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We study a regular rotating black hole evaporating under the Hawking emission of a single scalar field. The
black hole is described by the Kerr-black-bounce metric with a nearly extremal regularizing parameter
l ¼ 0.99rþ. We compare the results with a Kerr black hole evaporating under the same conditions. First, we
compute the graybody factors and show that the Kerr-black-bounce evolves toward a non-Schwarzschild-like
asymptotic state with a� ∼ 0.47, differently from a Kerr black hole whose asymptotic spin would be
a� ∼ 0.555. We show that this result depends on the combined contributions of the changes in the graybody
factors and in the surface gravity introduced by the regularizing parameter. We also discuss how the surface
gravity affects the temperature and the primary emissivity and decreases those quantities with respect to the
Kerr black hole. Consequently, the regular black hole has a longer lifetime. Finally, we briefly comment on the
possibility of investigating the beyond-the-horizon structure of a black hole by exploiting its Hawking
emission.
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I. INTRODUCTION

General relativity (GR) has been tested for more than one
century providing outstanding results in describing the
Solar System and the Universe. Despite GR’s successes, its
lack in addressing many open problems remains and
propels the idea that it may not be the ultimate theory of
gravity. The origin of the cosmic acceleration and the
nature of the dark contents of the Universe have been
extensively studied using modified theories of gravity [1].
In recent years, the detection of gravitational waves (GW)
from black hole (BH) coalescence [2] by the LIGO/Virgo
Collaboration and the direct observation of the BH shadows
at the center of the MilkyWay [3] andM87 [4] by the Event
Horizon Telescope (EHT) provided a new test bench
capable of probing GR robustness in a strong-field regime
[5–8]. The existence of singularities, namely portions of
spacetime with an infinite curvature, is a hint that the
classical framework of GR should break down or, at least,
be incomplete at high energies. It is a commonly accepted
idea that singularities just reveal our lack of knowledge in
the high energy regime and the related problem may be
cured by a quantum theory of gravity. Unfortunately, a
theory of quantum gravity is not yet developed despite the
several proposals. Nevertheless, it is still possible to gain
intuition by postulating the existence of regularized space-
times inspired by quantum gravity arguments and studying
whether these new metrics give rise to new signatures or
modify preexisting characteristics. Since the 1990s these

motivations have led the research of regularized metrics
mimicking the behavior of BH solutions [9]. Furthermore,
in light of the new available high-energy regime tests, the
field gained even more traction, and many studies about
quasinormal modes, superradiant regimes, and instabilities
are regularly announced [10–26].
An interesting regular metric was proposed in [27] and

further analyzed in [28]. This spacetime configuration,
known as black-bounce, interpolates between the standard
and regularized Schwarzschild BH and the Morris-Thorne
traversable wormhole by introducing an additional param-
eter, l. The black-bounce metric caused a fervent activity
leading to many studies of its characteristics [29–36] and
was recently extended in order to account for rotation
[8,37], and afterward rotation and charge [38]. The Kerr-
black-bounce and Kerr-Newman-black-bounce have also
been the subject of many studies [8,39–44].
The main motivation of this paper is to further enlarge

the analysis of the Kerr-black-bounce characteristics by
considering its dynamical evolution due to Hawking
evaporation driven by a singular scalar field. Such char-
acteristics are certainly irrelevant for BHs of the size we
measure today but may become a powerful and handy tool
in light of the possible future measurement of primor-
dial BHs.
The lesson of this study is that under the same con-

ditions, a Kerr-black-bounce is characterized by a dynamic
behavior that differs with respect to its singular counterpart.
This work points out that tracking the evolution of a black
hole spin and its spectrum will provide information on the
spacetime structure.*mc@student.uc.pt
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This paper is organized as follows. Section II contains a
brief review of the Kerr-black-bounce. Section III shows
the equation governing the scalar perturbation of the Kerr-
black-bounce metric, the evolution of the metric under a
single scalar emission, and the numerical method used for
calculating the graybody factors (GBFs). In Sec. IV the
results are presented. Section V provides a summary in
which future perspectives are considered.
We use units of G ¼ c ¼ ℏ ¼ 1.

II. KERR-BLACK-BOUNCE METRIC

In this section we briefly review the Kerr-black bounce
metric [37]:

ds2 ¼ −
�
1 −

2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2 þ l2

p

Σ

�
dt2 þ Σ

Δ
dr̃2 þ Σdθ2

þ Asin2θ
Σ

dϕ2 −
4Ma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2 þ l2

p
sin2θ

Σ
dtdϕ; ð1Þ

whereM, a, and l are the parameters describing mass, spin,
and the regularizing parameter of the metric, while

Σ ¼ r̃2 þ l2 þ a2cos2θ;

Δ ¼ r̃2 þ l2 þ a2 − 2M
ffiffiffiffiffiffiffiffiffi
r̃2l2

p
;

A ¼ ðr̃2 þ l2 þ a2Þ2 − Δa2sin2θ: ð2Þ

This is a generalization of the static and spherically
symmetric metric proposed by Simpson and Visser
[27,28,45]. It is a stationary, axially symmetric metric
which, by introducing a positive parameter, a < M,
describes the angular momentum of the black-bounce.
This line element was recently further extended in order
to describe a charged spacetime [38].
When the positive regularizing parameter l → 0, the

Kerr-black-bounce metric reduces to the singular Kerr
solution, while for l ≠ 0 the spacetime is regular and
possesses a wormhole throat at r̃ ¼ 0. A coordinate
singularity interpreted as an event horizon is present when
Δ ¼ 0, or, equivalently, when

r̃� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� − l2

q
; ð3Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

Depending on the values of the regularizing parameter l,
the metric (1) describes a wormhole for l > rþ, for which
no coordinate singularities are present on the manifold. If
l < rþ the metric (1) describes a BH which may have one
or two coordinate singularities depending on r− < l < rþ
or l < r−, respectively. Finally, when l ¼ rþ the throat
and the event horizon coincide.
To better visualize this interplay, it is convenient to

define a new radial coordinate r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2 þ l2

p
and pass from

an extrinsic description of the manifold to an intrinsic one.
It is easy to notice that r ≠ 0 for all l ≠ 0. In particular, the
minimum value of r corresponds to the minimal radius of
the throat. The coordinate r measures the distance from the
center of the object. Given this new coordinate, the metric
reads

ds2 ¼ −
�
1 −

2Mr2

Σ

�
dt2 þ Σ

δΔ
dr2

þ Σdθ2 þ Asin2θ
Σ

dϕ2 −
4Marsin2θ

Σ
dtdϕ; ð4Þ

and

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 þ a2 − 2Mr;

A ¼ ðr2 þ a2Þ2 − Δa2sin2θ;

δ ¼ 1 −
l2

r2
: ð5Þ

If l ≠ 0, the curvature singularity at r ¼ 0 is always
prevented by the wormhole throat. When l > rþ the
wormhole throat is located at a larger radial value than
the coordinate singularity of the event horizon. In this way,
the presence of the horizon is prevented by the regular finite
surface of the wormhole throat. If 0 ≠ l < rþ, the throat of
the wormhole is enclosed by the event horizon and the
metric describes a BH.
In the following part of this paper, we focus on regular

BHs avoiding coordinates singularities and inner horizons.
The absence of the inner horizon is a desirable feature since
it might avoid the problems related to mass inflation.
Moreover, this choice allows a nearly maximal value of
l for which the metric (1) mostly differs from the Kerr BH
and still describes a BH.
It has to be noticed that the metric (1) or, equivalently,

(4), is inspired by the reasonable quantum gravity argument
of avoiding singularities and other pathology, and it is not a
vacuum solution of GR.

III. SCALAR PERTURBATIONS AND EVOLUTION

In this section, we derive the equation describing the
scalar massless perturbations of the metric (1) and discuss
the appropriate boundary conditions. The massless Klein-
Gordon equation ∇μ∇μΦ ¼ 0 in curved spacetime reads

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞΦ ¼ 0: ð6Þ

Taking into account the decomposition Φ ¼ RlmðrÞ
SlmðθÞeimϕe−iωt where ω is the perturbation frequency,
m is the azimuthal quantum number, (6) separates into an
angular equation
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1

sin θ
d
dθ

�
sin θ

d
dθ

Slm

�

þ
�
a2ω2cos2θ þ Alm −

m2

sin2θ

�
Slm ¼ 0 ð7Þ

describing the spheroidal harmonics equation where Alm
are its eigenvalues, and a radial equation

ffiffiffi
δ

p d
dr

� ffiffiffi
δ

p
Δ
dRlm

dr

�

þ
�
K2

Δ
þ 2amω − a2ω2 − Alm

�
Rlm ¼ 0; ð8Þ

where K ¼ ðr2 þ a2Þω − am.
The angular equation (7) is the spinless case of the

well-studied spin-weighted spheroidal harmonics equation
[46–48]. To leading order Alm ¼ −lðlþ 1Þ þOðaωÞ and
the OðaωÞ correction can be expressed as a power series in
aω ≪ 1, which are given in [48]. Besides, for our purposes,
it is worth studying the radial equation (8) in two limits,
near the horizon, and at spatial infinity. If the regularizing
parameter satisfies l < rþ and the Kerr-black bounce
metric (1) describes a regular BH, then the near-to-the-
horizon solution reads [39],

RðrÞ ∼ ðr − rþÞ�iσ;

σ ¼ am − 2Mωrþ
γðrþ − r−Þ

;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

l2

r2þ

s
; ð9Þ

while the far-away solution simply reads

RðrÞ ∼ 1

r
e�iωr: ð10Þ

To study a BH described by (1), evolving by the sole
emission of scalar particles due to Hawking radiation, it is
necessary to set up a scatteringlike problem and take into
account ingoing and outgoing boundary conditions at
infinity, while at the event horizon, one must consider
pure absorption. Those asymptotic solutions and the con-
servation of energy fluxes, both at the horizon and at
infinity, allow one to calculate the GBF or transmission
coefficient, defined as

T ¼ dEhole=dt
dEin=dt

: ð11Þ

The GBFs depend on the modes, and, at a constant l, are
functions of both the BH spin parameter and frequency of
the perturbation, T ¼ Tl

mða;ωÞ. The GBFs emerge as a
consequence of a geometrical potential in Eq. (8) which,

acting as a barrier, partially shields the Hawking radiation
from being totally emitted. This way the radiation emerging
from the BH is not the one of a black body. The field quanta
have energy and spin and their emission comes at the expense
of both the BHmass and angular momentum. Following the
path outlined in [49], the rates of mass and angular
momentum loss are calledf and g, respectively, and they read�

f

g

�
¼

X
i;l;m

1

2π

Z
∞

0

dx
Ti;l;m

e2πk=κ − 1

�
x

ma−1�

�
; ð12Þ

where the sum is taken over all particle species i, and l,m are
the usual angular momentum quantum numbers. Here
x ¼ ωM, k ¼ ω −mΩ and

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2H
r2H þ l2

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

q
=2rþ ð13Þ

is the surface gravity of the BH [9,38]. Since the choice of
analyzing a singular Kerr BH l ¼ 0 and the regular Kerr-
black-bounce BH having l ¼ 0.99rþ, the prefactorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2H=ðr2H þ l2Þ

p
takes the values of 1 or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.992

p
,

respectively. To determine whether a BH spins up or down
during its evolution it is necessary to calculate the mass to
angular momentum loss rates. For this reason, one defines

h ¼ g
f
− 2: ð14Þ

A root of the function h, ã�, for which h0ðã�Þ > 0, represents
a stable state toward which the BH evolves while evaporat-
ing. To investigate the temporal evolution of angular
momentum and mass it we followed the path outlined in
[49–51] and later in [52,53] defining

y ¼ − ln a; ð15Þ

z ¼ − lnM=Mi; ð16Þ

and

τ ¼ −M−3
i t; ð17Þ

whereMi is the initial mass of the BH. The evolution is then
fully determined by the differential equations

d
dy

z ¼ 1

h
; ð18Þ

d
dy

τ ¼ e−3zðyÞ

hf
; ð19Þ

and the initial conditions zðt ¼ 0Þ ¼ 0 and τðt ¼ 0Þ ¼ 0.
To estimate the primary spectrum of scalar particles we used
the well-known formula [49,50,54–64]:
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d2N
dtdE

¼ 1

2π

X
l;m

Tl;mðωÞ
e2πk=κ − 1

: ð20Þ

A. Numerical method

An explicit analytical calculation of the GBFs is possible
only under stringent approximations and numerical methods
are usually required to evaluate them. We implemented a
code based on the so-called shootingmethodwhich has been
applied to solve similar problems, for example in [65,66], and
allows for the calculation of the GBFs with good accuracy.
The first step is to rewrite Eq. (8) in terms of the rescaled

coordinate

x ¼ r − rþ
rþ

; ð21Þ

such that:

δx2ðxþ τÞ2∂2xRðxÞ

þ 2xðxþ τÞ
�
1

2

�
2xþ τδþ xðxþ τÞ

xþ 1
ð1 − δÞ

��
∂xRðxÞ

þ Vðω; xÞRðxÞ ¼ 0; ð22Þ
where

Vðω; xÞ ¼ K2 − xðxþ τÞðAlm þ a2ω2 − 2amωÞ; ð23Þ
with τ ¼ ðrþ − r−Þ=rþ, K ¼ ϖ þ xðxþ 2Þω̄, ϖ ¼
ð2 − τÞðω̄ −mΩ̄þÞ, where ω̄ ¼ rþω, Ω̄þ ¼ rþΩþ and

FIG. 1. GBFs of the mode l ¼ m ¼ 0 of a BH rotating at
a� ¼ 0 in the case l ¼ 0.99rþ (solid red line) and l ¼ 0
(blue dashed line).

FIG. 2. GBFs of the mode l ¼ 1, m ¼ −1 of a BH rotating at
a� ¼ 0.99 in the case l ¼ 0.99rþ (solid red line) and l ¼ 0 (blue
dashed line).

FIG. 3. (a) Transmission coefficients of the mode l ¼ m ¼ 1 of
a BH rotating at a� ¼ 0.99 in the case l ¼ 0.99rþ (solid red line)
and l ¼ 0 (blue dashed line). (b) Zoom of the superradiant
regime of (a).
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Ωþ ¼ a=2Mrþ. Setting purely ingoing boundary condition
near the horizon, the solutions of Eq. (22) can be expressed
in the form of the Taylor expansion [65,66] of the form

RðxÞ ¼ x−iϖ=ðγτÞX∞
n¼0

anxn: ð24Þ

The coefficients an can be determined by substituting (24) in
(22) and solving iteratively the algebraic equations. The near
horizon solution is used to set the boundary conditions and
numerically integrate the radial equation up to large dis-
tances, where the general form of the solution takes the form:

RðxÞ → Ylm
in

rþ

e−iω̄x

x
þ Ylm

out

rþ

eiω̄x

x
: ð25Þ

It is then possible to extract the coefficient Ylm
in ðωÞ in order to

evaluate the GBF. The normalization of the scattering
problem is set by requiring a0 ¼ 1, this way GBFs read

TlmðωÞ ¼ jYlm
in ðωÞj−2: ð26Þ

With this method, we computed the GBFs of a scalar
perturbation on a regular BH described by the Kerr-
black-bounce metric having a nearly extremal regularizing
parameter (l ¼ 0.99rþ). Different values for the spin
parameter of the BH spanning from a� ¼ 0 to a� ¼ 0.99
are considered and the GBFs are calculated the up to l ¼ 4.
This last choice ismotivated by the definition of the functions
f and g. In fact the higher is the l mode, the higher the
energies at which the graybody factor is nonvanishing, so
the l mode contribution in (12) is smaller with respect to the
l − 1 mode.

IV. RESULTS

Let us compare the scalar perturbations of the Kerr BH
and the ones of the nearly extremal Kerr-black-bounce BH.
Those BHs share many characteristics such as the presence
of a superradiant regime and a non-null asymptotic value of
the spin parameter a�. Nevertheless, for the two different
metrics, the phenomenology changes and it is of great
interest to analyze those differences.
The GBFs of the modes l ¼ m ¼ 0 are identical (as

shown in Fig. 1 for the nonrotating cases) and this equality
is independent of the BH spin considered.
The GBFs of the Kerr-black-bounce BH show a common

behavior for the modes with l ≠ 0. When they are com-
pared with the Kerr BH ones, they grow faster for
frequencies lower than the main GBFs inflection point,

FIG. 4. Plot of functions f (a) and g (b) for different values of
the BH spin parameter a�. In the solid blue line is the Kerr BH,
and in solid red the Kerr-black bounce.

FIG. 5. Plot of functions h ¼ g=f − 2 at different values of the
BH spin parameter a�. In the solid blue line is the Kerr BH, and in
solid red the Kerr-black bounce.
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on contrary, they grow slower for higher frequencies (as
shown in Fig. 2 for the l ¼ 1, m ¼ −1 mode). Also, this
behavior is independent of the spin of the BH.
The scalar perturbation of both metrics show super-

radiant amplification if ω < mΩ. When this condition is
met, both the GBFs have negative values, which are
interpreted as wave amplification. Figure 3 displays the
comparison of the GBFs for the l ¼ m ¼ 1 modes at a� ¼
0.99 highlighting the superradiant regime.
The Kerr-black-bounce GBFs show a less intense

amplification and the shape of the superradiant regime
peaks at lower frequencies. Also, the shape of the GBFs in
the superradiant regime is different, being more symmetric
than in the singular case. This result agrees with the
tendency shown in the recent paper [39], in which it is
reported that increasing the parameter l causes a decrease
in the superradiant amplification factor. Those are common

features of all the superradiant modes. However, it has to be
noticed that with an increasing azimuthal quantum number,
the superradiant peak of the Kerr-black-bounce BH GBFs
becomes smaller and smaller with respect to its singular
counterpart.
The functions f, and g, are calculated through (12).

The two BHs show different values of these functions.
These are due to the above-mentioned GBF differences
and in the different surface gravity (13), which plays a
crucial role in the Bose-Einstein statistical factor in (12)
selecting lower frequency if l ≠ 0. For these reasons, the
Kerr-black-bounce BH functions f and g for l ¼ 0.99rþ
are orders of magnitude smaller if compared with the
singular case. Figure 4 reports a comparison of those
two cases.
For the same reasons, the functions h are also different.

It is shown in Fig. 5 that the root of the Kerr BH is located at

FIG. 6. Plot of the mass (a), spin (b), and temperature (c) as functions of the time, of a Kerr-black bounce having l ¼ 0.99rþ (solid
lines) and a Kerr-black hole (dotted lines) of the same initial mass MK ¼ 1011 kg, and spin parameter a�iK ¼ 0, 01, evolving by the
emission of a single type of scalar particle.

FIG. 7. Plot of themass (a), spin (b), and temperature (c) as functions of the time, of theKerr-blackbouncehavingl ¼ 0.99rþ (solid lines)
and the Kerr-black hole (dashed lines) of the same lifetime, evolving by the emission of a single type of scalar particle.
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ã� ¼ 0.555, while the one of the Kerr-black-bounce is
at ã� ¼ 0.47.
If the natal spin of both BHs is smaller than the

respective root of h, the dominant emission mode is
l ¼ 0. In this case, the evaporation due to a single scalar
field will cause both BHs to lose mass faster than angular
momentum. As a result, the evaporating BH will increase
its value of a� up to the respective asymptotic value ã�.
Conversely, the evolution of highly spinning BHs is
dominated by higher l modes decreasing the angular
momentum of the BH and driving it toward its asymptotic
values.

It is possible to speculate that the similar asymptotic value
is due to the common origin of the gain/loss of dimensionless
angular parameter. In fact, of thewhole scalarmodes emitted,
l ¼ m ¼ 0 solely does not subtract angular momentum and
as it is reported in Fig. 1 the transmission coefficients for
the two analyzed BHs are the same for this mode. The
differences are then related to the differences in the sub-
dominant l > 0 transmission coefficients. The dependency
of the asymptotic BH spin value on the regularizing param-
eter is mild but present since a variation in the regularizing
parameter incurs variations in the l > 0 graybody factors.
The regularizing parameter influencing the surface

gravity plays a significant role in the dynamic evolution
of the regular BH, which is much slower with respect to its
singular counterpart. The lifetime of an isolated Kerr BH
emitting only one scalar particle and having natal mass and
spin of Mi ¼ 1011 kg, and a�i ¼ 0, 01, is ∼2.34 × 1016 s,
while a nearly extremal Kerr-black-bounce BH with the
same initial conditions has a lifetime of ∼4.37 × 1020 s.
Fig. 6 reports mass, spin parameter, and temperature as a
function of time for such BHs. It is interesting to consider
two BHs of the same life span, and analyze their evolution.
It is worth noticing that the time evolution of the spin
parameters is different and theKerr-black-bounce spin grows
faster for most of the evolution as reported in Fig. 7. Given its
slower dynamical evolution, it is not surprising that the
intensity peak of the primary emission for the regular BH is
less intense with respect to a Kerr BH having the same mass
and spin. This situation is reported in Fig. 8(a) where masses
of M ¼ 3.5 × 1010 kg and spin values of a� ¼ 0, 0.9, 0.99
are considered. This plot shows a reduction in the number of
emitted scalars as well as a reduction in the energy at which
they are emitted, in linewith the previous comments. Finally,
Fig. 8(b) shows the primary emissivity for the same temper-
atures, namely, 301.93, 183.35, and 74.67 MeV for a� ¼ 0,
0.9, 0.99, respectively.
One may compare Fig. 8 with Fig. 2 of [67] which

describes the primary emission of a Kerr BH for different
field spins. Figure 2 of [67] highlights how the rotation in a
Kerr BH reinforces the emission of nonspinless particles
and decreases the emission of scalar particles. This is no
longer valid for the Kerr-bounce BH. In fact its scalar
particle emissivity peaks at higher values for values of the
spin parameter close to extremality.

V. CONCLUSIONS

In this paper, we studied the evolution, under the
emission of scalar radiation via the Hawking process, of
a rotating regular black hole described by the Kerr-black-
bounce metric. The study is performed in the case of a
nearly extremal value of the regularizing parameter
(l ¼ 0.99rþ). The differences in the dynamics of the
evaporation of such BH and a Kerr BH are outlined.
Namely, the negative transmission coefficients regime,

FIG. 8. (a) Primary emissivity for regular (solid) and singular
(dashed) BHs in the case of samemasses ofM ¼ 3.5 × 1010 kg for
spinvalues ofa� ¼ 0, 0.9, 0.99 in blue, green, and red, respectively.
(b) Primary emissivity for the same BHs in the case of the same
temperature, namely 301.93MeV for a� ¼ 0 in blue, 183.35MeV
for a� ¼ 0.9 in green, and 74.67 MeV for a� ¼ 0.99 in red.
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the asymptotic value of a�, the emissivity, and the lifetime
are discussed and compared.
Themain lesson of this toy-model points toward a possible

investigation of beyond-the-horizon features by analyzing
the Hawking radiation. For example, by assuming a way to
infer the BH mass and spin independently from the primary
Hawking emission, it is possible by measuring the peak
intensity to obtain an indirect measure of l in the contest of
the Kerr-black-bounce solutions, and in general, would
provide a measure of how much the BH solution differs
from the Kerr one. It is most likely to observe the Hawking
emission of photons and not scalar particles, but, since the
definition of f and g for spin-1 bosons is given by Eq. (12)
with the appropriate GBFs, one can expect that the
differences between the Kerr solution and the regular one
are still present. This work also suggests that tracking the
time evolution of the spin parameter could provide informa-
tion on the spacetime structure.
Such characteristics are certainly irrelevant for BHs of the

size measured today but may become a powerful and handy
tool in light of possible future primordial BHs detection.

We leave GBFs calculation for spin 1=2, 1, and 2 fields
and implementation of an accurate evaporation scenario for
future studies.
In a standard evolution scenario, BHs clearly do not

evaporate through the sole emission of a scalar field.
Nevertheless, scenarios involving the conspicuous presence
of scalar particles such as the string axiverse [64,68] may
display similar characteristics. In fact, in the limit of many
axionlike particles, the emission of scalar particles domi-
nates the evolution which results similar, up to a normali-
zation, to the single scalar case.
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