that the propagator decreases faster as the
loop momenta p tends to infinity. The auxiliary particle
provides a Poincare-conserving cutoff (with opposite sta-
tistics with respect to the actual particle of mass m). The
Pauli-Villars regularization has an advantage over the cutoff
regularization in that it leaves the theory gauge invariant at
each order of perturbation theory thanks to the precise
prescription of the use of the regulators [6]. The gauge
invariance here is restricted to the Abelian case, which is
what we are interested in the present work. The difficulty of
finding a physical interpretation for the auxiliary fields is
the main drawback of the Pauli-Villars regularization.
The cutoff-based regularizations above have two alter-

natives: analytic regularization (changing the power of the
loop propagator) and dimensional regularization (changing
the dimension of the momentum space). The analytic
regularization is based on the concept of analytic continu-
ation [9–11]. The parameter that is exploited for this
purpose is the one that is obtained by carrying the power
of the denominator of the propagator to the complex plane.
For instance, suppose we have the propagator for a particle
of mass m and four-momentum pα, which contains the
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factor ðp2 −m2 þ i0Þ−1, what analytic regularization does
is that it replaces the propagator with ðp2 −m2 þ i0Þ−n,
where the regulating parameter n is a complex number in
general. The crucial point is that ReðnÞ must be large
enough so that the integrals are made to converge. After the
result is obtained, which normally depends on the param-
eter n, it is analytically continued to the domain that
contains the integral value of n ¼ 1. The divergences do
all manifest themselves as simple poles in the limit n → 1.
This lets one to renormalize the QFT simply by subtracting
the divergent pole terms. The finite parts which remain
constitute the desired renormalized QFT. The analytic
regularization respects the Poincare symmetry; however,
as it is the case in the cutoff regularization, the breakdown
of the gauge symmetries is unavoidable.
The dimensional regularization is the most popular

regularization method due to its ability to preserve
the local symmetries of the QFT such as the gauge
symmetries [12,13]. It has been successful all along in
making precise predictions (higher loop calculations),
which have been tested at the LEP, LHC, and other
colliders. The idea behind this method is to change the
integration measure of the loop integrals by carrying the
dimensionality D of the measure to the complex domain.
Let us illustrate this with a simple example and see how it
helps. Consider a loop integral of the form

I ¼
Z

d4p
ð2πÞ4

1

ðp2 þ i0Þ½ðp − qÞ2 −m2 þ i0� ; ð1Þ

which is a four-dimensional integral over the loop momen-
tum p. In this form and in the limit of large loop momenta,
namely p → �∞, this integral diverges. However, if we
consider the same integral evaluated in three spacetime
dimensions

I ¼
Z

d3p
ð2πÞ3

1

ðp2 þ i0Þ½ðp − qÞ2 −m2 þ i0� ð2Þ

we see that, in the limit p → �∞, it readily converges to
a finite value. What this example teaches us is that
unbounded loop integrals over four-dimensional spacetime
can be rendered convergent if it is possible to reduce the
dimensionality of the momentum space [6,12–14]. The
dimensional regularization involves only logarithmic diver-
gences since at the end of calculations one takes D → 4. In
essence, dimensional regularization isolates divergences
via the poles of 1=ðD − 4Þ such that their subtraction
via MS or MS schemes leads to renormalization of the
underlying QFT. Independence of the bare parameters from
μ gives rise to renormalization group equations and their
solutions determine how various interactions vary with μ
(the scale of the experiments). This can be done up to any
loop order. For instance, the fine structure constant varies
with μ such that its value at μ ¼ MZ agrees with the LEP
measurements. The same thing happens with the LHC

measurements and is expected to be the same also at the
FCC and ILC if there is no new physics at their scales.
Having briefly discussed the four main regularization

schemes in the literature, let us now go back to the cutoff
regularization. Let us consider a QFT with a Poincare-
breaking UV cutoff Λ [2]. The matter loops lead to three
types of UV sensitivites:
(1) Quartic sensitivities going like Λ4.
(2) Quadratic sensitivities going like Λ2.
(3) Logarithmic sensitivities involving logΛ.

These UV sensitivities can be exemplified by a typical loop
integral

In ¼
Z

d4p
ð2πÞ4

1

ðp2 −m2 þ i0Þn ; ð3Þ

which is seen to diverge at large loop momenta for n ≤ 2. It
can be rendered finite (regularized) by cutting off all loop
momenta above Λ so that one gets the Λ-dependent finite
results

InðΛ2Þ ¼

8>>><
>>>:

i
32π2

Λ4 n ¼ 0

−i
16π2

�
Λ2 −m2 log Λ2þm2

m2

�
n ¼ 1

i
16π2

�
−1þ log Λ2þm2

m2

�
n ¼ 2

; ð4Þ

corresponding, respectively, to the three types of the UV
sensitivities listed above. [As we deal with a renormalizable
QFT, we do not consider nonrenormalizable corrections of
the form 1=Λn (n > 2) or we assume that such corrections
are absorbed in redefinitions of the QFT parameters.] The
power-law (quadratic and quartic) UV sensitivities are local
in that they live at the scale Λ. The logarithmic UV
sensitivities, on the other hand, extend in the entire range
since the correction M2 logΛ2=M2 varies with the particle
mass M. Besides, the logarithmic UV sensitivities set the
beta functions and conformal anomalies in the QFT while
the power-law divergences do not play such roles. In view
of these differences, certain QFT studies have attempted
to treat the power-law and logarithmic divergences differ-
ently and independently. One example is subtraction of
the power-law divergences as in [15–17]. Another example
is induced gravity models in which Λ2 leads to Newton’s
constant [18,19]. Yet another example is emergent gra-
vity models in which Λ2 is promoted to curvature (in
reminiscence to promotion of vector boson masses to
Higgs field) [20–22]. In all such attempts, the hampering
problem is that both the logarithmic and power-law
divergences involve one and the same scale—the UV
cutoff Λ. They are thus not eligible for treating differently
and independently. In view of the examples above, how-
ever, we ask the crucial question: Is it possible to find a new
regularization scheme in which the power-law and loga-
rithmic divergences are detached to involve independent
scales in place of a single scale like Λ?
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This question brings up a whole new approach to the idea
of regularization. Indeed, if it can be answered positively
then it will be possible to analyze power-law and loga-
rithmic divergences with independent scales. In an attempt
to find an answer, one comes to realize that an efficient
method is to start from a known regularization scheme and
deform it judiciously to arrive at the “detached regulari-
zation” implied in the question. In this regard, we repose
the question above in a more specialized form: How do we
extend the dimensional regularization scheme to QFTs with
an UV cutoff such that all the features of the dimensional
regularization are preserved?
In this form, we construct the detached regularization as an

extension or deformation of the dimensional regularization.
This new question is actually highly nontrivial because the
dimensional regularization scheme is specific to QFTs with-
out an UV scale [6,12–14]. Indeed, the question of how to
inject a cutoff scale in a dimensionally regularized amplitude
has no clear answer. To this end, following the nascent ideas in
[23,24], in Sec. II below, we study the fundamental question
above by extending the dimensional regularization to
D ¼ 0 and D ¼ 2 momentum space dimensions [25–29]
at a scale involving not only the renormalization scale μ but
also the UV cutoffΛ℘ of the QFT. By a judicious structuring,
the end result will have Λ℘ setting the power-law UV
sensitivities (replacing Λ in Λ2 and Λ4 terms of cutoff
regularization) and μ parametrizing the logarithmic UV
sensitivities (replacing Λ in logΛ terms in cutoff regulariza-
tion). This two-scale regularization scheme will lead to the
sought-for detached regularization if the poles at D ¼ 0,
D ¼ 2, and D ¼ 4 are all included. Resting on the dimen-
sional regularization, the detached regularizationgenerates no
evanescent contributions different from the ones expected in
dimensional regularization at higher loops.
Having established the detached regularization in Sec. II,

we apply it to computation of the vacuum energy in a
general QFT in Sec. III.
In Sec. IV, we give applications of the detached

regularization to two well-known QFTs: the scalar quantum
electrodynamics (SQED) in Sec. IVA and the spinor
electrodynamics in Sec. IV B. Their calculational details
are given in Appendices A and B.
In Sec. V, we illustrate how subtractive renormalization

can be realized in the framework of detached regulariza-
tion. We in particular show that what remains after the
subtraction of power-law corrections is just the dimension-
ally regularized MS-renormalized QFT.
In Sec. VI we conclude.

II. DETACHED REGULARIZATION

In this section our goal is to answer the fundamental
question raised in the introduction. We want to construct a
regularization scheme in which these two properties hold:

(i) Power-law and logarithmic divergences are both
contained in the regularization, and

(ii) Power-law and logarithmic divergences involve
independent scales.

To achieve the property (i) we adopt the dimensional
regularization scheme [12–14] and exploit the fact that
dimensional regularization starts involving quartic and
quadratic divergences when the momentum space dimen-
sion is set to D ¼ 0 and D ¼ 2, respectively [26–29]. This
dimensional change is a highly useful property but it is far
from sufficient for achieving the property (ii). To that end,
we introduce a generalization of the dimensional regulari-
zation by introducing a new scale Λ℘ besides the usual
renormalization scale μ. In explicit terms, we consider an
extension of the form

μ4−D
Z

dDp
ð2πÞD

1

ðp2 −m2 þ i0Þn

→ fðΛ℘; μ; DÞ
Z

dDp
ð2πÞD

1

ðp2 −m2 þ i0Þn ð5Þ

in which the new function fðΛ℘; μ; DÞ is to be structured
judiciously. To this end, we impose the following
conditions:

(i) It should suffice to take fðΛ℘; μ; DÞ as a polynomial
of the form fðΛ℘; μ; DÞ ¼ Λa

℘μ
b, where a and b are

functions of n and D.
(ii) It should be possible to split fðΛ℘; μ; DÞ as f0;2ðΛ℘;

μ; DÞ þ f4ðΛ℘; μ; DÞ such that f0;2ðΛ℘; μ; DÞ → 0

as D → 4, and f4ðΛ℘; μ; DÞ → 0 as D → 0, 2.
(iii) The function f4ðΛ℘; μ; DÞ should give the usual

dimensional regularization amplitude in the left-
hand side of (5).

(iv) The function f0;2ðΛ℘; μ; DÞ should lead to the same
powers of Λ℘ compared to the cutoff regularization
results in (4).

These requirements and limit values put the regularization
function fðΛ℘; μ; DÞ in this compact form

fðΛ℘; μ; DÞ ¼ 1

ð8πÞ2−n ðδ½D�0 þ δ½D�2ÞΛ4−2n
℘ μ2n−D

þ δ½D�4μ4−D; ð6Þ
in which [D] designates the integer part of D so that
½0 − ϵ� ¼ 0; ½2 − ϵ� ¼ 2, and ½4 − ϵ� ¼ 4 for an infinitesi-
mal ϵ. Needless to say, δij is Kronecker delta, which is
equal to 1 (0) if i ¼ j (i ≠ j). The normalization factor
1=ð8πÞ2−n is attached to make coefficients of theΛ4

℘ andΛ2
℘

to remain parallel, respectively, to those of the Λ4 and Λ2 in
the cutoff regularization integrals in (4). In fact, after using
fðΛ℘; μ; DÞ, the original loop integral in (3) takes the form

In;DðΛ℘;μÞ ¼
�

1

ð8πÞ2−n ðδ½D�0þ δ½D�2ÞΛ4−2n
℘ μ2n−D

þ δ½D�4μ4−D
�Z

dDp
ð2πÞD

1

ðp2−m2þ i0Þn ; ð7Þ
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¼ ið−1Þn
ð4πÞD=2

1

ð8πÞ2−n
Γðn −D=2Þ

ΓðnÞ

× ðδ½D�0 þ δ½D�2ÞΛ4−2n
℘

�
μ

m

�
2n−D

ð8Þ

þ ið−1Þn
ð4πÞD=2

Γðn −D=2Þ
ΓðnÞ δ½D�4μ4−2n

�
μ

m

�
2n−D

;

ð9Þ

which is seen to be a power law in Λ℘ and yet logarithmic
in μ. It is so because the power of Λ℘ is independent of D
but that of μ depends onD and gives rise to logðμ=mÞ terms
when the gamma functions are expanded about momentum
space dimensions D ¼ 0, 2, 4. (In view of the earlier
literature [26–28] on power-law divergences in the dimen-
sional regularization scheme, we do not consider odd
dimensions D ¼ 1, 3.) It is clear that the sought-for
detachment is achieved: While Λ℘ arises only in power-
law terms μ appears only in logarithmic terms, and hence,
the power-law and logarithmic UV sensitivities get com-
pletely detached. This is the sought-for detached regulari-
zation. The detachment can be explicitly seen by evaluating
In;DðΛ℘; μÞ for the relevant values of D and n ≤ D=2

In;DðΛ℘; μÞ ¼

8>>>>>><
>>>>>>:

i
32π2

Λ4
℘ n ¼ 0; D ¼ 0

− i
32π2

Λ2
℘ log

μ2

m2 n ¼ 1; D ¼ 2

im2

16π2

�
1þ log μ2

m2

�
n ¼ 1; D ¼ 4

i
16π2

log μ2

m2 n ¼ 2; D ¼ 4

ð10Þ

after employing the MS subtraction scheme [6,14].
These individual loop integrals shed enough light on
the roles of the scales Λ℘ and μ. The role of μ is as
usual in that the QFT under consideration runs from
scale to scale via the renormalization group equations in
terms of μ [6,14]. The role of Λ℘, on the other hand, is
also as usual in that it acts as the UV cutoff, as can be
seen by comparing (10) with the cutoff regularization
integrals in (4). This is seen also from the fact that Λ℘

terms arise only in D ¼ 0 and D ¼ 2 limits, which
correspond, respectively, to the quartic and quadratic
UV divergences [26–28]. The Λ4

℘ term from D ¼ 0

integral and Λ2
℘ term from the D ¼ 2 integral both

vanish identically in dimensional regularization. Incor-
poration of these terms by the new regularization
method in (7) enables us to take into account the
power-law and logarithmic divergences all at once in
a way detached from each other. It is clear that the
Λ4−2n
℘ factor in (7) is much more than a simple

multiplicative factor in that it reveals the UV sensitivity
of the QFT as a function of the propagator order n. The
detachment of the power-law and logarithmic divergen-
ces, which was attempted also by the loop regularization
method [30–32] and by other methods based on implicit
regularization [33], enables us to analyze the two types
of divergences separately and independently.
It is clear that for a proper analysis of the UV

behavior of the QFT it is necessary to include each
and every pole in (10) [3,29,34]. Thus, we gather
residues of the poles at D ¼ 0, 2, 4 to construct the
actual loop amplitude in (3)

In⟶
detached regularization

InðΛ℘; μÞ ¼
X
D¼0;2;4
ðn≤D=2Þ

In;DðΛ℘; μÞ≡ the answer to the fundamental question raised in the introduction

ð11Þ

where one keeps in mind that in actual calculations the
mass parameterm2 is a combination of the masses, external
momenta, and appropriate Feynman parameters [6,14].
Having revealed its effects by the loop integrals in (10),

it is timely to examine the question of if the detached
regularization is unique or not. It actually is unique. In
exact terms, if Λ℘ is to remain polynomial (no logarithm
of Λ℘) and μ logarithmic (no polynomial in μ) then the
detached regularization is unique to the extent the dimen-
sional regularization itself is unique. It is so because the
power-law divergences in the detached regularization result
from the fact that the dimensional regularization generate
power-law terms in dimensions D ¼ 0 and 2 [26,27]. In
this sense, what is novel in detached regularization is the
existence of two separate scales Λ℘ and μ, with distinct

roles. To sum up, according to all four requirements below
Eq. (5), the detached regularization prescription in (6)
stands out as a unique prescription.
The cutoff regularization results are given in (4) above (in

D ¼ 4momentum space). It is seen that cutoff regularization
method leads to power-law divergencesΛ4 andΛ2 as well as
the logarithmic divergences logðΛ2=M2Þ. Both divergences
involve one and the same scaleΛ. Now, let us compare these
divergences with the detached regularization results in (10).
The power-law divergences Λ4

℘ and Λ2
℘ still arise. They are

parallel to those in the cutoff regularization results (excepting
the appearance of log μ in front of Λ2

℘). The main difference
is that logarithmic divergences involve the subtraction scaleμ
not the hard momentum cutoff Λ℘ [corresponding to the
cutoff Λ in Eq. (4)]. In the last two lines of (10) there is no
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involvement of Λ℘ simply because these integrals are for
D ¼ 4. (This is consistent with the structure of dimensional
regularization in which power-law divergences are probed
by going to D ¼ 0 and D ¼ 2 dimensions, as discussed in
Refs. [26,27]).
To conclude, the detached regularization prescription in

Eq. (11) constitutes an affirmative answer to the fundamental
question that has been raised in Sec. I. In our derivations we
have focused on a typical loop integral like (3) but the
detached regularization is general enough to apply all loop
amplitudes. In fact, wewill illustrate this generality when we
apply the detached regularization to the vacuum energy in
Sec. III, the scalar electrodynamics in Sec. IVA, and spinor

electrodynamics in Sec. IV B. These two QFTs will suffice
for illustrating all the important aspects of the detached
regularizationmethod. (Wewill defer the realistic case of the
standardmodel of elementary particles to futurework since it
involvesmultifaceted calculations and analyses in the gauge,
Higgs, and the fermion sectors.)

III. ONE-LOOP CORRECTIONS
TO VACUUM ENERGY

In general, one-loop corrections can be cast as a change
δS in the QFT action S [6,14]. In fact, δS is a sum over the
individual corrections

δSψ ¼ i
2
ð−1Þsψ

Z
d4x

Z
d4p
ð2πÞ4 log

ðp2 −m2
ψ þ T intðψ ;ψotherÞÞ

M2
0

ð12Þ

for each field ψ of spin sψ and massmψ . In this formula,M0 is a mass scale and T intðψ ;ψotherÞ collects couplings of ψ to the
self and other fields ψother in the QFT. In the perturbative regime, the ψ action above can be expanded as

δSψ ¼ i
2
ð−1Þsψ

Z
d4x

Z
d4p
ð2πÞ4

2
664log ðp

2 −m2
ψ Þ

M2
0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

nondiagrammatic

þ T intðψ ;ψotherÞ
p2 −m2

ψ
−
1

2

�
T intðψ ;ψotherÞ

p2 −m2
ψ

�
2

þ…

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diagrammatic ðsee Sec: IVÞ

3
775; ð13Þ

which splits into a nondiagrammatic part plus a series expansion that can be graphed via Feynman diagrams. The latter will
be studied in detail in Sec. IV by considering the illustrative cases of the scalar and spinor electrodynamics. The former
(nondiagrammatic part) contributes to the vacuum energy, and in the large loop momentum regime it can be recast asZ

d4p̃
ð2πÞ4 −

Z
d4p
ð2πÞ4

m2
ψ

p2 − μ2IR
−
1

2

Z
d4p
ð2πÞ4

m4
ψ

ðp2 − μ2IRÞ2
ð14Þ

after defining d4p̃≡ d4p log p2

M2
0

, introducing an infrared regulator μIR that we identify with mψ (μIR ¼ mψ ) and discarding

the terms finite in the UV. Now, using the detached regularization integrals in (10) we get from (14) the following ψ
contribution to the vacuum action

ðδSψ ÞðvacÞ ¼
Z

d4x
	
−
ð−1Þsψ
64π2

Λ4
℘ þ

ð−1Þsψ
64π2

Λ2
℘m2

ψ log
m2

ψ

μ2
þ ð−1Þsψ

32π2
m4

ψ

�
1 −

3

2
log

m2
ψ

μ2

�

; ð15Þ

such that the inclusion of the contributions of all the QFT fields leads to the total vacuum action

ðδSÞðvacÞ ¼
Z

d4x

	
−
ðnb − nfÞ
64π2

Λ4
℘ þ

1

64π2
Λ2
℘str

�
M2 log

M2

μ2

�
þ 1

32π2
str

�
M4

�
1 −

3

2
log

M2

μ2

��

; ð16Þ

in which nbðnfÞ is the total number of bosons (fermions) in
the QFT, M2 is the mass-squared matrix of fields, and
str½…� ¼ P

sð−1Þstr½…� is the supertrace over spins. This
vacuum action will be added to the results of the dia-
grammatic calculations in Sec. IV below (power law in Λ℘

and logarithmic in μ).
In the symmetric phase of the QFT where all gauge

symmetries are exact (to be spontaneously broken after the
loop corrections are included), it turns out that the mass

matrixM in (16) can pertain only to the scalar fields, singlet
fermions and vectorlike fermions. It is worth noting that
while the quartic term involves all the fields in the QFT via
nb − nf, the quadratic term (in the symmetric phase of the
QFT) involves only the scalars and singlet/vectorlike
fermions. In the SM, only the Higgs field contributes (as
four massive physical scalar fields in the symmetric phase).
Inclusion of the neutrino masses brings in the right-handed
neutrinos as the singlet-fermion sector. Inclusions of dark
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matter, inflaton, axion, and others bring in scalars or singlet/
vectorlike fermions so that the quadratic correction in (16)
proves to be a sensitive probe of the new particles beyond the
SM. These new particles do not have to couple to the SM
particles unless required by empirical facts (like inflaton
decay and neutrino Majorana masses) or by symmetry
reasons (like gauge symmetry and broken supersymmetry).

IV. APPLICATIONS OF THE DETACHED
REGULARIZATION

In this section, we shall give applications of the detached
regularization to specific loop amplitudes. To this end, we
shall perform a detailed analysis of the scalar electrody-
namics and spinor electrodynamics as two comprehensive
applications of the detached regularization.

A. Scalar electrodynamics (SQED)

In order to illustrate the use of detached regularization,
we consider in this subsection a simple QFT composed of a
charged spin-zero particle (ϕ) and the gauge field (Aμ)—the
so-called scalar electrodynamics. The Lagrangian defining
this theory is

L ¼ ðDμϕÞ†ðDμϕÞ −m2ϕ†ϕ −
1

4
λðϕ†ϕÞ2 − 1

4
FμνFμν;

ð17Þ
where Fμν is the field strength tensor and Dμ is the gauge
covariant derivative defined as

Dμ ¼ ∂μ − ieAμ: ð18Þ
The Lagrangian in (17) leads to the three interaction
vertices depicted in Fig. 1.

Now, we will illustrate the usage of the newly developed
detached regularization in the context of loop corrections in
scalar electrodynamics. The details of the calculation can be
found in Appendix A at the end of the paper. The relevant
diagrams fall into two main categories. The first category
concerns the one-loop corrections to the photon propagator
due to the charged scalar which is given in Fig. 2.
It is more convenient to combine the self-energy and

tadpole diagrams given in Figs. 2(a) and 2(b) into a single
amplitude [kμ (pμ) is loop (external) momentum]

iΠμν
2aþ2bðpÞ ¼ e2

Z
d4k
ð2πÞ4

×
ð2kþpÞμð2kþpÞν− 2gμν½ðkþpÞ2−m2�

½ðkþpÞ2−m2�½k2 −m2� ;

ð19Þ

from which it will be easier to see the eventual trans-
versality of the logarithmic part. Indeed, applying the
detached regularization scheme in (7) to this amplitude,
we get in the MS subtraction scheme (see Appendix A)

iΠμν
2aþ2bðpÞ ¼ −

ie2

16π2
gμνΛ2

℘ −
ie2

4π2
½p2gμν − pμpν�

×
Z1=2
−1=2

dy

�
y2 log

�
μ2

p2ðy2 − 1
4
Þ þm2

��
;

ð20Þ
in which the first term is the power-law part [similar to what
one would find by employing the cutoff regularization
results in (4)], and the second term is the finite-transverse

(b)(a)

FIG. 2. One-loop corrections to the photon propagator in scalar electrodynamics. (a) The self-energy diagram. (b) The tadpole
diagram.

FIG. 1. The three basic vertices of scalar electrodynamics and their vertex factors.
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part we are familiar from the dimensional regulariza-
tion [6,14].
The second class of loop corrections that is going to be

examined in scalar electrodynamics is the one-loop cor-
rections to the scalar propagator itself. The relevant dia-
grams pertaining to this type of correction is given in Fig. 3.
The self-energy correction in Fig. 3(a) is given by the
amplitude (see Appendix A)

iΠ3aðpÞ ¼ −e2
Z

d4k
ð2πÞ4

PμνðkÞðkþ 2pÞμðkþ 2pÞν
k2½ðkþ pÞ2 −m2� ð21Þ

in which

PμνðkÞ ¼ gμν −
kμkν
k2

ð22Þ

is the projector of the photon propagator in Lorenz gauge.
The detached regularization scheme leads to

iΠ3aðpÞ ¼
−3ie2p2

16π2

	
log

�
μ2

m2 − p2

�

−
m2

p2
log

�
m2

m2 − p2

�
þ 4

3



; ð23Þ

where MS subtraction scheme is applied again. This result
is essentially the same as the one you would obtain in the
dimensional regularization framework [6,14].
The scalar-scalar tadpole correction in Fig. 3(b) is given

by the amplitude

iΠ3b ¼ λ

Z
d4k
ð2πÞ4

1

k2 −m2
; ð24Þ

where m is the mass of the charged scalar. The detached
regularization (7) with the MS subtraction results in the
amplitude (see Appendix A)

iΠ3b ¼
−iλ
32π2

Λ2
℘ log

�
μ2

m2

�
þ iλ
16π2

m2

	
log

�
μ2

m2

�
þ 1



:

ð25Þ

It is interesting to note that the second term is the same as
the one you would get in dimensional regularization
scheme [6,14]. The first term, on the other hand, is rather
specific to the detached regularization method (7).
The third and last diagram to consider in scalar electro-

dynamics is the one in Fig. 3(c), which is the scalar-photon
tadpole diagram. The amplitude for this is

iΠ3c ¼ 2e2
Z

d4k
ð2πÞ4

gμνPμνðkÞ
k2 −m2

γ
; ð26Þ

where PμνðkÞ is again given by (22). Here, we added a
fictitious photon mass mγ to the photon propagator as an
infrared regulator. The detached regularization scheme (7)
applied to this diagram results in the following amplitude
after the MS subtraction (see Appendix A):

iΠ3c ¼
ie2

8π2
Λ2
℘ −

ie2

16π2
Λ2
℘ log

�
μ2

m2
γ

�
; ð27Þ

which would vanish in the dimensional regularization
scheme (more precisely, the first term would disappear
and Λ2

℘ in the second term would be replaced by m2
γ ). This

result, which is quadratic in the scale Λ℘ and logarithmic in
the renormalization scale μ, is specific to the detached
regularization scheme (7).
Before closing, it proves useful to dwell on the loop-

induced photon mass in Eq. (20). In this regard, one notes
that different regularization schemes can be contrasted by
typical scattering processes such as the Drell-Yan scattering
eþe− → γ⋆ → ff̄ (f ¼ leptons, quarks) (see Ref. [1] for a
detailed study). The detached regularization has a different
take compared to those in [1] in that it aims at revealing first
the effects of the UV cutoff. Indeed, it is clear that photon
acquires a mass [as in (20) above] in the presence of the
cutoff Λ℘, and consequently, the Drell-Yan cross section
exhibits resonance behavior at the loop-induced photon
mass. But it is also clear that a finite photon mass is
unphysical despite the fact that the UV cutoff exists as a
concrete scale. This means that one has to do something
about the UV cutoff. That “something" could be Sakharov’s
induced gravity [18,19] (Λ℘ leads to Newton’s constant) or

)c()b()a(

FIG. 3. One-loop corrections to the scalar propagator in scalar electrodynamics. (a) The self-energy diagram. (b) The scalar-scalar
tadpole diagram. (c) The scalar-photon tadpole diagram.
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Demir’s emergent gravity [20–22] (Λ℘ is promoted to affine
curvature as a spurion in resemblance to the Higgs
mechanism) or the subtractive renormalization scheme
(Λ2

℘ terms are subtracted away) or some other mechanism.
Our goal in the present work is to prepare a framework [like
the photon polarization as in (20) above] in which one can
do “something” about the UV cutoff such that what is left
after that “something" is the usual dimensionally regular-
ized QFT. In other words, after the UV cutoff Λ℘ is dealt
with the Drell-Yann scattering eþe− → γ⋆ → ff̄ proceeds
as in the dimensional regularization at the subtraction scale
μ [as discussed in (20), for instance].

B. Spinor electrodynamics

We continue applications of the detached regularization
with the spinor electrodynamics, which is a simple QFT
composed of a charged Dirac fermion (ψ) and the gauge
field (Aμ). The calculational details of this section are all

given in Appendix B. The theory is governed by the
Lagrangian

L ¼ −
1

4
FμνFμν þ ψ̄ði=∂ − e=A −mfÞψ ; ð28Þ

where Fμν is the field strength tensor for Aμ. In regard to the
applications of the detached regularization method in (7),
we will calculate the amplitudes for the one-loop Feynman
diagrams depicted in Fig. 4.
We begin with the photon vacuum polarization diagram

in Fig. 4(a). It is given by

iΠμν
4aðpÞ ¼ −e2

Z
d4k
ð2πÞ4

Tr½γμð=kþ =pþmfÞγνð=kþmfÞ�
½k2 −m2

f�½ðkþ pÞ2 −m2
f�

:

ð29Þ
Regularization of this amplitude by the detached regulari-
zation in (7) leads to (see Appendix B)

iΠμν
4aðpÞ ¼

ie2

16π2
gμνΛ2

℘ −
ie2

2π2
½p2gμν − pμpν�

Z1
0

dx

	
ðx − x2Þ

�
−
1

2
þ log

�
μ2

p2ðx2 − xÞ þm2
f

��

; ð30Þ

whose first term is a quadratic correction (similar to what one would get by cutoff regularization). Its second term is finite
and transverse just like the corresponding vacuum polarization diagram in (20) in the scalar electrodynamics. It is what one
would get from the dimensional regularization [6,14].
The fermion self-energy diagram in Fig. 4(b) obtains the amplitude

−iΣ4bðpÞ ¼ −e2
Z

d4k
ð2πÞ4

γμð=kþmfÞγμ
½k2 −m2

f�½ðp − kÞ2 −m2
γ �

ð31Þ

and its regularization by the detached regularization in (7) results in (see Appendix B)

−iΣ4bðpÞ ¼
ie2

16π2

Z1
0

dx½2mf − 2x=p� − ie2

16π2

Z1
0

dx

	
½4mf − 2x=p� log

�
μ2

p2ðx2 − xÞ þ xm2
γ þ ð1 − xÞm2

f

�

ð32Þ

after applying the MS subtraction scheme.

)c()b()a(

FIG. 4. One-loop corrections in spinor electrodynamics. (a) The photon vacuum polarization diagram. (b) The fermion self-energy
diagram. (c) The fermion-photon vertex diagram.
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Lastly, the fermion-photon vertex of diagram in Fig. 4(c)
has the amplitude

− ieΓμ
4cðpÞ

¼ −e3
Z

d4k
ð2πÞ4

γνð=p0 − =kþmfÞγμð=p − =kþmfÞγν
k2½ðp − kÞ2 −m2

f�½ðp0 − kÞ2 −m2
f�

ð33Þ
whose detached regularization (7) gives rise to (see
Appendix B)

−ieΓμ
4cðpÞ ¼−2e3

Z1
0

dx

×
Z1−x
0

dy

	
iγμ

16π2

�
−
5

2
þ log

μ2

Δ2

�
−

iÑμ

32π2Δ2




ð34Þ
in which

Δ2 ¼ m2
fðxþ yÞ þ p2ðx2 − xÞ þ p02ðy2 − yÞ þ 2p · p0ðxyÞ

ð35Þ
and

Ñμ ¼ γν½p0ð1 − yÞ − pxþmf�γμ½pð1 − xÞ − p0yþmf�γν:
ð36Þ

Needless to say, the fermion-photon vertex is what one
would find in dimensional regularization. It is an impor-
tant property of the detached regularization that all the
results and properties of the dimensional regularization
are maintained.
In parallel with the discussion at the end of Sec. IVA,

here it should be emphasized that the goal in the present
work is to construct a framework (detached regularization
scheme) in which one can deactivate the photon mass in
Eq. (30) in a way leaving behind only a dimensionally
regularized QFT. It is after the deactivation of the photon
mass that the Drell-Yan scattering eþe− → γ⋆ → ff̄
(f ¼ leptons, quarks) proceeds as in the dimensional
regularization [1]. In the next section, we discuss how
the subtractive renormalization can be naturally realized in
the framework of detached regularization.

V. SUBTRACTIVE RENORMALIZATION
IN THE FRAMEWORK OF DETACHED

REGULARIZATION

As was mentioned in Introduction, subtractive renorm-
alization [15,16] is one instance in which the distinction
between power-law and logarithmic divergences is a must.
The detached regularization constructed in Sec. II is one
such distinctive regularization framework. Its applications

in Secs. III and IV (see also Appendices A and B for
details) have shown that the power-law and logarithmic
divergences get manifestly detached from each other under
the regularization function fðΛ℘; μ; DÞ in (6) (supple-
mented with the MS subtraction).
One immediate field theoretic setup in which one can

benefit from the merits of the detached regularization is the
subtractive renormalization of the λϕ4 theory. To this end,
we analyze the scalar two-point function, and show how
subtractive renormalization works in the detached regu-
larization scheme. One recalls that in subtractive renorm-
alization [15,16], one subtracts out the quadratically
divergent (Λ2

℘) terms by adding relevant counter terms to
the theory. However, since the commonly employed
regularization methods do not detach power-law and
logarithmic dependencies, mass renormalization factor
Zm still contains a term proportional to the logarithm of
Λ2
℘ such as [16]

λ

32π2
log

�
Λ2
℘

m2

�
ð37Þ

for a real scalar with mass m. This means that even though
the quadratic terms (Λ2

℘) are subtracted out the remnant
logarithmically divergent terms (logΛ℘) continue to
involve the UV cutoff Λ2

℘.
This remnant Λ℘ problem does not arise in the detached

regularization. Indeed, in detached regularization two-point
function of a real scalar field ϕ follows from (25) after
scaling by 1=2, and takes the compact form

Γð2Þðp2Þ ¼ p2 −m2 −
λ

64π2
Λ2
℘ log

�
μ2

m2

�
þ λ

32π2
m2

þ λ

32π2
m2 log

�
μ2

m2

�
; ð38Þ

where p is the momentum of the particle. Now, application
of the subtractive renormalization [16] to this two-point
function removes the Λ2

℘ term to leave behind log μ—
involving terms as in the dimensional regularization [6,14].
It is in this sense that it becomes possible to subtract away
power-law UV sensitivities such that what remains after the
subtraction is precisely what one would find in the dimen-
sional regularization (with no dependence on Λ℘). In the
language of [15], the local power-law terms are cleaned of
the regularized theory in a way causing no physical effects.
Having done with the subtractive renormalization of the

one-loop self energy in detached regularization, it is now
time to discuss workings of the detached regularization at
two-loop order. This can be done by analyzing the sunset
diagram in Fig. 5, for instance. The goal is to determine
if the regularization function fðΛ℘; μ; DÞ in (6) properly
works at two loops. The superficial degree of divergence
of the sunset diagram is 2. It therefore is expected to be

DIMENSIONAL REGULARIZATION IN QUANTUM FIELD … PHYS. REV. D 107, 045003 (2023)

045003-9



quadratically divergent (proportional to Λ2
℘). In fact, direct

calculation gives

−iΣ ¼ iλ2

96π2

Z Z Z
dx dy dz δðxþ yþ z − 1Þ 1ffiffiffiffiffiffi

αβ
p

×
	

Λ2
℘

32π2
log

μ2

m̄2
−

m̄2

16π2

�
log

μ2

m̄2
þ 1

�

ð39Þ

in which

α ¼ xþ z; β ¼ xzþ yðxþ zÞ
xþ z

; γ ¼ xyz
xzþ yðxþ zÞ ;

m̄2 ¼ −γp2 þ ðxþ yþ zÞm2; ð40Þ
andm is the mass of the scalar, p is the external momentum.
The first term inside the curly bracket in (39) is the
aforementioned quadratic divergence of the sunset diagram
in Fig. 5. The second term in (39), on the other hand, is the
expression one would find in dimensional regularization.
Clearly, the two-loop self energy piece (39) ensures that, at
higher loops, the detached regularization continues to
comprise both the power-law (Λ2

℘) and logarithmic
(log μ) UV sensitivities. As mentioned above while discus-
sing the one-loop self-energy, subtractive renormalization
weeds out Λ2

℘ terms to leave behind a log μ-involving
expression. All this implies that the detached regularization
provides a natural setting for subtractive renormalization at
and beyond one loop.

VI. CONCLUSION

The dimensional regularization sets the common ground
for regularizing QFTs (see Ref. [1] for various variants)
thanks mainly to its ability to preserve the gauge invariance.
It gives a gauge-invariant description of how the QFT
changes with the renormalization scale μ (essentially the
scale of the experiment). But the dimensional regularization
holds good provided that the QFT under concern is devoid
of any cutoff scale. (The cutoff Λ℘ is not a particle mass. It
is the UV boundary of the QFT in the Wilsonian sense).
The cutoff does necessarily break the gauge symmetries
(violation of the Ward identities). In the present work, the
goal has been to extend the dimensional regularization to
QFTs with a UV cutoff such that power-law divergences

(involving Λ℘ and breaking gauge symmetry) and loga-
rithmic divergences (involving μ and respecting gauge
symmetry) are combined in one single regularization
scheme. This detachment of the two divergences is moti-
vated by their natures. Indeed, power-law divergences are
local in that they live at the scale Λ℘. The logarithmic
divergences, on the other hand, extend in the entire range
since the correction M2 log Λ2

℘=M2 varies with the particle
mass M. Besides, the logarithmic UV sensitivities set the
beta functions and conformal anomalies in the QFT while
the power-law divergences do not play such roles.
In addition to the above, there is the fact that the

conventional cutoff regularization does not assign different
mass scales to the power-law and logarithmic divergences.
In the case of the induced gravity the UV cutoff sets
Newton’s constant. In the case of emergent gravity, on the
other hand, the UV cutoff gets promoted to affine curva-
ture as a spurion field (similar in philosophy to the Higgs
mechanism). Finally, in the subtractive renormalization
procedure, power-law divergences are canceled away by
the introduction of appropriate counter terms. In all these
mechanisms, the problem boils down to the fact that while
one operates on the terms of the power law in Λ℘ (whether
it be identification or promotion or cancellation), one has to
overlook the dependence of the logarithmic terms on the
same scale Λ℘. We illustrated this problem by a discussion
of the subtractive renormalization in Sec. V. In that case,
even though one subtracts away the power-law dependen-
cies on Λ℘, one is still left with the logΛ℘ dependencies
that survive in gauge-invariant corrections (including the
fermion masses). It is clear that if one had a regularization
method that separates out the scales on which the power-
law and logarithmic divergences depend, all these predic-
aments would evaporate. This is the main motivation of the
present manuscript and it is the main supremacy of
detached regularization over the cutoff regularization.
In this work, for the first time in the literature, we have

extended the usual dimensional regularization to involve
the logarithmic (D ¼ 4) and power-law UV sensitivities
(D ¼ 0 and D ¼ 2) in a way detached to involve different
scales. We have demonstrated benefits of the detached
regularization by giving its basic uses in different circum-
stances. First, we have applied it to the computation of the
vacuum energy in Sec. III, finding the usual UV structure.
Second, we have applied it to regularization of the scalar
and spinor electrodynamics in Sec. IV. Third, we have
applied it to subtractive renormalization to show how
eligible the detached regularization is for treating the
power-law and logarithmic divergences independently. In
general, the detached regularization is unique in that it
separates out the scales of the power-law and logarithmic
corrections, where the latter sets the running of the
parameters of the theory by virtue of the beta functions.
The detachment of the power-law and logarithmic

divergences can be of broad interest for the renormalization

FIG. 5. Two-loop sunset diagram for a real scalar field ϕ with
λϕ4 coupling.
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of QFTs. The renormalization schemes in which both
logarithmic and power-law divergences are kept can prove
useful (as did in nuclear physics applications [29]) for
revealing the UV sensitivity of the QFTs. If one wants to
renormalize away the quadratic UV dependencies, then
one way to go by is to employ the subtractive renormal-
ization [15,16]. In conventional subtractive renormalization
quadratic and logarithmic divergences formally appear as
separate terms, but the logarithmic terms embedded in the
bare mass still inhabit the same scale as the power-law ones
that are subtracted out via counterterms. This may seem
like a simple issue. However it is more involved than that
since the renormalized mass term depends on the scale
Λ℘. In contrast to this conventional structure, the newly
introduced detached regularization enables a complete
detachment of the power-law and logarithmic divergences,
and this detachment in return enables the subtractive
renormalization to subtract away all quadratic divergences,
leaving behind exactly the logarithmic terms one would
find in the dimensional regularization.
The detached regularization can have potential applica-

tions in various problems. It can be utilized in a broad class
of renormalization methods or field-theoretic mechanisms.

One example is subtraction of the power-law divergences
as in [15–17]. Another example is induced gravity models
in which UV cutoff leads to Newton’s constant [18,19]. Yet
another example is the emergent gravity models in which
the UV cutoff is promoted to curvature (like the promotion
of vector boson masses to Higgs field) [20–22]. These
examples can be furthered with other possible applications.
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APPENDIX A: SCALAR ELECTRODYNAMICS

1. Vacuum polarization in scalar electrodynamics

Combining the self-energy and tadpole diagrams given
in Figs. 2(a) and 2(b) we obtain

iΠμν
2aþ2bðpÞ ¼ e2

Z
d4k
ð2πÞ4

ð2kþ pÞμð2kþ pÞν − 2gμν½ðkþ pÞ2 −m2�
½ðkþ pÞ2 −m2�½k2 −m2� ; ðA1Þ

to which we apply Feynman parametrization in the denominator and shift the loop momenta in the numerator accordingly.
Getting rid of the terms linear in the shifted loop momenta q, we get to the point

iΠμν
2aþ2bðpÞ ¼ e2

Z1
0

dx

	
gμν

�
4

D
− 2

�Z
d4q
ð2πÞ4

q2

½q2 − Δ2�2



þ e2
Z1
0

dx

	
½pμpνð2x − 1Þ2 − 2gμν½p2ð1 − xÞ2 −m2��

Z
d4q
ð2πÞ4

1

½q2 − Δ2�2



ðA2Þ

where

Δ2 ¼ p2ðx2 − xÞ þm2; ðA3Þ
and the first integral in (A2) can be reduced to two irreducible integrals. The result of this reduction is to take the amplitude
(A2) into

iΠμν
2aþ2bðpÞ ¼ e2

Z1
0

dxfI1 þ I2g; ðA4Þ

where

I1 ¼ gμν
�
4

D
− 2

�Z
d4q
ð2πÞ4

1

q2 − Δ2
ðA5Þ

and

I2 ¼ gμν
�
4

D
− 2

�
Δ2

Z
d4q
ð2πÞ4

1

½q2 − Δ2�2 þ ½pμpνð2x − 1Þ2 − 2gμν½p2ð1 − xÞ2 −m2��
Z

d4q
ð2πÞ4

1

½q2 − Δ2�2 : ðA6Þ
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Now, we should first apply the new regularization (7) to I1 in (A5). The power of the denominator of I1 is n ¼ 1.
Therefore (7) applied to (A5) reads

I1 ¼ gμν
�
4

D
− 2

��
1

8π
ðδ½D�0 þ δ½D�2ÞΛ2

℘μ
2−D þ δ½D�4μ4−D

� Z
dDq
ð2πÞD

1

q2 − Δ2
ðA7Þ

where the integral on the right hand side amounts to

Z
dDq
ð2πÞD

1

q2 − Δ2
¼ −i

ð4πÞD=2

Γð1 −D=2Þ
Γð1Þ ðΔ2ÞD=2−1: ðA8Þ

Replacing (A8) into (A7) we obtain the following expression which is a function of the dimensionality D

I1 ¼ −igμν
�
4

D
− 2

��
1

8π
ðδ½D�0 þ δ½D�2ÞΛ2

℘μ
2−D þ δ½D�4μ4−D

� ðΔ2ÞD=2−1

ð4πÞD=2

Γð1 −D=2Þ
Γð1Þ : ðA9Þ

Now, the crucial point to keep in mind is that in evaluating (A9), not only do we have to consider the D → 4 limit but we
should also take theD → 2 limit so that we do not leave out the quadratic corrections in Λ℘. In theD → 2 limit (A9) yields

ðI1ÞD→2 ¼ −igμν
Λ2
℘

16π2
ðA10Þ

making use of the MS subtraction scheme.
Before calculating the D → 4 limit of I1, first let us evaluate I2 in (A6). The power of the denominator of the divergent

integrals in I2 is n ¼ 2, therefore the new regularization scheme (7) applied to it reads

I2 ¼ gμν
�
4

D
− 2

�
Δ2½ðδ½D�0 þ δ½D�2Þμ4−D þ δ½D�4μ4−D�

Z
dDq
ð2πÞD

1

½q2 − Δ2�2

þ ½pμpνð2x − 1Þ2 − 2gμν½p2ð1 − xÞ2 −m2��½ðδ½D�0 þ δ½D�2Þμ4−D þ δ½D�4μ4−D�
Z

dDq
ð2πÞD

1

½q2 − Δ2�2 ; ðA11Þ

where the divergent integral evaluates to

Z
dDq
ð2πÞD

1

½q2 − Δ2�2 ¼
i

ð4πÞD=2

Γð2 −D=2Þ
Γð2Þ ðΔ2ÞD=2−2: ðA12Þ

Making use of (A12) in (A11) before summing it up with (A9) and then taking the (D → 4) limit for I1 þ I2 leads to

ðI1 þ I2ÞD→4 ¼
i

16π2
½pμpνð2x − 1Þ2 − p2gμνð2x − 1Þ2 þ p2gμνð2x − 1Þ� log μ2

Δ2
; ðA13Þ

where Δ2 is as given in (A3). The next step is to plug (A13) and (A10) into

iΠμν
2aþ2bðpÞ ¼ e2

Z1
0

dxfðI1ÞD→2 þ ðI1 þ I2ÞD→4g; ðA14Þ

which can be put into the following final form via the change of variable y ¼ x − 1=2

iΠμν
2aþ2bðpÞ ¼ −

ie2

16π2
gμνΛ2

℘ −
ie2

4π2
½p2gμν − pμpν�

Z1=2
−1=2

dy

�
y2 log

�
μ2

p2ðy2 − 1
4
Þ þm2

��
: ðA15Þ
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2. Scalar propagator in scalar electrodynamics

One-loop corrections to the scalar propagator in scalar
quantum electrodynamics is depicted in Fig. 3. The
amplitude of the self-energy correction in Fig. 3(a) reads

iΠ3aðpÞ ¼ −e2
Z

d4k
ð2πÞ4

PμνðkÞðkþ 2pÞμðkþ 2pÞν
k2½ðkþ pÞ2 −m2� ;

ðA16Þ

where

PμνðkÞ ¼ gμν −
kμkν
k2

ðA17Þ

is the projector of the photon propagator in Lorenz gauge
which satisfies kμPμν ¼ 0 and kνPμν ¼ 0. Using these two
relations we obtain

iΠ3aðpÞ ¼ −4e2p2

�
1 −

1

D

�Z
d4k
ð2πÞ4

1

k2½ðkþ pÞ2 −m2� :

ðA18Þ

First, Feynman parametrizing the denominator and then
applying the regularization (7), one obtains

iΠ3aðpÞ ¼ −4e2p2

Z
1

0

dx

�
1 −

1

D

�
½ðδ½D�0 þ δ½D�2Þμ4−D

þ δ½D�4μ4−D�
Z

dDq
ð2πÞD

1

½q2 − Δ2�2 ; ðA19Þ

where the momentum integral is again given by (A12) and
Δ2 ¼ p2ðx2 − xÞ þm2x. Since the power of the divergent
integral is n ¼ 2 we need only consider the (D → 4)
limit for (A19) while applying the new regularization.
This results in

iΠ3aðpÞ ¼
−3ie2p2

16π2

	
log

�
μ2

m2 − p2

�

−
m2

p2
log

�
m2

m2 − p2

�
þ 4

3



; ðA20Þ

where MS subtraction scheme is applied again.
The amplitude for the scalar-scalar tadpole correction

in Fig. 3(b) is given by

iΠ3b ¼ λ

Z
d4k
ð2πÞ4

1

k2 −m2
; ðA21Þ

where m is the mass of the charged scalar. Taking note of
the fact that the power of the denominator of the propagator
is n ¼ 1, the regularization (7) yields

iΠ3b ¼ λ

�
1

8π
ðδ½D�0 þ δ½D�2ÞΛ2

℘μ
2−D þ δ½D�4μ4−D

�

×
Z

dDk
ð2πÞD

1

k2 −m2
; ðA22Þ

where again the integral is given by

Z
dDk
ð2πÞD

1

k2 −m2
¼ −i

ð4πÞD=2

Γð1 −D=2Þ
Γð1Þ ðm2ÞD=2−1:

ðA23Þ

Since n ¼ 1, we need to take both (D → 2) and (D → 4)
limits in performing the detached regularization on Π3b.
The analytical continuation to D ¼ 2 results in

ðiΠ3bÞD→2 ¼
−iλ
32π2

Λ2
℘ log

�
μ2

m2

�
; ðA24Þ

while analytical continuation to D ¼ 4 gives

ðiΠ3bÞD→4 ¼
iλ

16π2
m2

	
log

�
μ2

m2

�
þ 1



; ðA25Þ

whereMS subtraction scheme is applied in bothD ¼ 2 and
D ¼ 4 cases. Putting it all together, the new regularization
(7) and MS subtraction scheme give the final result

iΠ3b ¼
−iλ
32π2

Λ2
℘ log

�
μ2

m2

�
þ iλ
16π2

m2

	
log

�
μ2

m2

�
þ 1



:

ðA26Þ
The last diagram that we will examine which contributes

to the scalar propagator at one-loop level is the scalar-
photon tadpole given in Fig. 3(c). The amplitude for this is

iΠ3c ¼ 2e2
Z

d4k
ð2πÞ4

gμνPμνðkÞ
k2 −m2

γ
; ðA27Þ

where PμνðkÞ is again given by (22) and whose contraction
with the metric is

gμνPμνðkÞ ¼ D − 1: ðA28Þ

This makes (A27)

iΠ3c ¼ 2e2ðD − 1Þ
Z

d4k
ð2πÞ4

1

k2 −m2
γ
: ðA29Þ

The detached regularization applied to (A29) yields

iΠ3c ¼ 2e2ðD − 1Þ
�
1

8π
ðδ½D�0 þ δ½D�2ÞΛ2

℘μ
2−D þ δ½D�4μ4−D

�

×
Z

dDk
ð2πÞD

1

k2 −m2
γ
; ðA30Þ
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in which the momentum integral amounts to

Z
dDk
ð2πÞD

1

k2 −m2
γ
¼ −i

ð4πÞD=2

Γð1 −D=2Þ
Γð1Þ ðm2

γÞD=2−1:

ðA31Þ

Since the power of the denominator is n ¼ 1, both
(D → 2) and (D → 4) limits should be considered in
performing the detached regularization. The (D → 2) limit
yields

ðiΠ3cÞD→2 ¼
ie2

8π2
Λ2
℘ −

ie2

16π2
Λ2
℘ log

�
μ2

m2
γ

�
; ðA32Þ

whereas the (D → 4) limit yields no contribution since
it basically amounts to an amplitude that is proportional
to the square of the photon mass. Therefore the resultant

amplitude in the MS subtraction scheme becomes

iΠ3c ¼
ie2

8π2
Λ2
℘ −

ie2

16π2
Λ2
℘ log

�
μ2

m2
γ

�
: ðA33Þ

APPENDIX B: SPINOR ELECTRODYNAMICS

1. Vacuum polarization in spinor electrodynamics

According to Fig. 4(a), the amplitude of vacuum
polarization is given by

iΠμν
4aðpÞ ¼ −e2

Z
d4k
ð2πÞ4

Tr½γμð=kþ =pþmfÞγνð=kþmfÞ�
½k2 −m2

f�½ðkþ pÞ2 −m2
f�

:

ðB1Þ
The trace in the numerator amounts to

Tr½γμð=kþ =pþmfÞγνð=kþmfÞ� ¼ D½ðkμ þ pμÞkν þ ðkν þ pνÞkμ þ gμνðm2
f − ½kþ p� · kÞ�: ðB2Þ

Applying the Feynman parametrization one arrives at

iΠμν
4aðpÞ ¼ −e2D

Z1
0

dx
Z

d4q
ð2πÞ4

	�
2

D
gμν

q2

½q2 − Δ2�2 −
gμν

q2 − Δ2

�
þ 2ðx − x2Þ½p2gμν − pμpν�

½q2 − Δ2�2


; ðB3Þ

where Δ2 ¼ p2ðx2 − xÞ þm2
f. The first term inside the square brackets in (B3) can be decomposed into two irreducible

integrals, the result of which is

iΠμν
4aðpÞ ¼ −e2

Z1
0

dxfDI1 þDI2g; ðB4Þ

where

I1 ¼ gμν
�
2

D
− 1

�Z
d4q
ð2πÞ4

1

q2 − Δ2
ðB5Þ

and

I2 ¼
2

D
gμνΔ2

Z
d4q
ð2πÞ4

1

½q2 − Δ2�2 þ 2ðx − x2Þ½p2gμν − pμpν�
Z

d4q
ð2πÞ4

1

½q2 − Δ2�2 : ðB6Þ

First, we apply the regularization (7) to I1, paying attention to the fact that the power of the denominator is n ¼ 1. This
means that we need to consider not only the analytical continuation to D ¼ 4 but also to D ¼ 2. The regularization applied
to I1 reads

I1 ¼ gμν
�
2

D
− 1

��
1

8π
ðδ½D�0 þ δ½D�2ÞΛ2

℘μ
2−D þ δ½D�4μ4−D

� Z
dDq
ð2πÞD

1

q2 − Δ2
; ðB7Þ

where the momentum integral is again given by (A8). In the D → 2 limit (B7) yields

ðI1ÞD→2 ¼ −igμν
Λ2
℘

32π2
; ðB8Þ

where we used the MS subtraction scheme.
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Now, we evaluate I2. The power of the denominator of the divergent integrals in I2 is n ¼ 2, therefore the new
regularization scheme (7) applied to it reads

I2 ¼ gμν
2

D
Δ2½ðδ½D�0 þ δ½D�2Þμ4−D þ δ½D�4μ4−D�

Z
dDq
ð2πÞD

1

½q2 − Δ2�2

þ 2ðx − x2Þ½p2gμν − pμpν�½ðδ½D�0 þ δ½D�2Þμ4−D þ δ½D�4μ4−D�
Z

dDq
ð2πÞD

1

½q2 − Δ2�2 ; ðB9Þ

where the momentum integral is given by (A12). Next we sum (B9) with (B7) and then take the (D → 4) limit for I1 þ I2.
This leads to

ðI1 þ I2ÞD→4 ¼
i

8π2
½pμpν − p2gμν�ðx2 − xÞ log μ2

Δ2
; ðB10Þ

where Δ2 ¼ p2ðx2 − xÞ þm2
f. The next step is to plug (B10) and (B8) into

iΠμν
4aðpÞ ¼ −e2

Z1
0

dxf½DI1�D→2 þ ½DðI1 þ I2Þ�D→4g; ðB11Þ

which results in the regularized amplitude

iΠμν
4aðpÞ ¼

ie2

16π2
gμνΛ2

℘ −
ie2

2π2
½p2gμν − pμpν�

Z1
0

dx

	
ðx − x2Þ

�
−
1

2
þ log

�
μ2

p2ðx2 − xÞ þm2
f

��

; ðB12Þ

where the second term is the finite transverse term.

2. Fermion propagator in spinor electrodynamics

The correction to the fermion propagator is given by the diagram in Fig. 4(b), which corresponds to

−iΣ4bðpÞ ¼ −e2
Z

d4k
ð2πÞ4

γμð=kþmfÞγμ
½k2 −m2

f�½ðp − kÞ2 −m2
γ �
; ðB13Þ

wherein the numerator equals

γμð=kþmfÞγμ ¼ ð2 −DÞ=kþmfD: ðB14Þ

The next step is to Feynman parametrize the denominator and shift the loop momenta accordingly. The outcome of this
step is

−iΣ4bðpÞ ¼ e2
Z1
0

dx

	
½ðD − 2Þ=px −mfD�

Z
d4q
ð2πÞ4

1

½q2 − Δ2�2


; ðB15Þ

where the terms linear in the shifted loop momenta are dropped since they evaluate to zero. Next, the regularization (7)
is applied

−iΣ4bðpÞ ¼ e2
Z1
0

dx

	
½ðD − 2Þ=px −mfD�½ðδ½D�0 þ δ½D�2Þμ4−D þ δ½D�4μ4−D�

Z
dDq
ð2πÞD

1

½q2 − Δ2�2



ðB16Þ

in which the momentum integral is again given by (A12) and Δ2 ¼ p2ðx2 − xÞ þ xm2
γ þ ð1 − xÞm2

f. Since the power of the
divergent integral is n ¼ 2 we need only consider the (D → 4) limit. This results in
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−iΣ4bðpÞ ¼
ie2

16π2

Z1
0

dx½2mf − 2x=p� − ie2

16π2

Z1
0

dx

	
½4mf − 2x=p� log

�
μ2

p2ðx2 − xÞ þ xm2
γ þ ð1 − xÞm2

f

�

ðB17Þ

via the MS subtraction scheme.

3. One-loop vertex correction in spinor electrodynamics

The correction to the fermion-photon vertex in spinor QED is given by the diagram Fig. 4(c), which is

−ieΓμ
4cðpÞ ¼ −e3

Z
d4k
ð2πÞ4

γνð=p0 − =kþmfÞγμð=p − =kþmfÞγν
k2½ðp − kÞ2 −m2

f�½ðp0 − kÞ2 −m2
f�
: ðB18Þ

The first step is Feynman parametrizing the denominator. This leads to

−ieΓμ
4cðpÞ ¼ −2e3

Z1
0

dx
Z1−x
0

dy
Z

d4q
ð2πÞ4

γν½=p0ð1 − yÞ − =px − =qþmf�γμ½=pð1 − xÞ − =p0y − =qþmf�γν
½q2 − Δ2�3 ; ðB19Þ

where

Δ2 ¼ m2
fðxþ yÞ þ p2ðx2 − xÞ þ p02ðy2 − yÞ þ 2p · p0ðxyÞ ðB20Þ

and q is the shifted loop momentum. The numerator of (B19) can be written as

γν½=p0ð1 − yÞ − =px − =qþmf�γμ½=pð1 − xÞ − =p0y − =qþmf�γν ¼ γν=qγμ=qγν þ Ñμ þ ðterms linear in qÞ; ðB21Þ

where

Ñμ ¼ γν½=p0ð1 − yÞ − =pxþmf�γμ½=pð1 − xÞ − =p0yþmf�γν: ðB22Þ
The gamma matrix algebra in D dimensions applied to (B19) leads to

−ieΓμ
4cðpÞ ¼ −2e3

Z1
0

dx
Z1−x
0

dy

	ð2 −DÞ2
D

γμ
Z

d4q
ð2πÞ4

q2

½q2 − Δ2�3 þ Ñμ

Z
d4q
ð2πÞ4

1

½q2 − Δ2�3


; ðB23Þ

wherein the first integral can be reduced to two irreducible
ones, which are

I1 ¼
ð2 −DÞ2

D
γμ

Z
d4q
ð2πÞ4

1

½q2 − Δ2�2 ðB24Þ

and

I2 ¼
ð2 −DÞ2

D
γμΔ2

Z
d4q
ð2πÞ4

1

½q2 − Δ2�3 ; ðB25Þ

and the last integral in (B23)

I3 ¼ Ñμ

Z
d4q
ð2πÞ4

1

½q2 − Δ2�3 ðB26Þ

is kept intact. The first integral is regularized via (7) taking
note of the fact that n ¼ 2 therefore we only make the
analytical continuation D → 4, which leads to

I1 ¼
iγμ

16π2

�
−2þ log

μ2

Δ2

�
: ðB27Þ

The other two integrals I2 and I3 are already conver-
gent. Therefore there is no need to regularize them. They
amount to

I2 ¼
−iγμ

32π2
ðB28Þ

and

I3 ¼
−iÑμ

32π2Δ2
: ðB29Þ

Putting it all together as

−ieΓμ
4cðpÞ ¼ −2e3

Z1
0

dx
Z1−x
0

dyfI1 þ I2 þ I3g ðB30Þ
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the regularized form of the vertex correction becomes

−ieΓμ
4cðpÞ ¼ −2e3

Z1
0

dx
Z1−x
0

dy

	
iγμ

16π2

�
−
5

2
þ log

μ2

Δ2

�
−

iÑμ

32π2Δ2



; ðB31Þ

where Δ2 is given by (B20) and Ñμ by (B22).
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