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We present Hamilton’s equations for the teleparallel equivalent of general relativity (TEGR), which is a
reformulation of general relativity based on a curvatureless, metric compatible, and torsionful connection.
For this, we consider the Hamiltonian for TEGR obtained through the vector, antisymmetric, symmetric
and trace-free, and trace irreducible decomposition of the phase space variables. We present the
Hamiltonian for TEGR in the covariant formalism for the first time in the literature, by considering a
spin connection depending on Lorentz matrices. We introduce the mathematical formalism necessary to
compute Hamilton’s equations in both Weitzenböck gauge and covariant formulation, where for the latter
we must introduce new fields: Lorentz matrices and their associated momenta. We also derive explicit
relations between the conjugate momenta of the tetrad and the conjugate momenta for the metric that are
traditionally defined in GR, which are important to compare both formalisms.
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I. INTRODUCTION

The success of Einstein’s theory of general relativity (GR)
has constantly been confirmed over the years, with one of its
earliest triumphs being able to provide the correct prediction
for the bending of light by the Sun [1]. Nowadays the most
recent groundbreaking observations prove the predictions of
GR correct with the observation of gravitational waves from
a binary black hole merger [2], complimented with the
simultaneous detection of both light and gravitational waves
in a binary neutron star inspiral [3], which have opened a
new window for multimessenger astronomy. GR also allows
the inclusion of a cosmological constant Λ used to explain
the late accelerated expansion of the Universe. Thus, GR
encodes the fundamental cosmological knowledge through
the current standard model for cosmology, the so-called
ΛCDMmodel, for its main components are the cosmological
constant and cold dark matter.
Despite this success, GR is a theory that still has many

elusive open questions [4]. To start with, GR is unable to
explain the smallness of the cosmological constant, which,
corresponding to the value of the vacuum energy density,
is predicted to be 120 orders of magnitude larger by
quantum field theory [5]. Therefore, in order to explain

the accelerated expansion of the Universe, physicists resort
to the concept of dark energy, a component with mysterious
properties that has not been observed directly but is
predicted by several modifications to GR. Moreover, GR
cannot be described as a quantum field theory in the same
way as the other fundamental forces are; hence it cannot be
directly incorporated into the standard model of particle
physics. Among other problems of GR are the tensions in
cosmological data such as the discrepancy in the meas-
urement of the Hubble parameter at late and early times
[6,7]. Finally, the strong evidence for inflation [8–15]
contrasts with the lack of theoretical tools needed to
describe it, since the hypothetical inflaton field has not
been discovered. To explain the above issues one can
introduce additional fields that would be responsible for
these large-scale differences while retaining the well-
observed short-distance predictions of general relativity.
In this method, it is assumed that GR can be modified or
expanded, and such differences could explain cosmological
observations. Modifications to GR should be also consis-
tent with standard solar systems tests. It is generally the
case, however, that the gauge symmetry of GR is broken in
such modifications, which leads to the creation of new
degrees of freedom [16–18].
General relativity is a classical theory for a massless

spin-2 field. It is described by Einstein’s field equation
and it is Lorentz and diffeomorphism invariant. We know
that such equations are obtained applying the variational
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principle in Hilbert’s action formulation, generally known
as the Einstein-Hilbert (EH) action. The equations obtained
from it fully satisfy these symmetries and lead to Einstein’s
field equations. This action is formulated in terms of the
Ricci scalar, which is built from the Levi-Civita connection
that is metric compatible, has curvature, and it is torsion
free. It is less known that, alternatively to this connection
(while still assuming vanishing nonmetricity), we can use
the curvature-free Weitzenböck connection to build the
covariant derivative, which defines the teleparallel frame-
work. In this way we can describe the effects of gravitation
in terms of torsion rather than curvature. Analogously, we
can choose to work with a connection with purely non-
metricity and vanishing curvature and torsion, and we again
obtain an equivalent theory with the same dynamics dictated
by Einstein’s equations. We can formulate three actions: the
EH action, the teleparallel equivalent of general relativity
(TEGR) action, and the symmetric teleparallel equivalent
of general relativity (STEGR) action, defined in terms
of Lagrangians built from the Ricci scalar R, the torsion
scalar T, and the nonmetricity scalar Q. This trio renders
Einstein’s equations; therefore, all are classically equivalent
and possess its same well-known cosmological and black
hole solutions, for example. The Lagrangians differ among
each other by boundary terms, which do not affect the
dynamics of the equations of motion, therefore the three
theories have the same number of degrees of freedom. They
are incidentally referred to as the “geometrical trinity of
gravity” [19], and are the foundational blocks for building
modifications to gravity, since when taking nonlinear
functions of the scalars, we obtain fðTÞ and fðQÞ theories
of modified gravity that have different equations of motion
and more degrees of freedom.
The EH action classically has to be supplemented with a

boundary term that does not change the field equations.
This is made through the incorporation of the York-
Gibbons-Hawking (YGH) boundary term [20,21], which
needs to be considered for the study of physics in the
boundary of a manifold. Such a boundary term encapsu-
lates the terms in the EH action that contain second-order
derivatives of the metric. Einstein’s noncovariant formu-
lation highlights the importance of setting the coordinates,
which is translated into the fixation of the gauge in the
new version of GR from a modern perspective. This term is
also important in order to define the gravitational energy-
momentum covariantly: a “background structure” must be
introduced so that the theory can be “covariantized,” such
as auxiliary reference metrics [22] or auxiliary reference
connections [23]. The boundary conditions for the dynami-
cal fields [24] are sufficient to provide asymptotically
symmetric solutions for specific cases. The condition of
the inclusion of the YGH boundary term is in TEGR and
STEGR replaced by a gauge condition. In [25] the con-
dition “inertial frame” have been shown to give the
expected result and it is here argued that this approach

is not ad hoc in contrast to the introduction of the YGH
boundary term.
The Hamiltonian formalism and Dirac’s algorithm for

constrained Hamiltonian systems is one of the most
important theoretical tools to study any physical theory.
It facilitates the identification of physical degrees of free-
dom by classifying constraints in first and second class.
First class constraints are associated with gauge symmetries
of the theory, so each one of them is associated with a trivial
degree of freedom. Second class constraints can be grouped
as pairs of spurious canonical variables. This formalism is
essential for canonical quantization of gravity, and its
application to GR is an important theoretical landmark.
All equations of motion that originate from a variational
principle in the Lagrangian formulation can be represented
analogously in the Hamiltonian formalism through
Hamilton’s equations, which are essentially dynamical
equations for the position variable qi and its conjugate
momenta pi. The pioneering research of Arnowitt, Deser,
and Misner (ADM) [26], where the Hamiltonian formu-
lation of GR was derived, currently constitutes the corner-
stone of numerical relativity, and has significantly
advanced our understanding of gravitation and its highly
nonlinear dynamics. By utilizing the ADM formalism it is
possible to express GR action in 3þ 1 decomposition. This
approach foliates spacetime into a group of spacelike
hypersurfaces Σt by splitting the metric gμν into lapse α
and shift functions βi, and a three-dimensional spatial
metric denoted by γij. The dynamics of GR are encoded
in the spatial metric and its conjugate momenta, while
lapse and shift are introduced into the Hamiltonian for-
mulation as Lagrange multipliers. These parameters enable
the transformation of Einstein’s field equations into the
3þ 1 decomposition. Since Hamilton’s equations are a set
of first order differential equations they can also be used in
the study of dynamical systems. As of now the standard
Hamiltonian analysis in GR [26] is done for an EH action
supplemented by the YGH boundary term. In this work
instead we will analyze GR through the TEGR action
formulation, which differs from the EH action by a total
derivative of the trace of the torsion tensor. Note that
this boundary term is different from the YGH term.
Nevertheless, it gives the expected result when choosing
the “inertial frame” gauge [25]. Since TEGR differs by a
boundary term from the standard Hamiltonian formulation
of GR, it is expected that this will be reflected in Hamilton’s
equations. In particular, the difference is expected to
depend on the torsion tensor since the boundary term itself
depends on it.
Hamilton’s equations determine the time evolution of

the canonical variables, which is crucial to assess the well
posedness of the Cauchy problem, as well as to determine
the behavior of the degrees of freedom in the theory. In
general relativity, they are the Hamiltonian equivalent of
the 3þ 1 decomposition of the Lagrange equations of
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motion, and they determine the time evolution of the
induced metric and its time derivative (or momenta, in
the Hamiltonian picture). The aim of this work is to
compute Hamilton’s equations in the teleparallel equivalent
of general relativity in order to better understand the
dynamical behavior of the theory and compare it with
the GR case. The Hamiltonian analysis for TEGR has been
developed in the Weitzenböck gauge and, up to now, was
never performed by using the covariant formulation,
although some partial results can be found in [27–29].
However, to our knowledge, an explicit derivation of
Hamilton’s equations has only been presented in an old
Master thesis [30] and partially done in [31]. In this work
we present a closed form for the kinematic Hamiltonian for
covariant TEGR, which can be found also in [32] for new
general relativity and fðTÞ gravity. For this, it is also
necessary to extend the phase space by including Lorentz
matrices defining a metric teleparallel spin connection.
Rather than the 10 elements of a metric, the field variables
in teleparallel gravity are composed of 16 components of a
tetrad. On top of that, six extra fields have to be added,
which are related to local Lorentz transformations, but they
are removed by the introduction of six additional primary
constraints, therefore they do not represent additional
degrees of freedom and are pure gauge. Our aim is that
the present study of the 3þ 1 decomposition of the
equations of motion of TEGR opens the stage for the
study of numerical relativity in the tetrad formalism. We
expect that our work can set the basis for the study of strong
hyperbolicity in TEGR, which is essential for implement-
ing stable numerical codes in numerical relativity [33,34].
This field of research is essential for the description of
physical phenomena in the strong gravity regime, such as
the merger of binary pairs of black holes and/or neutron
stars. However, the role of the tetrad formalism and,
moreover, the spin connection for achieving strong hyper-
bolicity is far from being studied, therefore providing an
additional motivation for this work. In this work we do not
consider nonlinear modifications to TEGR, but it is
straightforward to extend our work to modified teleparallel
theories. In the future, our work could be used to resolve
controversies regarding the degrees of freedom in fðTÞ
gravity [35–41].
The outline of this paper is as follows. In Sec. II we

introduce the basic mathematical formalism for the tele-
parallel equivalent of general relativity considering both the
tetrad and the spin connection as dynamical variables, and
we introduce the foundations for the 3þ 1 decomposition
in the tetrad. Based on this, in Sec. III we introduce the
irreducible decomposition of the conjugate momenta, with
which we compute the Hamiltonian of TEGR in the
covariant formulation and in the Weitzenböck gauge.
Section IV is devoted to computing Hamilton’s equations
of TEGR by taking zero spin connection. In Sec. V we
present the computation of Hamilton’s equation for the

covariant formulation of TEGR. In Sec. VI we discuss
our findings by comparing them with previous works in
the literature. Lastly in Sec. VII we summarize our results.
Additionally, we provide some useful identities in
Appendix A, we review Hamilton’s equations of GR in
Appendix B, and provide a comparison of our results
with [31] in Appendix C.

II. TELEPARALLEL GRAVITY AND
TETRAD 3+ 1 DECOMPOSITION

Throughout this work, we will use the sign convention
for the Minkowski metric as the mostly positive one, i.e.,
ηAB ¼ diagð−1; 1; 1; 1Þ. Greek letters μ; ν; ρ;… denote
spacetime indices, and lowercase Latin letters i ¼ 1, 2, 3
indicate spatial indices. Lorentz tangent space indices
are denoted by the uppercase first letters of the Latin
alphabet A; B;C;…, and their spatial part is denoted with
hats Â; B̂; Ĉ;…. We consider a field of tetrads on each point
of spacetime with components θAμ and the components of
the inverse tetrad eμA that are related with the metric of
spacetime through

gμν ¼ ηABθ
A
μθ

B
ν; ηAB ¼ gμνeμAeνB: ð1Þ

The tetrad and cotetrad components also satisfy orthonor-
mality relations

θAμeμB ¼ δAB; θAμeνA ¼ δνμ: ð2Þ

Lorentz indices can be transformed into spacetime
indices and vice versa by contraction with a tetrad or
cotetrad components in the following way: a spacetime
index μ becomes a Lorentz index A through contraction
with a tetrad θAμ, while a spacetime index μ becomes a
Lorentz index A through contraction with an inverse tetrad
eAμ. Lorentz indices are raised and lowered with the
Minkowski metric, while spacetime indices are raised
and lowered with the spacetime metric.
In addition we introduce a curvatureless, metric compat-

ible spin connectionωA
Bμ, whose components are defined as

ωA
Bμ ¼ −ðΛ−1ÞCB∂μΛC

A; ð3Þ

where ΛC
A are matrices satisfying properties of Lorentz

matrices. The spin connection enters the teleparallel action
and, thus, in this formulation the Lorentz matrices are treated
as dynamical fields [29].1

The main building block used in teleparallel theories of
gravity is the torsion tensor, which depends on both the
tetrad and spin connection as

TA
μν ¼ ∂μθ

A
ν − ∂νθ

A
μ þ ωA

Bμθ
B
ν − ωA

Bνθ
B
μ: ð4Þ

1Other covariant formulations are reviewed in [42].
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With it, we can build the torsion scalar

T ¼ 1

4
Tρ

μνTρ
μν þ 1

2
Tρ

μνTνμ
ρ − Tρ

μρTσμ
σ; ð5Þ

which is related with the Ricci scalar from GR by only a
boundary term

R ¼ −T þ 2θ∂μðeTμÞ; ð6Þ

with Tμ ¼ Tα
α
μ, θ ¼ detðθAμÞ as the determinant of the

tetrad and e the determinant of its inverse. The torsion
scalar can alternatively be written as

T ¼ TρμνSρμν; ð7Þ

where the so-called superpotential is defined in terms of the
torsion tensor as

Sρμν ¼
1

2
Tρμν þ T ½μν�ρ þ 2gρ½μTσ

ν�σ: ð8Þ

The torsion scalar defines the TEGR Lagrangian
LTEGR ¼ − 1

2κ θT , where κ ¼ 8πG
c4 . If we take the R in terms

of the torsion scalar and the boundary term in (6), and
replace it into the Einstein-Hilbert action, then the result is
the action for TEGR,

STEGR ¼ −
1

2κ

Z
d4xθT : ð9Þ

Since the boundary term is integrated out, we obtain a
gravitational theory with the same equations of motion
as GR. The equations of motion are obtained varying with
respect to the tetrad θAν, and they are given in vacuum by

eνAT − 2e∂λðθeσASσλνÞ − 2eμATρ
σμSρσν ¼ 0: ð10Þ

The torsion scalar (5) is the building block for modified
gravity theories. For instance, relaxing the coefficients in
front of the three terms quadratic in the torsion tensor gives
the theory so-called new general relativity. An even more
popular theory considered in the literature is to take an
arbitrary function of the torsion scalar. This theory is
referred to as fðTÞ gravity, which is analogous to fðRÞ
gravity but with essentially a different physical content.
We are interested in studying the dynamics of the

equations of motion (10) from the Hamiltonian point of
view. In particular, we would like to perform a 3þ 1
decomposition of the equations of motion, which we will
achieve by computing Hamilton’s equations. Although
it is also possible to perform such split directly in the
Lagrangian equations of motion (10), both methods give
equivalent results, with the difference that with the
Hamiltonian approach we get the chance to deepen into
the structure of the Hamiltonian for TEGR, and preparing

the formalism in order to be applied to modified teleparallel
gravities previously mentioned.

A. 3 + 1 decomposition

Our first step into getting Hamilton’s equations of
motion for TEGR consists in performing a proper 3þ 1
decomposition. This issue is more subtle than for metric-
based theories, since our fundamental variable is now the
tetrad field, which has more independent components. First
we slice the four-dimensional manifold described by the
metric gμν into three-dimensional hypersurfaces of constant
time Σt that are equipped with a three-dimensional induced
metric γij.

2 We also introduce the lapse α and shift βi

functions, therefore the four-dimensional metric is then the
usual ADM one:

g00 ¼ −α2 þ βiβjγij; g0i ¼ βi; gij ¼ γij ð11Þ

and the inverse metric

g00 ¼ −
1

α2
; g0i ¼ βi

α2
; gij ¼ γij −

βiβj

α2
: ð12Þ

Wewill consider the spatial components θAi of the tetrad as
canonical variables instead of the induced metric. However,
the latter can be written in terms of the former by virtue of

θAiθ
B
jηAB ¼ γij: ð13Þ

A possible ADM decomposition of the temporal part of the
tetrad can be written as

θA0 ¼ αξA þ βiθAi: ð14Þ

Here we have introduced the vector ξA with Lorentz
indices. In order to recover the ADM metric from the
tetrad (14), this vector needs to satisfy the condition

ηABξ
AξB ¼ ξAξ

A ¼ −1; ð15Þ

together with being orthonormal to the spatial part of the
tetrad, that is,

ηABξ
BθAi ¼ ξAθ

A
i ¼ 0: ð16Þ

Notice that the vector ξA that satisfies all these properties
can be written as (see, for instance, [44])

ξA ¼ −
1

6
ϵABCDθ

B
iθ

C
jθ

D
kϵ

ijk: ð17Þ

2Such decomposition assumes that the tetrad respect the
conditions for a proper foliation. This issue will be addressed
in a forthcoming paper [43].
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Finally, the ADM split of the inverse tetrad eAμ can be
consistently proposed as

eA0 ¼ −
1

α
ξA; eAi ¼ θA

i þ ξA
βi

α
: ð18Þ

An important remark is that the rhs of the second equation
in (18) defines the object θA

i, which is the shorthand
notation for θAi ¼ ηABγ

ijθBj. In our main results we will try
to make little use of the θAi, since it can be confused with
the genuine inverse tetrad components eAi. Last but not
least, an important and useful expression is

ηADγ
klθCkθ

D
l ¼ θCkθA

k ¼ δCA þ ηADξ
CξD: ð19Þ

From the ADM decomposition proposed we can observe
that our canonical variables will be ðα; βi; θAiÞ, spanning
the 16 independent components of the tetrad field.
Therefore, we can compute the 3þ 1 Lagrangian for
TEGR. This is not a simple task, but after some efforts
it is obtained the following result

LTEGR ¼
ffiffiffi
γ

p
2α

Mij
A BTA

0iTB
0j −

ffiffiffi
γ

p
α

TA
0iTB

kl

·

�
Mil

A Bβ
k −

α

κ
γil
�
1

2
ξBθA

k − ξAθB
k

��
þ LS;

ð20Þ

where the time derivatives of the tetrad field are encoded in
the TA

0i components of the torsion tensor. The tensorMij
A B

accompanying the term quadratic in velocities is given by

Mij
AB ¼ 1

κ

�
1

2
γijηAB þ 1

2
ξAξBγ

ij þ 1

2
θA

jθB
i − θA

iθB
j

�
;

ð21Þ

while a term depending only on spatial derivatives of the
tetrad can be written as

LS ¼
ffiffiffi
γ

p
α

TA
ijTB

klβ
i

�
1

2
Mil

A Bβ
k −

α

κ
γjl

�
1

2
ξBθA

k − ξAθB
k

��

þ α
ffiffiffi
γ

p
2κ

3T : ð22Þ

Here we have defined the spatial part of the torsion scalar
as 3T

3T¼HAB
ijklTA

ijTB
kl;

¼
�
−
1

4
ηABγ

k½iγj�lþ1

2
θB

½iγj�½kθAl�−θA
½iγj�½kθBl�

�
TA

ijTB
kl:

ð23Þ

From this Lagrangian we must obtain the canonical
momenta, which will correspond to the 16 phase space
functions ðπ; πi; πAiÞ associated to lapse, shift, and spatial
part of the tetrad. The canonical momenta are easily
obtained from here, since the only components containing
time derivatives of the spatial tetrad ∂0θ

A
i are those

containing TA
0i. Therefore, they are computed from our

previous Lagrangian as

πA
i ¼ ∂L

∂0θ
A
μ
¼ ∂L

∂TA
0i

¼
ffiffiffi
γ

p
α

�
Mil

A BðTB
0l − TB

mlβ
mÞ

þ α

κ
TB

mlγ
il

�
1

2
ξBθA

m − ξAθB
m

��
: ð24Þ

The conjugate momenta associated with lapse and shift
form part of a primary constraints, since the Lagrangian
does not present time derivatives of them, therefore

αC ¼ απ ≔
∂L
∂∂0α

≈ 0; ð25Þ

βCi ¼ βπi ≔
∂L

∂∂0β
i ≈ 0: ð26Þ

We will denote them collectively as CA ¼ ðαC; βCiÞ, and
they will have associated Lagrange multipliers denoted
by ðαλ; βλiÞ. In other works available in the literature,
the choice of canonical variables is ðθA0; θAiÞ instead of
ðα; βi; θAiÞ, therefore these trivial primary constraints turn
out to be πA

0 ≈ 0 due to the nonappearance of time
derivatives of θA0. These primary constraints generically
appear not only in TEGR but in any teleparallel theory
based on the torsion tensor/tetrad field.
In addition to these momenta, there must be considered

the momenta associated to the Lorentz matrices introduced
through the teleparallel spin connection (3). In [29] the
momenta PB

A have been taken as the variation with respect
to ∂0ΛA

B

PB
A ≔

∂L
∂0ΛA

B
¼ πC

iηADðΛ−1ÞEBηC½EθD�
i: ð27Þ

There is no assumption of antisymmetry on the matrices,
but their combination with PB

A in a primary constraint
restricts the free components of the Lorentz matrices. These
primary constraints read

CAB ¼ P½A
Dη

B�CΛC
D þ πC

iηC½BθA�i ≈ 0: ð28Þ

It has been proved that these extra constraints have zero
Poisson bracket with the remaining primary constraints,
and since due to their simple form it is expected this to
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happen with the Hamiltonian too, it is an educated guess to
postulate that they are first class, as shown in [29].
With these tools we are able to tackle the computation of

the Hamiltonian for TEGR in the next section, from which
we will extract Hamilton’s equations. Note that the closed
form of the covariant Hamiltonian in teleparallel theories
has only been presented in the Ph.D. thesis [32].

III. HAMILTONIAN FOR TEGR

In order to obtain the Hamiltonian for TEGR from
the 3þ 1 Lagrangian (20), we must solve the velocities
in terms of the momenta in (24). For this, it is useful to
make a decomposition of the velocities and conjugate
momenta into irreducible parts under the rotation group
Oð3Þ [28,41]. Such decomposition reads

_θAi ¼ V _θiξ
A þ A _θjiγ

kjθAk þ S _θjiγ
kjθAk þ T _θθAi; ð29Þ

πA
i ¼ VπiξA þ AπjiθBjηAB þ SπjiθBjηAB þ TπθBjηABγ

ij:

ð30Þ

We can also write the variables of the irreducible
decomposition in terms of the original canonical variables
_θAi and πA

i as

S _θji ¼ _θðjiÞ −
1

3
_θAkθ

B
lηABγ

klγij

¼ 1

2
_θAiθ

B
jηAB þ 1

2
_θAjθ

B
iηAB −

1

3
_θAkθ

B
lηABγ

klγij;

T _θ ¼ 1

3
_θAiθ

B
jηABγ

ij;

V _θi ¼ −ξA _θAi;

A _θji ¼ _θ½ji� ¼
1

2
_θAiθ

B
jηAB −

1

2
_θAjθ

B
iηAB; ð31Þ

and

Sπji ¼ πðjiÞ −
1

3
πA

kθAkγ
ij

¼ 1

2
πA

iθAkγ
jk þ 1

2
πA

jθAkγ
ik −

1

3
πA

kθAkγ
ij;

Tπ ¼ 1

3
πA

iθAi;

Vπi ¼ −ξAπAi;

Aπji ¼ π½ji� ¼ 1

2
πA

iθAkγ
jk −

1

2
πA

jθAkγ
ik: ð32Þ

With this irreducible decomposition at hand, the TEGR
primary constraints are obtained from (24) as

VCi ¼
Vπiκffiffiffi

γ
p þ TB

jkγ
ikγjlθAlηAB ≈ 0; ð33Þ

ACij ¼
Aπijκffiffiffi

γ
p −

1

2
γikγjlTB

klξB ≈ 0: ð34Þ

In order to write the canonical Hamiltonian density,
we must invert the velocities TA

0i in (24) as a function
of the momenta πA

i. This is facilitated by the irreducible
decomposition that was introduced (details can be seen
in [28,31]). We find the Moore-Penrose pseudoinverse of
M, which reads

ðM−1ÞiAkC ¼ κ

2
ðγikγmnθAmθ

C
n þ θAkθ

C
i − θAiθ

C
kÞ: ð35Þ

With this (24) can be inverted as

TC
0k ¼ ðM−1ÞiAkC

αffiffiffi
γ

p πA
i þ TC

mkβ
m

−
α

κ
ðM−1ÞiAkCTB

mlγ
il

�
1

2
ξBθA

m − ξAθB
m

�
; ð36Þ

so

_θCk − ðΛ−1ÞAB _ΛA
CθBk

¼ ∂kθ
C
0 þ ωC

Dkθ
D
0 þ ðM−1ÞiAkC

αffiffiffi
γ

p πA
i þ TC

mkβ
m

−
α

κ
ðM−1ÞiAkCTB

mlγ
il

�
1

2
ξBθA

m − ξAθB
m

�
: ð37Þ

Note that due to the primary constraints (28), the tetrad
velocities and momenta velocities need to be inverted
together. The Hamiltonian density is thus given by

Hc ¼ πA
ið _θAk − ðΛ−1ÞCB _ΛC

AθBiÞ − L; ð38Þ

and the primary Hamiltonian density is obtained from
the canonical Hamiltonian by adding a linear combina-
tion of primary constraints Ca multiplied by Lagrange
multipliers λa

HTEGR ¼ Hc − λaCa

¼ πA
ið _θAk − ðΛ−1ÞCB

_ΛC
AθBiÞ − L − λaCa: ð39Þ

Note that the (canonical, primary, etc.) Hamiltonian is
obtained by integrating the (canonical, primary, etc.)
Hamiltonian density over space, that is H ¼ R

d3xH. We
have abbreviated the set of primary constraints into the array
Ca ¼ ðCA; CAB; VCi; ACijÞ, where all the components are
given, respectively, by Eqs. (25), (26), (28), (33),
and (34). These are all our primary constraints that must
be included in the primary Hamiltonian with arbitrary
Lagrange multipliers λa ¼ ðλA; λAB; Vλi; AλijÞ.
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After some computations, we obtain the primary Hamiltonian for covariant TEGR:

HTEGR ¼ α

�
κ

2
ffiffiffi
γ

p Sπij
Sπij −

3κ

4
ffiffiffi
γ

p TπTπ −
ffiffiffi
γ

p
2κ

3T − ξA∂iπA
i þ πA

iωA
Biξ

B

�
þ βj½−θAj∂iπAi þ πA

iωA
Ciθ

C
j − πA

iTA
ij�

− λACA − λABðP½A
Dη

B�CΛC
D þ πC

iηC½BθA�iÞ − Vλi

�Vπiκffiffiffi
γ

p þ TB
jkγ

ikγjlθAlηAB

�

− Aλij

�Aπijκffiffiffi
γ

p −
1

2
γikγjlTB

klξB

�
þ ∂iðπAiθA0Þ: ð40Þ

The boundary term contains nonlinearities in lapse and shift, and thus it will be dropped for the rest of the article:

HTEGR ¼ α

�
κ

2
ffiffiffi
γ

p Sπij
Sπij −

3κ

4
ffiffiffi
γ

p TπTπ −
ffiffiffi
γ

p
2κ

3T − ξA∂iπA
i þ πA

iωA
Biξ

B

�
þ βj½−θAj∂iπAi þ πA

iωA
Ciθ

C
j − πA

iTA
ij�

− λACA − λABðP½A
Dη

B�CΛC
D þ πC

iηC½BθA�iÞ − Vλi

�Vπiκffiffiffi
γ

p þ TB
jkγ

ikγjlθAlηAB

�
− Aλij

�Aπijκffiffiffi
γ

p −
1

2
γikγjlTB

klξB

�
:

ð41Þ

In the Weitzenböck gauge the expression for the Hamiltonian reduces to

HTEGR ¼ α

�
κ

2
ffiffiffi
γ

p Sπij
Sπij −

3κ

4
ffiffiffi
γ

p TπTπ −
ffiffiffi
γ

p
2κ

3T − ξA∂iπA
i

�
þ βj½−θAj∂iπAi − πA

iTA
ij�

− λACA − Vλi

�Vπiκffiffiffi
γ

p þ TB
jkγ

ikγjlθAlηAB

�
− Aλij

�Aπijκffiffiffi
γ

p −
1

2
γikγjlTB

klξB

�
: ð42Þ

In order to derive Hamilton’s equation in terms of the original variables (not the irreducible decomposition ones), we will go
back to the canonical momenta πA

i by inverting Eq. (32), obtaining

2Sπij
Sπij − 3TπTπ ¼ πA

iπB
lθAkθ

B
jγ

jkγli þ πA
iπB

jθAjθ
B
i − πA

iπB
jθAiθ

B
j: ð43Þ

The primary Hamiltonian can thus be explicitly written in terms of the conjugate momenta πA
i of the tetrad in the

following way:

HTEGR ¼ α

�
κ

4
ffiffiffi
γ

p ½πAiπBlθAkθBjγjkγli þ πA
iπB

jθAjθ
B
i − πA

iπB
jθAiθ

B
j� −

ffiffiffi
γ

p
2κ

3T − ξA∂iπA
i

�
þ βj½−θAj∂iπAi − πA

iTA
ij�

− λACA − Vλi

�
−

κffiffiffi
γ

p ξAπA
i þ TB

jkγ
ikγjlθAlηAB

�
− Aλij

�
κ

2
ffiffiffi
γ

p θAkðπAjγik − πA
iγjkÞ − 1

2
γikγjlTB

klξB

�
: ð44Þ

A. Comparing standard GR and TEGR
canonical variables

In Appendix B the standard way to derive the
Hamiltonian and Hamilton’s equations in GR (with the
metric formulation of the EH action) is presented. It is
evident from (29) and (30) that there is not a one to one
relationship among the canonical variables of standard GR
and TEGR. From these equations and (1), we can attempt to
derive a relation among the velocities _θAi and _γij as

_γij ¼ ηABð _θAiθBj þ θAi _θ
B
jÞ ð45Þ

Using (29) here, we realize that the time derivative of the
induced metric depends only on the irreducible parts that
are symmetric, that is

_γij ¼ 2ðS _θij þ T _θγijÞ: ð46Þ

From the definition of the canonical momenta for the tetrad
πA

i, we can then explicitly write its relation with the GR
momenta πij as

πA
i ¼ πijθBjηAB þ VπiξA þ AπjiθBjηAB ð47Þ
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since the momenta for standard GR and TEGR are

πij ¼ ∂L
∂ _γij

; πA
i ¼ ∂L

∂ _θAi
: ð48Þ

IV. HAMILTON’S EQUATIONS FOR TEGR

In this section we compute Hamilton’s equations for
TEGR in the Weitzenböck gauge (zero spin connection).
The difference between the derivation presented here
and the derivation of Hamilton’s equations for GR is in
the enlarged set of canonical variables. Of course, the
Hamiltonian for TEGR differs in many aspects from the
Hamiltonian for standard GR, since the boundary term
modifies the canonical structure but not the degrees of
freedom.3 First, the phase space will be determined by the
pairs of canonical variables ðθAi; πBjÞ, therefore the fun-
damental Poisson brackets of two functions in the phase
space FðxÞ and GðyÞ are defined as

fFðxÞ;GðyÞg¼
Z

dz

�
δFðxÞ
δθCkðzÞ

δGðyÞ
δπC

kðzÞ−
δFðxÞ
δπC

kðzÞ
δGðyÞ
δθCkðzÞ

�
:

ð49Þ
Given a Hamiltonian HðθAi; πAiÞ ¼

R
d3xH in the phase

space, Hamilton’s equations are

_θAi¼fθAi;Hg¼ δH
δπA

i ; _πA
i¼fπAi;Hg¼−

δH
δθAi

: ð50Þ

Analogously to GR, we obtain additional equations of
motion from considering the dynamics of ðα; βiÞ and their
canonical momenta απ and βiπi, which have not been
considered as Lagrange multipliers from the beginning,
but belonging to the set of canonical variables. This is in
contrast with the Lagrangian multipliers Vλi and Aλij that
accompany the extra primary constraints of TEGR (in
comparison to GR), and do not have a momenta associated.
Therefore, we will compute the variations of the
Hamiltonian with respect to the canonical fields and their
associated momenta, which is equivalent to the computa-
tion of the corresponding Poisson brackets of them with the
Hamiltonian.
If we differentiate H with respect to lapse we get

−α _π ¼ δH
δα

¼ κ

2
ffiffiffi
γ

p Sπij
Sπij −

3κ

4
ffiffiffi
γ

p TπTπ −
ffiffiffi
γ

p
2κ

3T − ξA∂iπA
i;

ð51Þ

where the rhs corresponds to the Hamiltonian constraint,
also appearing in GR. Again we differentiate H with
respect to shift, obtaining

−β _πj ¼
δH
δβj

¼ −θAj∂iπAi − πA
iTA

ij; ð52Þ

which gives in the rhs the momenta constraint.

Differentiating with respect to the spatial tetrads yields

− _πA
i ¼ δH

δθAi
¼ ακ

2
ffiffiffi
γ

p ðπAjπBiθBj − πA
iπB

jθBj þ γilγjkπA
jπB

kθBlÞ − βi∂jπA
j þ VλlTB

klðθAkθBi þ ξAξBγ
kiÞ

þ αξAγ
ikθBk∂jπB

j − Vλj
κffiffiffi
γ

p ξAγ
ikθBkπB

j −
1

2
AλlkTB

klξAθB
i þ κffiffiffi

γ
p Aλ½jk�πAjγik

þ αθA
i

2

�
−

ffiffiffi
γ

p
κ

3T þ κ

2
ffiffiffi
γ

p πB
jπD

kðθBjθDk − θBkθ
D
j − γjkγ

lnθBlθ
D
nÞ
�

−
κffiffiffi
γ

p VλjθA
iξBπB

j þ VλjTB
klθB

kðθAjγil þ θA
lγijÞ þ κffiffiffi

γ
p Aλ½lj�γklθAiθBkπBj

−
1

2
AλnjTB

klξB½γjlðθAnγik þ θA
kγniÞ þ γnkðθAjγil þ θA

lγjiÞ� þ κffiffiffi
γ

p Aλ½lj�πBjθBkðθAlγik þ θA
kγliÞ

þ κα

2
ffiffiffi
γ

p ηACðγklθBlθDkθ
C
jπB

iπD
j − γjkγ

lmγinθBnθ
D
lθ

C
mπB

jπD
kÞ

− 2∂l

�
β½lπAi� − Vλ½iθAl� þ

1

2
Aλ½il�ξA −

α
ffiffiffi
γ

p
κ

HCA
½mn�½il�TC

mn

�

−
α

ffiffiffi
γ

p
κ

TB
klTC

mnðθAmHCB
inkl þ θA

nHCB
mikl þ θA

kHCB
mnil þ θA

lHCB
mnki

þ ξCξAγ
i½mγn�½kθBl� þ ξBξAθC

½mγn�½kγl�iÞ: ð53Þ

3For more general discussion on the effect of boundary terms in the Hamiltonian formalism, see examples in [29,45].
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Nowwe differentiate with respect to conjugate momenta,
and we get

_α ¼ δH
δαπ

¼ −αλ; ð54Þ

_βi ¼
δH
δβπi

¼ −βλi: ð55Þ

The previous two Hamilton equations indicate that the
lapse and shift have an arbitrary evolution, since their time
derivative gives an arbitrary Lagrange multiplier. The
variation with respect to the canonical momenta of the
tetrad gives

_θAi ¼
δH
δπA

i ¼ α

�
κ

2
ffiffiffi
γ

p ð2πBjθA½jθBi� þ πB
jθAkθ

B
lγijγ

klÞ þ ∂iξ
A

�
þ ∂iðβjθAj Þ − βjTA

ij þ Vλi
κξAffiffiffi
γ

p þ Aλ½ij�
κγjkθAkffiffiffi

γ
p ; ð56Þ

which is the time evolution of the tetrad field, and it
depends linearly in the canonical momenta. An analogous
behavior occurs in GR for the time evolution of the induced
metric in (B12), which depends linearly on the correspond-
ing canonical momenta. Given a set of initial data, these
equations have to be complemented by enforcing the initial
data to satisfy the primary constraints (25), (26), (33),
and (34). Depending on the point of view, these can be

considered as belonging to the set of equations of motion
(Hamilton’s equations) [46].

V. HAMILTON’S EQUATION FOR THE
COVARIANT TEGR

We present the TEGR Hamiltonian in terms of the
momenta of the vector, antisymmetric, symmetric trace
free and trace (VAST) decomposition,

H ¼ α

�
κ

2
ffiffiffi
γ

p Sπij
Sπij −

3κ

4
ffiffiffi
γ

p TπTπ −
ffiffiffi
γ

p
2κ

3T − ξA∂iπA
i þ πA

iωA
Biξ

B

�

þ βj½−θAj∂iπAi þ πA
iωA

Ciθ
C
j − πA

iTA
ij� − λABðP½A

Dη
B�CΛC

D þ πC
iηC½BθA�iÞ

− Vλi

�Vπiκffiffiffi
γ

p þ TB
jkγ

ikθB
j

�
− Aλij

�Aπijκffiffiffi
γ

p −
1

2
γilγjkTA

klξA

�
− λACA; ð57Þ

and the TEGR Hamiltonian back to the canonical variables,

H ¼ α

�
κ

4
ffiffiffi
γ

p ½πAiπBlθAkθBjγjkγli þ πA
iπB

jθAjθ
B
i − πA

iπB
jθAiθ

B
j� −

ffiffiffi
γ

p
2κ

3T − ξA∂iπA
i þ πA

iωA
Biξ

B

�

þ βj½−θAj∂iπAi þ πA
iωA

Ciθ
C
j − πA

iTA
ij� − λABðP½A

Dη
B�CΛC

D þ πC
iηC½BθA�iÞ − Vλi

�
−

κffiffiffi
γ

p ξAπA
i þ TB

jkγ
ikθB

j

�

− Aλij

�
κ

2
ffiffiffi
γ

p θAkðπAjγik − πA
iγjkÞ − 1

2
γikγjlTB

klξB

�
− λACA: ð58Þ

Although the difference between the covariant Hamiltonian
and the Weitzenböck-like one is complex, and it cannot be
easily written as isolated terms in the spin connection, the
variations of the main fields have a simple form. Let us take
as an example the torsion tensor,

TA
ij ¼ ∂iθ

A
j − ∂jθ

A
i þ ωA

Biθ
B
j − ωA

Bjθ
B
i;

¼ ∂iθ
A
j − ∂jθ

A
i þ ðΛ−1ÞCB∂iΛC

AθBj

− ðΛ−1ÞCB∂jΛC
AθBi; ð59Þ

where in the second line the spin connection has been
written explicitly in terms of the Lorentz matrices. Since the
spin connection is independent from the tetrads the second

line will not be needed in considering the variation of the
spatial tetrads, but it will affect the variations in Λ.
In the following, to not repeat calculations unnecessarily

we introduce the notion of the torsion tensor and
Hamiltonian in the Weitzenböck gauge, respectively

denoted by T
w
A
ij and H

w

TEGR. Note that we will omit
Dirac deltas from our equations, unless they present spatial
derivatives acting on them. From Eq. (59) we get that

δTA
ij

δθCk
¼ δT

w
A
ij

δθCk
þ ðωA

Biδ
B
Cδ

k
j − ωA

Biδ
B
Cδ

k
i Þ;

¼ δT
w
A
ij

δθCk
þ 2ωA

C½iδkj�: ð60Þ
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Using this basic expression, we can write a relation
between the variation with respect to the spatial tetrad of
the Weitzenböck and the covariant Hamiltonian as

δHTEGR

δθAi
¼ δH

w

TEGR

δθAi
þ βiπB

jωB
Aj − λ½AB�πCiηBC

þ απC
kωC

Bk
δξB

δθAi
−
α

ffiffiffi
γ

p
κ

∂
3T

∂TC
kl
ωC

A½kδil�

þ 2βjπC
kωC

A½kδij� − 2VλkθB
lωB

A½kδil�

þ AλlkωB
A½kδil�ξB; ð61Þ

with the precaution that the result of the variation of 3T has
to be considered for the torsion tensor in the covariant
version, that is, including the spin connection.
We can obtain the same kind of relation for the variation

in terms of the conjugate momenta of the spatial tetrad,
which looks simpler and is given by

δHTEGR

δπA
i ¼ δH

w

TEGR

δπA
i þ αωA

Biξ
B þ βjωA

Biθ
B
j − λ½CB�ηBAθCi:

ð62Þ
An additional variation appears for the covariant

Hamiltonian in terms of the conjugate momenta of the
Lorentz matrices, which is

δHTEGR

δPA
B

¼ −λ½AE�ηECΛC
B: ð63Þ

Finally, we calculate the variation with respect to the
Lorentz matrices. For this the following identity will be
useful

δωC
Di

δΛA
B ¼ −ωC

BiðΛ−1ÞAD − ðΛ−1ÞADδCB∂iδ: ð64Þ

Nowwehave all the necessarymathematical tools to compute
Hamilton’s equations for the covariant version of TEGR.
The Hamiltonian constraint is given by

−α _π ¼ δH
δα

¼ κ

2
ffiffiffi
γ

p Sπij
Sπij −

3κ

4
ffiffiffi
γ

p TπTπ −
ffiffiffi
γ

p
2κ

3T

− ξA∂iπA
i þ πA

iωA
Biξ

B; ð65Þ

while the momentum constraint is given by

−β _πi ¼
δH
δβi

¼ −θAi∂jπAj þ πA
jωA

Cjθ
C
i − πA

jTA
ji: ð66Þ

The variation with respect to the tetrad is

− _πA
i ¼ δH

δθAi
¼ ακ

2
ffiffiffi
γ

p ðπAjπBiθBj − πA
iπB

jθBj þ γilγjkπA
jπB

kθBlÞ þ βiðπBjωB
Aj − ∂jπA

jÞ þ λ½CA�πBiηBC þ κffiffiffi
γ

p Aλ½jk�πAjγik

þ VλlTB
klðθAkθBi þ ξAξBγ

kiÞ þ αξAγ
ikθBkð∂jπBj − πD

jωD
BjÞ − Vλj

κffiffiffi
γ

p ξAγ
ikθBkπB

j −
1

2
AλlkTB

klξAθB
i

þ αθA
i

2

�
−

ffiffiffi
γ

p
κ

3T þ κ

2
ffiffiffi
γ

p πB
jπD

kðθBjθDk − θBkθ
D
j − γjkγ

lnθBlθ
D
nÞ
�
−

κffiffiffi
γ

p VλjθA
iξBπB

j

þ VλjTB
klθB

kðθAjγil þ θA
lγijÞ þ κffiffiffi

γ
p Aλ½lj�γklθAiθBkπBj

−
1

2
AλnjTB

klξB½γjlðθAnγik þ θA
kγniÞ þ γnkðθAjγil þ θA

lγjiÞ� þ κffiffiffi
γ

p Aλ½lj�πBjθBkðθAlγik þ θA
kγliÞ

þ κα

2
ffiffiffi
γ

p ηACðγklθBlθDkθ
C
jπB

iπD
j − γjkγ

lmγinθBnθ
D
lθ

C
mπB

jπD
kÞ

þ 2

�
β½lπBi� − Vλ½iθBl� þ

1

2
Aλ½il�ξB −

α
ffiffiffi
γ

p
κ

HCB
½mn�½il�TC

mn

�
ωB

Al

− 2∂l

�
β½lπAi� − Vλ½iθAl� þ

1

2
Aλ½il�ξA −

α
ffiffiffi
γ

p
κ

HCA
½mn�½il�TC

mn

�

−
α

ffiffiffi
γ

p
κ

TB
klTC

mnðθAmHCB
inkl þ θA

nHCB
mikl þ θA

kHCB
mnil þ θA

lHCB
mnki

þ ξCξAγ
i½mγn�½kθBl� þ ξBξAθC

½mγn�½kγl�iÞ: ð67Þ

A new variation appears in the covariant formalism due to the inclusion of the Lorentz matrices as an additional canonical
variable, therefore the time evolution of their associated canonical momenta are
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− _PB
A ¼ δH

δΛB
A ¼ 2α

ffiffiffi
γ

p
κ

HCD
½ij�½kl�TD

klðΛ−1ÞBEωC
Aiθ

E
j − ∂i

�
2α

ffiffiffi
γ

p
κ

HAD
½ij�½kl�TD

klðΛ−1ÞBEθEj
�

− ðαπCiξEðΛ−1ÞBEωC
Ai − ∂iðαπCiξEðΛ−1ÞBEÞÞ − λCDP½C

Aη
D�B

þ 2ðΛ−1ÞBE
�
−VλkθC

iγjk þ 1

2
AλijξC

�
ωC

A½iθEj� − ∂i

�
2ðΛ−1ÞBE

�
−VλkθC

½iγj�k þ 1

2
Aλ½ij�ξC

�
θEj

�

− βiðΛ−1ÞBEπCjθEjω
C
Ai − ∂iðβiðΛ−1ÞBEπAjθEjÞ: ð68Þ

Variation in terms of all canonical momenta give

_α ¼ δH
δαπ

¼ − αλ; ð69Þ

_βi ¼ δH
δβπi

¼ − βλi; ð70Þ

_θAi ¼
δH
δπA

i ¼ α

�
κ

2
ffiffiffi
γ

p ½2πBjθA½jθBi� þ πB
jθAkθ

B
lγijγ

kl� þ ∂iξ
A þ ξBωA

Bi

�

þ βjðθBjωA
Bi − TA

ijÞ þ ∂iðβjθAj Þ þ Vλi
κξAffiffiffi
γ

p þ Aλ½ij�
κγkjθAkffiffiffi

γ
p þ λ½BC�ηABθCi; ð71Þ

_ΛA
B ¼ δH

δPA
B
¼ −λ½AD�ΛC

BηCD: ð72Þ

Just like in the previous case in the pure-tetrad TEGR, these
equations have to be complemented with the primary
constraints (25), (26), (28), (33), and (34) that set con-
ditions on the initial data. The new sets of equations, (68)
and (72), are obtained from the introduction of the Lorentz
matrices in the formalism [29], and in particular (72) shows
that the time evolution of the Lorentz matrices is arbitrary
and determined by Lagrange multipliers.

VI. DISCUSSION AND COMPARISON WITH
PREVIOUS WORKS

The comparison of our results with already existing work
in the literature complicates due to the variety of different
ways for tackling the Hamiltonian formalism for TEGR.
For instance, in a recent review [41], there are summarized
at least five different formalisms, methods, and notation
that have been used in the literature.
One of the first works in the literature discussing the time

evolution of the tetrad and momenta is in [30,47] and
partially in [31]. In Appendix C we show that the results
presented in [31] are consistent with ours. The results of [47]
apply only for the class of theories known as one-parameter
teleparallel gravity, not TEGR. Instead of computing explic-
itly the time evolution of variables through its Poisson
bracket with the Hamiltonian, they use Hamilton’s equations
to analyze the time evolution of constraints and canonical
variables. They arrive to the important conclusion that
one-parameter teleparallel gravity (OPTG) has six physical

degrees of freedom, a result that has not yet been confirmed
independently by other authors. Thus, it would be an
interesting future direction to extend this work to OPTG
and confirm or disprove their results, especially because the
calculations are very lengthy. The most elaborated calcu-
lations are in [30], although we have found some typos and
even seemingly some mistakes in the extensive calculations.
However, the most simple perturbations at the lowest order
around a Minkowski background only propagate three
degrees of freedom, while it has been shown that additional
degrees of freedom propagate at higher orders [48]. This
suggests that the conclusion of six physical degrees of
freedom is plausible and that they could manifest perturba-
tively. Another exhaustive reference where the Hamiltonian
structure of TEGR and generic NGR is computed is [49].
Although the time evolution for the tetrad and their
momenta are not specified, it can be used as a starting point
for their derivation.
In relation with the work developed in [50], there are

several pointswhere our approaches differ. The authors chose
a 3þ 1 split of Latin indices in temporal and spatial parts as
A¼ð0̃; ĩÞ in the sameway that spacetime indices μ¼ð0;iÞ are
commonly split in the literature. They conclude that e0̃i ¼ 0
[after their Eq. (57)], but with some flaws in the reasoning for
arriving to this expression. They claim correctly that the
induced metric can be written in terms of the components of
this tetrad splitting as e0̃ie0̃jη0̃ 0̃ þ eĩiej̃jηĩ j̃ ¼ γij. However,

immediately after that they assert instead that eĩiej̃jηĩ j̃ ¼ γij
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(which was explained in [41] to be an unnecessary choice),
and conclude that e0̃i must be zero, instead of admitting that
this is a fixing of the tetrad components. As explained in [41]
the form of the tetrad they adopted fixes a Lorentz gauge. If
their work should be extended to more general teleparallel
theories it may enforce a nontrivial spin connection. Even in
the case of TEGR it might turn out that this gauge choice is
unfavorable for numerical relativity, or that a boundary term
needs to be added to get a well-defined ADM mass for
instance (in the context of the role of boundary terms and the
inertial frame see [25]).
In addition to the advantage of our formalism being

gauge independent and covariant, there seems to be a
fundamental advantage of using the covariant phase-space
variables from the Hamiltonian rather than fields like
extrinsic curvature in tetrad theories of gravity for the
following reason. When writing the evolution equations of
the tetrad field the antisymmetric fields generically evolve.
What happens in metric theories of gravity is that the field
equations are used to rewrite the symmetric evolution
equations in a desired form. The problem that occurs in
TEGR is that there are no antisymmetric field equations
while there is antisymmetric evolution [50]. Thus, it is
unclear what one should do with the antisymmetric
evolution equations. In contrast to the field equations in
Lagrangian variables Hamilton’s equations have antisym-
metric equations [see (33) and (34)]. So this kind of
difficulty is avoided in our approach.

VII. CONCLUSIONS

In this work we present Hamilton’s equations for the
teleparallel equivalent of general relativity, following the
Hamiltonian approach introduced in [28] using the VAST
decomposition of the momenta and tetrad velocities. We also
present a novel derivation of Hamilton equations for the
covariant version of TEGR, with an arbitrary spin connec-
tion depending on Lorentz matrices. To our knowledge the
case of Hamilton’s equations for TEGR in the Weitzenböck
gauge has only been performed in [30], although the
formalism is slightly different from ours. The results for
the Weitzenböck gauge are given by equations (51)–(56)
in Sec. IV. Equations (65)–(72) in Sec. V are Hamilton’s
equations for the covariant formulation.
As expected, there are two main differences between

(covariant) TEGR Hamilton’s equations derived here and
Hamilton’s equations of GR in its standard formulation (see
Appendix B). The first difference is related to which fields
are treated as canonical. Tetrads have six additional
independent components compared to the metric. The spin
connection (or rather the Lorentz matrices) further intro-
duces six more additional independent components [29].
There exists Hamilton’s equations for all of the canonical
fields and their conjugate momenta. Thus, one main
difference is that Hamilton’s equations for TEGR are more
numerous than those in the standard formulation of GR.

Note, however, that the EH action can straightforwardly be
rewritten in terms of tetrads and we would get a structure
more reminiscent to the case of TEGR in the Weitzenböck
gauge. The second difference is related to the boundary
term. It seems that TEGR Hamilton’s equations are more
lengthy than the standard ones. However, we would like to
point out that the standard formulation [51] is different
from the EH action by the York-Gibbons-Hawking boun-
dary term [20,21]. An interesting future direction could be
to investigate if the gauge conditions denoted as “inertial
frame” defined in [25] would give any kind of an advantage
over the standard formulation.
Despite those differences, the counting of degrees of

freedom is the same for (covariant) TEGR and GR, as
expected. From the 16þ 6 independent components of the
tetrad θAμ and the Lorentz matrices ΛA

B [29], there are
4þ 6þ 6 primary constraints and 4 secondary constraints
(Hamiltonian and momenta), which are all first class,
therefore we are left with 24 − 20 ¼ 4 degrees of freedom
in the phase space, consequently two physical degrees of
freedom. Proving that all constraints are first class is
beyond the scope of our paper, but it has been proved
elsewhere, leading to the same counting of degrees of
freedom as presented above. We also do not compute the
preservation over time of primary constraints, nor do we
compute gauge generators or consider nonlinear extension
of TEGR, where the issue of the counting of degrees of
freedom overly complicates. However, we hope that our
work can be a useful contribution in this direction.
The tetrad formulation of Einstein equations for numeri-

cal relativity has been considered in, for instance, Ref. [52].
Here it is asserted that since tetrad frames are natural for
measuring observable physical quantities, as for instance
they are tied to the flow of a fluid, in either cosmology or
interior metrics of rotating stars, then they can be used even
for vacuum black hole spacetimes. Therefore, it is interest-
ing to check if the same conclusions can be drawn when
working in the tetrad formalism in TEGR. In particular, it
would be pertinent for future work to study the hyper-
bolicity of the 3þ 1 equations of motion in TEGR for the
tetrad field, and if it can be of help for the improvement of
efficiency of numerical relativity.
In summary, Hamilton’s equations look much more

lengthy in (covariant) TEGR formulation compared to
the standard metric formulation. Though, in addition to
setting up the path for deriving Hamilton’s equations for
modified teleparallel theories, it will still need to be
investigated if this formulation have advantages for numeri-
cal relativity. The conjugate momenta to the metric was
identified to be a part of the conjugate momenta of the
tetrad using the VAST decomposition. However, the con-
verse cannot be obtained due to the fact that the metric has
more symmetries than the tetrad. It was also noted that
Hamilton’s equations were affected by the boundary term.
Lastly, we note that the formulation in this article does not
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have undetermined antisymmetric evolution equations
(here they are given through Lagrange multipliers that
trivialize in Lagrangian field variables), thus this approach
seems to have an advantage over the approach performed
in [50].
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APPENDIX A: USEFUL IDENTITIES

Some simple variation formula of canonical fields are

δθ

δθAμ
¼ θeμA; ðA1Þ

δe
δθAμ

¼ −eeAμ; ðA2Þ

δðΛ−1ÞED
δΛA

B ¼ −ðΛ−1ÞEBðΛ−1ÞAD: ðA3Þ

Up to now, all previous expression hold in the phase space
quantities before performing the 3þ 1 decomposition in
the tetrad. The following relations hold for the components
of the 3þ 1 decomposed tetrad θAi, the induced metric γij,
its inverse γij, and the vector ξA:

δθB
j

δθAi
¼ −θAjθBi − ξAξBγ

ij; ðA4Þ

δγij

δθCm
¼ −θCiγmj − θC

jγim; ðA5Þ

δξA

δθCm
¼ −ξCθAjγjm; ðA6Þ

δγij
δθDn

¼ ηADðδni θAj þ δnjθ
A
iÞ; ðA7Þ

δ
ffiffiffi
γ

p
δθCm

¼ ffiffiffi
γ

p
γimθAiηAC; ðA8Þ

δ

δθCm

�
1ffiffiffi
γ

p
�

¼ −1ffiffiffi
γ

p γimθAiηAC; ðA9Þ

δTA
ij

δTC
mn

¼ 1

2
δACðδmi δnj − δmj δ

n
i Þ; ðA10Þ

δ3T
δTC

mn
¼ HCB

mnklTB
kl þ TA

ijHAC
ijmn ¼ 2HAC

ijmnTA
ij;

ðA11Þ

δTC
ij

δωD
Ek

¼ δCDðδki θEj − δkjθ
E
i Þ; ðA12Þ

δTC
ij

δΛB
A ¼ ðΛ−1ÞBEðθEj ωC

Ai − θEi ω
C
Aj − δCAθ

E
j ∂iδþ δCAθ

E
i ∂jδÞ;

ðA13Þ

δTA
ij

δθCm
¼ δACðδmj ∂iδ − δmi ∂jδÞ þ 2ωA

C½iδmj�; ðA14Þ

δHAB
ijkl

δθCm
¼ θiCHAB

mjlk þ θjCHAB
mikl þ θkCHAB

ijlm

þ θlCHAB
ijmk −

1

2
ξBξCγ

m½iγj�½kθAl�

−
1

2
ξAξCθB

½iγj�½kγl�m þ ξAξCγ
m½iγj�½kθBl�

þ ξBξCθA
½iγj�½kγl�m: ðA15Þ

APPENDIX B: HAMILTON’S EQUATIONS
IN GENERAL RELATIVITY

The derivation of the Hamiltonian in TEGR has more
intricacies than the standard EH formulation, since the
tetrad, our dynamical variable, has more free functions that
have to be dealt with compared to the metric. In order to
compare TEGR and EH Hamiltonians, it will be instructive
to take a look at the main results for the EH action,

SEH ¼ 1

2κ

Z
d4xR; ðB1Þ

which can be found in classical references [51,53]. Those
are in done in metric formulation, in tetrad formulation the
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Hamiltonian is presented in [54]. However, we are not
aware of any reference presenting Hamilton’s equations for
tetrad EH formulation. The 3þ 1 split of the metric goes as

gμν ¼
�−α2 þ βiβjγij βi

βj γij

�
;

gμν ¼ 1

α2

�
−1 βi

βj α2γij − βiβj

�
: ðB2Þ

The Lagrangian density of EH with a boundary term
already discarded4 is written as

L ¼ ffiffiffi
γ

p
α½ð3ÞRþ KijKij − K2�; ðB3Þ

where the extrinsic curvature Kij is related to the time
derivative of the induced metric γij as

Kij ¼
1

2α
½ _γij −Diβj −Djβi�: ðB4Þ

The momenta canonically conjugate to the induced metric
γij are

πij ¼ ∂L
∂ _γij

¼ ffiffiffi
γ

p ðKij − KγijÞ: ðB5Þ

By rewriting the Lagrangian density in terms of these
momenta, the canonical Hamiltonian density is obtained:

H ¼ πij _γij − L;

¼ −
ffiffiffi
γ

p
αð3ÞRþ α

ffiffiffi
γ

p �
πijπij −

1

2
π2
�
þ 2πijDiβj;

¼ ffiffiffi
γ

p �
α

�
−ð3ÞRþ πijπij=γ −

1

2
π2=γ

�

− 2βj½Diðπij= ffiffiffi
γ

p Þ� þ 2Diðβjπij= ffiffiffi
γ

p Þ
�
; ðB6Þ

where πkk ¼ π. The last term is a boundary term and it is
discarded (analogous to what was done in this work for
TEGR discarding ∂i½πAiθA0�), which is essential, since the
boundary term contains spatial derivatives of the shift and
would complicate its interpretation as Lagrange multipliers,
and otherwise it would manifest in Hamilton’s equations
with nontrivial dynamics. The same would happen with the
lapse function in TEGR if we did not discard the boundary
term. Together with the momenta (B5) we obtain primary
constraints coming from the absence of _α and _βi in the
Lagrangian, which we denote as απEH ≈ 0 and βπjEH ≈ 0,
which should not be confused with απ and βπj which were

defined with the TEGR Lagrangian. If considering lapse
and shift as canonical variables from the beginning (before
discovering their trivial role as Lagrange multipliers), then
we must include these primary constraints with the corre-
sponding Lagrange multipliers ðαλ; βλiÞ in the primary
Hamiltonian, which becomes

Hp ¼ H − αλαπEH − βλi
βπiEH: ðB7Þ

The variation of the primary Hamiltonian H ¼ R
d3xHp

with respect to α and βi yields, respectively, the equations

α _πEH ¼ δH
δα

¼ ffiffiffi
γ

p �
−ð3ÞRþ 1

γ

�
πijπij −

1

2
π2
��

¼ 0; ðB8Þ

β _πjEH ¼ δH
δβj

¼ −2
ffiffiffi
γ

p
Diðπij=

ffiffiffi
γ

p Þ ¼ 0: ðB9Þ

These are identified as constraints for the initial values of
momenta and induced metric, also known as Hamiltonian
and momenta constraints, respectively. The absence of _α

and _βi in the Lagrangian translates as the following
Hamilton’s equations:

_α ¼ δH
δαπ

¼ −αλ; ðB10Þ

_βi ¼ δH
δβπi

¼ −βλi; ðB11Þ

which state that the time evolution of lapse and shift is
determined by arbitrary Lagrange multipliers. Finally, the
dynamical equations obtained from the Hamiltonian, that
is, Hamilton’s equations for the induced metric and the
momenta, are, respectively,

_γij ¼
δH
δπij

¼ 2γ−1=2α

�
πij −

1

2
γijπ

�
þ 2DðiβjÞ ðB12Þ

and

_πij ¼ −
δH
δγij

¼ −α
ffiffiffi
γ

p �
ð3ÞRij −

1

2
ð3ÞRγij

�

þ 1

2
αγ−1=2γij

�
πklπkl −

1

2
π2
�

− 2αγ−1=2
�
πikπk

j −
1

2
ππij

�

þ ffiffiffi
γ

p ðDiDjα − γijDkDkαÞ
þ ffiffiffi

γ
p

Dkðγ−1=2βkπijÞ − 2πkðiDkβ
jÞ: ðB13Þ

4Note that in TEGR action such a boundary term is not
necessary.
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APPENDIX C: HAMILTON’S EQUATIONS
IN COVARIANT TEGR (PREVIOUS

PARTIAL RESULTS)

In [31] the Hamiltonian analysis for covariant TEGR
was performed by imposing the teleparallel condition
RAB

μν ¼ 0 by means of Lagrange multipliers λAB
μν and

the addition of the term λAB
μνRAB

μν in the TEGR
Lagrangian. In other words, the theory can be seen as a
special case of Poincaré gauge theory, where curvature
vanishes and torsion appears in the action in the well-
known form of TEGR. Before presenting their results,
some explanation regarding the difference in the formu-
lation is in order (further details can be found in [41]).
The canonical variables in [31] are ðθAμ;ωA

Bμ; λABμνÞ,
which differs from our choice ðα; βi; θAi;ΛA

BÞ. This means
that some of their equations will appear to be different,
even though the set of equations are equivalent. Instead
of introducing indices that run on the three-dimensional
hypersurface of constant time slices Σ they instead use
projectors. A vector projected to the normal vector is
denoted V⊥ ¼ ξAVA and it is also defined VĀ ¼
VA − ξAV⊥. They define lapse N and shift Ni as N ¼
ξCθ

C
0 ¼ α and Ni ¼ eC̄

iθC0 ¼ βi, which shows that
our definitions coincide. The different set of canonical
variables also implies a different set of conjugate momenta.
However, πAi coincides with our expression except for the
formulation details using projectors. Instead of our con-
jugate momenta with respect to the Lorentz matrices they

have additional sets of canonical momenta πAB
μ ≔ ∂L

∂ _ωAB
μ

and πABμν ≔ ∂L
∂ _λAB

μν.

1. The Hamiltonian

They find the expression for the total Hamiltonian to be5

H ¼ Hc þ
1

2
ūAB0iπAB0i þ uA0πA0 þ

1

2
uAB0πAB0

þ 1

4
uABijπABij þ

1

2
uACϕAC; ðC1Þ

with the canonical Hamiltonian defined as [second unnum-
bered equation after (3.5)]

Hc ≔ πA
μ _θAμ þ πAB

μ _ωAB
μ −

ffiffiffi
g

p
L: ðC2Þ

Note that due to the different formulation, the canonical
Hamiltonian is defined slightly different from our case.
This is since, instead of treating the Lorentz matrices as
canonical variables, the spin connection is in this case
treated as canonical. Explicitly, the canonical Hamiltonian
is found here to be

Hc ¼ αH⊥ þ βiHi −
1

2
ωAB

0HAB þ ∂iDi; ðC3Þ

where the definitions of H⊥, Hi, HAB, Di defined in [31]
give the explicit Hamiltonian

Hc ¼ α

�
π̂μ

ĀTμ⊥Ā −
ffiffiffi
γ

p 1

2κ

�
1

4
TABCTABC þ 1

2
TABCTBAC − TATA

�
− ξA∇iπA

i

�
− α

ffiffiffi
γ

p
λAB

C̄ D̄RAB
C̄ D̄

þ βi
�
πC

jTC
ij − θCi∇jπC

j þ 1

2
πAB

βRAB
ij

�
−
1

2
ωAB

0ð2π½AiθB�i þ∇iπAB
iÞ þ ∂i

�
θC0πC

i þ 1

2
ωAB

0πAB
i

�
: ðC4Þ

2. Poisson brackets

The evolution of the canonical fields can equivalently be
calculated with the help of Poisson brackets using the
identity

_A ¼ fA;Hg: ðC5Þ

In [31] the following Poisson brackets were calculated
using (C4)

fθAi;H0
CDg ¼ δACθDiδ − ðC ↔ DÞ; ðC6Þ

fθAi;H0
jg ¼ ∇iθ

A
jδ − θAj∂iδ ¼ TA

jiδþ∇iðθAjδÞ; ðC7Þ

fθAi;H0⊥g ¼ κ

�
θCiPĀ C̄

T −
1

6
θAiPC̄

C̄

�
δþ∇iðξAδÞ; ðC8Þ

where δ is a shorthand notation for δðx − x0Þ. From this
they conclude that

∇0θ
A
i ¼ ∇iθ

A
0 þ βiTA

ij þ αθCj
κffiffiffi
γ

p
�
π̂ðĀ C̄Þ −

1

2
ηĀ C̄π̂B̄B̄

�

þ θCiðξAu⊥C̄ þ uĀ C̄Þ: ðC9Þ

When ∇≡ ∂ the terms containing neither momenta nor
Lagrange multipliers coincide with our result. The terms
that involve the conjugate momenta are also consistent with
our findings. The parts including Lagrange multipliers are a

5This coincides with our primary Hamiltonian (not total, as
the authors denote it in their paper). Technically, the total
Hamiltonian corresponds to the primary Hamiltonian once the
Lagrange multipliers have been solved and replaced back, see for
instance [55].
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bit more tricky to compare. Note that [31] combines our
3þ 3 primary constraints into six primary constraints

ϕAB ¼ πAB̄ − πBĀ þ a∇iðϵ0ijkABCDθ
C
jθ

D
kÞ; ðC10Þ

which are essentially equivalent, up to changing the
definition of uAB compared to the definitions in our
manuscript ðVλi; AλijÞ. Note that here the factors

ffiffiffi
γ

p
and κ are not present (like in our work); nonetheless
the expressions are consistent, since those are overall

factors that in our formalism could have been absorbed
by the Lagrange multipliers. Otherwise uĀ C̄ coincides
with Aλ½ij�, and u⊥C̄θCi coincides with Vλi, which can be
proved in a similar way as it was done in [41]. In
summary, their results for the tetrad time evolution are
consistent with ours.
There are some other interesting calculations in [31];

however, they do not correspond to the canonical variables
considered in this article. The reader is, thus, referred to the
original article for more details.
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