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I argue that in large-N supersymmetric QCD infrared renormalons are absent in the conformal window,
there is no need in conspiracy between the coefficient functions and the vacuum expectation values of
at least some gluon operators—no factorials appear in the former and the latter vanish. Based on this
conclusion, I conjecture that in supersymmetric gluodynamics (supersymmetric Yang-Mills theory without
matter) at least the leading renormalon ambiguity disappears, which would be consistent with the fact that
the gluon condensate vanishes in this theory, hGa

μνGμνai ¼ 0.

DOI: 10.1103/PhysRevD.107.045002

I. INTRODUCTION

Renormalons are described by a special class of graphs
—the so-called bubble chains—which were identified in
1977 [1] (see also the review in Ref. [2]) as the source of a
factorial divergence of perturbation theory at high orders.
The literature on this phenomenon is huge. The so-called

Ünsal resurgence program [3] associated with the factorial
divergence of perturbation theory proved to be very useful
in many quantum-mechanics problems, in solutions of
partial differential equations, and in some asymptotically
free field theories in which the running of the coupling
constant in the IR domain can be frozen in some way. In
theories with a genuinely strong coupling IR regime, such
as QCD, renormalons do appear only formally. In fact, the
renormalon-associated factorial explosion at high orders is
a spurious effect that emerges because formal expressions
are used beyond their limit of applicability. What does that
mean and what is to be done? In this introductory section I
briefly explain the answers to these questions.
Let us consider the diagram shown in Fig. 1, representing

a typical bubble chain in QCD for a leading renormalon.
The IR contribution of this chain can be written as

D ∝ Q2

Z
dk2

k2αðk2Þ
ðk2 þQ2Þ3 ; ð1Þ

where α is the running coupling constant and k2 is the
momentum running through the long gluon (dashed) line.
It is obvious that at k2 ≲ Λ2, Eq. (1) makes no sense
because αðk2Þ does not exist for such values of k2; quarks

and gluons do not exist either. It is straightforward to
assess the corresponding ambiguity, which is of the order
of OðΛ4=Q4Þ.
In the renormalon construction the factorial divergence

in Eq. (1) is “demonstrated” in a completely formal way
through the expansion of the running αðk2Þ,

αðk2Þ ¼ αðQ2Þ
1 − b1

αðQ2Þ
4π lnðQ2=k2Þ

; ð2Þ

with the subsequent expansion of the right-hand side in
αðQ2Þ. Here b1 is the first coefficient of the β function.
Equation (2) describes the running constant αðk2Þ
expressed in terms of αðQ2Þ with a fixed (large) Q2.
Expanding the denominator in Eq. (2) in powers αðQ2Þ,
we arrive at the series

DðQ2Þ ∝ 1

Q4
α
X∞
n¼0

�
b1α
4π

�
n
Z

dk2 k2
�
ln
Q2

k2

�
n

;

α≡ αðQ2Þ; ð3Þ

FIG. 1. Graph showing four loops renormalizing a gluon
propagator (represented by the dotted line) attached to the
quark loop. A renormalon is the sum over all such diagrams with
n loops.
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which can be rewritten as

DðQ2Þ ∝ αðQ2Þ
2

X∞
n¼0

�
b1αðQ2Þ

8π

�
n Z

dy yn e−y;

y ¼ 2 ln
Q2

k2
: ð4Þ

The y integral in Eq. (4) taken from zero to infinity
produces n!.
Observe, however, that a characteristic value of k2

saturating the factorial is exponentially suppressed in n,

k2 ∼Q2 exp

�
−
n
2

�
or y ∼ n: ð5Þ

The factorial explodes as we approach the domain k2 ≲ Λ2,
so that the denominator in Eq. (2) hits zero. This was
explained in more detail in Refs. [4,5]. Thus, the factorial
divergence at high orders in the case at hand is just a
signature of the illegitimacy of using Eq. (1) at k2 ∼ Λ2, that
is, an artifact.
QCD and similar theories are self-consistent. Therefore,

they must take care of their problems. The correct way to
treat Fig. 1 is to use the Wilson operator product expansion
(OPE). To this end, one introduces an auxiliary parameter μ.
At strong coupling in confining theories it is assumed that
μ ∼ cΛ, where a numerical factor c must be chosen, say,
c ∼ 3 or ∼4, i.e., larger than Λ but not parametrically larger.
The virtual momenta k ≥ μ are included in the coefficient
functions which become well defined. The contribution
coming from k ≤ μ, i.e., from the soft domain, must be
included in full in the vacuum expectation values (VEVs) of
various operators. In the case of the leading renormalon (2)
and (3), this operator is Ga

μνGμνa with the normal dimen-
sion four.
In the OPE, the renormalon issue becomes a nonproblem;

it is replaced by the so-called conspiracy. The conspiracy
implies that the coefficients CiðμÞ (which would contain
renormalons under the formal procedure of letting μ → 0)
must conspire with the gluon operators OiðμÞ so that the
OPE sum

P
i CiðμÞhOiðμÞi (where h…i denotes the VEVs)

is well defined and μ independent. Thus, rather than
focusing on the “nonproblem” of renormalons, we must
focus on the conspiracy mechanism. This works perfectly in
nonsupersymmetric theories (see Refs. [4,5] and references
therein).
Below, as a shorthand I will refer to the renormalon and

the would-be factorial explosion in the coefficients CiðμÞ
(emerging if one tries to send μ → 0 without implementing
the proper conspiracy) as the renormalon ambiguity. The
term “renormalon ambiguity” is awkward, but yet is widely
used in the literature.
In supersymmetric Yang-Mills theories the mechanism of

the conspiracy hits an obstacle [6] (see also Refs. [5,7]).

Indeed, the VEV hGa
μνGμν ai ¼ 0 because Ga

μνGμν a is
proportional to the trace of the energy-momentum tensor
θμμ (up to an operator proportional to an equation of motion).
This leaves the leading renormalon in Fig. 1 without a
conspiracy partner. The issue was addressed in pure N ¼ 1
super-Yang-Mills theory (SYM) in Ref. [6] but not con-
clusively solved. One of the observations made in Ref. [6]
was as follows.
In SYM theory, the isolation of the bubble chain graphs

is quite nontrivial. The standard practice in QCD reduces to
isolating the matter bubble chain, which is characterized by
bmatter
1 rather than b1 [cf. Eq. (2)]. Isolating the matter

bubble chain is easy and unambiguous, unlike the isolation
of the gluon bubble chain which cannot be unambiguously
defined in a gauge-invariant manner. Then, by default, one
just replaces bmatter

1 → b1.
In SYM theory this strategy does not work because of the

absence of matter. In a subsequent paper [8] a study of the
conspiracy in the two-dimensional supersymmetric OðNÞ
sigma model was carried out in which hθμμi vanished too.
This model is exactly solvable for large N.1

Unfortunately, the study in Ref. [8] did not shed light
on the issue of conspiracy in four-dimensional SYM for
the following reason. Unlike four-dimensional SYM, two-
dimensional OðNÞ has a wider set of available dimension-
two operators, and these extra operators (which do not
reduce to θμμ) do indeed conspire to cancel the lowest-
dimension renormalon ambiguity.2

In a bid to advance our understanding in four dimen-
sions, I add matter to SYM theory, thus converting it to
N ¼ 1 super-QCD (SQCD). The theory discussed below
has the SUðNÞ gauge group and Nf massless matter fields
(quark and squarks) in the fundamental representation. I
will focus first on the conformal window in the Seiberg
limit [11]. In this limit we let N → ∞, keeping the ’t Hooft
coupling fixed [12]. The ratio Nf=N is a parameter that can
be changed in a range that is specified below.
I argue that in this theory the renormalon factorials n!

and renormalon-associated ambiguities do not appear. No
conspiracy with the gluon operator Ga

μνGμν a is needed, and
hGa

μνGμν ai ¼ 0 is consistent. The VEVs of other gluon
operators in the OPE are likely to be zeros too.
Based on these conclusions, I then return to SYM theory

without matter and conjecture that renormalons are absent
there too (at least, the leading one) and the conspiracy is not
required.
The organization of the paper is as follows. In Sec. II I

briefly describe SQCD and recall the main known facts.

1We had to consider the next-to-leading order in the 1=N
expansion since the leading order is trivial due to factorization
[9,10].

2Of course, in this case we can be certain in these cancellations
even before isolating renormalons since the exact solution is well
defined and has no ambiguities.

MIKHAIL SHIFMAN PHYS. REV. D 107, 045002 (2023)

045002-2



Section III contains my key assertions. There I present my
arguments that renormalon ambiguities do not develop in
the conformal window. In Sec. IV I briefly discuss SYM
without matter. This theory is believed to be confining,
and is definitely not conformal. However, even in this case
it is natural to hypothesize that CiðQ2Þ is well defined at
least for the leading operator. Section V summarizes my
conclusions. In the Appendix I carry out a direct com-
parison of the Adler functions in the Seiberg dual pairs. As
is expected, they coincide in the IR limit whenQ2 → 0, but
differ when Q2 ≠ 0.

II. PRELIMINARIES

In this section I discuss some general aspects of SQCD
and the ’t Hooft (planar) limit [12], starting with the latter.
Preamble: The advantages of the N → ∞ limit are as

follows. Instantons and similar quasiclassical contributions
are completely suppressed. This eliminates exponential
terms ∼e−S ∼ expð−C=αÞ. Moreover, the number of planar
graphs does not grow factorially [13]. This leaves us with
the IR and UV renormalons. The UV renormalons do not
introduce ambiguities.
In SQCD, Seiberg proved [11,14] that two distinct

supersymmetric theories—one with the SUðNÞ gauge
group and the other with SUðNf − NÞ plus an extra
color-singlet “meson” superfield with a super-Yukawa
coupling—are equivalent in the IR. This is the so-called
“electric-magnetic” duality. Moreover, the gauge coupling
β functions of both theories, electric and magnetic, are
exactly determined by the Novikov-Shifman-Vainshtein-
Zakharov (NSVZ) β functions [15] in terms of the
anomalous dimensions of the matter fields. Although
the anomalous dimensions γðαÞ are not Bogomol’nyi-
Prasad-Sommerfield protected and hence are not exactly
calculable, their infrared limit γ� is obtained from the
requirement that the numerator in the NSVZ formula
vanishes. In the electric theory,

γ�ðαÞ ¼ −
3N − Nf

Nf
: ð6Þ

The point 3N ¼ Nf is the upper edge of the conformal
window. The lower edge of the conformal window can be
obtained from the dual “magnetic” theory (see Ref. [11])
in which3

N→Nf −N; γ→ γD and ðγDÞ� ¼−
2Nf − 3N

Nf
; ð7Þ

implying that at the lower edge 3
2
N ¼ Nf. Thus, the

conformal window occupies the interval

3

2
N ≤ Nf ≤ 3N: ð8Þ

The UV fixed point is at α ¼ 0, the UVand IR fixed points
coincide at the edges of the conformal window. As was
expected, the electric theory is weaker near the right edge
of the conformal window, while the magnetic theory is
weaker near the left edge.
At Nf > 3N the electric theory is infrared free. At N þ

2 < Nf < 3
2
N its dual partner is infrared free. Thus, in

these two domains there are no infrared renormalons, no
conspiracy, and no VEVs of gluon operators. Of course, in
the UV limit they are in the Landau regime and are not self-
consistent unless embedded in a larger theory. I will not
consider SQCD outside the conformal window. Inside the
conformal window both the electric and magnetic theories
flow in the IR to one and the same conformal theory.
To follow the strategy of nonsupersymmetric QCD, in

what follows I will have to introduce an external source
field. In QCD this role is usually played by a photon.
Therefore, I will add a U(1) gauge superfield to the Seiberg
model, thus combining SQCD and super-QED. The added
U(1) field gauge, the “baryon” symmetry, will act as a
source and will not be iterated in loops. The magnetic
theory will support a dual U(1).

III. ARGUMENTS IN SQCD

Let us start when Nf is close to 3N, namely,

Nf ¼ 3Nð1 − ϵÞ; 0 < ϵ ≪ 1: ð9Þ

Then, in the electric theory the anomalous dimension at the
IR fixed point γ� is

γ� ≈ −ϵ; jγ�j ≪ 1: ð10Þ

At large N the anomalous dimension takes the form

γðαÞ ¼ −
Nα

2π
þ 1

2

�
Nα

2π

�
2

þ C

�
−3

�
Nα

2π

�
2

þ Nf

N

�
Nα

2π

�
2
�
þ � � � ; ð11Þ

where C is a numerical constant ∼1 (see Ref. [16]). Note
that at the right edge of the conformal window the term in
the square brackets vanishes.
The corresponding IR fixed point for α,

Nα�
2π

≈ ϵ ≪ 1; ð12Þ

is achieved at μ → 0. I used only the leading term of Eq. (11)
in Eq. (12). For the given values of Nf and N, the
formula (12) gives the maximal value of α on the renorm-
alization-group (RG) flow trajectory on the way from the

3In the dual theory γD depends not only on α but also on f; see
Eq. (A3) and the discussion that follows it.
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UV to the IR. Equation (2) is not valid and Nαðk2Þ=2π
remains small at small values of k2, as shown in Fig. 2.
Moreover, the approach of α to α� in the vicinity of the IR
fixed point is power-like, not logarithmic. Under these
circumstances, the renormalons do not develop, even for-
mally, and the α series must be convergent. This was
explained in great detail in Refs. [4,5,7]. Given that the
gauge coupling α is always small in the regime at hand, I
conclude that gluon operators have vanishing VEVs. The
conspiracy is just not needed.
Now, let us move toward smaller values ofNf. Then, jγ�j

increases and at Nf ¼ 2N reaches 1
2
. At this point one can

pass to the dual theory—see Fig. 3 in which jðγDÞ�j
decreases from 1

2
down to zero as the value of Nf continues

to decrease down to 3
2
N—but this is not necessary. Even if

one continues with the electric theory, the maximal value of
γ� achieved at the left edge of the conformal window at
Nf ¼ 3

2
N is γ� ¼ 1. Then,

Nα�
2π

≲ 1; ð13Þ

[cf. Eq. (11)] and α� does not explode at small k2 which
would be needed for the factorial growth of coefficients to
emerge. This can be proven by analysis of the dual theory.
Indeed, −ðγ� þ ðγDÞ�Þ ¼ 1 for all Nf. Moreover, observ-
able quantities in the IR in he electric and magnetic theories
coincide identically; see the Appendix.4

An additional argument in favor of the statement of no
renormalons/no conspiracy in the entire conformal window

is that the values of γ� and ðγDÞ� [see Eq. (6)] are
unambiguous and smooth functions of Nf. Everywhere
inside the conformal window, we are in one and the same
conformal phase, and there are no mass gaps and no
irregularities due to opening mass thresholds.
Summarizing, SQCD in the conformal window exhibits

no evidence for renormalon ambiguities which entails
vanishing VEVs of at least some gluon operators.
Finally, I want to make a remark about nonsupersym-

metric QCD with massless quarks. This theory also has a
conformal window [17]. Close to its right edge,5 i.e., at
Nf ≲ 5.5N, the infrared fixed point is at small values of α
and, therefore, I expect no renormalon ambiguities and no
VEVs. Unlike SYM, however, when we move to small
enough Nf, say, Nf ∼ N, there is a phase transition and,
therefore, renormalon ambiguities, the conspiracy, and the
OPE with the full set of VEVs reestablish themselves.

IV. CONJECTURE ON SUPERSYMMETRIC
YANG-MILLS

Inspired by the conclusions of the previous section, in this
section I ask what happens in pure SYM theory without
matter. In the infrared this theory is certainly not conformal;
rather, it is believed to be confining. What we know for sure
is that the VEV of the leading dimension-four operator
Ga

μνGμν a vanishes. This implies no leading renormalon
ambiguity sinceN ¼ 1 SYM theory per se is unambiguous.
Let us have a look at the NSVZ β function in SYM. It can

be written as

∂ð2π=NαÞ
∂L

¼ 3

1 − Nα
2π

; L ¼ log μ: ð14Þ

Equation (14) is exact; for more a detailed discussion see
Ref. [18] and references therein. This implies that the value

FIG. 2. Running coupling according to Eq. (2) leading to a
formal factorial divergence in the bubble chain at high orders vs
the conformal window coupling. Near the edges of the conformal
window Nα�

2π ≪ 1, while in the middle Nα�
2π ≲ 1.

FIG. 3. Anomalous dimensions of matter fields as functions of
Nf in the electric and magnetic theories. The magnetic γ is
marked by the subscript D.

4If one chooses to pass from the electric to the magnetic
description at Nf ¼ 2N, γ� ¼ 1

2
, one would see a cusp in Fig. 3.

This is an artifact. In the “observable” quantities, such as the
Adler functions, the predictions of the electric and magnetic
theories coincide identically in the IR for each value of Nf and N,
provided one replaces qf by ðqfÞD. 5The exact position of the left edge is still unknown.
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Nα�
2π

¼ 1 ð15Þ

is the maximal value of the coupling constant that can be
achieved in the α running according to the asymptotic
freedom formula. The value (15) is approached from below
as follows [18]:

α� − αðμÞ ∼ constðμ − ΛÞ1=2; μ ≳ Λ ð16Þ

(see Fig. 1 in Ref. [18]). Since the regimes (2), (15), and
(16) are drastically different, it is plausible that SYM is free
from the bubble-chain ambiguities.
A related question immediately comes to mind: is it

possible in principle that confining super-Yang-Mills the-
ories, as opposed to superconformal theories, are compat-
ible with the Euclidean OPEs for two-point functions that
have VEVs of certain operators in OPE vanishing? After
all, confining SYM theories must have a mass gap and, at
N → ∞, the spectral densities in the two-point functions
must look like a comb built from delta functions at the
positions of the meson states.
The answer to this question in its most extreme formu-

lation was found long ago, and it was in positive. In 1978,
Migdal [19] asked: what is the best possible accuracy to
which log Q2 can be approximated by an infinite sum of
infinitely narrow discrete mesons in the spectral function.
The answer is as follows.
If the mesons are placed at the zeros of a Bessel function,

with well-defined residues, then no ðΛ2=Q2Þk corrections
to log Q2 will appear in the Euclidean OPE; all corrections
will be exponentially suppressed at large Q2. Much later,
it was realized [20] that just this situation takes place in
the holographic QCD model suggested in Ref. [21]. The
authors found that, on the one hand, the bare-quark-loop
logarithm is represented in their anti–de Sitter/QCD model
as an infinite sum over excited mesons, and on the other
hand, the Euclidean OPE is of the form

log Q2 þ
X
i

ai exp ð−biQ2=Λ2Þ; ð17Þ

that is, there are no power corrections at all.

V. CONCLUSIONS

In this paper I revisited a long-standing problem of
renormalons in supersymmetric Yang-Mills theories caused
by the impossibility of the required conspiracy in the OPE.
I argued that in SQCD this problem is absent in the Seiberg
conformal window: there are no reasons for the factorial
growth. In SYM without matter the situation may be
similar. This latter statement is a hypothesis.
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APPENDIX: ADLER FUNCTION IN THE
IR LIMIT

In Sec. III I mention that all quantities observable in the
IR limit in electric and magnetic theories coincide identi-
cally. Now I want to demonstrate this using the example of
the exact Adler function D relatively recently calculated in
Ref. [22]. The Adler function is determined by the current-
current two-point correlator. In this sense it can be viewed
as a supersymmetric analog of the study of eþe− annihi-
lation to hadrons. This result in the IR limit is not new: it
was indirectly obtained in Ref. [23] [see the discussion after
Eq. (2.27)], where the infrared limit of D was shown to be
related by supersymmetry (SUSY) to the triangular ’t Hooft
FFR anomaly which, in turn, had been matched in dual
theories long ago [11]. R in FFR is the anomaly-free
R charge.6

The demonstration presented below is direct. It is based
on the superfield calculation of graphs presented in Fig. 4.
Since our focus is on strong interactions, we can truncate

eþe− and consider the two-point function of (virtual)
photons, as in Fig. 4. Its imaginary part gives the cross
section for matter production. Thus, I combine SUSY QCD
with SUSY QED. For simplicity, I will assume that all
electric charges of the matter fields are one,

qf ¼ 1: ðA1Þ

The exact formula for the Adler function DðQ2Þ takes the
form [22]

FIG. 4. Graph determining the Adler D functions in Euclidean
space. Upon analytic continuation to Minkowski space, their
imaginary part reduces to the total cross section of Vμ → matter.
All quasidisconnected graphs of the type depicted in (a) vanish
due to supersymmetry.

6The same relation could be obtained from Refs. [24–26] in
which the so-called a maximization was required. It is worth
emphasizing that the result thus obtained is applicable only at the
IR fixed points (but generally not along the RG flow away from
the fixed points; see my remark at the end of this appendix).
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DðQ2Þ ¼ 3

2
N
X
f

q2f½1 − γðαðQ2ÞÞ�; ðA2Þ

where the sum runs over all flavors and γ is the anomalous
dimension of the matter fields (all matter fields belong to the
fundamental representation of color). In our formulation of
the problem γ is the same for all flavors. Equation (A2) is
valid for Q2 ∈ ½0;∞�.
Supersymmetry implies that all “semiconnected” graphs

of the type presented in Fig. 4(a) vanish [22]. Only the
graph in Fig. 4(b) contributes. Conceptually, the derivation
of Eq. (A2) is somewhat similar to that of the NSVZ
formula [15]. The anomalous dimensions of the matter
fields from Ref. [15] were used to determine the IR values
γ�. They were also instrumental in the studies of the
superconformal R symmetries in four dimensions and their
relation to the a theorem [24–26].
A few words are in order here about the magnetic

component of Seiberg’s dual pair. It contains an additional
“meson” color-neutral superfield Mi

j with a certain super-
potential. Hence, in addition to the gauge coupling, a
(super-)Yukawa coupling is present too,

WD ¼ fMi
jQiQ̄j: ðA3Þ

The anomalous dimension γD depends not only on g2D, but
also on the superpotential coupling constant f, as does the
beta function for f. While the superpotential is not renor-
malized, the coupling f still runs due to the emergence of
the Z factors in the matter kinetic terms. If the number of
dual colors (i.e., Nf − N) and the number of flavors Nf are
large, then

βf ¼ −ðNf − NÞ α

2π
þ cf

jfj2
4π2

; ðA4Þ

where cf is a positive number depending on the structure of
the matrix superfield Mi

j, for instance, cf ∼ Nf. The RG
flow of jfj2 toward the IR slightly depends on the initial
conditions. If we switch off α, then jfj2 is IR free. However,
the gluon contribution has the opposite effect. Even if at an
intermediate scale μ the constant α < jfj2, under the RG
flow toward the IR α will go up while jfj2 will go down so

that eventually they undergo a crossover; at this point, αwill
become larger and will force jfj2 to run according to the
asymptotic freedom law, and then the cycle reverses. In the
IR they both hit an IR fixed point which is determined by
Eq. (7). On the other hand, starting at point A in Fig. 3 in
Ref. [27], one will never see the Landau growth of jfj2 in
the IR; the IR limit is the point C in this figure. As explained
in Ref. [14], the value of jfj2 at the IR fixed point can be
rescaled by any field rescaling preserving Eq. (5.6) in
Ref. [14], where 1=μ ¼ f.
Equation (6) implies that in the infrared limit

1 − γ� ¼ 1þ 3N − Nf

Nf
¼ 3N

Nf
; ðA5Þ

D� ¼
9

2
N2: ðA6Þ

What changes in passing to the magnetic theory? First of
all, the U(1) charge becomes

qD ¼ N
Nf − N

; ðA7Þ

instead of (A1) (see Ref. [11]). Second, in the dual
magnetic theory, the number of colors is Nf − N. Taking
these changes into account in the IR limit [see, e.g.,
Eq. (7)],

1 − ðγDÞ� ¼ 1þ 3ðNf − NÞ − Nf

Nf
¼ 3ðNf − NÞ

Nf
; ðA8Þ

D� ¼
9

2
N2; ðA9Þ

where I used Eq. (A7) for the dual U(1) charge. We see that
the “observable” total cross sections in the Seiberg dual pair
coincide in the IR for all values of Nf=N.
At the same time, it is quite obvious that at Q2↛0 the

electric and magnetic Adler functions differ. Their ratio at
the UV fixed point (i.e., Q2 → ∞) varies from 3

2
to 3

depending on the position in the conformal window.
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