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We present Hamilton’s equations for the teleparallel equivalent of general relativity (TEGR), which is a
reformulation of general relativity based on a curvatureless, metric compatible, and torsionful connection.
For this, we consider the Hamiltonian for TEGR obtained through the vector, antisymmetric, symmetric
and trace-free, and trace irreducible decomposition of the phase space variables. We present the
Hamiltonian for TEGR in the covariant formalism for the first time in the literature, by considering a
spin connection depending on Lorentz matrices. We introduce the mathematical formalism necessary to
compute Hamilton’s equations in both Weitzenbock gauge and covariant formulation, where for the latter
we must introduce new fields: Lorentz matrices and their associated momenta. We also derive explicit
relations between the conjugate momenta of the tetrad and the conjugate momenta for the metric that are
traditionally defined in GR, which are important to compare both formalisms.
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I. INTRODUCTION

The success of Einstein’s theory of general relativity (GR)
has constantly been confirmed over the years, with one of its
earliest triumphs being able to provide the correct prediction
for the bending of light by the Sun [1]. Nowadays the most
recent groundbreaking observations prove the predictions of
GR correct with the observation of gravitational waves from
a binary black hole merger [2], complimented with the
simultaneous detection of both light and gravitational waves
in a binary neutron star inspiral [3], which have opened a
new window for multimessenger astronomy. GR also allows
the inclusion of a cosmological constant A used to explain
the late accelerated expansion of the Universe. Thus, GR
encodes the fundamental cosmological knowledge through
the current standard model for cosmology, the so-called
ACDM model, for its main components are the cosmological
constant and cold dark matter.

Despite this success, GR is a theory that still has many
elusive open questions [4]. To start with, GR is unable to
explain the smallness of the cosmological constant, which,
corresponding to the value of the vacuum energy density,
is predicted to be 120 orders of magnitude larger by
quantum field theory [5]. Therefore, in order to explain

“laxmipriya.pati @ut.ee
Tdanielkristoffer.blixt-ssm @unina.it
“mjguzman @ut.ce

2470-0010,/2023/107(4)/044071(17)

044071-1

the accelerated expansion of the Universe, physicists resort
to the concept of dark energy, a component with mysterious
properties that has not been observed directly but is
predicted by several modifications to GR. Moreover, GR
cannot be described as a quantum field theory in the same
way as the other fundamental forces are; hence it cannot be
directly incorporated into the standard model of particle
physics. Among other problems of GR are the tensions in
cosmological data such as the discrepancy in the meas-
urement of the Hubble parameter at late and early times
[6,7]. Finally, the strong evidence for inflation [8-15]
contrasts with the lack of theoretical tools needed to
describe it, since the hypothetical inflaton field has not
been discovered. To explain the above issues one can
introduce additional fields that would be responsible for
these large-scale differences while retaining the well-
observed short-distance predictions of general relativity.
In this method, it is assumed that GR can be modified or
expanded, and such differences could explain cosmological
observations. Modifications to GR should be also consis-
tent with standard solar systems tests. It is generally the
case, however, that the gauge symmetry of GR is broken in
such modifications, which leads to the creation of new
degrees of freedom [16—18].

General relativity is a classical theory for a massless
spin-2 field. It is described by FEinstein’s field equation
and it is Lorentz and diffeomorphism invariant. We know
that such equations are obtained applying the variational
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principle in Hilbert’s action formulation, generally known
as the Einstein-Hilbert (EH) action. The equations obtained
from it fully satisfy these symmetries and lead to Einstein’s
field equations. This action is formulated in terms of the
Ricci scalar, which is built from the Levi-Civita connection
that is metric compatible, has curvature, and it is torsion
free. It is less known that, alternatively to this connection
(while still assuming vanishing nonmetricity), we can use
the curvature-free Weitzenbock connection to build the
covariant derivative, which defines the teleparallel frame-
work. In this way we can describe the effects of gravitation
in terms of torsion rather than curvature. Analogously, we
can choose to work with a connection with purely non-
metricity and vanishing curvature and torsion, and we again
obtain an equivalent theory with the same dynamics dictated
by Einstein’s equations. We can formulate three actions: the
EH action, the teleparallel equivalent of general relativity
(TEGR) action, and the symmetric teleparallel equivalent
of general relativity (STEGR) action, defined in terms
of Lagrangians built from the Ricci scalar R, the torsion
scalar T, and the nonmetricity scalar Q. This trio renders
Einstein’s equations; therefore, all are classically equivalent
and possess its same well-known cosmological and black
hole solutions, for example. The Lagrangians differ among
each other by boundary terms, which do not affect the
dynamics of the equations of motion, therefore the three
theories have the same number of degrees of freedom. They
are incidentally referred to as the “geometrical trinity of
gravity” [19], and are the foundational blocks for building
modifications to gravity, since when taking nonlinear
functions of the scalars, we obtain f(T) and f(Q) theories
of modified gravity that have different equations of motion
and more degrees of freedom.

The EH action classically has to be supplemented with a
boundary term that does not change the field equations.
This is made through the incorporation of the York-
Gibbons-Hawking (YGH) boundary term [20,21], which
needs to be considered for the study of physics in the
boundary of a manifold. Such a boundary term encapsu-
lates the terms in the EH action that contain second-order
derivatives of the metric. Einstein’s noncovariant formu-
lation highlights the importance of setting the coordinates,
which is translated into the fixation of the gauge in the
new version of GR from a modern perspective. This term is
also important in order to define the gravitational energy-
momentum covariantly: a “background structure” must be
introduced so that the theory can be “covariantized,” such
as auxiliary reference metrics [22] or auxiliary reference
connections [23]. The boundary conditions for the dynami-
cal fields [24] are sufficient to provide asymptotically
symmetric solutions for specific cases. The condition of
the inclusion of the YGH boundary term is in TEGR and
STEGR replaced by a gauge condition. In [25] the con-
dition “inertial frame” have been shown to give the
expected result and it is here argued that this approach

is not ad hoc in contrast to the introduction of the YGH
boundary term.

The Hamiltonian formalism and Dirac’s algorithm for
constrained Hamiltonian systems is one of the most
important theoretical tools to study any physical theory.
It facilitates the identification of physical degrees of free-
dom by classifying constraints in first and second class.
First class constraints are associated with gauge symmetries
of the theory, so each one of them is associated with a trivial
degree of freedom. Second class constraints can be grouped
as pairs of spurious canonical variables. This formalism is
essential for canonical quantization of gravity, and its
application to GR is an important theoretical landmark.
All equations of motion that originate from a variational
principle in the Lagrangian formulation can be represented
analogously in the Hamiltonian formalism through
Hamilton’s equations, which are essentially dynamical
equations for the position variable ¢; and its conjugate
momenta p’. The pioneering research of Arnowitt, Deser,
and Misner (ADM) [26], where the Hamiltonian formu-
lation of GR was derived, currently constitutes the corner-
stone of numerical relativity, and has significantly
advanced our understanding of gravitation and its highly
nonlinear dynamics. By utilizing the ADM formalism it is
possible to express GR action in 3 + 1 decomposition. This
approach foliates spacetime into a group of spacelike
hypersurfaces Z, by splitting the metric g,, into lapse a
and shift functions $, and a three-dimensional spatial
metric denoted by y;;. The dynamics of GR are encoded
in the spatial metric and its conjugate momenta, while
lapse and shift are introduced into the Hamiltonian for-
mulation as Lagrange multipliers. These parameters enable
the transformation of Einstein’s field equations into the
3 + 1 decomposition. Since Hamilton’s equations are a set
of first order differential equations they can also be used in
the study of dynamical systems. As of now the standard
Hamiltonian analysis in GR [26] is done for an EH action
supplemented by the YGH boundary term. In this work
instead we will analyze GR through the TEGR action
formulation, which differs from the EH action by a total
derivative of the trace of the torsion tensor. Note that
this boundary term is different from the YGH term.
Nevertheless, it gives the expected result when choosing
the “inertial frame” gauge [25]. Since TEGR differs by a
boundary term from the standard Hamiltonian formulation
of GR, it is expected that this will be reflected in Hamilton’s
equations. In particular, the difference is expected to
depend on the torsion tensor since the boundary term itself
depends on it.

Hamilton’s equations determine the time evolution of
the canonical variables, which is crucial to assess the well
posedness of the Cauchy problem, as well as to determine
the behavior of the degrees of freedom in the theory. In
general relativity, they are the Hamiltonian equivalent of
the 3 + 1 decomposition of the Lagrange equations of
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motion, and they determine the time evolution of the
induced metric and its time derivative (or momenta, in
the Hamiltonian picture). The aim of this work is to
compute Hamilton’s equations in the teleparallel equivalent
of general relativity in order to better understand the
dynamical behavior of the theory and compare it with
the GR case. The Hamiltonian analysis for TEGR has been
developed in the Weitzenbock gauge and, up to now, was
never performed by using the covariant formulation,
although some partial results can be found in [27-29].
However, to our knowledge, an explicit derivation of
Hamilton’s equations has only been presented in an old
Master thesis [30] and partially done in [31]. In this work
we present a closed form for the kinematic Hamiltonian for
covariant TEGR, which can be found also in [32] for new
general relativity and f(T) gravity. For this, it is also
necessary to extend the phase space by including Lorentz
matrices defining a metric teleparallel spin connection.
Rather than the 10 elements of a metric, the field variables
in teleparallel gravity are composed of 16 components of a
tetrad. On top of that, six extra fields have to be added,
which are related to local Lorentz transformations, but they
are removed by the introduction of six additional primary
constraints, therefore they do not represent additional
degrees of freedom and are pure gauge. Our aim is that
the present study of the 3 4+ 1 decomposition of the
equations of motion of TEGR opens the stage for the
study of numerical relativity in the tetrad formalism. We
expect that our work can set the basis for the study of strong
hyperbolicity in TEGR, which is essential for implement-
ing stable numerical codes in numerical relativity [33,34].
This field of research is essential for the description of
physical phenomena in the strong gravity regime, such as
the merger of binary pairs of black holes and/or neutron
stars. However, the role of the tetrad formalism and,
moreover, the spin connection for achieving strong hyper-
bolicity is far from being studied, therefore providing an
additional motivation for this work. In this work we do not
consider nonlinear modifications to TEGR, but it is
straightforward to extend our work to modified teleparallel
theories. In the future, our work could be used to resolve
controversies regarding the degrees of freedom in f(T)
gravity [35-41].

The outline of this paper is as follows. In Sec. II we
introduce the basic mathematical formalism for the tele-
parallel equivalent of general relativity considering both the
tetrad and the spin connection as dynamical variables, and
we introduce the foundations for the 3 + 1 decomposition
in the tetrad. Based on this, in Sec. III we introduce the
irreducible decomposition of the conjugate momenta, with
which we compute the Hamiltonian of TEGR in the
covariant formulation and in the Weitzenbock gauge.
Section IV is devoted to computing Hamilton’s equations
of TEGR by taking zero spin connection. In Sec. V we
present the computation of Hamilton’s equation for the

covariant formulation of TEGR. In Sec. VI we discuss
our findings by comparing them with previous works in
the literature. Lastly in Sec. VII we summarize our results.
Additionally, we provide some useful identities in
Appendix A, we review Hamilton’s equations of GR in
Appendix B, and provide a comparison of our results
with [31] in Appendix C.

II. TELEPARALLEL GRAVITY AND
TETRAD 3 +1 DECOMPOSITION

Throughout this work, we will use the sign convention
for the Minkowski metric as the mostly positive one, i.e.,
nap = diag(—1,1,1,1). Greek letters p,v,p,... denote
spacetime indices, and lowercase Latin letters i =1, 2, 3
indicate spatial indices. Lorentz tangent space indices
are denoted by the uppercase first letters of the Latin
alphabet A, B, C, ..., and their spatial part is denoted with
hats 121, B, C‘, .... We consider a field of tetrads on each point
of spacetime with components 64 , and the components of
the inverse tetrad e*, that are related with the metric of
spacetime through

g/,w = ”ABHA;AGBU? Nap = g/,weﬂAeyB' (1)

The tetrad and cotetrad components also satisfy orthonor-
mality relations

04 ety = 83, 04, ety = 5. (2)

Lorentz indices can be transformed into spacetime
indices and vice versa by contraction with a tetrad or
cotetrad components in the following way: a spacetime
index # becomes a Lorentz index 4 through contraction
with a tetrad QAM, while a spacetime index , becomes a
Lorentz index , through contraction with an inverse tetrad
es". Lorentz indices are raised and lowered with the
Minkowski metric, while spacetime indices are raised
and lowered with the spacetime metric.

In addition we introduce a curvatureless, metric compat-
ible spin connection " Bu» Whose components are defined as

(UAB# = _<A_1)CBaﬂACA’ (3)

where A4 are matrices satisfying properties of Lorentz
matrices. The spin connection enters the teleparallel action
and, thus, in this formulation the Lorentz matrices are treated
as dynamical fields [29].1

The main building block used in teleparallel theories of
gravity is the torsion tensor, which depends on both the
tetrad and spin connection as

T4, =0,0%, —0,0%, + 0*p,0°, —0*p,0°,. (4)

'Other covariant formulations are reviewed in [42].
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With it, we can build the torsion scalar
T = ! T°,,TH* ! Tv,T" —T°, T 5
T4 o + oty Lt oo ( )

which is related with the Ricci scalar from GR by only a
boundary term

R = —T + 200, (eT*), (6)

with T# = T%,#, 6 = det(6*,) as the determinant of the
tetrad and e the determinant of its inverse. The torsion
scalar can alternatively be written as

T=T"S,., (7)

where the so-called superpotential is defined in terms of the
torsion tensor as

1
S, ==T

v = 5 Lo + Tl + 29517 o (8)
The torsion scalar defines the TEGR Lagrangian
LTEGR = — i&'ﬂ', where k = 8:‘—46 If we take the R in terms
of the torsion scalar and the boundary term in (6), and

replace it into the Einstein-Hilbert action, then the result is
the action for TEGR,

1
STEGR = —Z—K/d4x9T. (9)

Since the boundary term is integrated out, we obtain a
gravitational theory with the same equations of motion
as GR. The equations of motion are obtained varying with
respect to the tetrad 6*,, and they are given in vacuum by

4T —2¢0;(0e°4S,") — 244 17,,5, = 0. (10)

The torsion scalar (5) is the building block for modified
gravity theories. For instance, relaxing the coefficients in
front of the three terms quadratic in the torsion tensor gives
the theory so-called new general relativity. An even more
popular theory considered in the literature is to take an
arbitrary function of the torsion scalar. This theory is
referred to as f(T) gravity, which is analogous to f(R)
gravity but with essentially a different physical content.
We are interested in studying the dynamics of the
equations of motion (10) from the Hamiltonian point of
view. In particular, we would like to perform a 3+ 1
decomposition of the equations of motion, which we will
achieve by computing Hamilton’s equations. Although
it is also possible to perform such split directly in the
Lagrangian equations of motion (10), both methods give
equivalent results, with the difference that with the
Hamiltonian approach we get the chance to deepen into
the structure of the Hamiltonian for TEGR, and preparing

the formalism in order to be applied to modified teleparallel
gravities previously mentioned.

A. 3+1 decomposition

Our first step into getting Hamilton’s equations of
motion for TEGR consists in performing a proper 3 + 1
decomposition. This issue is more subtle than for metric-
based theories, since our fundamental variable is now the
tetrad field, which has more independent components. First
we slice the four-dimensional manifold described by the
metric g, into three-dimensional hypersurfaces of constant
time X, that are equipped with a three-dimensional induced
metric y,-j.z We also introduce the lapse a and shift
functions, therefore the four-dimensional metric is then the
usual ADM one:

Joo = —a® + 'y, 90i = Pi, gi;=vi (11)
and the inverse metric
1 . i N o pip
P=-=. =5, gi=yi-—=. (12)
a (04 a

We will consider the spatial components §*; of the tetrad as
canonical variables instead of the induced metric. However,
the latter can be written in terms of the former by virtue of

GAiQBjﬂAB =7ij (13)

A possible ADM decomposition of the temporal part of the
tetrad can be written as

HAO :aéA +ﬁ10Al (14)

Here we have introduced the vector & with Lorentz
indices. In order to recover the ADM metric from the
tetrad (14), this vector needs to satisfy the condition

ﬂABfAfB = fAéA =-1, (15)

together with being orthonormal to the spatial part of the
tetrad, that is,

ﬂABfBQAi = §A9Ai =0. (16)

Notice that the vector & that satisfies all these properties
can be written as (see, for instance, [44])

1 .
gA = —6€ABCDHBi9Cj9Dk€l]k. (17)

*Such decomposition assumes that the tetrad respect the
conditions for a proper foliation. This issue will be addressed
in a forthcoming paper [43].
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Finally, the ADM split of the inverse tetrad e,* can be
consistently proposed as

1 . 4 p
e = ==&y, ext =04 +Sa—. (18)
a a
An important remark is that the rhs of the second equation
in (18) defines the object 64/, which is the shorthand
notation for 0,/ = 15,5776 j- In our main results we will try
to make little use of the 6,', since it can be confused with
the genuine inverse tetrad components e,’. Last but not
least, an important and useful expression is

NapyMO° 0P = 09,0,F = 65 + napcEP. (19)

From the ADM decomposition proposed we can observe
that our canonical variables will be (a,f’,";), spanning
the 16 independent components of the tetrad field.
Therefore, we can compute the 3 4+ 1 Lagrangian for
TEGR. This is not a simple task, but after some efforts
it is obtained the following result

4
v 6T

}/ L
Lrecr = Z—CMZA 8T 0T 0; — o

. (1
: [Mlix 8P~ %}’ll <2 £p04" — fAGBk)] + Ls,
(20)

where the time derivatives of the tetrad field are encoded in

the T4 ,; components of the torsion tensor. The tensor M "f‘ B
accompanying the term quadratic in velocities is given by

s 1/1 .. 1 1 o
Mg = p <§}’”77AB + Eé‘AfBJ/” +§9A]931 - ¢9A’¢93’),
(21)

while a term depending only on spatial derivatives of the
tetrad can be written as

a

Y A1 a (1
Ly \/_TAijTBklﬁ [EMQBﬁk —;}’ﬂ (E(fBQAk _§A93k>:|

a\/y,
—"T. 22
+ (22)

Here we have defined the spatial part of the torsion scalar
as °T

T = Hy M T TP,
1 P o
= (—4;7AByk[ly./]l +§93[1}/]][k0141] —GA [ly./][k931]> TAijTBkl‘

(23)

From this Lagrangian we must obtain the canonical
momenta, which will correspond to the 16 phase space
functions (7, 7;, nAi) associated to lapse, shift, and spatial
part of the tetrad. The canonical momenta are easily
obtained from here, since the only components containing
time derivatives of the spatial tetrad 0,0, are those
containing T%,;. Therefore, they are computed from our
previous Lagrangian as

. oL oL
Vs = = ——
4T 008, aTA,
V7

=4 [Miﬁx B(TP0 = T%up™)

a (1
+ . T2,.r" (5 EpO,™ — §A98m>:| . (24)

The conjugate momenta associated with lapse and shift
form part of a primary constraints, since the Lagrangian
does not present time derivatives of them, therefore

oL
aC — a7 = 27 50, 25
"= G0 (25)

oL
PC. = Pr; = _~0. 26
N~ (26)

We will denote them collectively as C4 = (*C,”C;), and
they will have associated Lagrange multipliers denoted
by (%,72%). In other works available in the literature,
the choice of canonical variables is (6%, 6";) instead of
(a, B, 6,), therefore these trivial primary constraints turn
out to be 7,°~0 due to the nonappearance of time
derivatives of #4,. These primary constraints generically
appear not only in TEGR but in any teleparallel theory
based on the torsion tensor/tetrad field.

In addition to these momenta, there must be considered
the momenta associated to the Lorentz matrices introduced
through the teleparallel spin connection (3). In [29] the
momenta P2, have been taken as the variation with respect
to (30AA B

oL .
P8 = a()A—AB = mc'nap (A7) BnCEOP, (27)

There is no assumption of antisymmetry on the matrices,
but their combination with P8, in a primary constraint
restricts the free components of the Lorentz matrices. These
primary constraints read

CAB = PALBICACL + mcin©BoN, ~ 0. (28)
It has been proved that these extra constraints have zero

Poisson bracket with the remaining primary constraints,
and since due to their simple form it is expected this to
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happen with the Hamiltonian too, it is an educated guess to
postulate that they are first class, as shown in [29].

With these tools we are able to tackle the computation of
the Hamiltonian for TEGR in the next section, from which
we will extract Hamilton’s equations. Note that the closed
form of the covariant Hamiltonian in teleparallel theories
has only been presented in the Ph.D. thesis [32].

III. HAMILTONIAN FOR TEGR

In order to obtain the Hamiltonian for TEGR from
the 3 4+ 1 Lagrangian (20), we must solve the velocities
in terms of the momenta in (24). For this, it is useful to
make a decomposition of the velocities and conjugate
momenta into irreducible parts under the rotation group
O(3) [28,41]. Such decomposition reads

0t =6, +Aéji7kj9Ak +Séji7kj0Ak +760%,.  (29)

mat =ValE, + Aﬂjiij”/AB + Sﬂjiij’?AB + Tﬂ@Bj’?AB}’ij-

(30)

We can also write the variables of the irreducible
decomposition in terms of the original canonical variables

& and z,' as
) ) 1.
Seji = e(ji) - ggAkeBl”/ABykl}’ij
19’A B 1 QA B 19‘/4 B kl
=3 i0 j’7AB+§ 0 B =3 K0° Mapy"'7ij»

70 = §9Ai93j77A37”,

Véi = _‘SAH.Aiv

. . 1. 1.
Agji = ‘9[,'5] = E‘gAiQBjUAB - EQA/'QB[']AB’ (31)
and

Sl — Ui _ %”AkgAkyij
Lo w1 T SRSV
:E”Ag 194 +§”A9Ak7 _§”A0k7 )

| I
Tﬂ,’ — _ﬂAleAi’

3
Vi — _gAg i,
. . 1 . . 1 . .
Agli = gliil = EﬂA’QAkyfk - EHAJHA,(}/”‘. (32)

With this irreducible decomposition at hand, the TEGR
primary constraints are obtained from (24) as

Vi

T8 0" mas ~ . (33)

VY

Vei =

A_ij 1
T K o
- _7lk7ﬂTBkl§B ~ 0.

S 2

In order to write the canonical Hamiltonian density,
we must invert the velocities 74, in (24) as a function
of the momenta z,'. This is facilitated by the irreducible
decomposition that was introduced (details can be seen
in [28,31]). We find the Moore-Penrose pseudoinverse of

M, which reads

Acij —

(34)

(M_l)iAkC = (7/ikymn0Am9Cn =+ GAkQCi - eAieck)- (35)

N A

With this (24) can be inverted as

TCu =M™ CiﬂAi + T "

ik \/77

a al
T (M=) ACTE " <2 Ep0p™ — §A93m> . (36)
)

0%, — (A_I)ABAACQBk
_ 3 C C oD -nac%* C  am
- i
00 + @ pr8°0 + (M)A, ﬁ”A + T% P

a (1
T (M=) AT,y (5 EpOs™ — 5A93m) . (37)

Note that due to the primary constraints (28), the tetrad
velocities and momenta velocities need to be inverted
together. The Hamiltonian density is thus given by

He = ma' (0" — (A7) AP - L, (38)
and the primary Hamiltonian density is obtained from
the canonical Hamiltonian by adding a linear combina-

tion of primary constraints C, multiplied by Lagrange
multipliers A¢

HTEGR = Hc - Aaca

= (0" — (ADCRALNOP) — L = 2°C,. (39)
Note that the (canonical, primary, etc.) Hamiltonian is
obtained by integrating the (canonical, primary, etc.)
Hamiltonian density over space, that is H = [ d®xH. We
have abbreviated the set of primary constraints into the array
C, = (Cy,Cyu5.YC!,AC), where all the components are
given, respectively, by Egs. (25), (26), (28), (33),
and (34). These are all our primary constraints that must
be included in the primary Hamiltonian with arbitrary
Lagrange multipliers A = (4, A48 V2, 43,).
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After some computations, we obtain the primary Hamiltonian for covariant TEGR:

K Sy Sqii _ 3k 77

Hrecr —0[2\/— ij

4\/77 2K

— ACy = Aap(PApHBICACP + mcinCBoA)) — Vﬂi(

— A ﬂ—17”'k1’leBk1‘fB + 0;(m4'0%).
ij \/}7 ) i

T — QST —EAoimy + ”Aia)ABifB:| + P[0 0y + ma' w0 0 — ma' T, ]

V_i
'K o
—+ TBjkylkVﬂ‘gAlr/AB)

VT

(40)

The boundary term contains nonlinearities in lapse and shift, and thus it will be dropped for the rest of the article:

3k
K 1,1

4\/}7 2K

K
S Sﬂ.lj

Hrecr = @ [2 \/—

- ﬂw —&homy" + ”AiwABiZjB:| + P[00,y + mp' 0 00 — 7wy T ]

A [A BICA D i C[BpA] Va'x ik, jl pA A Al 1y jlTB
— M Cy = 2ap(PApnP AP + mc'n“1B0M,) — NG KV mag ) — A 7—5}’ YT ués ).
(41)
In the Weitzenbock gauge the expression for the Hamiltonian reduces to
K 3k Y
HTEGRa[Z\/_S Sqil — 4\/}777:7 \Z/K_ST §A()7TA:| + pI[—0% 0ma" — 7s'TA ]
A ik, jl A Ak 1 s
—2Cy =Y (\/7 'y’ 9A1’7AB> - /lij< N —571 r'T k1<§B>- (42)

In order to derive Hamilton’s equation in terms of the original variables (not the irreducible decomposition ones), we will go
back to the canonical momenta 7’ by inverting Eq. (32), obtaining

2 l] —_ 3T T =TTy ﬂBlgAkHBj]/jk]/li + n’AiﬂBjQA]HBi - ﬂAiﬂ'BjHAiij. (43)

The primary Hamiltonian can thus be explicitly written in terms of the conjugate momenta z,’ of the tetrad in the

following way:

K
Hrecr = @ [4—\/}7

K . I
—AC, =Y\ {—W@‘Aml + TBjk}’lk)/ﬂHAl’?AB:| -

A. Comparing standard GR and TEGR
canonical variables

In Appendix B the standard way to derive the
Hamiltonian and Hamilton’s equations in GR (with the
metric formulation of the EH action) is presented. It is
evident from (29) and (30) that there is not a one to one
relationship among the canonical variables of standard GR
and TEGR. From these equations and (1), we can attempt to

derive a relation among the velocities éAi and y;; as

Yij = ﬂAB(éAiij + eAiéBj) (45)

(A 7' 04408 ;v y 1 + ma'mp 04108 — 7y w0408 ] — \2/—Z3T - gAaiﬂAi:| + P[0 0mp" — 7, T

N
Aij {—HA (maly™ = zs"y%) _E}’lky]lTBklé:B]- (44)

27

Using (29) here, we realize that the time derivative of the
induced metric depends only on the irreducible parts that
are symmetric, that is

Yij = 2(Séij + 7’9.7’17)- (46)

From the definition of the canonical momenta for the tetrad
z,', we can then explicitly write its relation with the GR
momenta 7'/ as

ma' = 776" nap + Vi, + AﬂjiijnAB (47)
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since the momenta for standard GR and TEGR are

oL )

ﬂ'ij:—_ A = —5 -
00",

: 48
a7, (48)

IV. HAMILTON’S EQUATIONS FOR TEGR

In this section we compute Hamilton’s equations for
TEGR in the Weitzenbock gauge (zero spin connection).
The difference between the derivation presented here
and the derivation of Hamilton’s equations for GR is in
the enlarged set of canonical variables. Of course, the
Hamiltonian for TEGR differs in many aspects from the
Hamiltonian for standard GR, since the boundary term
modifies the canonical structure but not the degrees of
freedom.” First, the phase space will be determined by the
pairs of canonical variables (6*;, 7,/), therefore the fun-
damental Poisson brackets of two functions in the phase
space F(x) and G(y) are defined as

(F.600) = [ @z

Given a Hamiltonian H(04;, 7,")
space, Hamilton’s equations are

)onck(z) omck(2)80(z)
(49)

= [d®xH in the phase

OoH . ) OoH
Ly {md Hy == (50
57y A {”A } 59Ai ( )
|

éAi:{eAivH}:

Differentiating with respect to the spatial tetrads yields

. oH aK
—ﬂ'A = — =

NG

(ﬂ'Ajﬂ'BiHB

560)_ 51 5601

i jpB il j
j=mA'mR 0%+ Yy Al mp

Analogously to GR, we obtain additional equations of
motion from considering the dynamics of (a, #') and their
canonical momenta % and “iz;, which have not been
considered as Lagrange multipliers from the beginning,
but belonging to the set of canonical variables. This is in
contrast with the Lagrangian multipliers YA, and “%; ; that
accompany the extra primary constraints of TEGR (in
comparison to GR), and do not have a momenta associated.
Therefore, we will compute the variations of the
Hamiltonian with respect to the canonical fields and their
associated momenta, which is equivalent to the computa-
tion of the corresponding Poisson brackets of them with the
Hamiltonian.
If we differentiate H with respect to lapse we get

az 5H K S S ij _

3KTT V75
T —&%0,my',
T a2 i &0y’

4y 2K
(51)

where the rhs corresponds to the Hamiltonian constraint,
also appearing in GR. Again we differentiate H with
respect to shift, obtaining

oH . )
—QA 'aiﬂAl - ﬂAlTA“

% = j ijs (52)

i, =

which gives in the rhs the momenta constraint.

k0")) — ﬁiaj”Aj + VAITE (0405 + Enpy™)

) . K . o1 ) K .
+ alsy*080,mp’ — VA, WfAV’kQBkﬂB/ - EAﬂlkTBkzéﬁAaB' + 7}7A/1[jk]”Aj71k

b’ Y K .
+ TA (_ \/7—31]- + ﬁﬂBj”Dk(ijeDk _ gBngj _ ijylneBlgDn)>

K

\/77

K
- - HA fBﬂ' J + V/{ T8 193 <9A }/ll + QA }/U) +7—A/1[11]7k19A103k”B

- _A/IanBklé:B [P0y 4 0,5 y™) + ™ (0477 + 04"y + WAl[lj]”BjeBk(QAli’ik + 045y

+—’1A (v kIHBIHDkecj”Bi”Dj _yjkylmVmeBneDlecm”BjﬂDk)

27

. . | a/y ,
— 29, (ﬁ[lﬂ.Al] _ V/I[IBAI] 4 EAMII]gA _ T\/_[_ICA[mn][zl] Tcmn)

a . . .
fTBle mn(eAmH inkl + gAnHCBmlkl + eAkHCBmml + QAZHCankl

+ EcEay Myl EgE 0y,

(53)

*For more general discussion on the effect of boundary terms in the Hamiltonian formalism, see examples in [29,45].
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Now we differentiate with respect to conjugate momenta,
and we get

oH

The previous two Hamilton equations indicate that the
lapse and shift have an arbitrary evolution, since their time
derivative gives an arbitrary Lagrange multiplier. The

=—=-9, (54) variation with respect to the canonical momenta of the
o'n tetrad gives
. oH )
;= = Pl 55
b= (55)
|
. oH _ ' A jkgA
QA[' = — (27[3ng QB +7[319Ak98171ﬂ/ ) +a[fA +al(ﬂ19}4) —ﬂjTAij +V/11£+Aﬂ[l/] Ky k (56)

oy 2\/_

which is the time evolution of the tetrad field, and it
depends linearly in the canonical momenta. An analogous
behavior occurs in GR for the time evolution of the induced
metric in (B12), which depends linearly on the correspond-
ing canonical momenta. Given a set of initial data, these
equations have to be complemented by enforcing the initial
data to satisfy the primary constraints (25), (26), (33),
and (34). Depending on the point of view, these can be

v VT

considered as belonging to the set of equations of motion
(Hamilton’s equations) [46].

V. HAMILTON’S EQUATION FOR THE
COVARIANT TEGR

We present the TEGR Hamiltonian in terms of the
momenta of the vector, antisymmetric, symmetric trace
free and trace (VAST) decomposition,

K 3k Y
H=a {2\/775717,,571” 4\/7777ZT7T \2/1:3T Eoimp’ + mpl 53]
+ =04 j0imp" 4 7' 0 — s TH] - dap(PApnBICALL + mcinCBoA))
Vrik . . Agiie 1.
-V < NG jkV’k9B’> - (7 - EyllyjkTAkl§A> — 24 CA, (57)

and the TEGR Hamiltonian back to the canonical variables,

“lsyz

(a7 04408 ;7 v + ma'mp 04108, — 1w 04,08 ] —

E/ZST —EAomy + ”AiwABié:B:|

+ P04 074" + mp' @t 0 — mA TA] - Aap (PP pinPICACP + mcinBOY,;) = Vi, [—WfA”A' + TBij/lkeB]}

K . o 1 . .
~“%ij Tﬁmk(ﬂ/&’}’lk —7a'r") —ii’lkY"[TBszB

Although the difference between the covariant Hamiltonian
and the Weitzenbock-like one is complex, and it cannot be
easily written as isolated terms in the spin connection, the
variations of the main fields have a simple form. Let us take
as an example the torsion tensor,

TAl-j = 6,-6’Aj — 0,9A, -+ CUABiij - COAngBi,
= O,HAJ» - OJQA, + (A_I)CB()[ACAHB]'
— (A1) p0;A 0%, (59)
where in the second line the spin connection has been

written explicitly in terms of the Lorentz matrices. Since the
spin connection is independent from the tetrads the second

— 2, CA.

(58)

[
line will not be needed in considering the variation of the
spatial tetrads, but it will affect the variations in A.

In the following, to not repeat calculations unnecessarily
we introduce the notion of the torsion tensor and
Hamiltonian in the Weitzenbock gauge, respectively

w w
denoted by T4, ; and Hrggr. Note that we will omit
Dirac deltas from our equations, unless they present spatial
derivatives acting on them. From Eq. (59) we get that

5TA,; 8T,
50C = 56C, !+ (o 315305]( — ;68 5,
oTA,
59C J + 207 C[, (60)
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Using this basic expression, we can write a relation
between the variation with respect to the spatial tetrad of
the Weitzenbock and the covariant Hamiltonian as

SHiser  OHiper ., ,
S0, = agh, TP~ dammcn™
58 afy T
k, C _
+ anc o gy 50", B aTckla) [kﬁ]
+ Zﬂjﬂcka)cA[kéll] —_ 21}/1](931608/4[1{6;]
+ AP k5 B (61)

with the precaution that the result of the variation of 3T has
to be considered for the torsion tensor in the covariant
version, that is, including the spin connection.

We can obtain the same kind of relation for the variation
in terms of the conjugate momenta of the spatial tetrad,
which looks simpler and is given by

oH TEGR

i

5H TEGR
oy’ A

o7y + aw’ 5 E® + plar 5,08 ) — AicpnAo,.

(62)

An additional variation appears for the covariant
Hamiltonian in terms of the conjugate momenta of the
Lorentz matrices, which is
|

oH akK

oH TEGR
5PAy

= _A[AE] ﬂECACB- (63)

Finally, we calculate the variation with respect to the
Lorentz matrices. For this the following identity will be
useful

(SCOCDi
SALB

= -0 g (A" = (A1) p850:6.  (64)

Now we have all the necessary mathematical tools to compute
Hamilton’s equations for the covariant version of TEGR.
The Hamiltonian constraint is given by

w. OH
 Sa
K s, sﬂu 3Kk B g S \/773T
N 4.7 2
—EA Oy + mp 0 B, (65)

while the momentum constraint is given by

_%f_ﬁi

op'

The variation with respect to the tetrad is

9A 0; JTAJ +7TAJCUAC] i—ﬂAjTAji. (66)

—7p' = S0h 2 (2 7p' 0% — wa' w5 0% + 7"y jmal mp 0% ) + B (gl @ oy — 0j7p7) + Aycayms'n®C + WAﬂ[jk]ﬂAJVIk
l

27

. . . . . K . | .
+ VA'TE (04505 + E4Ep7"T) + affAVleBk(aj”B’ —np’wPp;) — Vllj —yfAV’kgBk”B/ - EA/llkTBklé:AeBl

+iAi _ﬂ3
2 K 2y

K

T + L”Bj”Dk<ij9Dk _ eBngj _ yjkylneBleDn)> -V GA gBﬂB'

N

. . K . .
+ VﬁjTBkleBk(QAjyll + HAIJ/U) + WA/l[lj]},klgAzeBkﬂ.Bj

1 ) ) ) . ;) K
- —A/lanBklfB (04" ™ + 0,5™) + 7™ (0477 + 0,y + W /1[ ]”3193 (047 + 0,59")

+—77Ac( ko8 6P 0 imp'np — v wy™y™0" 0P 16, mp npk)

27

. . 1 . .
) (ﬁ[lﬂBz] _ Vl[zeBl] 4 EAﬂ[ll]fg _ aT\/?HCB[mn][zl] TCmn) CUBAI

. . | a\/y .
_ 20[ <ﬂ[1ﬂAl] _ V/I[’QA’] 4 EA)«[ll]fA _ T\/_HCA [mn][il] Tcmn)

a . , .
\/— TB lTCmn (eAmH inkl + HAnHCBmtkl + gAkHCBmm] + eAlHCankl

+ fcfAV mynllkgyll + a0 mymlikylliy,

(67)

A new variation appears in the covariant formalism due to the inclusion of the Lorentz matrices as an additional canonical
variable, therefore the time evolution of their associated canonical momenta are
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oH 720(

—PB g =
N

K

7o b .
\/_HCD[ MKITD (A )B g 4,0% ; — 0; <

2a./y .
IQ/_HAD[U][I{Z]TDH(A—I)BE9]E>

— (anc EE(A™")B L€ p; — 0;(am ' EE (A1) 1)) — Acp PIC unPIB

. 1,... .. 1 ..
+2(A1)E (‘Vﬂkgcliﬂk + 5“‘%”&) wcA[ieEj] —0; <2(A_1)BE <—V/1k9c[’7”k + 3 Aﬁwéc) 9Ej)

— BN el 0F j0C 5 = 0,(B (A7) P s 16F)). (68)
Variation in terms of all canonical momenta give
oH
e — ) 69
¢ o°r (69)
i 5H .
V=5~ " (70)
OoH K . )
i 0‘<2\/77 27570" ;60 + 7 0" 0%y ijy"] + 06" + waABi)
(08 g — T ) + 0, (pi0%) + 9, <5 g O e 71
+ (0% ;0" g; = TH;) + 0;(F'0}) + iﬁ"’ lij] 7 + Aot i» (71)
. OoH
AAB — —5PA = —ﬂ[AD]ACBﬂCD. (72)
B

Just like in the previous case in the pure-tetrad TEGR, these
equations have to be complemented with the primary
constraints (25), (26), (28), (33), and (34) that set con-
ditions on the initial data. The new sets of equations, (68)
and (72), are obtained from the introduction of the Lorentz
matrices in the formalism [29], and in particular (72) shows
that the time evolution of the Lorentz matrices is arbitrary
and determined by Lagrange multipliers.

VI. DISCUSSION AND COMPARISON WITH
PREVIOUS WORKS

The comparison of our results with already existing work
in the literature complicates due to the variety of different
ways for tackling the Hamiltonian formalism for TEGR.
For instance, in a recent review [41], there are summarized
at least five different formalisms, methods, and notation
that have been used in the literature.

One of the first works in the literature discussing the time
evolution of the tetrad and momenta is in [30,47] and
partially in [31]. In Appendix C we show that the results
presented in [31] are consistent with ours. The results of [47]
apply only for the class of theories known as one-parameter
teleparallel gravity, not TEGR. Instead of computing explic-
itly the time evolution of variables through its Poisson
bracket with the Hamiltonian, they use Hamilton’s equations
to analyze the time evolution of constraints and canonical
variables. They arrive to the important conclusion that
one-parameter teleparallel gravity (OPTG) has six physical

degrees of freedom, a result that has not yet been confirmed
independently by other authors. Thus, it would be an
interesting future direction to extend this work to OPTG
and confirm or disprove their results, especially because the
calculations are very lengthy. The most elaborated calcu-
lations are in [30], although we have found some typos and
even seemingly some mistakes in the extensive calculations.
However, the most simple perturbations at the lowest order
around a Minkowski background only propagate three
degrees of freedom, while it has been shown that additional
degrees of freedom propagate at higher orders [48]. This
suggests that the conclusion of six physical degrees of
freedom is plausible and that they could manifest perturba-
tively. Another exhaustive reference where the Hamiltonian
structure of TEGR and generic NGR is computed is [49].
Although the time evolution for the tetrad and their
momenta are not specified, it can be used as a starting point
for their derivation.

In relation with the work developed in [50], there are
several points where our approaches differ. The authors chose
a3 + 1 split of Latin indices in temporal and spatial parts as
A=(0,7) in the same way that spacetime indices y = (0, ) are
commonly split in the literature. They conclude that e°; =
[after their Eq. (57)], but with some flaws in the reasoning for
arriving to this expression. They claim correctly that the
induced metric can be written in terms of the components of

. o . 6 6 v o
this tetrad splitting as e”;e” 5 + €',/ jig;; = Vij- However,

immediately after that they assert instead that e';e/ 1777 = 7,
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(which was explained in [41] to be an unnecessary choice),

and conclude that ¢°; must be zero, instead of admitting that
this is a fixing of the tetrad components. As explained in [41]
the form of the tetrad they adopted fixes a Lorentz gauge. If
their work should be extended to more general teleparallel
theories it may enforce a nontrivial spin connection. Even in
the case of TEGR it might turn out that this gauge choice is
unfavorable for numerical relativity, or that a boundary term
needs to be added to get a well-defined ADM mass for
instance (in the context of the role of boundary terms and the
inertial frame see [25]).

In addition to the advantage of our formalism being
gauge independent and covariant, there seems to be a
fundamental advantage of using the covariant phase-space
variables from the Hamiltonian rather than fields like
extrinsic curvature in tetrad theories of gravity for the
following reason. When writing the evolution equations of
the tetrad field the antisymmetric fields generically evolve.
What happens in metric theories of gravity is that the field
equations are used to rewrite the symmetric evolution
equations in a desired form. The problem that occurs in
TEGR is that there are no antisymmetric field equations
while there is antisymmetric evolution [50]. Thus, it is
unclear what one should do with the antisymmetric
evolution equations. In contrast to the field equations in
Lagrangian variables Hamilton’s equations have antisym-
metric equations [see (33) and (34)]. So this kind of
difficulty is avoided in our approach.

VII. CONCLUSIONS

In this work we present Hamilton’s equations for the
teleparallel equivalent of general relativity, following the
Hamiltonian approach introduced in [28] using the VAST
decomposition of the momenta and tetrad velocities. We also
present a novel derivation of Hamilton equations for the
covariant version of TEGR, with an arbitrary spin connec-
tion depending on Lorentz matrices. To our knowledge the
case of Hamilton’s equations for TEGR in the Weitzenbock
gauge has only been performed in [30], although the
formalism is slightly different from ours. The results for
the Weitzenbock gauge are given by equations (51)—(56)
in Sec. IV. Equations (65)—(72) in Sec. V are Hamilton’s
equations for the covariant formulation.

As expected, there are two main differences between
(covariant) TEGR Hamilton’s equations derived here and
Hamilton’s equations of GR in its standard formulation (see
Appendix B). The first difference is related to which fields
are treated as canonical. Tetrads have six additional
independent components compared to the metric. The spin
connection (or rather the Lorentz matrices) further intro-
duces six more additional independent components [29].
There exists Hamilton’s equations for all of the canonical
fields and their conjugate momenta. Thus, one main
difference is that Hamilton’s equations for TEGR are more
numerous than those in the standard formulation of GR.

Note, however, that the EH action can straightforwardly be
rewritten in terms of tetrads and we would get a structure
more reminiscent to the case of TEGR in the Weitzenbock
gauge. The second difference is related to the boundary
term. It seems that TEGR Hamilton’s equations are more
lengthy than the standard ones. However, we would like to
point out that the standard formulation [51] is different
from the EH action by the York-Gibbons-Hawking boun-
dary term [20,21]. An interesting future direction could be
to investigate if the gauge conditions denoted as “inertial
frame” defined in [25] would give any kind of an advantage
over the standard formulation.

Despite those differences, the counting of degrees of
freedom is the same for (covariant) TEGR and GR, as
expected. From the 16 + 6 independent components of the
tetrad QA” and the Lorentz matrices A%y [29], there are
4 4+ 6 + 6 primary constraints and 4 secondary constraints
(Hamiltonian and momenta), which are all first class,
therefore we are left with 24 — 20 = 4 degrees of freedom
in the phase space, consequently two physical degrees of
freedom. Proving that all constraints are first class is
beyond the scope of our paper, but it has been proved
elsewhere, leading to the same counting of degrees of
freedom as presented above. We also do not compute the
preservation over time of primary constraints, nor do we
compute gauge generators or consider nonlinear extension
of TEGR, where the issue of the counting of degrees of
freedom overly complicates. However, we hope that our
work can be a useful contribution in this direction.

The tetrad formulation of Einstein equations for numeri-
cal relativity has been considered in, for instance, Ref. [52].
Here it is asserted that since tetrad frames are natural for
measuring observable physical quantities, as for instance
they are tied to the flow of a fluid, in either cosmology or
interior metrics of rotating stars, then they can be used even
for vacuum black hole spacetimes. Therefore, it is interest-
ing to check if the same conclusions can be drawn when
working in the tetrad formalism in TEGR. In particular, it
would be pertinent for future work to study the hyper-
bolicity of the 3 4+ 1 equations of motion in TEGR for the
tetrad field, and if it can be of help for the improvement of
efficiency of numerical relativity.

In summary, Hamilton’s equations look much more
lengthy in (covariant) TEGR formulation compared to
the standard metric formulation. Though, in addition to
setting up the path for deriving Hamilton’s equations for
modified teleparallel theories, it will still need to be
investigated if this formulation have advantages for numeri-
cal relativity. The conjugate momenta to the metric was
identified to be a part of the conjugate momenta of the
tetrad using the VAST decomposition. However, the con-
verse cannot be obtained due to the fact that the metric has
more symmetries than the tetrad. It was also noted that
Hamilton’s equations were affected by the boundary term.
Lastly, we note that the formulation in this article does not
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have undetermined antisymmetric evolution equations
(here they are given through Lagrange multipliers that
trivialize in Lagrangian field variables), thus this approach
seems to have an advantage over the approach performed
in [50].
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APPENDIX A: USEFUL IDENTITIES

Some simple variation formula of canonical fields are

% s (A1)
u
% = —eey”, (A2)
n"
S A—l E
(5AA) D _ —(ATHEL(AA, (A3)

Up to now, all previous expression hold in the phase space
quantities before performing the 3 4+ 1 decomposition in
the tetrad. The following relations hold for the components
of the 3 + 1 decomposed tetrad #*,, the induced metric y; i
its inverse ¥/, and the vector &,:

505 o i,
591:' = —0,70p" — Es&pyY, (A4)
Sy o -
sgc = 0™ = 0™, (A3)

5EA

50 = _£C9Aj7jmv (A6)
i _ (500 4 507 A7
MT—WAD(i j 0104, (A7)
Oy )
69\5; = \/}77""9Ai’1Ac’ (AS)
5 (1N -1,
&,T <W> = 7}77 9Ai’7AC’ (A9)
STA. 1
Sl e, (AI0)
53—|]— mnkl B A ijmn ijmnA
5TT:HCB TP+ T%jHac"™ = 2H ™" T,
(All)
ST,
o=, (A1)
5Tcij —1\B E_C E_C CpE CpE
SA A (A ) E(QJC() Ai _01' [0 Aj _5A6j ai5+5Aei 015),
B
(A13)
5TAij A (sm m A T
5oC, = 0c(5]0i0 = 070;8) + 20 ¢y, (Al4)
5HABijkl i mjlk j mikl k ijlm
500 O'cHpp"™"™ + 6/ cH ™" + 0" cH "
. 1 o
+ 0'cH 45k — 553&7”'7’”"@11]
1 . o
- EfAfceB[lY"”kVI]m + Egcymliylkg
+ EpEcO,liyllkylim, (A15)

APPENDIX B: HAMILTON’S EQUATIONS
IN GENERAL RELATIVITY

The derivation of the Hamiltonian in TEGR has more
intricacies than the standard EH formulation, since the
tetrad, our dynamical variable, has more free functions that
have to be dealt with compared to the metric. In order to
compare TEGR and EH Hamiltonians, it will be instructive
to take a look at the main results for the EH action,

1
Sgn = — [ d*xR,
EH 2K/ X

which can be found in classical references [51,53]. Those
are in done in metric formulation, in tetrad formulation the

(B1)
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Hamiltonian is presented in [54]. However, we are not
aware of any reference presenting Hamilton’s equations for
tetrad EH formulation. The 3 + 1 split of the metric goes as

B - + Py i
G = B, )
j Vij

/-1 g
7o wpl )

The Lagrangian density of EH with a boundary term
already discarded® is written as

(B2)

L= /7[R + K K - K?, (B3)

where the extrinsic curvature K;; is related to the time
derivative of the induced metric y;; as

1

Kij :Z[}}ij_Diﬂj_Djﬂi]' (B4)

The momenta canonically conjugate to the induced metric
yij are

oL
9ij

7l = = 7(K"7 = Ky"). (B5)
By rewriting the Lagrangian density in terms of these
momenta, the canonical Hamiltonian density is obtained:

H:ﬂ'ijj}ij—ﬁ,
1 .
:—\/_a R—l—a\/_( ”ﬂ' —Eﬂ'z)—f‘ZHUDiﬂj,
_\/_( |: R+ﬂ:1/7[1j/y__7r2/}/:|

28, Dy /) + 2D,(p ,‘nif/m), (B6)

where 7t = 7. The last term is a boundary term and it is
discarded (analogous to what was done in this work for
TEGR discarding 0;[z4'64]), which is essential, since the
boundary term contains spatial derivatives of the shift and
would complicate its interpretation as Lagrange multipliers,
and otherwise it would manifest in Hamilton’s equations
with nontrivial dynamics. The same would happen with the
lapse function in TEGR if we did not discard the boundary
term. Together with the momenta (B5) we obtain primary

constraints coming from the absence of a and Bi in the
Lagrangian, which we denote as “zgy ~0 and /rgy 0,
which should not be confused with %z and #z/ which were

*Note that in TEGR action such a boundary term is not
necessary.

defined with the TEGR Lagrangian. If considering lapse
and shift as canonical variables from the beginning (before
discovering their trivial role as Lagrange multipliers), then
we must include these primary constraints with the corre-
sponding Lagrange multipliers (°4,7;) in the primary
Hamiltonian, which becomes

Hp =H- aﬂaﬂEH — ﬂ/liﬂﬂfaH. (B7)
The variation of the primary Hamiltonian H = [ d3x'Hp
with respect to a and f; yields, respectively, the equations

O6H

1/ . 1
—i—; <ﬂ/7r,-/- _57[2>> =0, (B8)
i = 5,

= -2\/yDi(x/\/y) = 0.

. oH

(B9)

These are identified as constraints for the initial values of
momenta and induced metric, also known as Hamiltonian
and momenta constraints, respectively. The absence of «
and f in the Lagrangian translates as the following
Hamilton’s equations:

oH

=— = -9, B10
o ( )

.. O0H
! = - = —ﬂﬁ’ Bll
:B 5/371_, i ( )

which state that the time evolution of lapse and shift is
determined by arbitrary Lagrange multipliers. Finally, the
dynamical equations obtained from the Hamiltonian, that
is, Hamilton’s equations for the induced metric and the
momenta, are, respectively,

oH

. : 1
Vij = al 2y 12 < i —271']'”) +2Dp;) (B12)

and

iy l .
7l = _5}/ - —a\/_< R -5 )Ry”>
1 . 1
4 an—l/zylj (T[klﬂ.kl _ 5”2>
1
—2ay‘1/2<7r ) —27m”>

+ 7(D'D/a — y'D*D,a)

+ VID(r2phail) — 204D (B13)
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APPENDIX C: HAMILTON’S EQUATIONS
IN COVARIANT TEGR (PREVIOUS
PARTIAL RESULTS)

In [31] the Hamiltonian analysis for covariant TEGR
was performed by imposing the teleparallel condition
RAB,, =0 by means of Lagrange multipliers A,z and
the addition of the term A,5R*%, in the TEGR
Lagrangian. In other words, the theory can be seen as a
special case of Poincaré gauge theory, where curvature
vanishes and torsion appears in the action in the well-
known form of TEGR. Before presenting their results,
some explanation regarding the difference in the formu-
lation is in order (further details can be found in [41]).
The canonical variables in [31] are (64, @"p,.445"),
which differs from our choice (a, 7, 6*;, A*). This means
that some of their equations will appear to be different,
even though the set of equations are equivalent. Instead
of introducing indices that run on the three-dimensional
hypersurface of constant time slices X they instead use
projectors. A vector projected to the normal vector is
denoted V, =&V, and it is also defined V3=
Va4 —E4V . They define lapse N and shift N' as N =
0y =a and N' = ez'0°) = p', which shows that
our definitions coincide. The different set of canonical
variables also implies a different set of conjugate momenta.
However, 74’ coincides with our expression except for the
formulation details using projectors. Instead of our con-
jugate momenta with respect to the Lorentz matrices they

have additional sets of canonical momenta 7,p" := aﬂf}%
u

B . oL
and 748, = T

1. The Hamiltonian

They find the expression for the total Hamiltonian to be’
Lo o as A0, ap 0
H:Hc+§uAB JTA ()[‘i‘lxl oA +§M 0TAB

1 . 1
+ZMABU”ABij +§”AC¢AC’ (C1)
with the canonical Hamiltonian defined as [second unnum-
bered equation after (3.5)]

H, = m,"0", + mapa??, — \/9L. (C2)
Note that due to the different formulation, the canonical
Hamiltonian is defined slightly different from our case.
This is since, instead of treating the Lorentz matrices as
canonical variables, the spin connection is in this case

treated as canonical. Explicitly, the canonical Hamiltonian
is found here to be

. 1 .
H.=aH, +p"H; - ECUABOHAB +9,D",  (C3)

where the definitions of H |, H;, Hug, D' defined in [31]
give the explicit Hamiltonian

. 3 1 /1 1 . - -
Hc = a<ﬂ'ﬂATﬂM - \/]7% <4 TAgcTABC + ETABCTBAC - TATA) - fAViﬂA’> - a\/]?ﬂABCDRABCD

. . o1 1 . . 1 :
+ﬂl (ﬂCjTC,’j - Qcivj'ﬂ'cj + EHABﬂRABij> - ECUAB()(ZJT[AIQB]Z' + v,'ﬂ'ABl> + ai <9C07[C1 + Ea)ABQJTABl> .

2. Poisson brackets
The evolution of the canonical fields can equivalently be
calculated with the help of Poisson brackets using the
identity
A={A H}. (C5)
In [31] the following Poisson brackets were calculated
using (C4)

{gAi’ /CD} = 5é6Di5 - (C < D), (Co)

>This coincides with our primary Hamiltonian (not total, as
the authors denote it in their paper). Technically, the total
Hamiltonian corresponds to the primary Hamiltonian once the
Lagrange multipliers have been solved and replaced back, see for
instance [55].

(C4)
|
{04, 1} = V04,6 - 0406 = T ;6 + V,(6*;8).  (C7)
(0410 = x(06PH - 0P )34 V). (C)

where & is a shorthand notation for §(x — x’). From this
they conclude that

Voo = V.04, + T + aGCJ\% (ﬁ@ 0 —
+ 9Ci(fAulC + u C)-

When V = 0 the terms containing neither momenta nor
Lagrange multipliers coincide with our result. The terms
that involve the conjugate momenta are also consistent with
our findings. The parts including Lagrange multipliers are a
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bit more tricky to compare. Note that [31] combines our
3 + 3 primary constraints into six primary constraints

0ijk

bap = 7ap — i + aVile hop0< 070, (C10)

which are essentially equivalent, up to changing the
definition of u*® compared to the definitions in our
manuscript (YA;,*%;;). Note that here the factors /7
and « are not present (like in our work); nonetheless
the expressions are consistent, since those are overall

factors that in our formalism could have been absorbed
by the Lagrange multipliers. Otherwise ujzg coincides
with 44, and u*“; coincides with V2, which can be
proved in a similar way as it was done in [41]. In
summary, their results for the tetrad time evolution are
consistent with ours.

There are some other interesting calculations in [31];
however, they do not correspond to the canonical variables
considered in this article. The reader is, thus, referred to the
original article for more details.
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