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Two entangled two-level Unruh-DeWitt detectors, which are in rest, spontaneously lose entanglement
when at least one of them is not isolated from the environment quantum fields. For eternal interaction
between the detectors and environment, the spontaneous emission from the detectors’ exited states and
vacuum fluctuations of field influence this negative effect. Consequently, it suggests that two entangled
qubits become less communicated during their free fall towards the black hole horizon.
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I. INTRODUCTION

Quantum entanglement, known as a resource of the
quantum information, is key to many quantum technologies
such as quantum cryptography [1,2], quantum teleportation
[3–6], quantum computation [7], etc. Such phenomena
drew much attention over the past few decades both in
nonrelativistic (NR) and relativistic regimes. In NR quan-
tum systems, lots of studies have been carried out to
understand it [8–10], including its realization in the lab
[11–15]. Moreover, this phenomena became very important
to understand the quantum nature of gravity [16,17], the
black hole information paradox [18–20], black hole
thermodynamics [21,22], etc.
Study of quantum entanglement in the relativistic

framework can provide a broader perspective towards
the reality. Interestingly the existence of entanglement in
the vacuum state of a quantum field is capable of harvest
entanglement between a pair of two-level detectors [known
as Unruh-DeWitt (UD) detectors], even if they are causally
disconnected [23–28]. This process of swapping field
entanglement to detectors is sensitive to the type of motion
of UD detectors [29–33], the switching function of the
interactions [34], the nature of the background fields
[35–37], presence of black holes [38–42] and other curved
spacetimes [42–44], which have been very active areas for
the past few years. Moreover, the quantum entanglement
phenomenon appears to be frame dependent—the measure
of entanglement changes as one describes with respect to
other reference frames [29,45–50]. In a bipartite system
the measure of entanglement is fruitfully quantified by
negativity as well as concurrence [51–53].

In this paper we intend to address a fundamentally
important question—whether entanglement between sys-
tems remain intact when they are not isolated from the
environment? In our environment the background fields
always contain vacuum fluctuation energy and as the
entanglement in the vacuum state of the background fields
swaps to a pair of UD detectors (see e.g., [27,30–44]), it is
natural to investigate whether the swapping of vacuum
entanglement has any influence in entangled systems. To
get the answer to this, we consider a relativistic model
where two initially entangled UD detectors are individually
interacting with the background fields. For simplicity the
fields are chosen to be real scalar ones and the interaction is
monopole type. In order to avoid the effect of motion we
consider both of the detectors to be static eternally with
respect to the lab frame in Minkowski spacetime. Also to
avoid complexity of calculation and perform an analytical
analysis, we choose eternal interaction between the field
and detectors. The investigation, like earlier various analy-
sis, is done until second order in perturbation series.
We observe that even if the detectors are eternally static

with respect to the lab frame, they lose entanglement
communication while interacting with the environment
(here the background scaler field). This feature is a bit
unexpected as previous results are in favor of entanglement
harvesting due to entanglement swapping (like mentioned
in [27,30–44]). Therefore, if two entangled qubits are left
open in the environment, they will lose entanglement. We
find that such leakage of entanglement within this simple
model is caused by collective effects of spontaneous
emission of the individual detector and vacuum fluctuation
of the quantum field. Moreover, we argue that the leakage is
unavoidable even for other types of switching function
related to interaction. In the latter situation other effects
(like excitation of detectors, etc.) may also contribute.
Interestingly, if any one of the detectors is kept shielded

*dipankar1998@iitg.ac.in
†c.angshuman@iitg.ac.in
‡k.bhushan@iitg.ac.in
§bibhas.majhi@iitg.ac.in

PHYSICAL REVIEW D 107, 045001 (2023)

2470-0010=2023=107(4)=045001(6) 045001-1 © 2023 American Physical Society

https://orcid.org/0000-0001-9040-2529
https://orcid.org/0000-0001-8621-1324
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.045001&domain=pdf&date_stamp=2023-02-01
https://doi.org/10.1103/PhysRevD.107.045001
https://doi.org/10.1103/PhysRevD.107.045001
https://doi.org/10.1103/PhysRevD.107.045001
https://doi.org/10.1103/PhysRevD.107.045001


from the environment (while the other one is open to
environment quantum field) then also the composite system
suffers from entanglement degradation. But in the latter
situation the same will be less than the situation where both
of the detectors are switched on.
Let us now proceed towards the calculation to justify

our claim.

II. THE UD DETECTOR MODEL

Consider a pair of UD detectors, A and B, with energy
gap ΔEj ¼ Eej − Egjðj ¼ A;BÞ. The detectors are initially
entangled and the initial quantum state is taken to be

jDi ¼ αjgAgBi þ γjeAeBi; ð1Þ

where α and γ are chosen to be real and satisfy α2 þ γ2 ¼ 1.
Here jgji and jeji are the ground and exited states of the jth
detector, respectively, jgAgBi≡ jgAi ⊗ jgBi, and so on.
The detectors are at rest in (3þ 1)-dimensional Minkowski
spacetime and hence their trajectories are denoted as

tA ¼ τA; xA ¼ 0;

tB ¼ τB; xB ¼ d; ð2Þ

where d is a constant vector (measures the distance
between the detectors) and τj is the proper time of the
jth detector. The action for the interaction between the
detector and background quantum field ϕðxÞ is taken to be
monopole type [54]:

Sint ¼
X
j¼A;B

Cj

Z
dτjχjmjðτjÞϕðxjðτjÞÞ; ð3Þ

where Cj is the coupling constant of the interaction and
mjðτjÞ ¼ eiHjτjðjgjihejj þ jejihgjjÞe−iHjτj is the monopole
operator of the jth detector, whose free Hamiltonian is
given by Hj. Here χj is the switching function which
determines the duration of interaction. The initial state of
the composite system (field and detectors system) is
considered to be jini ¼ j0Mi ⊗ jDi, where j0Mi denotes
the vacuum state of the field in Minkowski spacetime.
The initial density matrix of the detectors’ system (by

tracing out the field degrees of freedom) is given by

ρABðtinÞ ¼

0
BBB@

α2 0 0 αγ

0 0 0 0

0 0 0 0

γα 0 0 γ2

1
CCCA: ð4Þ

The later time this density matrix is determined as
ρABðtÞ ¼ TrϕðTeiSint jinihinjTe−iSintÞ, where T denotes the
time ordering. Until the second order in perturbation series
this turns out to be [50]

ρABðtÞ ¼

0
BBB@

a1 0 0 a2
0 b1 b2 0

0 c1 c2 0

d1 0 0 d2

1
CCCA; ð5Þ

with t > tin. The explicit forms of the matrix elements are
presented in [50] (see also Supplemental Material [55]).
Consider the detectors are identical and so ΔEA ¼
ΔEB ≡ ΔE. Also for simplicity assume the coupling
constants CA, CB are the same; i.e., CA ¼ CB ≡ C. For
the present model with χj ¼ 1 then they reduce to

a1 ¼ γγð1 − C2P00
A − C2P00

BÞ;
a2 ¼ γαð1 − C2MA − C2MBÞ;
b1 ¼ γγC2P00

B;

b2 ¼ γγC2X⋆
AB;

c1 ¼ γγC2XAB;

c2 ¼ γγC2P00
A;

d1 ¼ αγð1 − C2M⋆
A − C2M⋆

BÞ;
d2 ¼ αα; ð6Þ

where

P00
j ðΔEÞ ¼

Z Z
dτjdτ0je

−iΔEðτj−τ0jÞGWðx0j; xjÞ

¼ Pjð−ΔEÞ;

MjðΔEÞ ¼
Z Z

dτjdτ0je
iΔEðτj−τ0jÞθðτj − τ0jÞ

× ðGWðx0j; xjÞ þ GWðxj; x0jÞÞ;

XABðΔEÞ ¼
Z Z

dτAdτ0Be
iΔEðτ0B−τAÞGWðx0B; xAÞ: ð7Þ

In the aboveGWðx0j; xjÞ is the positive frequencyWightman
function. As PjðΔEÞ denotes the transition probability
to the exited state of the jth detector (see e.g., [54]), the
first term in (7) corresponds to the deexcitation of it. Since
the detectors are static, therefore P00

j does not have any
contribution due to the relative motion of the detectors.
Therefore it is completely given by the spontaneous
emission probability [56]. On the other hand, GWðx0j; xjÞ þ
GWðxj; x0jÞ in the second term can be realized as
h0Mjfϕðx0jÞ;ϕðxjÞgj0Mi. Therefore Mj is determined from
the anticommutator of the scalar field and as the expect-
ation value of the anticommutator depends on the field state
under consideration (contrary to the commutator of the
field, whose expectation value is independent of state), Mj

arises purely due to the vacuum fluctuation of field.
Before going to evaluate the integration, let us mention

the choice of χj. In detector transition-related studies, one

BARMAN, CHOUDHURY, KAD, and MAJHI PHYS. REV. D 107, 045001 (2023)

045001-2



can start with an adiabatic interaction switching function
χjðτjÞ ¼ e−sjτjj to build up a model (e.g., see [54,57]). This
helps to suppress spurious transient effects. In that case the
interaction is kept switched on for a duration τj ∼ s−1 with
the restriction s ≪ ΔE. Moreover, to fulfill the adiabatic
condition, the interaction is switched on and off in an
infinitely slow process. Then if the interaction starts at tin ¼
τinj ¼ −τ0 and ended at t ¼ τfj ¼ τ0, one must take the
limits τ0 → ∞ and s → 0. In that case the limits of
integrations are from −∞ to ∞ and χj can be chosen to
unity. Using this spirit we have chosen χj ¼ 1 in the present
analysis so that the interaction starts at the asymptotic
infinite past (the same has also been done in [54]). For that,
the detectors and the field are to be in a product state at the
initial time, i.e., tin ¼ −∞.
Evaluation of the integrations yields

P00
j ¼

δð0Þ
2c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2 −m2c4

p
≡ P00;

ReðMjÞ ¼
δð0Þ
4c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2 −m2c4

p
≡M;

XAB ¼ δð0Þ
2c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2 −m2c4

p sin
�
d
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2 −m2c4

p �
�
d
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2 −m2c4

p � ;

ð8Þ

where “Re” denotes the real part only. In the above c is the
velocity of light in the free space. Since both of the
detectors are static with respect to the lab frame on
Minkowski spacetime, we have P00

A ¼ P00
B and MA ¼ MB.

The Dirac-delta functions in these expressions are arising
due to infinite time integrations [i.e., χjðτjÞ has been chosen
to be unity]. Then to give a meaning, one can interpret the
quantities divided by the delta functions as a rate of these
quantities by considering

δð0Þ ¼ lim
T→∞

1

2π

Z
T=2

−T=2
du: ð9Þ

Later we will address this point elaborately.

III. QUANTIFYING ENTANGLEMENT

There are two well established quantities, negativity and
concurrence, which fruitfully measure the entanglement
between two qubits. Here we will find them corresponding
to the state described by the density matrix (5). Any
difference in them compared to those for (4) will signify
the change in the entanglement between our two UD
detectors.
Negativity is defined as absolute value of the sum of

negative eigenvalues of the partially transposed density
matrix, derived from the positive partial trace criterion [51].

The eigenvalues of the partially transposed matrix corre-
sponding to (5) have been calculated in [50]. The analysis
showed that, out of four eigenvalues, the negative eigen-
value can be either λ1 or λ2, obtained as

λ1;2 ≈
C2

2

�X
j

ðα2Pj þ γ2P00
j Þ þ αγReðP0

AB þ P̄0
ABÞ

�

� ½αγ − C2Reðα2ζAB þ γ2YAB þ αγðMA þMBÞÞ�:
ð10Þ

The explicit forms of the different quantities are provided
in Supplemental Material [55]. For the present setup, the
above reduces to

λ1;2 ≈
C2

2

X
j

γ2P00
j � ½αγ − C2αγReðMA þMBÞ�: ð11Þ

(A short discussion on this is elaborated in the
Supplemental Material [55] as well.) Note that only P00

j

and Re(Mj) are contributing and they are real and non-
vanishing only when ΔE > mc2. Under this condition
we have ðP00

j ;ReðMjÞÞ > 0. Therefore when both α and
γ have the same sign [e.g., Bell state of the form (1) with
α ¼ γ ¼ 1=

ffiffiffi
2

p
] then λ2 is negative, while λ1 is negative for

opposite signs of α and γ [e.g., Bell state of the form (1)
with α ¼ −γ ¼ 1=

ffiffiffi
2

p
]. In both of these situations the

negativity is given by

N ¼ max f0; jαγj − C2ðγ2P00 þ 2jαγjMÞg: ð12Þ

Note that since P00 and M are nonvanishing, even though
the detectors are static, we will have less negativity.
Therefore if an entangled pair of two-level detectors is
kept at rest in the environment, there will be entanglement
leakage and that phenomenon is driven by two effects—
spontaneous emission of the individual detector and the
vacuum fluctuation of the background field.
Another independent measure of entanglement is con-

currence [53]. The importance of this quantity is due to its
connection with the entanglement of formation. The con-
currence is defined as

C ðρÞ ¼ maxf0; λ01 − λ02 − λ03 − λ04g; ð13Þ

where the λ0s are the square root of eigenvalues of the
matrix ρABðσy ⊗ σyÞρ⋆ABðσy ⊗ σyÞ and λ01 is the largest of
them. For our density matrix (5), λ0s are calculated in the
Supplemental Material [55]. For our model the concurrence
is obtained as

C ðρÞ ¼ max f0; 2jαγj − C2ððjαγj þ 2γ2ÞP00 þ 2jαγjMÞg:
ð14Þ

SPONTANEOUS ENTANGLEMENT LEAKAGE OF TWO STATIC … PHYS. REV. D 107, 045001 (2023)

045001-3



It decreases from the initial value. So again it is confirmed
that there will be leakage of entanglement between the two
UD detectors when they are not isolated from the envi-
ronment and such is due to two phenomenon—spontaneous
emission of the individual detector and vacuum fluctuation
of the quantum field.
Note that for this model both P00 and M contain Dirac-

delta function δð0Þ and therefore are divergent. This is due
to consideration of interaction for the infinite time and such
an issue always arises naturally for the choice of switching
function as unity. The same has also appeared in the
original calculation for transition probability of an accel-
erated detector. In this situation, making an analogy with
the Fermi’s golden rule, the transition probability per unit
time (known as detector’s response function) is considered
to be the relevant physical quantity (see for example
Sec. 3.3 of [54]). In the same spirit to tackle the present
situation we define the change in negativity or concurrence
per unit time as follows. Using the fact (9), one defines the
change in negativity and concurrence per unit time as

δ _N ¼ ðfinite quantityÞ × lim
T→∞

1

2πT

Z
T=2

−T=2
du; ð15Þ

and

δ _C ¼ ðfinite quantityÞ × lim
T→∞

1

2πT

Z
T=2

−T=2
du; ð16Þ

respectively, where the “finite quantity” in δ _N is deter-
mined from C2ðγ2P00 þ 2jαγjMÞ by removing the common
factor δð0Þ in it and so on. In this case to make the
perturbative calculation viable we satisfy the condition—
initial negativity and concurrence per unit interaction time
is greater than their rate of change. Then nonvanishing

positive value of δ _N or δ _C can be regarded as the signature
of degradation of initial entanglement (the same has been
proposed earlier in [50] as well). Introduction of this idea of
measuring the entanglement for the present model then
shows the unavoidable leakage of initial entanglement
which here depends on the energy gap ΔE of the detectors
and mass of the scalar field m under the condition
ΔE > mc2. Moreover, the entanglement leakage will
decrease with increasing mass (m) of the scaler field until
mc2 ∼ ΔE. Also note that such is independent of the
intradistance (jdj ¼ d) between the detectors and hence
the situation remains the same even if they sit together.
Moreover, no change will occur when ΔE ¼ mc2.
Interestingly, for a massless field, one finds degradation
for all values of ΔE. The latter discussion seems to indicate
that when two entangled detectors are illuminated by a
photon, that will lead to a decrease of quantum commu-
nication between them. Additionally, it may also be noted
that if only one detector (say, A) is switched on while
another one (say, B) is shielded from the environment, then

also entanglement degradation will happen. But in this case
P00
B and MB will not contribute and hence degradation will

be half of the earlier one.

IV. DISCUSSION AND IMPLICATIONS

Within this simple model we observed that two static
entangled UD detectors lose communication when they are
open to environment. This has been confirmed through
negativity as well as concurrence of the two detectors
system. Such a phenomenon is driven by the spontaneous
emissions of the individual detectors and the vacuum
fluctuation of the background quantum fields. In this regard
it may be mentioned that in the literature it is already
pointed out that in open quantum systems, the environment
causes decoherence for the quantum systems (e.g., see
[58,59]). Therefore, it is natural to expect that this may
cause entanglement leakage (e.g., see [60]), which is
observed here as well. On the other hand in the detector
context, it is well known that coupling with the background
scaler field favors the generation of entanglement between
two initially nonentangled detectors due to entanglement
swapping from the field vacuum (see, e.g., [27,30–44]).
Interestingly, here we observe the negative effect of vacuum
fluctuation which was observed to be providing entangle-
ment harvesting between two unentangled UD detectors.
This degradation can be decreased by shielding one of the
detectors from the environment. Although the calculation
has been done for eternal interaction between the detector
and fields, other types of switching function should not
change the nature of the result. In the latter situation other
terms in (10) will contribute, but in any case one can always
find a negative eigenvalue and so negativity will decrease.
For example, a Gaussian type switching function yields a
nonvanishing value for Pj and in that case the leakage will
be driven by the transition of detectors from the ground
state to the excited state as well. Hence, the phenomenon of
entanglement leakage is quite unavoidable and therefore
two entangled systems will suffer a spontaneous drainage
of communication due to their surroundings.
Finally, we mention that the present model can have a

significant impact to understand more about black hole
spacetimes. A Minkowski observer is equivalent to a freely
falling observer in black hole spacetime. Therefore the
present result indicates that two initially entangled qubits’
communication fades during their free fall towards the
horizon. Since the quantum nature of a black hole (par-
ticularly the black hole information paradox problem) is
now being investigated in the light of quantum information,
we feel that the present observation can be important in this
field of study. This is not more than a suggestive one.
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Note added.—Recently, a very recent work [61] in a
similar motivation came to our notice. Our work is

based on a perturbative approach and therefore can be
generalized to any type of switching function, while the
previous one has been analyzed nonperturbatively and
therefore restricted to a specific switching function (Dirac-
delta type). Therefore the results were very specific to the
model used there. Moreover, in the present discussion
the actual causes from entanglement leakage have
been illuminated.
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