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Long-lived configurations of massive scalar fields around black holes may form if the coupling between
the mass of the scalar field and the mass of the black hole is very small. In this work we analyze the effect of
self-interaction in the distribution of the long-lived cloud surrounding a static black hole. We consider both
attractive and repulsive self-interactions. By solving numerically the Klein-Gordon equation on a fixed
background in the frequency domain, we find that the spatial distribution of quasistationary states may be
larger as compared to the noninteracting case. We performed a time evolution to determine the effect of the
self-interaction on the lifetime of the configurations our findings indicate that the contribution of the self-
interaction is subdominant.
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I. INTRODUCTION

Scalar fields are promising candidates to explain the
nature of dark matter. In a scalar-field dark matter model it
is assumed that a classical field makes up the main fraction
of the dark matter of the Universe. The description relies on
the fact that a coherently, weakly-interacting, oscillating
light scalar field formed a Bose-Einstein condensate (BEC)
in a nonrelativistic and low-momentum state [1–8]. The
BEC has a phase space density that enables it to describe
the density profile of the galactic dark matter halo for a
convenient approximations. Amongst the many proposed
candidates, axions, particles introduced by Peccei and
Quinn [9], are scalar fields with a nonzero vacuum expect-
ation value and keep the CP invariance of the strong
interactions in the Lagrangian involving all Yukawa cou-
plings. The effects of such scalar field and other axionlike
particles (with a lower mass) in astrophysical and cosmo-
logical scenarios have been investigated extensively; see,
e.g., Refs. [10–19].
Since the detection of gravitational waves by the LIGO-

Virgo-Kagra Collaboration [20–23] and the recent develop-
ments in electromagnetic observations, in particular the
image of the central black hole and its shadow of M87 and
Sagittarius A* captured by the Event Horizon Telescope
[24–26], there is a renewed interest in the physical
processes that may occur in the vicinity of compact objects.
Massive bosonic fields may form quasibound states

around a black holes [27–33]. In a Schwarzschild back-
ground, all of these states are unstable and decay, leaking

part of the field towards the black hole [34,35]. These scalar
configurations are characterized by instability timescales
which are much longer than the timescale set by the mass of
the central black hole. Because of the low rate of decay, the
scalar field configurations may remain surrounding a black
hole for large timescales depending on the values of the
parameters involved [36]. Therefore, scalar fields around
black holes represent a very convenient setup which model
a supermassive black hole surrounded by a dark matter halo
in galaxies. Quasistationary solutions to the Klein-Gordon
equation on a Schwarzschild background in that context,
were described in detail by Barranco et al. in Refs. [36–38].
The results obtained in those references, indicate that it is
possible that scalar field halos may last for cosmological
timescales around supermassive black holes. These long-
lived configurations composed of a complex, massive and
nonself-interacting scalar field, were found to be charac-
terized essentially by two parameters, namely the integer l,
associated with the angular distribution of the field and
the dimensionless quantity formed by the mass coupling
between the mass of the black hole M, and the mass of the
scalar particle m, GMm=ℏc, which can also be interpreted
as one half of the ratio between the black hole horizon
radius rh ¼ 2GM=c2 and the characteristic wavelength of
the scalar field λϕ ¼ ℏc=m.
For a scalar particle, the simplest nongravitational

interaction is a quartic self-interaction. This generalization
can be achieved by expanding a potential about a sym-
metric minimum, and realizing that the quartic term is
the most important interaction term for small amplitudes.
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From the point of view of a field theory the quartic self-
interaction is the largest value in the exponent that allows a
renormalizable theory. In an astrophysical scenario, Colpi
et al. [39] showed that self-interactions in boson stars can
produce significant phenomenological changes. In particu-
lar, they show that the upper limit on the mass of boson
stars increases notably compared to the noninteracting case.
Such findings show that boson stars can have masses even
larger than a solar mass. Furthermore, in some regimes self-
interacting boson stars are compact enough to be consid-
ered black hole mimickers [40–45]. From a cosmological
perspective, the role of self-interaction is of great impor-
tance in dark matter models, particularly within complex
scalar field models as in Refs. [46,47] where it has been
shown that with a repulsive self-interaction, the scalar field
goes through a radiationlike stage in the Friedman evolu-
tion which in turn increases the effective number of
relativistic degrees of freedom that matches the estimates
of big bang nucleosynthesis (see also [48] for further
discussion).
Quasistationary states of attracting self-interacting scalar

fields where found in the context of gravitational collapse
of unstable boson stars in Ref. [49]. The evolution of self-
interacting boson stars in spherical symmetry was per-
formed by solving the Einstein-Klein-Gordon system
numerically. When describing an unstable configuration,
boson stars collapsed forming a black hole surrounded by a
remnant of scalar field leaving long-lasting states around
the newly formed black hole.
In this work, we solve the Klein-Gordon equation

describing a self-interacting scalar field in the background
of a Schwarzschild black hole. We assume the field
oscillates coherently and analyze the system in the fre-
quency domain to find resonant states. We analyze in detail
the consequences of a quartic self-interaction in the dis-
tribution of the field and present a thorough analysis of the
quasistationary solutions. We observe that the self-coupling
have important consequences in the phenomenology asso-
ciated with scalar field distributions. We further analyze the
behavior in time of the scalar distribution.
The paper is organized as follows: In Sec. II we present

the formulation, the background spacetime, and method of
construction of the solutions. In Sec. III we present some
examples of solutions of the Klein-Gordon equation and
describe the properties of resonant modes. In Sec. IV we
discuss the time development of resonant modes. Finally,
we summarize our results and present concluding remarks
in Sec. V. Throughout the paper we use geometric units
such that c ¼ 1 ¼ G.

II. SETUP

In this work, we will focus on the regime where self-
interaction effects on the field become significant before
gravitational backreaction and therefore, we shall restrict
this analysis to a fixed black hole spacetime. We consider a

complex massive scalar field Φ with mass m described by
the action S ¼ −

R
d4x

ffiffiffiffiffiffi−gp ½∇σΦ�∇σΦþ VðjΦjÞ� with

VðjΦjÞ ¼ μ2jΦj2 þ 1

2
ηλjΦj4: ð1Þ

where μ ¼ m=ℏ and for convenience we consider λ > 0.
The attractive or repulsive nature of the self-interaction is
set by η ¼ 1 or η ¼ −1, respectively.
The stress-energy tensor of the scalar field reads

Tαβ ¼
1

2
ð∇αΦ∇βΦ� þ∇βΦ∇αΦ� − gαβ½∇σΦ∇σΦ�

þVðjΦjÞ�Þ: ð2Þ

The conservation of the stress-energy tensor ∇νTμν ¼ 0
provides the corresponding equation of motion for the field,
the Klein-Gordon equation,

∇α∇αΦ ¼ dVðjΦjÞ
dΦ� ; ð3Þ

and its complex conjugate. We consider the background
spacetime as the nonrotating Schwarzschild black hole in
Boyer-Lindquist coordinates ðt; r; θ;φÞ with element of
line given by

ds2 ¼ −NðrÞdt2 þ N−1ðrÞdr2 þ r2dΩ2; ð4Þ

with NðrÞ ¼ 1–2M=r, and dΩ2 ¼ dθ2 þ sin2 θdφ2. We
assume that the scalar field is spherically symmetric and
thus can be written as

Φðt; rÞ ¼ uðrÞ
r

eiωt; ð5Þ

where ω is a real number. The resulting Klein-Gordon
equation takes the form

�
−NðrÞ d

dr

�
NðrÞ d

dr

�
þ NðrÞUðrÞ

�
uðrÞ ¼ ω2uðrÞ; ð6Þ

where

UðrÞ ¼ 2M
r3

þ μ2 þ ηλ
u2ðrÞ
r2

: ð7Þ

We will use the fact that the static spacetime at hand has a
timelike Killing vector to define a diagnostic quantity with
respect to the stress energy of the system. The energy
density of the scalar field measured by a static observer,
ρ ¼ −T0

0, provides a useful measure of the distribution of
the field in the spacetime, explicitly is given as

ρ ¼ 1

2r2

�
ω2u2

N
þ N

�
du
dr

�
2

þ UðrÞu2 − d
dr

Nu2

r

�
: ð8Þ
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This quantity will be used to characterize the scalar field
distribution in the following sections. Another quantity of
interest is the total mass-energy stored by the scalar field
obtained by the integration of the energy density

MΦ ¼ 4π

Z
∞

2M
ρr2dr: ð9Þ

This quantity gives an estimation of the amount of scalar
field in the spacetime that can be compared with the mass
of the black hole.

A. Scaling properties

In order to explore the space of solutions of the Klein
Gordon equation (6), we define a new function vðrÞ as

vðrÞ ¼
ffiffiffi
λ

p
uðrÞ; ð10Þ

such that the function UðrÞ becomes

UðrÞ ¼ 2M
r3

þ μ2 þ η
v2ðrÞ
r2

: ð11Þ

The function v encodes the self-interaction parameter and
allow us to explore the solution space of Eq. (6) providing
an infinite set of solutions for each value of λ. Additionally,
in order to better resolve the behavior of the field in the
region close to the horizon, we use the tortoise coordinate,
r� ¼ rþ 2M lnðr=2M − 1Þ, to rewrite Eq. (6) as

−
d2v
dr�2

þ NðrÞUðrÞv ¼ ω2v; ð12Þ

where r is given implicitly in the definition of r�. One can
thus eliminate λ from the numerical task because it always
appears as a scalar. Equation (12), poses a further rescaling
property, which is specified in Table I. This rescaling
allows us to use dimensionless quantities such as r=M,Mμ,
Mω, etc., to specify any quantity in terms of the mass of the
black hole. The dependence on the parameters in the Klein-
Gordon equation is in Mμ, and the value of η (which is þ1
or −1).

B. Asymptotically decaying solutions

Equation (12) represent a nonlinear eingenvalue problem
for the function v and eigenvalue ω. Before presenting its

solutions and the methods we employed to solve it, let us
first emphasize some of the properties of the solution. In the
near horizon region r� → −∞, the function NðrÞ → 0,
consequently solutions of Eq. (12) may have the form

vðr�Þ ≈ A cosðωr� − δÞ; ð13Þ

where the amplitude A and the phase δ are real numbers.
Notice however, that the function (13) together with the
ansatz (5), contains no physical solutions since it represents
both outcoming and ingoing modes. The physical situation
we shall consider, a field distribution around a black hole,
excludes outgoing modes. In the following section we will
address this issue in more detail.
Let us consider values of ω such that ω < μ. Then, in the

limit r� → ∞, Eq. (12) admits exponentially decaying or
growing solutions of the form vðr�Þ ≈ C expð−kr�Þ þ
D expðþkr�Þ with k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
. Since we are interested

in describing localized solutions, consistent with the
asymptotically flat metric, we will focus on the solutions
with exponential decay and set D ¼ 0.
The previous descriptions concerns only the asymptotic

behavior of the solutions of Eq. (12). With only this
information, the possible values that ω can take are infinite
and the spectra is continuous.
In the next section we shall show that there is a set of

discrete values ofω that allows solutions with a much larger
amplitude far outside the horizon compared to the ampli-
tude of the field near the horizon. These solutions are thus
closer to the physical description of having an event
horizon as the left boundary.
In order to find the solutions of Eq. (12) we integrate it

numerically as follows. We fix η, and μ and choose some
value ω which in turn fixes k. Then we choose a value of v

TABLE I. Rescaling properties of the Klein-Gordon equation in
the Schwazschild background [Eq. (6)].

M ↦ αM

r ↦ αr
ðμ;ωÞ ↦ α−1ðμ;ωÞ
ðu; λÞ ↦ ðu; λÞ

FIG. 1. Sample of solutions of Eq. (12) with an exponential
decay at infinity. In the region close the horizon (shaded area,
r� → −∞) solutions behave according to Eq. (13), the maximal
amplitude in this region sets the value of A. The value in the far
region set by the C also fixes the value of vmax. Thus, each
solution can be characterized by the amplitudes A and vmax.
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at the outermost point of the numerical grid r�max and
obtain the corresponding value of the derivative dv=dr� at
that point, as dv=dr�jr�max

¼ −kvjr�max
, and once this pair of

conditions is set, we integrate the second-order differential
equation inwards up to the left boundary r�min. Figure 1
shows the plot of v for Mμ ¼ 0.14 and Mω ¼ 0.1370
obtained by this procedure. There is a region in which the
behavior of Eq. (13) is reached and the function v is
completely characterized by its amplitude A. Furthermore,
we have found that for each solution vðrÞ, the quantity vmax,
defined as the local maximum attained by the function v in
the far horizon region, can be used to characterize that
solution. In the next section we will show that comparing
the amplitude in the far region, vmax, with the amplitude
near the horizon A, it is possible to find a discrete set of
values of ω that allows quasibound or resonant
configurations.
Decaying solution are characterized by the amplitudes A

and vmax for a given value of ω. Figure 2 displays sets of
solutions with the desired asymptotic behavior for some
values of ω. We will refer solutions with vmax → 0 as
solutions in the weak self-interacting regime. As the value
of vmax increases, the term v2 in Eq. (12) becomes
important and defines solutions in the strong self-interact-
ing regime. These functions however, are not physical in
the sense that we have not yet imposed the boundary
condition at the left. That is, these functions contain
outgoing modes coming from the left which is not
physically possible.

III. RESONANT STATES

It is possible to quantify the amount of the scalar field
that accumulates in the outer region with respect to the
amplitude near the horizon by comparing the values of vmax
and A. In Fig. 3 we show a projection map of the ratio
A=vmax, which reaches a minimum whenever the amount of

scalar field in the external region is maximal with respect to
the region close to the horizon using several values of ωM
for μM ¼ 0.14. This value allows us to select the solutions
with the lowest ratio as quasiresonant solution. In this way,
the behavior of the field given by Eq. (13) can be neglected
for some solutions which we select as quasiresonant modes
since its amplitude is much smaller than the amplitude far
outside the horizon. The left panel corresponds to η ¼ −1
and the right panel corresponds to η ¼ 1. In order to better
visualize the frequencies of the resonant states and get
some understanding on their change in vmax, Fig. 4 shows
constant vmax cuts of the projected surface in Fig. 3. In these
plots, resonant states are those solutions (represented by
each curve) whose ratio A=vmax has a minimum.1 The value
of the frequency at which the first minimum occurs
corresponds to the frequency of the first resonant state
(higher frequencies have been called overtones in close
analogy to harmonic frequencies). Consequently, configu-
rations surrounding a static black hole with a larger
amplitude far from the event horizon are characterized
by a discrete set of frequencies ω. These modes for λ ¼ 0
have been already characterized in Ref. [36]. The effect of
the self-interaction in the resonant states is to induce a
change in the values of the frequencies as can be seen in
Fig. 3. The frequency of the resonant states in the limit vmax
through the vertical bands in Figs. 3 match the value of the
fundamental and first resonant frequencies Mω ¼ 0.13837
and Mω ¼ 0.13956, respectively, for Mμ ¼ 0.14 and
λ ¼ 0. For η ¼ −1, as vmax increases the frequencies of
the resonant states decrease with respect to the noninter-
acting case, while for η ¼ þ1 the frequencies increase.

FIG. 2. Amplitude near the horizon A, and vmax, for solutions of Eq. (12). Each point of the curve characterizes an asymptotically
decaying solution with a behavior close the horizon given by Eq. (13). Without specifying the boundary conditions the spectra in ω is a
continuum. The weak self-interacting regime corresponds to the extreme left in both panels, where the behavior is almost linear.

1We have verified that the characterization of resonant state,
using the quantity A=vmax, leads to a discrete set of frequencies in
the λ → 0 limit, which is consistent with the resonant modes
given in Ref. [36].
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Fundamental frequencies of resonant states are shown in
Fig. 5 as a function of vmax for some representative values
of Mμ. We have found that for η ¼ þ1 there might be no
resonant states with higher values of vmax. Other results
related to the scalar field distribution as well as the issue
about the lifetime of these states will be addressed below.

A. Properties of resonant states

As stated before, the effect of the magnitude of λ on the
radial profile of the scalar field can be described in terms of
vmax. The first scenario we examine is the one where η ¼
−1 and ω is fixed and compare nonresonant self-interacting
solutions with the first resonant state in the λ → 0 case. As a
particular example, by taking the frequencyMω ¼ 0.13837
(that corresponds to the first resonant state with λ ¼ 0 and
Mμ ¼ 0.14), configurations in the weak self-interacting

regime are almost indistinguishable from the case with
λ ¼ 0. In the strong regime the profiles differ slightly
because these configurations are no longer resonant states.
Figure 6 displays the profiles vðr�Þ and the radial energy
density ρe ¼ 4πr2ρ, with η ¼ −1, Mμ ¼ 0.14, and a fixed
frequencyMω ¼ 0.13837 for some representative values of
vmax in both weak and strong self-interacting regimes, the
case with λ ¼ 0 is also shown for comparison. The
configurations in Fig. 6 correspond to the asterisk symbols
in Fig. 3. For large values of vmax, the ratio A=vmax becomes
larger and it may happen that for large enough values of
vmax along the fixed frequency, a profile with one or more
nodes is found. Like in the λ ¼ 0 case, overtones corre-
spond to solutions with increasing number of nodes as ω
approaches μ. In the negative self-interaction case, η ¼ −1,
the effect of increasing λ in the mass density is that the
scalar field distribution spreads over a larger region and the

FIG. 3. Color map of the ratio A=vmax for Mμ ¼ 0.14. The intensity of the color indicates the value of the ratio. The white bands, in
which the value of vmax is much larger than A, correspond to resonant states. The left panel is for η ¼ −1 and right panel is for η ¼ þ1.
The weakly self-interacting regime correspond to the lower part in which vmax → 0. For larger values of vmax solutions can not be found
for η ¼ þ1. The asterisk symbols are the configurations of Figs. 6 and 7 with frequency ω ¼ 0.13837.

FIG. 4. Ratio A=vmax as a function of ω for different values of vmax and Mμ ¼ 0.14 The local minima on each curve denote resonant
solutions. The case with λ ¼ 0 is also shown as a reference. In the weak regime the curves are almost indistinguishable from the
noninteracting case.
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maximum moves away from the horizon. The normalized
mass density is shown in the right panel of Fig. 6. Given the
behavior in Eq. (13), solutions of Eq. (12) produce an
infinite energy density at the horizon. A positive self-
interaction η ¼ þ1 produces analogous changes in the
radial profile of the scalar field; in this case however, the
field concentrates closer the horizon and the changes are

smaller in magnitude. Another important difference is that
for large values of vmax resonant solutions cease to exist.
Figure 7 displays the radial scalar field profile and the radial
energy density for η ¼ þ1.
In the following we shall focus on the fundamental

resonant states as vmax increases. Figure 8 shows the scalar-
field profile of the fundamental resonant state for both η ¼
−1 and η ¼ þ1. Each resonant state is characterized by its
frequency and vmax. As vmax increases the amplitude of the
radial profile vðrÞ increases for both η ¼ −1 and η ¼ þ1.
The radial density presents the same behavior as is
displayed in Fig. 9. For η ¼ þ1 the effective size of the
configuration increases in the strong-interacting regime.
Another important effect of the self-interaction on the
distribution of the scalar field is in the mass of the
configuration. Self-interacting configurations are heavier
than their noninteracting partners. In the weak self-inter-
acting regime, the mass increases almost linearly with vmax
for both η ¼ −1 and η ¼ þ1. In the strong regime however,
the growth slows down for η ¼ −1. Figure 10 shows the
mass MΦ as a function of vmax for some values of the
gravitational coupling Mμ considering η − 1 and η ¼ þ1.
In the nonself-interacting case, an effective potential of

the time-independent Schrödinger-like equation (12) (with
λ ¼ 0) can be defined. In the self-interacting case, such
effective potential has the form

FIG. 6. The left panel shows the profile of the scalar field and the right panel the corresponding radial energy density for a fixed value
ofMω ¼ 0.13837 with different values of vmax. The case λ ¼ 0 is included for comparison. Both sets have been normalized for a better
visualization.

FIG. 5. Fundamental frequencies of resonant states, as a
function of vmax for several cases of Mμ for both, positive and
negative self-interaction. For η ¼ þ1 (dashed line), as vmax
grows, there are no resonant states.

FIG. 7. Same as Fig. 6 with η ¼ 1.

ALEJANDRO AGUILAR-NIETO et al. PHYS. REV. D 107, 044070 (2023)

044070-6



VeffðrÞ ¼ NðrÞ
�
2M
r3

þ μ2 þ ηλ
u2ðrÞ
r2

�
: ð14Þ

The effective potential interpretation may help in the
characterization of the solutions (see [36,37] and references
therein) however, for λ ≠ 0, Veff can only be obtained

a posteriori since the knowledge of vðrÞ [and consequently
uðrÞ] is required. In any case, the effective potential may
be useful to determine the resonance band formed by the
parameters Mμ and Mω for which the solutions have
the possibility of being concentrated as shown in Fig. 11.
The existence of the potential well in the λ ¼ 0 case is
granted by the condition Mμ < 1=4 [36]. However, a
similar bound cannot be found for λ ≠ 0.

IV. TIME DOMAIN DESCRIPTION

In this section we are interested in describing the behavior
over time of the radial profiles of resonant states once the
harmonic time dependence (5) is relaxed. In particular we are
interested in the half-lifetime of the configuration. To
proceed, we solve the Klein-Gordon equation in the time
domain using the ingoing Kerr-Schild coordinate system.
These coordinates are more convenient for numerical analy-
sis because a constant-time hypersurface is nonsingular and
horizon penetrating. This characteristic is important in order
to impose convenient boundary conditions.
The relation between theKerr-Schild andBoyer-Lindquist

coordinates is given through the time transformation

t̃ ¼ tþ ðr� − rÞ; ð15Þ

where r� is the tortoise coordinate defined above. In these
coordinates, the Schwarzschild metric takes the form

FIG. 8. Scalar-field profile for the first resonant state for different values of vmax for η ¼ −1, left panel, and η ¼ þ1, right panel.

FIG. 9. Radial energy density for the first resonant states for different values of vmax. Left panel correspond to η ¼ −1 whereas right
panel corresponds to η ¼ þ1. For η ¼ þ1 the characteristic size of the boson cloud in the strong self-interacting regime is much larger
than the size of the cloud in the weak self-interacting regime.

FIG. 10. Mass of the scalar field as defined by Eq. (9). In order
to avoid the divergence produced by the oscillatory behavior
at the horizon, the integration was performed from r ¼ 2M þ ϵ
to r ¼ rmax. In practice we have taken ϵ such that
jUð2M þ ϵÞj ¼ ξmaxðjUjÞ, with ξ ¼ 10−3. Other values of ξ
where tested with similar results. rmax corresponds to the last
point of the numerical grid.
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ds2 ¼ −
�
1 −

2M
r

�
dt̃2 þ 4

M
r
drdt̃þ

�
1þ 2M

r

�
dr2

þ r2ðdθ2 þ sin2 θdφÞ: ð16Þ

In terms of Arnowit-Desser-Misner (ADM) variables,
see [50] for an introduction, the lapse function α, the shift
vector βr, and the induced 3-metric can be read from
Eq. (16) as

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
rþ 2M

r
; βr ¼ 2M

2M þ r
; γrr ¼ 1þ 2M

r
:

ð17Þ

The complex scalar field can be split into two real scalar
fields according to Φ ¼ ϕR þ iϕI . The resulting Klein-
Gordon equation for Φ can be written as a coupled system,

∇α∇αϕR ¼ μ2ϕR þ ηλjΦj2ϕR;

∇α∇αϕI ¼ μ2ϕI þ ηλjΦj2ϕI; ð18Þ

where jΦj2 ¼ ϕ2
R þ ϕ2

I . In order to solve numerically the
system Eq. (18), in the background metric of Eq. (16) and
assuming spherical symmetry, we introduce the auxiliary
first-order functions

ψ j ¼ ∂rϕj πj ¼ α2ð∂tϕj − βrψ jÞ; ð19Þ

where we have drop the tilde in the time coordinate and
j ¼ fR; Ig. The system [Eq. (18)] is thus equivalent to the
following evolution equations for ϕj, πj, and ψ j

∂tϕj ¼
r

rþ2M

�
πjþ

2M
r

ψ j

�
;

∂tψ j ¼
2M

2Mþ r
∂rψ jþ

r
2Mþ r

∂rπjþ
2M

ð2Mþ rÞ2 ðπj−ψ jÞ;

∂tπj ¼
1

2Mþ r
ð2Mπjþ rψ jÞþ

2M
ð2Mþ rÞ2 ðψ j−πjÞ

þ 2

rð2Mþ rÞðrψ jþ2MπjÞ−ϕjðμ2þηλjΦj2Þ: ð20Þ

As a diagnostic quantity we use the total energy of the
scalar field that in Kerr-Schild coordinates is written as

E ¼ 4π

Z
ρðrÞαr2dr; ð21Þ

where

ρðrÞ ¼ 1

2

�
α2jπj2 þ 2βrðπRψR þ πIψ IÞ þ γrrjψ j2 þ μ2jΦj2

þ 1

2
λjΦj4

�
: ð22Þ

The evolution equations for the radial components were
solvedwith the (1þ 1)-dimensional PDE solver described in
[51] andused in several scenarios [52,53]. The time evolution
is done via the method of lines with a third-order total
variation diminishing Runge-Kutta algorithm. The spatial
derivatives are approximated with a second-order symmetric
finite-difference stencil. A standard fourth-order dissipation
term was added in order to guarantee the stability of the
scheme. The evolution scheme is complemented by impos-
ing an outgoing-wave boundary condition.

A. Initial data: Resonant modes

One may want to evolve directly a resonant state con-
structed in the frequency domain as described above in order

FIG. 11. Effective potential for the fundamental states for different values of vmax in tortoise coordinates. The depth of the potential
well increases as vmax grows for η ¼ −1 and decreases for η ¼ þ1.
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to determine the time rate of decay; however, those states
diverge at the horizon. In order to use the radial function of
resonant states as initial data we employ a regularization
procedure as described in [37] tomimic a quasiresonant state
and smooth its behavior in the region close the horizon. Such
procedure allows us to set an initial data close enough to the
resonant states found in previous sections. We have used as

initial data at t ¼ 0 the radial profile of the field ϕ ¼ uðrÞ
r ,

obtained in Sec. III with Mμ ¼ 0.14 as

ϕRð0; rÞ ¼ ϕðrÞ; ϕIð0; rÞ ¼ 0;

πRð0; rÞ ¼ α2βr∂rϕðrÞ; πIð0; rÞ ¼ α2ωϕðrÞ; ð23Þ
that correspond to the time-harmonic behavior given by
Eq. (5). For our analysis we consider states in both weak and
strong self-interacting regimes. Figure 12 shows the initial
radial distribution ϕðrÞ with η ¼ þ1 and η ¼ −1.
As a result of the evolution, the scalar field presents an

oscillating behavior and a slow rate of decay. By measuring
the field amplitude at a fixed point r ¼ r1 one obtains a time
series for the amplitude at that point for both, real and
imaginary part. We may thus perform a Fast Fourier
Transform to obtain the frequency of oscillation. The power
spectrum obtained from the time evolution, shows that both
components of the field oscillate with a frequency that
corresponds to the frequency obtained in Sec. III. In
Fig. 13 we plot the total energy of the scalar configuration
as a function of time EðtÞ, defined in Eq. (21). Figure 13
shows that the decay rate of energy is exponential after an
initial transient state.We assume that the energy has the form
the form EðtÞ ∼ expð−stÞ and perform a linear fit of
lnðEðtÞ=E0Þ with t in order to find the value of the rate of
s. The half-lifetime, of the configuration is thus given by
t1=2=M ¼ lnð2Þ=s. We have further considered resonant

modes with other values of the coupling Mμ < 1=4 and
compute the rate of decay of the energy. The results are
summarized in Table II. Despite the fact the initial morphol-
ogy of the scalar-field state is different for configurations
with η ¼ þ1 and η ¼ −1, the rate of decay is of the same
order ofmagnitude for a givenvalue ofMμ.We conclude that
the effect of λ on the rate of decay is subdominant as
compared with the effect of Mμ. Notice however, that the
effective size of the modes with η ¼ þ1 and large enough
values of λ is slightly larger than the noninteracting case, thus
if the leaking rate is of the same order of magnitude in both
cases, self-interacting clouds will last longer since the initial
distribution in the interacting case is larger. Values of the
boson mass μ motivated by dark matter scalar field models

FIG. 12. The initial scalar field profiles correspond to regular-
ized resonant states for configurations with Mμ ¼ 0.14. Initially
only the real part is different from zero. States with frequencies
ω ¼ 0.13837 and ω ¼ 0.1371 are in the weak self-interaction
regime with η ¼ þ1 and η ¼ −1, while states with ω ¼ 0.13930
and ω ¼ 0.1300 are in the strong self-interaction regime with
η ¼ þ1 and η ¼ −1, respectively.

FIG. 13. Energy of the scalar-field states Eq. (21) for
Mμ ¼ 0.14. The vertical axis is presented in log scale and the
properties of the configurations are summarized in Table II. After
an initial decay, the energy decays exponentially in time. The rate
of decay s, is shown in the last column of Table II.

TABLE II. Parameters of the quasiresonant states used in the
evolution. The last column corresponds to the slope of the line
lnðEðtÞ=E0Þ ¼ −st in Fig. 13. The error reported correspond to
the error from the linear fit.

Mμ Mω vmax Regime η s

0.12 0.1192 0.4548 Weak þ1 1.16� 0.03 × 10−4

0.12 0.1196 1.125 Strong þ1 8.97� 0.13 × 10−5

0.12 0.1180 0.6795 Weak −1 1.2� 0.05 × 10−4

0.12 0.1100 0.9695 Strong −1 1.97� 0.02 × 10−4

0.14 0.13837 0.1000 Weak þ1 3.20� 0.05 × 10−4

0.14 0.13930 1.050 Strong þ1 2.70� 0.07 × 10−4

0.14 0.1371 0.6192 Weak −1 3.03� 0.07 × 10−4

0.14 0.1300 0.9158 Strong −1 3.27� 0.07 × 10−4

0.16 0.1580 0.4725 Weak þ1 7.05� 0.05 × 10−4

0.16 0.1590 1.102 Strong þ1 4.41� 0.06 × 10−4

0.16 0.1560 0.5564 Weak −1 6.93� 0.06 × 10−4

0.16 0.1500 0.8580 Strong −1 5.45� 0.10 × 10−4

0.18 0.1780 0.8232 Weak þ1 1.41� 0.05 × 10−3

0.18 0.1790 1.440 Strong þ1 5.85� 0.05 × 10−4

0.18 0.1750 0.4608 Weak −1 1.45� 0.05 × 10−3

0.18 0.1700 0.7803 Strong −1 9.67� 0.05 × 10−4
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correspond to ℏμ ∼ 10−24 eV, and for a black hole with mass
M ∼ 108M⊙, the gravitational coupling is of the order of
Mμ ∼ 10−6. This value is slightly smaller than the ones
considered in this work, such small values cannot be reached
due to the limitations of thenumerical integration.However, if
we extrapolate our findings as done in Ref. [38] resonant
modes may last about 109 years.

V. CONCLUDING REMARKS

In this paper we studied the role played by the self-
interaction in quasiresonant states of test scalar fields
around a Schwarzschild black hole. We assumed that
self-interaction is mediated by a term ∼λjΦj4 and inves-
tigated the properties of the field distribution that forms in
the vicinity of black holes in the case of both attractive and
repulsive self-interactions. We characterized these cases by
means of a parameter η, leaving the parameter λ as a non-
negative quantity. We rewrite the Klein-Gordon equation in
terms of a function vðrÞ, allowing us to eliminate the
explicit dependence in λ and solve it numerically. With this
function one can characterize each solution with its
amplitude in the near- and far-horizon regions. We focus
our analysis on the resonant modes, which are exponen-
tially decaying solutions at infinity concentrated well
outside the event horizon. Furthermore, like in the non-
interacting case, resonant modes posses a definite fre-
quency of oscillation.
The first conclusion that can be drawn regarding the role

of self-interaction in resonant states is the fact that the
values of the discrete frequencies change with respect to the
noninteracting case. For η ¼ −1 the frequency decreases
and for η ¼ þ1 it increases compared with the correspond-
ing values of the frequencies without self-interaction.
We have found that in the presence of interactions the

size and distribution of the scalar field changes depending
on the value of λ. In the regime of strong self-interaction
with η ¼ þ1 the size of the resonant scalar cloud distri-
bution increases considerably and the scalar field tends to
concentrate more in a region far from the horizon as
compared to the case with no self-interaction. Even more,
we have found that for large enough values of λ, resonant
solutions do not exist. Regarding the self-interaction with
η ¼ −1, the field concentrates closer the horizon with
almost no change in size. In this way, we can conclude
that, for η ¼ þ1 and large self-interaction the size of the
distribution is significantly larger than the η ¼ −1 and the
noninteracting cases.
From a classical perspective this happens because the

particles of the configuration tend to concentrate outside
the horizon while gravity and attractive self-interactions
tend to shrink the configuration towards the black hole. We
further investigate the lifetime of resonant states by means
of a numerical-time evolution. We found that despite the

important role played by the self-interaction in the spatial
distribution of the scalar field around the black hole, its role
in the lifetime is negligible as compared to the effect of the
mass term. In the scenario described in this work we focus
on the regime where self-interaction dominates over self-
gravitation effects and the parameter λ entered in the
equations as a global scale. However, when the spacetime
reacts to the presence of the scalar field, the term with λ
enters explicitly on the energy density and thus a stronger
effect on the properties of the whole configuration is found.
A further study, considering the backreaction of the
spacetime is under way.
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APPENDIX: MULTIFIELD CONFIGURATIONS

In Refs. [54] self-gravitating spherically symmetric
multifield configurations were considered. In these con-
figurations an spherically symmetric tensor can be con-
structed assuming that the amplitudes of the constituents
fields are the equal. The Lagrangian for N ¼ 2lþ 1 self-
interacting complex scalar fields with a UðNÞ symmetry is

Lϕ ¼ −
XN
i¼1

�
∇μΦi∇μΦ�

i þ μ2jΦij2 þ
1

2
λjΦij2

XN
j¼1

jΦjj2
�
;

ðA1Þ

where each field is given by

Φmðt; r; θ;φÞ ¼
uðrÞ
r

eiωtYlmðθ;φÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
: ðA2Þ

withm ¼ i − l − 1. Using this ansatz for the fieldsΦm, the
resulting Klein-Gordon equation for each of the 2lþ 1
fields is the same for all of them and is identical to Eq. (6)
under the substitution

UðrÞ → UðrÞ þ lðlþ 1Þ
r2

: ðA3Þ
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