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We systematically extend the statement that the configurational entropy provides an alternative approach
to studying gravitational stability of compact objects, carried out in the previous work of Gleiser and Jiang
[Phys. Rev. D 92, 044046 (2015)]. Inspired by that paper, we try to answer the crucial question; Is there any
one-to-one correspondence between the minimum of the configurational entropy and the stability point for
each realistic equation of state? In view of the above question, we focus on neutron stars, quark stars,
as well as on the third family of compact stars (hybrid stars), where a possible phase transition may lead to
the existence of twin stars (stars with equal mass but different radius). In each case, we use a large set of
equations of state investigating the possibility to find correlations between the stability region obtained
from the traditional perturbation methods to the one obtained by the minimum of configurational entropy.
We found that the suggested prediction of the stability by the minimization of the configurational entropy,
concerning neutron stars and quark stars, does not have, at least quantitatively, universal validity. However,
in several cases it qualitatively predicts the existence of the stability point. In conclusion, the
configurational entropy, can be considered as an additional tool which enters into the quiver for studying
the stability of compact objects such as for example neutron and quark stars, but taking into account that the
accuracy of the predictions depends on the specific character of each equation of state.
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I. INTRODUCTION

The concept of the configurational entropy (CE) has
been introduced by Gleiser and Stamatopoulos [1] in order
to study the possible relation of the dynamical and infor-
mation content of physics models to localized energy con-
figurations (see also relevant applications in Refs. [2–11]).
Gleiser and Jiang [3] trying to investigate the possibility
to obtain information about the stability of compact objects
from its information-entropic measure, found that the
configurational entropy offers an alternative way to com-
pute the critical mass for a variety of stellar objects. In
particular, they applied their approach mainly in white
dwarfs and boson stars, but also in neutron stars by
applying the case of the Fermi gas equation of state
(EOS). They found that the traditional perturbation meth-
ods correlate well with critical points of the configurational
entropy with accuracy of a few percent or better [3].
The stability of relativistic stars is a longstanding

problem. There are various methods to examine the
stability of a relativistic star (for a detailed presentation
see Ref. [12]). However, in the present work, in addition to
the information-entropic measure, we employ the method

based on the dependence of the gravitational mass M and
the corresponding radius R on the central energy density Ec.
The stability condition demands that the mass increases
with increasing central energy density dM=dEc > 0. The
extrema in the mass indicates a change in the stability of the
compact star configuration [13,14].
It is worth noticing that there is not any theoretical

argument (or proof) to relate the stability point to the
minimum of the configurational entropy. However, it is
intuitive to expect that since the maximum mass corre-
sponds to the most compact configuration (maximum mass
and minimum radius of a stable configuration), the corre-
sponding CE will exhibit an extreme value (in this case a
total minimum). The crucial question that needs to be
answered is; Is there any one-to-one correspondence
between the minimum of the CE and the stability point
for each realistic EOS? And even more; Is this rule
universal or it depends on the specific character of each
EOS? If this is true, then an additional tool enters into the
quiver for studying the stability of compact objects.
The motivation of the present work is to provide an

extended examination of the results of Ref. [3]. To this
end, we apply two analytical solutions of the Tolman-
Oppenheimer-Volkoff (TOV) equations [13] and also a
large set of realistic EOSs in order to study the dependence
of the bulk neutron star properties on the configurational
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entropy, while inversely relating our focus, mainly, on the
stability conditions. In order to enrich our systematic study,
we also use a set of EOSs corresponding to interacting
quark matter (suitable to describe the properties of a quark
star). Finally, we apply a set of EOSs, with a more complex
character, constructed to reproduce properties of a third
family of compact objects, known as twin stars. Thus, we
consider that we have significantly ensured the examination
of the findings of Ref. [3], covering a very large range of
cases which corresponds to compact objects.
The paper is organized as follows. In Sec. II we present

the basic formalism of the configurational entropy and we
provide the realistic EOSs used in the present work. In
Sec. III the results of the present study are presented and
discussed. Finally, concluding remarks are given in Sec. IV.

II. CONFIGURATIONAL ENTROPY AND
EQUATIONS OF STATE

The key quantity to calculate the configurational entropy
in momentum space is the Fourier transform FðkÞ of the
density ρðrÞ ¼ EðrÞ=c2 (where E is the energy density),
originating from the solution of the TOV equations, that
is [3]

FðkÞ ¼
Z Z Z

ρðrÞe−ik·rd3r: ð1Þ

Moreover, the modal fraction fðkÞ is defined as

fðkÞ ¼ jFðkÞj2R jFðkÞj2d3k ; ð2Þ

and the normalized one as f̃ðkÞ ¼ fðkÞ=fðkÞmax, where
fðkÞmax is the maximum fraction, which is given in many
cases by the zero mode k ¼ 0, or by the system’s longest
physics mode, jkminj ¼ π=R. The above procedure guar-
antees that f̃ðkÞ ≤ 1 for all values of k. We note here
that the system’s longest physics mode, jkminj ¼ π=R, is the
one that has been used throughout the present work.
Finally, the configurational entropy SC, as a functional
of f̃ðkÞ, is given by

SC½f̃� ¼ −
Z

f̃ðkÞ ln½f̃ðkÞ�d3k: ð3Þ

In detail, we use a set of hadronic EOSs, which have
been extensively employed in the literature for applications
in neutron star properties (see Ref. [15] and references
therein). These EOSs have been collected in order to satisfy
the prediction of the maximum observed neutron star mass,
that is M ≥ 2M⊙. In this case, for a specific EOS and
for each M-R configuration, we implement the corres-
ponding density distribution ρðrÞ. Afterwards, the calcu-
lation of FðkÞ, fðkÞ, and f̃ðkÞ is performed according to the

presented recipe. It has to be mentioned that it is well
established that the stability point corresponds to the
configuration of the maximum mass [13].
Furthermore, we also employ a set of EOSs concerning

interacting quark matter which has been predicted and
applied in Ref. [16]. In this case, the pressure is related to
the energy density via the simplified expression [16]

P
4Beff

¼ 1

3

�
E

4Beff
− 1

�

þ 4

9π2
λ̄

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3π2

λ̄

�
E

4Beff
−
1

4

�s !
; ð4Þ

where E denotes the energy density and P is the pressure.
Specifically, in the present work we employed the value of
Beff ¼ 150 MeV fm−3, while for the dimensionless param-
eter λ̄, we applied the values of (1, 2, 5, 16) [16].
Finally, we employed a more complex EOS, construc-

ted to reproduce properties of a third family of compact
objects, known as twin stars [14,17]. To be more speci-
fic, we employed the Maxwell construction, suitable to
describe phase transitions in the interior of a compact object
and formulated as follows [17]

EðPÞ ¼
�
EðPÞ; P ≤ Ptr

EðPtrÞ þ ΔE þ c−2s ðP − PtrÞ; P ≥ Ptr:
ð5Þ

In the above formula, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∂P=∂E

p
is the speed of sound

(in units of the speed of light), and ΔE is the magnitude of
the energy density jump at the transition point. The sub-
script “tr” denotes the corresponding quantity at this point.
In the region P ≤ Ptr, we utilized the GRDF-DD2 EOS
[18,19] while in the region P ≥ Ptr, the value of the speed
of sound is fixed at cs ¼ 1.

III. RESULTS AND DISCUSSION

In Fig. 1(a) we display the dependence of the gravita-
tional mass on the radius for the hadronic EOSs, including
the Uniform and Tolman VII analytical solutions for
R ¼ 12 km [20]. The diamonds indicate the stability points
due to the traditional method (TM, which corresponds to
the maximum mass configuration), while the open circles
correspond to the minimum of the CE. It is obvious that
in all cases, the location of the stability point does not
coincide with the one corresponding to the minimum of the
CE. Moreover, in some cases, no configuration appears to
minimize CE, even at high values of central density, far
from the stability point. In order to further clarify this point,
in Fig. 1(b) we indicate the dependence of the mass on the
central density. The noncoincidence of the corresponding
stability points is evident in this case as well. Finally, in
Fig. 1(c) we present the CE as a function of the central
density. In all cases, we found that the configurational
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FIG. 1. (a) Gravitational mass as a function of the radius for a
set of hadronic EOSs. (b) The corresponding dependence of the
gravitational mass as a function of the central density. (c) The
corresponding configurational entropy as a function of the central
density and two analytical solutions of TOV equations (a and b
are constants [3]). The inset figure indicates the location of the
minimization of the CE. The black diamonds indicate the stability
points due to the TM while the open circles correspond to the
minimum of the CE. The hadronic EOSs are presented with the
dashed lines, and the analytical solutions with the solid ones.

FIG. 2. (a) Gravitational mass as a function of the radius for a
set of quark star EOSs. (b) The corresponding dependence of the
gravitational mass as a function of the central density. (c) The
corresponding configurational entropy as a function of the central
density. The inset figure indicates the location of the minimiza-
tion of the CE. The black diamonds indicate the stability points
due to the TM while the open circles correspond to the minimum
of the CE.
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entropy is a decreasing function of the central density,
where the appearance of the minimization is at high-values
of density (if it exists). Therefore, the minimization point of
CE and the maximum mass configuration of TM do not
coincide, since the first one is located at high-values of
density, far from those corresponding to the stability point.
It has to be noted that the high-values of density that
correspond to the minimization of CE, denote neutron stars
in the instability region. However, there is only one case
where the two mentioned points nearly coincide. This
limiting case is the free Fermi gas which is shown in Fig. 1.
Quark stars have different configurations compared to

neutron stars, since at the surface while the pressure is
vanishing, that is not the case for the density. This behavior
is well reflected on the dependence of the gravitational
mass on the radius. In this case too, for a set of four EOSs,
the predictions confirm the discrepancy between TM and
CE stability points, as shown in Fig. 2. Finally, in the
scenario of twin stars (hybrid stars), two stability points
exist for the six EOSs under consideration. From Fig. 3 the
first stability point coincides with the first minimum of the
CE (less than 2% error from the stability point). However,
the latter could be justified, since at this point a disconti-
nuity on the EOS manifests as a large gap in the central
energy density. Consequently, this minimum can be iden-
tified as an artificial one. Regarding the second minimum
of CE, in this case too, it appears very far from the second
stability point (more than two to three times the central
density).
Moreover, in order to further clarify the connection

between the minimization of the CE and the stability point
(which corresponds to the maximum mass configuration),
we display in Fig. 4 the dependence of MSCρ−1c as a
function of the central density ρc=ba−3 for (a) hadronic
neutron stars, and (b) quark stars. It is worth noticing that
while in the case of the Newtonian polytropes the quantity
MSCρ−1c is nearly constant along the ρc=ba−3 values (see
also Ref. [3]), this rule is not satisfied, at least at low
densities, both in neutron stars and quark stars (the only
exception is the case of Fermi gas in accordance to the
prediction of Ref. [3]). We consider that in the majority of
the cases, the more complex dependence of MSCρ−1c on
ρc=ba−3 is mainly due to the special characteristics of each
EOS. To be more specific, for low values of the density,
there is a dramatic divergence from linearity, thus reflecting
the specific feature of each EOS in this region. On the
contrary, at high densities the linearity seems to be restored.
We guess that this is the reason why the two different
predictions of the stability points agree qualitatively but not
quantitatively.
It is worth noticing that the existence of a stable

configuration is a property of gravity and does not depend
on the EOS. However, the specific location of the stability
point depends on the EOS [21]. In view of the above
comments, ones expects, according to the statement of

FIG. 3. (a) Gravitational mass as a function of the radius for a
set of twin-star EOSs. (b) The corresponding dependence of the
gravitational mass as a function of the central density. (c) The
corresponding configurational entropy as a function of the central
density. The inset figure indicates the location of the minimiza-
tion of the CE. The black diamonds indicate the stability points
due to the TM while the open circles correspond to the minimum
of the CE. In (a) and (b) the twin star EOSs are presented with the
solid lines, where the dashed lines represent the intermediate
unstable region, and in (c) the corresponding EOSs are presented
with the dashed lines.
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Ref. [3], the minimization of the CE to be a consequence of
gravity (in the framework of general relativity). If this is
true, then we expect the existence of the relevant minimum
to be independent of the applied EOS. Nonetheless, we
found that this is not a general rule for the case of neutron
stars and quark stars. To be more specific, while there are
cases where the CE is minimized, there are also cases where
the CE is monotonically decreasing, with no appearance of

a minimum. In addition, even in the first case scenario, the
location of the minimum does not coincide with the
stability point. In spite of the latter, there is only one
exception, which is the free Fermi gas.

IV. CONCLUDING REMARKS

Summarizing, our results lead to the conclusion that the
CE can be used partially as a measure of the stability of
compact objects including neutron stars and quark stars.
We could speculate that CE can only qualitatively predict,
in some way, some configurations, which can be correlated
to the stability points. Concluding, although the approach
of minimization of the CE may be fascinating as an
alternative way to study the stability point of neutron stars
and quark stars, it is mainly qualitative and not quantitative
in the sense that the results strongly depend on the
applied EOS.
Finally, it is necessary to state that, in the present work,

we have not exhausted the investigation of the correlation
of CE to the stability conditions of compact objects. A
future perspective is to consider the above correlation in
the case of rapidly rotating or anisotropic stars (where the
pressure is anisotropic). It will be very interesting to
investigate and even more to reveal possible correlation
between stability and CE in the mentioned cases. This can
only be done when the corresponding research is carried
out in every detail and covers all possible cases.
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