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Some effective field theories exhibit dynamical resonances that, when properly included, mitigate their
bad behavior at high energies. Unitarization of the partial wave amplitudes is the preferred method to unveil
such resonances. Interpreting the Einstein-Hilbert theory in the spirit of effective Lagrangians, we
implement the inverse amplitude method and unitarize the one-loop level graviton-graviton scattering in
pure gravity. Due to the presence of infrared divergences, the analysis requires a careful treatment of the
infrared region and the introduction of infrared regulators, carefully selected in order to fulfill perturbative
unitarity.

DOI: 10.1103/PhysRevD.107.044073

I. INTRODUCTION

The Einstein-Hilbert (EH) Lagrangian and the effective
chiral Lagrangian [1], quite familiar to low-energy QCD
practitioners, share a number of common characteristics.
Like the effective chiral Lagrangian, EH is also a non-
renormalizable theory. It is also described, considering the
most relevant term, by a dimension-two operator, contain-
ing in both cases, two derivatives of the dynamical variable.
Both Lagrangians contain necessarily a dimensionful con-
stant in four dimensions; the counterpart of fπ in the pion
Lagrangian is the Planck mass MP. Both theories are
nonlinear and, finally, both describe the interactions of
massless quanta. There is a fundamental difference, how-
ever, because the theory described by EH, gravity, is a
gauge theory thus fixing quite rigidly its structure (but
allowing in principle for higher-dimensional operators
which are also gauge invariant).

The analogy becomes particularly clear when one linear-
izes gravity around a given background, such as e.g.,
Minkowski spacetime. There have been in the past a number
of theoretical developments considering such as expansion
in the spirit of effective field theories. It is appropriate here to
quote the work of Donoghue and others [2]. Taking into
account the usual normalization of the EH action

L ¼ M2
P

16π

ffiffiffiffiffiffi
−g

p
Rþ…; M2

P ¼ 1

G
; ð1Þ

with G being Newton’s constant and the dots standing for
higher-dimensional counterterms that are required to absorb
order-by-order the divergences appearing in perturbation
theory (or other possible contributions from short distance
physics). We can expand the metric as

gμν ≡ ημν þ κhμν; ð2Þ

gμν ¼ ημν − κhμν þ κ2hμλhλν þ…; ð3Þ

and the scalar curvature

R ¼ κ½□hλλ − ∂μ∂νhμν� þOðh2Þ; ð4Þ

where
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κ2 ≡ 32π

M2
P
¼ 32πG: ð5Þ

Indices are raised and lowered with ημν.
In pion physics the effective Lagrangian is

L ¼ f2π
4
Tr∂μU∂

μU† þ…: ð6Þ

Here we assume SUð2ÞL × SUð2ÞR global chiral symmetry.
Again, the dots denote quantum counterterms and the
higher-order operators can contain contributions from short
distance physics. One writes

U ¼ I þ i
π̃

fπ
þ � � � ; ð7Þ

where π̃ ¼ πaτa and Cartan normalization is assumed for
the SUð2Þ generators. Therefore, κ plays the same role as
f−1π (up to a factor

ffiffiffi
2

p
in our normalizations). Quantum

corrections in gravity are analogous to the weak field
expansion in pion physics.
If we consider both the pion Lagrangian and the EH

Lagrangian as effective theories we can, at least naively,
attribute to each one a range of validity based on power
counting. The corresponding unitarity cutoffs would be of
order 4πfπ and MP, respectively.
In EH theory quantum corrections are notoriously

difficult to compute. Graviton-graviton scattering ampli-
tudes at the tree level are given in [3], while one-loop
corrections were first carried out by ’t Hooft and
Veltman [4] who found that the counterterms needed to
deal with the ultraviolet (UV) divergences were propor-
tional to R2 and RμνRμν. On shell, i.e., using the lowest-
order equations of motion these counterterms vanish.
Therefore, one-loop S-matrix elements in pure EH gravity
are free from UV divergences. Thus, the only possible
divergences are infrared (IR), as it is the case of the elastic
graviton scattering considered in this paper. A general
study of the structure of the IR divergences in EH gravity,
considered as a quantum field theory, can be found in the
seminal paper by Weinberg [5].
Computation of the next-to-next-to-leading order in pure

gravity was done by Goroff and Sagnotti [6] finding a net
counterterm of the form Rαβ

γδRγδ
ρσRρσ

αβ. This counter-
term will not play any role in the subsequent discussion.
Taking the analogy between pion physics and quantum

gravity at face value, immediately comes to mind the
following issue: we know that unitarization of pion
scattering amplitudes in the context of low-energy hadron
physics leads to poles that restore the unitary behavior that
is lacking in the above pion chiral Lagrangian. These poles
correspond to physical (albeit unstable) particles or
dynamical resonances such as the ρ mesons or the σ
particle. These states correspond to poles in the second

Riemann sheet of the amplitude when this is extended to the
complex plane. The real part should of course stay below
the theory cutoff at 4πfπ . Could it be that such a
phenomenon occurs in the EH theory? If so this would
lead at the very least to some dynamical resonances that
would hint to the presence—as happens in pion physics—
of more fundamental degrees of freedom.
In order to answer this question in a way that is similar to

the pion physics techniques we need two ingredients; a
computation of the one-loop graviton-graviton scattering
amplitude, done by Dunbar and Norridge using string
theory methods [7] and the tree-level contribution from
higher-dimensional operators. At the next-to-leading order
the latter are absent on shell as we mentioned previously. It
is possibly worth mentioning that the fact that Oðp4Þ are
absent does not necessarily preclude the possibility of
resonances being present. Recent studies in the context of
the strongly interacting symmetry breaking sector of the
Standard Model show that Oðp2Þ may suffice to produce
such singularities [8].
In [9] the authors use a simple unitarization method

relying only on the tree-level graviton scattering amplitude
(see Appendix A) and they claim that a scalar graviton-
graviton resonance with quantum numbers 0þþ can be
identified, well below the Planck mass and with a sizable
width. As will be discussed below, our conclusions differ
significantly from those derived in [9]. Our results are
based on a careful consideration of the IR divergences that
are regulated in a way that preserves perturbative unitarity
at the one-loop level. We then apply the inverse amplitude
method (IAM) to unitarize the amplitudes and study their
singular points. Although the resulting partial waves do
exhibit a surprisingly rich structure, no resonances physi-
cally acceptable seem to survive to be considered as new
states, at least in pure EH gravity.

II. ONE-LOOP SCATTERING AMPLITUDES

In this work we are considering the elastic scattering of
two gravitons with initial momenta and helicities p1, λ1,
and p2, λ2 to p3, λ3 and p4, λ4 in the final state. The
corresponding helicity amplitude is defined as

Tλ1λ2λ3λ4ðs; t; uÞ ¼ hp3; λ3;p4; λ4jTjp1; λ1;p2; λ2i;

where s¼ðp1þp2Þ2, t ¼ ðp1 − p3Þ2 and u ¼ ðp1 − p4Þ2.
T is the standard reaction matrix related to the S matrix by
S ¼ I þ ið2πÞ4δð4ÞðPf − PiÞT, with Pi ¼ p1 þ p2 and
Pf ¼ p3 þ p4. The helicities λi can only take the values
þ2 or −2 which by simplicity will be denoted λi ¼ þ;−
respectively. By using P and T invariance and crossing it is
possible to relate different helicity amplitudes in such a way
that one gets just three independent functions,
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Aðs; t; uÞ ¼ Tþþþþðs; t; uÞ;
Bðs; t; uÞ ¼ Tþþþ−ðs; t; uÞ;
Cðs; t; uÞ ¼ Tþþ−−ðs; t; uÞ:

Expanding these functions according to the number of
loops one has for example,

A ¼ Að0Þ þ Að1Þ þ…: ð8Þ

At the tree level (no loops) the result is very simple, in spite
of the complexities of the Feynman diagrams involved,

Að0Þðs; t; uÞ ¼ 8π

M2
P

s3

tu
;

Bð0Þðs; t; uÞ ¼ 0;

Cð0Þðs; t; uÞ ¼ 0;

whereMP is again the Planck mass. Notice that at this level,
the amplitudes are order p2=M2

P. Since gravitons are
massless we have two poles corresponding to the t and
u channels infrared virtual gravitons, as expected.
At the one-loop level, using dimensional regularization

with D ¼ 4 − 2ϵ, we have for small ϵ [7],

Að1Þðs; t; uÞ ¼ 8
s4

M4
P
½…�; ð9Þ

where

½…� ¼ ðN0
ϵ þ log ν2Þð…Þ þ f…g þ fðt=s; u=sÞ

2s2

with

N0
ϵ ¼

1

ϵ
þ logð4πÞ − γ; ð10Þ

and ν is an, in principle, arbitrary energy scale. Also,

ð…Þ ¼ s logð−sÞ þ t logð−tÞ þ u logð−uÞ
stu

and

f…g ¼ 1

stu
½s logð−tÞ logð−uÞ þ t logð−uÞ logð−sÞ

þ u logð−sÞ logð−tÞ�;

and finally the function fðt=s; u=sÞ is given by

fðt=s; u=sÞ ¼ 1

s6
ðtþ 2uÞðuþ 2tÞð2t4 þ 2t3u − t2u2 þ 2tu3 þ 2u4Þ

�
log2

t
u
þ π2

�

þ 1

30s5
ðt − uÞð341t4 þ 1609t3uþ 2566t2u2 þ 1609tu3 þ 341u4Þ log t

u

þ 1

180s4
ð1922t4 þ 9143t3uþ 14622t2u2 þ 9143tu3 þ 1922u4Þ:

Notice that here we have introduced a new energy scale ν
not present in the original Dunbar and Norridge result [7] in
order to make the one-loop amplitude dimensionally
consistent. In the following and, at the end of Sec. IV,
we will clarify the role played by this scale.
Introducing the new energy scale ν into the logarithms in

the expression above we define

f…gν ¼
s logð−t=ν2Þ logð−u=ν2Þ þ…

stu
:

Similarly, one could introduce ð…Þν, but in this case

ð…Þν ¼ ð…Þ ð11Þ

since sþ tþ u ¼ 0 on shell. Then it turns out that

f…gν ¼ log ν2ð…Þ þ f…g: ð12Þ

Therefore, we have

Að1Þðs; t; uÞ ¼ 8
s4

M4
P

�
N0

ϵð…Þ þ f…gν þ
fðt=s; u=sÞ

2s2

�
:

Next we define a new energy scale μ as

log
μ2

ν2
¼ N0

ϵ:

The IR limit ϵ → 0 can be taken as ν → 0while keeping the
new scale μ fixed. Then we have the IR finite result

Að1Þðs; t; uÞ ¼ 8
s4

M4
P

�s logð−t
μ2
Þ logð−u

μ2
Þ þ…

stu
þ fðt=s; u=sÞ

2s2

�
;

where the meaning of the finite scale μ will be clarified
below. A different choice as for example,

log
μ2

ν2
¼ 1

ϵ
;
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amounts just to the same result but trading μ by μ0

where: logðμ02=μ2Þ ¼ logð4πÞ − γ.
In any case, it is very important to realize that, the

introduction of the log ν2 term into the one-loop amplitude,
renders this amplitude IR finite to the cost of introducing a
new scale μ. The precise meaning of this finite new scale
will be clarified at the end of Sec. IV by comparison with
other computations.
It is also very important to stress that, as discussed in the

introduction, one-loop matrix elements are UV finite in EH
pure gravity. Therefore, the ϵ pole found in the one-loop
elastic graviton scattering is purely IR and it is entirely
produced by low-energy massless gravitons. A detailed
study of the IR divergences appearing in the one-loop
graviton-graviton elastic amplitudes can be found in
[10,11]. In this work we deal with the IR divergencies
just by introducing the new scale ν, playing the role of IR
cutoff, which requires the introduction of a new finite
scale μ.
On the physical region s ¼ E2

CM þ i0, with ECM being
the total center of mass energy, and then logð−sÞ ¼
log s − iπ. Therefore,

ImAð1Þðs; t; uÞ ¼ −
8πs2

M4
P

�
1

t
log

−t
μ2

þ 1

u
log

−u
μ2

�
: ð13Þ

The other two relevant one-loop functions are

Bð1Þðs; t; uÞ ¼ s2 þ t2 þ u2

90M4
P

;

Cð1Þðs; t; uÞ ¼ −
s2 þ t2 þ u2

30M4
P

:

These functions are much simpler than Að1Þðs; t; uÞ being
real and IR finite and will not be considered in the
following. Notice however that all the three one-loop
functions are of the order of p4=M4

P as expected.
Therefore loop expansion is a low-energy expansion valid
for energies small compared with the Planck mass MP.

III. PARTIAL WAVES AND ELASTIC UNITARITY

For well behaved helicity amplitudes the partial waves
are defined in principle as

aJλ1;λ2;λ3λ4ðsÞ ¼
1

64π

Z
1

−1
dðcos θÞdJλ;λ0 ðθÞTλ1λ2λ3λ4ðs; θÞ;

where λ ¼ λ1 − λ2, λ0 ¼ λ3 − λ4, and we have used
t ¼ −ðs=2Þð1 − xÞ and u ¼ −ðs=2Þð1þ xÞ with
x ¼ cos θ. When these integrals are well defined for any
J we have

Tλ1λ2λ3λ4ðs; θÞ ¼ 32π
X
J

½J�dJλ;λ0 ðθÞaJλ1λ2λ3λ4ðsÞ;

where ½J� ¼ ð2J þ 1Þ.
For physical s (s ¼ E2

CM þ i0) elastic (two-particle
states) unitarity reads,

ImTλ1λ2λ3λ4ðs; θÞ ¼
1

128π2
X
λaλb

Z
dΩ0Tλ1λ2λaλbðs; θ0Þ

× T�
λaλbλ3λ4

ðs; θ00Þ;

where θ0 and θ00 are the scattering angles between the initial
state and the intermediate state and the scattering angle
between the intermediate state and the final state, respec-
tively. This equation can be written in terms of the partial
waves as

ImaJλ1λ2λ3λ4ðsÞ ¼
X
λaλb

aJλ1λ2λaλbðsÞa�Jλaλbλ3λ4ðsÞ:

On the other hand the amplitude loop expansion can be
translated into the partial waves

aJλ1λ2λ3λ4ðsÞ ¼ að0ÞJλ1λ2λ3λ4
ðsÞ þ að1ÞJλ1λ2λ3λ4

ðsÞ þ…:

Then, the lowest-order perturbative unitarity relation
becomes

Imað1ÞJλ1λ2λ3λ4
ðsÞ ¼

X
λaλb

að0ÞJλ1λ2λaλb
ðsÞað0Þ�Jλaλbλ3λ4

ðsÞ:

However, all this formalism cannot be applied directly to
elastic graviton scattering because of the presence of IR
divergences. In particular the partial waves are ill defined
because of the behavior of the helicity amplitudes for x ¼
cos θ close to 1 and −1. One possible way to deal with this
problem is by introducing the regularized amplitudes
T̃η
λ1λ2λ3λ4

ðs; θÞ defined as

T̃η
λ1λ2λ3λ4

ðs; θÞ ¼ Tλ1λ2λ3λ4ðs; θÞ ð14Þ

for x ∈ ½−1þ η; 1 − η� with 0 < η < 1 and

T̃η
λ1λ2λ3λ4

ðs; θÞ ¼ 0 ð15Þ

otherwise. In this way T̃η
λ1λ2λ3λ4

ðs; θÞ is a bounded function
of x with only two discontinuity points at x ¼ −1þ η and
x ¼ 1 − η and then we can apply the partial wave formal-
ism described above to it. In particular we can define the
partial waves as
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aJλ1λ2λ3λ4ðs; ηÞ ¼
1

64π

Z
1

−1
dðcos θÞdJλ;λ0 ðθÞT̃η

λ1λ2λ3λ4
ðs; θÞ

¼ 1

64π

Z
1−η

−1þη
dðcos θÞdJλ;λ0 ðθÞTλ1λ2λ3λ4ðs; θÞ

ð16Þ

which are IR finite. From these partial waves we can
recover the regularized amplitude as

T̃η
λ1λ2λ3λ4

ðs; θÞ ¼ 32π
X
J

½J�dJλ;λ0 ðθÞaJλ1λ2λ3λ4ðs; ηÞ:

In the following we will study the meaning of these
regularized amplitudes and partial waves.

IV. PERTURBATIVE UNITARITY

Byusing the abovedefinitions it is very easy to compute the
lowest-order contribution to different regularized helicity
amplitudes partial waves. For example for J ≤ 4 one has

að0Þ0þþþþðs; ηÞ ¼
s

2M2
P
log

2

η
þOðηÞ;

að0Þ2þþþþðs; ηÞ ¼
s

2M2
P

�
log

2

η
− 3

�
þOðηÞ;

að0Þ4þþþþðs; ηÞ ¼
s

2M2
P

�
log

2

η
−
25

6

�
þOðηÞ;

að0Þ0þ−þ−ðs; ηÞ ¼ að0Þ2þ−þ−ðs; ηÞ ¼ 0;

að0Þ4þ−þ−ðs; ηÞ ¼
s

4M2
P

�
log

2

η
−
363

140

�
þOðηÞ;

að0ÞJþ−−þðs; ηÞ ¼ að0ÞJþ−þ−ðs; ηÞ;

where we are showing the results modulo OðηÞ corrections,
i.e., only the contributions dominant in the asymptotic regime
η ≪ 1. However, it is very important to stress that, in order to
have a proper reconstruction of the full helicity amplitude,
one needs to use the partial waves with the exact η
dependence, and not only the part dominant for small η.
More specifically the amplitude obtained summing the differ-
ent aJλ1λ2λ3λ4ðs; η ≪ 1Þ contributions does not converge to
T̃s;η≪1 because the limit η ≪ 1 and the sum

P
J do not

commute.
With the modified amplitude T̃ηðs; θÞ one would expect

an elastic scattering unitarity relation like

ImT̃η
λ1λ2λ3λ4

ðs; θÞ ¼ 1

128π2
X
λaλb

Z
R
dΩ0T̃η

λ1λ2λaλb
ðs; θ0Þ

× T̃η�
λaλbλ3λ4

ðs; θ00Þ;

where R represents the two-body phase-space region
allowing only states where s ¼ 4E2

CM > μ2, i.e., the scale

regulator introduced above for the one-loop contribution to
the amplitude. Clearly, this regulator must be related in
some way with the η parameter introduced in the modified
amplitude. In addition, crossing requires also t < −μ2 and
the same for t0 and t00. Now by trading x ¼ cos θ by t we
find

Z
1−η

−1þη
dx ¼ s

2

Z
tmax

tmin

dt ¼ s
2

Z
−μ2

−sþμ2
dt ð17Þ

which leads to the simple relation

μ2 ¼ η
s
2
: ð18Þ

Therefore, by using this equation we are assuming that the
scale μ is defining the difference between soft and hard
gravitons, i.e., the ones that can be effectively detected. In
order to check this equation we can try to see how it works
with the unitarity relations in terms of the partial waves. For
the sake of simplicity, and also because it is the most
interesting process for us in this work, we will concentrate
in the particular case described by the amplitude Tþþþþ.
Also, to relieve the notation we will omit the subscripts
þþþþ in the following. Then we can compute the exact
(i.e., to all orders in η) partial wave

að0Þ0 ðs; ηÞ ¼ s
2M2

P
log

2 − η

η
:

On the other hand we have

Imað1Þ0 ðs; ηÞ ¼ s2

4M4
P
log

2 − η

η

�
log

ηð2 − ηÞ
4

þ 2 log
s
μ2

�
:

Thus, it is clear that defining η as η ¼ 2μ2=s we have

Imað1Þ0 ðs; ηÞ ¼ ðað0Þ0 ðs; ηÞÞ2

to all orders in η. However this is much more that one could
have expected. Because of the way in which the μ scale was
introduced one should expect the relation η ¼ 2μ2=s to
work only for small enough μ. This is because this scale
was introduced in terms of ϵ, which is supposed to be a
small quantity in the dimensional regularized one-loop
amplitude considered. In fact, for J ≠ 0 this relation works
only up to order η i.e.,

Imað1ÞJ ¼ ðað0ÞJ Þ2 þOðηÞ:

Even more, for the case þ −þ− the corresponding
equation is only fulfilled up to constant terms and therefore
only applies for the divergent terms in the limit η → 0.
In the following we will focus on the þþþþ and − −

−− partial waves η-regularized and where we have applied
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the substitution η by 2μ2=s. Then, the general form of the
leading order (LO) partial waves is

að0ÞJ ðsÞ ¼ s
2M2

P

�
log

s
μ2

− bJ

�
; ð19Þ

where b0 ¼ 0; b2 ¼ 3; b4 ¼ 25=6;… and, at the one-loop
level

að1ÞJ ðsÞ ¼ s2

4πM4
P

��
log

s
μ2

− bJ

�
2

F

�
s
μ2

�
þ cJ log

s
μ2

þ dJ

�
;

ð20Þ

where both equations have to be understood up to order
Oðμ2=sÞ. The first cJ and dJ constants can be obtained from
Eq. (B1) of Appendix B and the Fðs=μ2Þ function is
defined as

F

�
s
μ2

�
¼ log

s
μ2

− log
−s
μ2

ð21Þ

and it equals iπ for Ims ≥ 0 and −iπ for Ims < 0.
Therefore, our η IR regularized partial waves show, at
next to leading order (NLO), the expected unitarity right cut
(RC) along the positive real axis, and the expected left cut
(LC) along the negative real axis thus consistent with the
appropriate analytical behavior. However, these partial
waves are unitary only perturbatively. This in particular
implies that at higher energies (s ≃M2

P) we will find strong
violations of (elastic) unitarity.
Now, in order to clarify a little more the meaning of the

scale μ in our equations we can proceed in a similar way as
in [9] as follows. First we consider the IR regularized S̄J

matrix

S̄J ¼ 1þ 2iāJ; ð22Þ

where the āJ lowest order is given by

āð0ÞJ ðsÞ ¼ s
2M2

P

�
log

s
ν2

− bJ

�
; ð23Þ

with ν being an IR cutoff. Next one introduces a new SJ

matrix as SJ ¼ S−1c S̄J with Sc being the Weinberg phase [5]
given in this case by

Sc ¼ exp

�
−i

s
M2

P
log

ν2

L2

�
: ð24Þ

Here again ν is an IR cutoff and L is a scale separating soft
from hard gravitons. Thus one gets

SJ ¼ 1þ 2iaJ ¼ S−1c ð1þ 2iāJÞ ð25Þ

with

SJ ¼ 1þ 2iað0ÞJ þOðs2=M4
PÞ ð26Þ

and

að0ÞJ ðsÞ ¼ s
2M2

P

�
log

s
L2

− bJ

�
; ð27Þ

which is trivially well defined and finite in the IR limit
ν → 0 since the log ν2 terms cancel in the final result. Now,
by comparison of this equation with Eq. (19) one arrives to
the identification μ ¼ L, i.e., our scale μ must be under-
stood as the scale used to define soft and hard gravitons as
indeed was suggested above. The same conclusion is
obtained by expanding Sc up to order s2=M4

P and consid-

ering the perturbative unitarity relation Imað1ÞJ ¼ ðað0ÞJ Þ2.
In [10] Donoghue and Torma showed explicitly that the

one-loop graviton scattering differential cross section is
free of IR divergences. For that they add to the IR
divergences free tree level result two contributions; the
one-loop result, with the 1=ϵ singularity and a log s term,
and the soft graviton emitting tree-level amplitude inte-
grating the phase space of the additional soft graviton up to
momentum that we can identify with the soft-hard sepa-
ration scale L previously defined, thus producing another
1=ϵ singularity term with opposite sign and a logL term. In
the resulting one-loop differential cross section the 1=ϵ
terms exactly cancel and the final result depends on
logðs=L2Þ. By comparison with our results in this work,
it is clear that the introduction of the term log ν2 in the one-
loop amplitude used here produces a similar effect on the
IR finite result as including the soft graviton emission
contribution and that our finite scale μ plays the same role
as the scale that separates hard from soft gravitons in [10].
Therefore, by comparison with the results in [9,10], we

arrive to the conclusion that the addition of the log ν2 term
to the one-loop amplitude done in this work cancels the IR
singularities in a similar way to including the effect of soft
gravitons with a momentum up to a scale μ. Thus, this scale
plays the role of the scale separating soft from hard
gravitons or, in other words, the scale defining what is
considered a hard enough graviton to be detected. In any
event, it is important to remember in the following that, due
to the different approximations considered, μ has always to
be taken much smaller than the energy of the scattering
processes, i.e., μ2 ≪ s. In addition, as we are considering
EH gravity as an effective low-energy theory we have the
additional constraint s < M2

P. In summary, the range of
applicability of our results will be μ2 ≪ s < M2

P.
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V. UNITARIZATION AND THE INVERSE
AMPLITUDE METHOD

In order to solve the unitarity problem, at least partially,
one could try to implement any of the well known available
unitarization methods like theK-matrix, N/D, or the inverse
amplitude method (see [12] for a comparison among these
methods for WLWL scattering in the context of a strongly
interacting symmetry breaking sector of the Standard
Model [13]). From all of them, the IAM method [14]
seems to be the more appropriate for the kind of compu-
tation we are considering here where we have an expansion
in s powers, good analytical properties and perturbative
elastic unitarity. When this is the case, the IAM produces
unitary amplitudes aIAMJ ðsÞ with the right analytical struc-
ture (RC and LC in the first Riemann sheet) and with the
correct low-energy behavior. The IAM method has also
proved to be very efficient describing dynamical resonan-
ces in hadron physics in the context of unitarized chiral
perturbation theory [15].
Starting from the perturbative first two terms (LO and

NLO), the IAM partial waves are defined for our helicity
þþþþ case as

aIAMJ ðsÞ ¼ að0ÞJ ðsÞ að0ÞJ ðsÞ
að0ÞJ ðsÞ − að1ÞJ ðsÞ

: ð28Þ

From this definition it is straightforward to show exact
elastic unitarity

ImaIAMJ ðsÞ ¼ jaIAMJ ðsÞj2 ð29Þ

on the RC (physical region where s ¼ E2
CM þ i0) provided

Imað1ÞJ ðsÞ ¼ ðað0ÞJ ðsÞÞ2 ð30Þ

is also on the RC. At the same time, at low energies
s ≪ M2

P we have the expansion

aIAMJ ðsÞ ¼ að0ÞJ ðsÞ þ að1ÞJ ðsÞ þ � � � : ð31Þ

Therefore, (neglecting Oðμ2=sÞ corrections) the IAM
partial wave defined above has all the expected properties
of the þþþþ (and − − −−) wave.
In addition, because of the particular structure of the

IAM amplitude, the unitarized partial waves can potentially
show poles on the complex plane s. Thus, according to
general S-matrix theory [16], if these poles appear in the
second (unphysical) Riemann sheet under the RC, they
have the natural interpretation of dynamical resonances
produced by the graviton-graviton interaction. In this case,
their location s0 on the complex plane will define the
resonance mass MR and width ΓR as

s0 ¼ M2
R − iMRΓR: ð32Þ

On the other hand, if the poles appear on the first (physical)
Riemann sheet, they are ghosts (spurious states) and must
be interpreted as artifacts of the different approximations
considered.
It is this last particular property of the IAM partial waves

the one that we want to exploit more in this work. In the
next section we will perform an analytical continuation of
the þþþþ IAM amplitudes to the second Riemann sheet
seeking for poles that could be interpreted as dynamical
resonances of graviton-graviton scattering for different J
values.
It is clear from the outset that the interpretation of the

results will be made difficult by the presence of the IR
regulator (our scale μ). According to our previous dis-
cussion our infrared regulator μ is the scale separating soft
from hard gravitons (or equivalently the resolution of the
graviton detector). Therefore, our results will be dependent
on this parameter. However, as we have to fulfill the
constraint μ2 ≪ s < M2

P as discussed above, we will be
able to establish several relevant general μ independent
conclusions concerning the possibility of graviton scatter-
ing resonances.

VI. NUMERICAL RESULTS

In this section and in the figures we will follow the usual
convention to label the complex plane quadrants: I (real and
imaginary parts both positive), II (real part negative,
imaginary one positive), III (real and imaginary parts both
negative), and IV (the real part is positive and the imaginary
part is negative). Also s is given inM2

P units in this section.
The physical partial wave amplitudes aJðsÞ are evaluated

above the real axis. That is, aJðsÞ ¼ aJðE2
CM þ i0Þ.

However, according to S-matrix theory, the partial waves
aðsÞ are analytic and can be analytically continued to the
complex plane [16].
Since the partial wave amplitudes aJðsÞ that we are

considering are compositions of polynomials, rational
functions and logarithms, the analytical continuation of
the logarithms is the only one that is nontrivial. On the first
Riemann sheet,

logIðsÞ ¼ log jsj þ i argðsÞ;
logIð−sÞ ¼ log jsj þ i argð−sÞ;

where argðsÞ has a let cut along the negative real axis. Due
to the Schwartz reflection principle [16] we have
aJðsþ iϵÞ − aJðs − iϵÞ ¼ 2iImaJðsþ iϵÞ. Thus the first
Riemann sheet has a cut over the real axis, but its value
over such axis (quadrants I and II) is an analytical
continuation from aJðE2

CM þ i0Þ. Also, quadrants III and
IV are a mirror reflection of quadrants II and I.
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FIG. 1. From top to bottom, pole positions of J ¼ 0, J ¼ 2, and J ¼ 4 partial waves. The color scales stand for μ=MP. The Zero
points refer to a zero in the numerator of the Inverse Amplitude Method (mostly over the positive real axis); RS 1, RS 1b, and RS 2, to
poles in quadrants I, II, and IV; and Zero, to zeros in quadrant I. Color in online version.
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On the other hand, the second Riemann sheet is the
analytic continuation to quadrant IV crossing the positive
part of the real axis. Quadrants I and II are the same as in
the first Riemann sheet. All the figures on the complex
plane will refer to the second Riemann sheet.
In our analysis, we are using the Wolfram Mathematica

framework. By default, this package defines the complex
logarithmic function log s having a discontinuity over the
negative real axis. Furthermore, the function call arg s, that
returns the argument of the complex number s, is defined
with a discontinuity over the negative real axis, and
arg s ∈ ð−π; π�. With this in mind, we can define the
second Riemann sheet relevant logarithm as

logIIð−sÞ ¼ logMjsj þ iðargMs − πÞ; ð33Þ

where logM and argM are the ones defined on Mathematica.
In Fig. 1 we study the pole positions for different values

of the rate μ=MP. Poles are searched on all the quadrants of
the second Riemann sheet1 as zeros on the denominator of
Eq. (28). However, it could happen that both, the numerator

and the denominator of Eq. (28), cancel at some point while
the actual function has no pole there. Hence, we also look
for zeros on the numerator of Eq. (28). Indeed, there is a
pole located over the real axis in quadrant I (both real and
imaginary parts of s positive), but tends to cancel with a
zero on the numerator of Eq. (28) on the limit μ ≪ MP.
This can be also seen on Figs. 2 and 3. For μ=MP < 0.10,
the pole on the first quadrant has disappeared from the
J ¼ 0 and J ¼ 2 plots. A similar result is obtained for
J ¼ 4 and μ=MP < 0.05. As shown in Fig. 1, there is also a
pole on the II quadrant (negative real part, positive
imaginary one). However, this pole vanishes for relatively
high values of μ=MP < 0.37 (J ¼ 0), μ=MP < 0.15
(J ¼ 2) and μ=MP < 0.092 (J ¼ 4). The disappearance
of this pole can also be seen in Figs. 2 and 3, where the pole
above the RC disappears when μ=MP < 0.1. Finally, there
is a pole on quadrant IV that can be seen on Fig. 1 (from
now on, pole on the second Riemann sheet, since it does not
appear on the first Riemann sheet). This pole on the second
Riemann sheet could be a resonance, but tends to the origin
for sufficiently low values of μ ≪ MP.
For studying the behavior of the pole on the second

Riemann sheet, the mass and width of the resonance,
computed according to Eq. (32), are plotted on Fig. 4 as a

FIG. 2. From top left, clockwise: plots of ImaIAM0 for μ=MP ¼ 0.40, 0.35, 0.30, 0.20. Notice the disappearance of the poles on the first
Riemann sheet (quadrants I and II).

1Quadrants I and II are the same than in the first Riemann
sheet [16].
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function of μ=MP. All the masses tend logarithmically
to zero when μ=MP → 0þ. Concerning the widths,
ΓðJ ¼ 2Þ ≈ ΓðJ ¼ 4Þ ≈ 1.2MP for μ < 0.25MP. However,
ΓðJ ¼ 0Þ does not stabilize and, when μ → 0þ, it grows
very slowly. For μ ¼ 10−7MP, ΓðJ ¼ 0Þ ≈ 1.7MP.

In Fig. 5, we plot the ratios MðJ ¼ iÞ=MðJ ¼ 2Þ
and ΓðJ ¼ jÞ=ΓðJ ¼ 2Þ for j ¼ 0, 4. The ratios
MðJ ¼ 0Þ=MðJ ¼ 2Þ and MðJ ¼ 4Þ=MðJ ¼ 2Þ stabilize
at sufficiently low values of μ ≪ MP (Fig. 5), although all
the masses tend to 0 when μ ≪ MP (Fig. 4).

FIG. 3. From top left, clockwise: plots of ImaIAM2 for μ=MP ¼ 0.20, 0.17, 0.15, 0.10. Notice the disappearance of the poles on the first
Riemann sheet (quadrants I and II).

FIG. 4. From left to right, mass and width of the resonance on the IV quadrant (second Riemann sheet) as a function of μ=MP. Solid
blue line, J ¼ 0; dashed orange line, J ¼ 2; and dotted green line, J ¼ 4. Color in online version.
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VII. DISCUSSION AND CONCLUSIONS

In this work we have investigated the possibility that
dynamical resonances are generated in pure gravity when
the Einstein-Hilbert theory is interpreted in the context of
effective field theory as the low-energy description of a
more general UV completion. In low-energy hadron
physics, such an approach is able to predict the existence
of resonances (e.g., vector mesons) that actually exist in
QCD. If one adopts such a view, the main difference
between the chiral Lagrangian and the EH theory is the
vanishing of theOðp4Þ coefficients, absent in EH. In strong
interactions they are known to be mostly responsible for the
presence of vector and scalar dynamically generated
resonances. But in EH theory, in the pure gravity case,
they vanish on shell.
In the present setting, due to the presence of infrared

singularities in the amplitudes, it is unavoidable to intro-
duce an IR regulator μ. This regulator plays the role of the
scale separating soft (not detected) from hard gravitons. In
any case, because of the way it is introduced in the
computations it is clear that μ ≪ MP.
According to the results of the previous section, there are

no causality breaking poles on the first Riemann sheet for
low values of μ=MP < 0.092. There is a resonance on the
second Riemann sheet, but its mass tends logarithmically to
zero when μ=MP → 0. Numerical instabilities prevent us
from going to extremely low values for this ratio, but we
find no evidence whatsoever that, in the limit where
μ ≪ MP, that is, in the physical region where the EH
Lagrangian can be consistently interpreted as an effective
theory, any resonance is present. In fact, as discussed in
Appendix A, we find a scalar resonance similar to that
found in [9] (graviball) at μ=MP ¼ 0.176, but this value is
well above the limit of applicability of the unitarized
amplitudes based in the absence of ghosts in the first
Riemann sheet which is μ=MP < 0.092.
In order to find a different result one should probably

consider higher-dimensional operators with nonzero

coefficients. That means moving away from EH theory
or, perhaps, consider the effect of matter fields coupled to
gravity. As we have mentioned above, although in uni-
tarized chiral Lagrangian for low-energy hadron physics or
in the effective theory treatment of the symmetry breaking
sector of the Standard Model, the Oðp4Þ terms may lead to
resonances, this possibility is prohibited in gravity unless
one wants to circumvent the symmetry principles behind
general relativity.
In summary, we do not find strong enough evidence for

the existence of a graviball in pure gravity, at least at sub-
Planckian scales, in EH theory understood as an effective
low-energy theory for gravitation.
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APPENDIX A: UNITARIZATION OF THE
TREE-LEVEL AMPLITUDE

If it were not for the one-loop elastic graviton scattering
computation by Dunbar and Norridge [7], one could
consider the possibility of unitarizing the tree-level ampli-
tude. For example, for the case þþþþ, J ¼ 0 tree-level

partial wave að0Þ0 ðsÞ, one could introduce the unitarized
amplitude a0ðsÞ defined by the simple formula,

FIG. 5. From left to right, ratios of mass [MðJ ¼ jÞ=MðJ ¼ 2Þ] and width [ΓðJ ¼ jÞ=ΓðJ ¼ 2Þ] of the resonance in the IV quadrant
(second Riemann sheet) as a function of μ=MP. Solid blue line, j ¼ 0; and dashed orange line, j ¼ 4. Color in online version.
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a0ðsÞ ¼
að0Þ0 ðsÞ

1þ að0Þ
0
ðsÞ
π log −s

Λ2

: ðA1Þ

This partial wave shows an unitary RC and in the physical
region fulfills elastic unitarity,

Ima0ðsÞ ¼ ja0ðsÞj2: ðA2Þ

However, this unitarization method introduces an arbitrary
(typically UV) scale Λ which is an artifact of this particular
unitarization scheme. In any case, a proper definition of the

tree-level partial wave amplitude að0Þ0 ðsÞ, requires the
introduction of a genuine IR regulator (called μ in
this work).
The a0ðsÞ partial wave above can be extended to the

second Riemann sheet by using [16]

aII0 ðsÞ ¼
a0ðsÞ

1 − 2ia0ðsÞ
ðA3Þ

and one can seek for poles of this second Riemann sheet in
the IV quadrant fulfilling

a0ðs0Þ þ
i
2
¼ 0 ðA4Þ

from which one gets the secular equation

1þ að0Þ0 ðs0Þ
π

log
−s0
Λ2

− 2iað0Þ0 ðs0Þ ¼ 0: ðA5Þ

In [9] the authors used this method, adding some assump-
tions, to find a pole at s0 ¼ ð0.07 − i0.20ÞΛ2 in the J ¼ 0
channel which they claim is a pure gravitational resonance
(graviball). However, this claim is questionable for at least
two reasons.
First, the position of the pole depends on the UV

arbitrary scale Λ which is an artifact of the unitarization
method used, since pure elastic graviton scattering is UV
finite up to one loop. Second, independently of the Λ value,
the width associated to the pole is so large compared with
its mass that hardly could it be considered a physical state
in the usual sense.
In this work we are using a more robust unitarization

method which does not require the introduction of arbitrary
new UV scales but only the IR regulator μ already present
in the perturbative computations before unitarization.
Hence, it seems interesting to check if this pole in
Ref. [9] can be reproduced by using the method introduced
in this work. Therefore, we have looked for the closest pole
we can find in our computations by minimizing the distant
to their s0 on the complex s plane by varying our μ IR

FIG. 6. From top, anticlockwise: plots of ImaIAM0 for J ¼ 0, J ¼ 2 and J ¼ 4; μ=MP ¼ 0.176.
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regulator. Thus, we have found a pole at s00 ¼ ð0.23 −
i0.45ÞM2

P corresponding to μ=MP ¼ 0.176. However, for
this μ value ghosts are present in the J ¼ 2 and J ¼ 4
channels, as it can be checked on Fig. 6. In addition this
μ=MP value requires to define gravitons as those gravity
excitations with a momentum larger than roughly a fifth of
the Planck mass scale.
Also in [9] the authors claim the graviball is similar to the

σ particle in the context of low-energy hadron physics [17].
It is true that this very broad σ resonance can be obtained by
using the unitarization method described in this appendix
from the tree-level chiral Lagrangian result for the J ¼ 0

channel forΛ of the order of 1 GeV. However, this is not the
case of the ρ resonance in the J ¼ 1 channel, which
requires the introduction of additional information in the
form of subtraction constants or chiral parameters like l1
and l2 (see for example [15]).

APPENDIX B: ONE-LOOP CONTRIBUTION TO
THE PARTIAL WAVES

The tree level partial waves að0ÞJ ðsÞwere given in Sec. IV.
The expressions for the J ¼ 0, 2, 4 one-loop að1ÞJ ðsÞ partial
waves are

að1Þ0þþþþðsÞ ¼
s2

4πM4
P

�
log2

s
μ2

F

�
s
μ2

�
−
π2

3
log

s
μ2

þ 2ζð3Þ þ 173π2

126
þ 1447

720

�
;

að1Þ2þþþþðsÞ ¼
s2

4πM4
P

��
log2

s
μ2

− 6 log
s
μ2

þ 9

�
F

�
s
μ2

�
þ
�
3 −

π2

3

�
log

s
μ2

þ π2 − 12þ 2ζð3Þ þ 173π2

630
−

43

2160

�
;

að1Þ4þþþþðsÞ ¼
s2

4πM4
P

��
log2

s
μ2

−
25

3
log

s
μ2

þ 625

36

�
F

�
s
μ2

�
þ
�
115

36
−
π2

3

�
log

s
μ2

þ 25

18
π2 −

865

54
þ 2ζð3Þ − 37π2

4158
þ 4139

3240

�
;

að1Þ0þ−þ−ðsÞ ¼ að1Þ2þ−þ−ðsÞ ¼ 0;

að1Þ4þ−þ−ðsÞ ¼
s2

4πM4
P

��
1

2
log2

s
μ2

−
363

140
log

s
μ2

þ 1566947

352800

�
F

�
s
μ2

�

þ
�
419017

352800
−
π2

6

�
log

s
μ2

þ 121

280
π2 −

7015147

1372000
þ ζð2Þ − 166097

176400
F

�
s
μ2

�
þ 80751073

74088000

�
;

að1ÞJþ−−þðsÞ ¼ að1ÞJþ−þ−ðsÞ; ðB1Þ

where we have performed the substitution η → 2μ2=s.
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