PHYSICAL REVIEW D 107, 044065 (2023)

Relativistic star solutions in mass-varying massive gravity with
a diagonal metric

De-Jun Wu

School of Science, Inner Mongolia University of Science and Technology, Inner Mongolia,
Baotou 014010, China

® (Received 22 October 2022; accepted 14 February 2023; published 27 February 2023)

We investigate relativistic star solutions in mass-varying massive gravity (MVMG) with a diagonal
metric. Contrary to the intuition that there is no fundamental difference between diagonal metric and
nondiagonal metric solutions regarding relativistic stars, we find that with a diagonal metric, well-behaved
relativistic star solutions may not exist except for trivial ones in which the graviton mass is a constant,
whereas nontrivial relativistic star solutions have been found in MVMG with a nondiagonal metric. The
reason is that with a diagonal metric, the field equations constitute a system of differential algebraic
equations of differential index-2 with two extra constraints that have a significant influence on the system,
rendering the relativistic star solution with a nontrivial graviton mass configuration impossible in most

cases.
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I. INTRODUCTION

To develop a self-consistent theory of gravity with a
nonzero mass was a historical effort, popularized through
late developments [1-6]. After overcoming some difficul-
ties, the final theory takes a standard form known as de
Rham-Gabadadze-Tolley massive gravity (ARGT) which
adds a potential term to General Relativity (GR) [7,8].
Several variations and extensions of dRGT have also been
developed. In bigravity, the reference metric is promoted
to be dynamical [9]. A new scalar degree of freedom is
introduced in both quasidilaton [10,11] and mass-varying
massive gravity (MVMG) [12,13]. MVMG would enable
the interesting phenomenon that graviton mass could
become extremely large near massive objects such as black
holes, yet small enough on large scale to satisfy cosmo-
logical observations [14].

In addition to providing a theoretical framework to
explain the late-time cosmic acceleration [15,16], like
many other theories of modified gravity [17], massive
gravity may also play a role in understanding some results
of the astrophysics observations, especially due to recent
developments in gravitational-wave detection [18,19]. For
example, new gravitational-wave polarizations exist in
massive gravity because some degrees of freedom that
GR eliminated are reintroduced. Massive gravity also has a
different dispersion relation from GR which will have
observable effects [20]. Besides directly influencing the
way gravitational waves propagate, massive gravity may
also change the processes gravitational waves emit, which
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usually involve massive astronomical objects such as
neutron stars and black holes [19].

When studying static, spherically-symmetric compact star
solutions in GR, whether the physical metric is diagonal
or not is not a matter of concern due to the presence of
the diffeomorphism invariance. However, the differences
between diagonal and nondiagonal metric solutions in
massive gravity are not inconsequential since the diffeo-
morphism invariance is explicitly broken. With a nondiag-
onal physical metric, black hole solutions have been found in
MVMG [14,21], as well as relativistic star solutions [22].
With a diagonal physical metric, relativistic star solutions
have been found in the minimally-coupled dRGT model
[23,24]. However, a similar study trying to find relativistic
star solutions in the full dRGT model met with some
difficulties [25]. In the studies of black hole solutions in
dRGT or MVMG, a diagonal physical metric is generally
avoided due to the problems associated with the singularities
at horizons and a nondiagonal physical metric is preferable
[26,27]. Itis only considered when the reference metric is no
longer assumed to be flat. Should such conclusions be
extended to compact star solutions in MVMG? Do new
difficulties arise when finding solutions with a diagonal
physical metric? We try to answer the questions by inves-
tigating the static, spherically-symmetric relativistic star
solutions with a diagonal physical metric in MVMG. It also
serves as a case study of the differences between nondiagonal
and diagonal solutions in massive gravity.

Relativistic star solutions in massive gravity with a
diagonal physical metric and a singular reference metric
have also been investigated [28,29]. A singular reference
metric would cause the theory to deviate from standard
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dRGT; such theories are not the focus of this study. The paper
is organized as follows, in Sec. II we briefly discuss the
MVMG model and the setup. In Sec. I1I the field equations in
the minimal model are given and we will investigate their
unusual nature thoroughly. The field equations turn out to be a
system of differential-algebraic equations (DAEs) with con-
straints. We study the effects of the extra constraints on the
system in Sec. IV and possible asymptotically flat solutions
in Sec. V. Both the minimal and full MVMG models are
considered. Finally, we summarize all the findings in Sec. VI.
We shall use geometric units which set c = G = 1.

II. MASS-VARYING MASSIVE GRAVITY MODEL
AND SETUP

The action of mass-varying massive gravity reads

1 R 1
S = 8—/d4x\/—g [E—i— V(e)U(K) —Eg””aﬂaaya— W(o)
n
+ Smlgul- (1)
where U(K) is the graviton potential and is given by

UK) = IC’[LICIV,] + aﬂC’fﬂlCZlCﬁ] + adCﬁ/C’;ICﬁICZ], (2)
with K =68, — /¢’ f > [ 18 the reference metric, and
a3 and a4 are free parameters. S, is the matter action.

We consider the ansatz in which both the physical and
the reference metric are static, spherically symmetric, and
diagonal,

ds? = _eZa(r)dIZ + eZb(r)d’,Q 4 erQZ, (3)
ds?; = —dr? + d'(r)*dr? + d(r)*dQ?. (4)

The setup is equivalent to a diagonal physical metric with
an unknown radial component and a Minkowski reference
metric. The scalar field 6 = o(r) is also static and spheri-
cally symmetric. We set the mass potential and the scalar
potential as

V(c) =m+ V", (5)
W(o) = W,o, (6)

where V, and W are positive, m is non-negative, and n, [
are even positive integers. Such a choice of the potentials is
a good candidate for the approximation of general poten-
tials around a local minimum; it is very common among
previous studies in MVMG [14,21,22]. The value of m, i.e.,
the minimum value of the graviton mass, is at least bound
by the Hubble scale and was sometimes neglected [14,22].
However, we find that with a diagonal metric, whether the
graviton mass potential is nonvanishing or not makes a
fundamental difference in the system, so we intend to study
both cases separately.

The Einstein field equations and the scalar field equation
are

G = 82T, + Tj5) + V(0)X,. (7)

ow oV
0,(v/—99*0,6) = \/—g| ———U |, 8
(V00 =TG- 500 ) @
where T,(f;) is the scalar energy-momentum tensor and X,
the effective energy-momentum tensor, which is given by

X;w = _(’C/,w - [lqg;w) + (x<IC/2w - [}q’wa + U2g;u/)
_ﬁ(K;v - []C]K:/%u + UZICW - U39;u/)v (9)

where [K] is the trace of K, and

a and f are defined as a =1 4+ a3 and ff = a3 + a4. In the
following section, we mainly focus on the minimal model
as a special case, where the parameters in graviton potential
are set as

a=p=0. (11)

The full model, in which « and 3 can take any value, will be
considered in later sections.

III. FIELD EQUATIONS IN THE MINIMAL MODEL

In this section we derive the field equations which turn
out to be DAEs and try to transform them into ordinary
differential equations (ODEs). Two additional constraints
emerge in this process and they have a significant impact on
the system. We use the minimal model for convenience as
the field equations in the full model are rather cumbersome,
but the key results still hold.

The ;, ', and g components of the Einstein field
equations (7) read

e 2b(2rb' +e* - 1) _ <3 oy _2_d> v
,

1
- (56_21’6’2 + W) —8zp, (12)

1
+ (E e b’ — W) +8zp, (13)

e 2 ((ra' +1)(a' = b') + ra")
r

d
= (3 —e 4 —ebyg ——)V
r

1
- (E e b’ + W) + 8xp. (14)
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The field equation of the scalar fields is

e 2P (ra —rb' +2)o'

€_2b6" +
’
—ab@? g 2d
=W - (e—z_ e~ —eld ———|—3>V’. (15)
r r
Lastly, there is the equation of energy-momentum
conservation,

d(p+p)+p =0 (16)

The derivatives of mass potential V and scalar potential W
are with respect to o, the rests are with respect to radius r.

Before solving the equations, we shall verify that they do
not constitute a system of ODESs in which the derivatives of
all unknown functions should in principle be obtainable
through algebraic operations. It can be shown that 2" and d’
cannot be determined algebraically from the system.
Equations (14)-(16) can determine «”, ¢”, and p'.
Among the last two equations, (12) contains »’ and d
|

but (13) does not, making the task of solving b’ and d’
algebraically impossible. This fact can be made more
evident by substituting ¢’ and &’ in Eq. (13) with two
new variables, X and A, after which the equation is purely
algebraic. Therefore, these equations do not qualify as a
system of ODEs but rather DAEs, with Eq. (13) as an
algebraic constraint.

To transform the system into ODEs that could be solved
more easily, we take the derivative of Eq. (13). The aim is to
obtain another differential equation so that »’ and d’ can be
determined explicitly. After some calculations we have

re“(ra’ —2e® +2)V + o' (r*et —d*)V' =0. (17)

If ¢/ or V' is set to 0, in which case dRGT is recovered,
Eq. (17) will reduce to the similar equation obtained in [23]
using the condition of conservation of the effective energy-
momentum tensor. However, the equation still does not
contain b" or d', which is insufficient for the system to
transform into ODEs. Therefore, we take the derivative
again and obtain

1
Ee“(r(2ra’b’ —deb(a' +b') +6d" +2b +2re* (8ap — W) — ro’?) — 4e? +4)V

+reb(e?(e?(3r—d) — rd') — re®)V? + (r’e

a _ dZ)GIZV//

1
+—(0'(d?(ra" —rb' +2) + r?e(r(d’ +b') = 2e* +2) = 2rdd') + re* (r’e® — )W)V’
,
1
— e (rte" — d*)(re“(e"(3r —2d) — rd') — r*e’ + d*d')V"? = 0. (18)
.

This equation contains b’ and d’ so their expressions can be
determined, but the expressions are too lengthy to write
down explicitly. We give two symbolic expressions instead,

b =B(d,o',a,0,b,d,p,r), (19)
d =D(d,d',a,6,b,d,p,r). (20)

We transform the system into ODEs by taking the second
order derivative of one existing equation, so that the
differential index of the system is 2. We further check if
a new constraint would arise from Eq. (18) by taking the
derivative again and the result is an identity. The above
calculations are performed under the assumption that ¢’ is
not equal to 0 across the whole space, otherwise the system
reduces to dRGT.

Besides one equation for each physical quantity, Egs. (13)
and (17) remain as two additional purely algebraic con-
straints. In principle, we could use these constraints to obtain
an effective Tolman-Oppenheimer-Volkoff (TOV) equation
by expressing b, d, and their derivatives, in terms of a, ¢, ¢,
a’, and r. We can solve b from Eq. (17) as

—a(rzea _ dZ)U/V/
rv

1
b=1n3 (ra’+e +2>. (21)

However, when trying to solve d by plugging the above
equation into Eq. (13), we encounter a polynomial equation
of degree 5 which is incapable of yielding any algebraic
solution. This fact compels us to solve the system in its
current form without an effective TOV equation. In the full
dRGT model, similar complications may occur even without
the scalar field [25].

IV. THE POSSIBILITY OF BRANCHING AND THE
ABSENCE OF OSCILLATING SOLUTIONS

The fact that d potentially has multiple values indicates
that there might be multiple branches of solutions in the
system; however, it is not necessarily the case. One can
draw a comparison between the system under study and a
system of a pendulum moving in a plane, which is a well-
known example of DAEs. The pendulum has a constraint
regarding its position which reads x> 4 y> = 0. The fact
that the constraint has two solutions does not imply that
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there are two branches of solutions. Even if the formalism
of branching is employed, solutions from different
branches can be pieced together smoothly. In other words,
branching is not a physical property but rather the result of
algebraic manipulations in the case of a pendulum.

We can determine whether relativistic star solutions in
MVMBG have multiple branches by applying the regularity
requirement and finding boundary conditions at the center
of the star. If only one approximate solution can be found,
yielding one unique boundary condition, then there is no
branching in the system. The requirement reads
a'(0) =b'(0) =0’(0) =0, another condition must be
included which is d(0) = 0, otherwise the system does
not have any self-consistent solution. We plug the con-
ditions into the system and can only find one solution. It
indicates that there is no branching in relativistic star
solutions, and this conclusion holds in both the minimal
model and the full model.

However, in some instances there are multiple branches
of asymptotic solutions, which will be demonstrated in later
sections. This contradiction may lead to some issues in the
system. It indicates a mismatch between the parameter
space of the solutions at the center of the star and that of
infinity. If we assume that different branches correspond to
the same approximate solution at the center of the star, there
would still be a problem of discontinuity in the limit of
vanishing graviton mass, which can be shown clearly
through the comparison with compact star solutions of
MVMG with a nondiagonal metric.

Branching also occurs in MVMG systems with a non-
diagonal metric [14,21,22], but the key difference is that in
such models, the two branches of solutions differ only in
the value of a nondynamical factor while described by the
same set of field equations. Their approximate solutions at
any point in space are also different which is the result of
the difference in said nondynamical factor; there is no
possibility of mismatch at all. In the limit of vanishing
graviton mass, two branches survive while being consistent
with GR. In the case of a diagonal metric, if we assume that
different branches correspond to the same approximate
solution at the center of the star and that one approximate
solution would presumably reduce to one GR solution in
the limit of vanishing graviton mass, forcing different
branches to approach the GR solution. Thus, the number
of solutions changes and the limit is not smooth. The only
other possible bypass is that among all the branches of
solutions, only one is physical and corresponds to the
unique approximate solution at the center of the star.
However, this possibility can only be checked numerically.

The constraints of Eqs. (13) and (17) could give the
expressions of ¢ and a’. Because Eq. (13) contains the
square of ¢’, two branches are necessarily obtained,

e—a
PV

o(r) <2(d2 —r2e)V' F F%), (22)

e—2a(r26a _ d2)v/
’,.5‘/2
2(ef - 1)

+=— (23)

a(r) =

<2(r26“ —d*)V' + F%>

where

F = -2re*?(e4(3r —2d) — r)V3
—2rte?1 (e (rP(8ap — W) + 1) — 4eb + 3)V?
+ 4(d2 _ r2€a)2V/2‘

They will be referred to as the negative or the positive
branch respectively according to the sign in front of F in
Eq. (22). It is obvious that the branching happening here is
not physical and the two branches can be pieced together
smoothly. In fact, two branches are equivalent under the
transformation ¢ — —o. We only keep the formalism in
later calculations for convenience.

It is necessary to emphasize that the system is not
overdetermined, even though two independent equations
of both a and ¢ are acquired. This fact can be understood by
considering the hypothetical process of obtaining the TOV
equation, in which all the field equations are reduced to a
single one involving p and p except for the scalar. First, we
could in principle rewrite b, d and their derivatives in terms
of a and ¢ because there are four equations at our disposal,
namely (12), (13), (17), and (18). Then we could replace b,
d and their derivatives in Egs. (14) and (15). Finally, we
could eliminate a by using Eq. (16), arriving at two
equations. One would be the TOV equation the other field
equation for the scalar. There is no constraint left after the
process and the system is not overdetermined as every
equation is needed to get the final result. In short, Egs. (13)
and (17) could in principle eliminate b and d.

Some important conclusions can be drawn from Eq. (22).
Suppose 6 =0 at some r which means V' =0. For
relativistic star solutions, the term e~ is positive. If a
nonvanishing graviton mass setup is considered, then V and

F? are also positive which leads to the conclusion that ¢
could only approach 0 from a negative value in the positive
branch and from a positive value in the negative branch. A
solution from one branch can cross 0 and jump to another
branch, forming an oscillating solution. In contrast, a
nonoscillating solution must stay in one branch, such
solutions are more desirable [14].

In the case of vanishing graviton mass, the result is more
complicated since a 0-divided-by-0 situation may occur.
Assuming that ¢ approaches 0 at some finite value of r,
there is no reason to believe any component of the metric
would be 0 or divergent; they should each approach a finite
value. The denominator in ¢’ (r) would be ~V 6" and the
first term in numerator reads ~2n(d”> — r’e®)V ,6"~!. There
are three terms approaching 0 in F—the leading term is the
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last one which reads ~4n?(d® — r?e?)*Vis*l),
Depending on the sign of 2n(d? — r?e®)V ,6"~!, ¢’ would

dn(d*e—r*) . /"
approach 0 or 5.—— 0 approaching 0 would cause o

to approach 0, because in Eq. (15) it can be shown that if
6 = ¢’ = 0then ¢” = 0. Following the result, we can prove
that all orders of derivatives of ¢ equal to 0 and ¢ will stay
at 0 beyond that particular radius, leaving a reference metric
component d that is completely decoupled from the system.
This solution is mathematically possible but should be
discarded because it is very difficult to comprehend
physically. Not only does the scalar field remain 0 beyond
a finite radius while having a nontrivial structure near
r = 0, but also the degrees of freedom of the system change
crossing the point of 6 = 0.

We are left with the possibility that ¢ approaches

2 ,—a__,2 . .
4”(‘1;76’) at 6 =0 and thus diverges. To avoid such

divergence, ¢ should never cross 0, which suggests that a
nontrivial oscillating solution does not exist if V is allowed to
be 0, the situation is the same in the full model. Previous
studies in MVMG showed that oscillating solutions are quite
normal [14,21,22]. The lack of oscillating solutions may not
be a problem theoretically, but they serve as useful tools to
obtain the nonoscillating solution in numerical methods.

V. THE ABSENCE OF WELL-BEHAVED
ASYMPTOTICALLY FLAT SOLUTIONS

The necessary condition for the existence of a physical
relativistic star solution is the existence of a well-defined
asymptotic solution. If such a solution is found it can also
be used to integral inward to obtain a full solution. Unlike
the previous studies on relativistic stars in MVMG, we find
|

that with a diagonal metric the solutions in the cases of
nonvanishing and vanishing graviton mass are quite differ-
ent. Therefore, we have to distinguish between the two
situations.

We can check whether a background is possible by
plugging the corresponding metrics into the effective
energy-momentum tensor X4. For more thorough discus-
sions on background solutions, see [30,31].

In the case of nonvanishing graviton mass, there is no
solution for d(r) to support a de Sitter or an anti—de Sitter
background, which requires X} ~ &, at large r. In the
minimal model, a possible workaround is that d(r)
approaches a constant which makes the reference metric
degenerate. A model with such a reference metric no longer
belongs to dRGT. The existence of a flat background
requires X% to approach 0 at large r, which implies d(r) ~ r
or any other slower growing function. However, the only
solution that ensures a nondegenerate reference metric is
d(r) ~ r. This result holds in both the minimal model and
the full model.

In the case of vanishing graviton mass, as the scalar
approaches 0, V also decreases and the effect of XV
disappears. A flat background should be restored, while
the requirement for its existence is more difficult to tell
because X} can have any value as long as V(0)X,,
approaches 0. In order to find the suitable flat background
solution, we assume a(r) = ay+ da(r), b(r)=by+
6b(r), o(r) = 60(r), and d(r) = d_,(r) + 6d(r) in which
the 0 terms represent infinitesimals and the rest of the
functions or constants are finite. We plug them into the field
equations of the full model and take the leading term,
solving d_;(r) as

d_i(r) =

This result is valid for both the full and minimal models,
and we will use the assumption that d(r) ~ rin the case of
vanishing graviton mass. Here we only focus on the
solution of d_;(r) and ignore the rest of the perturbation
equations; there will be cases in which the solution as
a whole does not exist. We will discuss the issue in later
sections.

In summary, we would focus on finding asymptotically
flat solutions in all cases. Without loss of generality, the
positive branch is chosen in the following calculations
because the positive and negative branches are equivalent
under the transformation ¢ — —oc in the current scalar
potential setup. And we only focus on nonoscillating
solutions which will stay in one branch.

e“(a+p)—pE /(- p)—e“2d —a-2p-1)+a —a—p
(e - 1)f+a—1 "

A. Minimal model

We study the case of nonvanishing graviton mass in the
minimal model by first considering the possibility that the
asymptotically flat solutions are not analytic. Such an
assumption stems from the observation that the solutions
might contain a Yukawa term that is not analytic if m # 0.
The solution should take the form of a(r) = ay + da(r),
b(r) = by + 6b(r), o(r) = 60(r), and d(r) = d_ir + dy+
8d(r). As before the & terms represent infinitesimals. A
constant term dj is also included in d(r) to represent the
most general solution possible, as the constant term might
be masked by the leading term in d(r). We set n, [ in
Egs. (5) and (6) to 2 and solve the linearized system of field
equations to obtain the following result,
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Coe=Vmr

da(r) = _()\/_T,
Coe V™ (\/mr + 1

8b(r) == 2<ﬁr )

Coe™V™ (mr? + /mr +1)
5d(r) = — 2m3/2r2 s

o
so(r) = (25)
r

(also ag = by =dy =0 and d_; = 1). What is peculiar
about this solution is that it lacks a Schwarzschild back-
ground, resulting in an arbitrarily small Arnowitt-Deser-
Misner (ADM) mass and its inability to describe a physical
star. The role of constraints Eqs. (22) and (23) in obtaining
the solution is also noteworthy. We first solve the linearized
system of field equations without the two constraints, the
solution is a combination of the Schwarzschild background
and a Yukawa term. We then plug the solution into the
linearized constraints and find that the Schwarzschild
background must be absent for the constraints to hold,
which can be achieved by setting the constant factor of the
1/r term in the Schwarzschild background to 0. To a certain
degree, the existence of the constraints makes the physical
stars impossible in the context of nonanalytic solutions.

To check whether the results hold in more general forms
of potential, we raise the value of n, [ to 4. We find that the
nonanalytic, asymptotically flat solution still exists and it is
the same as Eq. (25) except for éo(r) which reads

_a

do(r) = ;.

(26)

For n and [ that are bigger than 4, the same conclusion
holds as the higher-order derivatives of the potentials do not
enter the linearized system of field equations.

The asymptotic solution could also be analytic, we
explore the possibility by setting

1
a(r) - ;ai 7 ’
1
b(r) = b, —,
"=
1
6(7‘) - i:ZlUi ; ’
1
d(r)=d_ d d;i—. 27
(r)=d.ir+ o+;,r, (27)
We plug the series Eq. (27) into the field equations and can
only obtain a solution in which

01:62:03:"'20. (28)

The value of ¢ can be solved directly to be 0, and the
rest of ¢; can be proven to be 0 by expanding Eq. (15). The

expression of each order is a polynomial of ¢; with nonzero
coefficients such that the condition ¢; = 0 is sufficient to
conclude o; = 0 for higher values of i. The solution will
lead to a constant scalar field and consequently to a
constant graviton mass. Therefore, this relativistic star
solution would reduce to that of dRGT and should be
considered trivial under MVMG. We increase the value of
n, [ to 4 and can only find the same trivial solution.

At this point, we can justify the uniqueness of the
asymptotic solution in the case of nonvanishing graviton
mass, which is related to the discussions in the previous
section. If the minimal model is considered, in the case of a
nonanalytic solution, the condition of uniqueness is obvious
as we only obtain one solution. In the case of an analytic
solution, the trivial solution is the same as the one obtained in
minimal dRGT with a diagonal metric, which does not have
branching [23]. In the case of vanishing graviton mass, the
condition of uniqueness may not hold, and we will discuss
this subject in the rest of the section.

We set m = 0 to include the case of vanishing graviton
mass. Using the same method of solving the linearized
system of field equations, we aim to obtain possible
nonanalytic, asymptotically-flat solutions. We find that
for n = [ = 2 there is no suitable solution at all, as the
solution of &d(r) is not an infinitesimal at large r. The
situation is similar if n and [ are increased to 4, in which
case the solution of 8d(r) is a constant associated with
da(r) and 6b(r) which cannot be set to 0.

We try to find analytic solutions next by assuming the
same approximate solution as in Eq. (27). However,
the choice of d(r) deserves some clarification because
the approach to obtaining the conclusion d(r) ~ r in the
case of vanishing graviton mass could not cover the case of
analytic solutions. We can study the possibility that d(r)
contains higher order of r by instead assuming

1
d(r)=d_or? +d_yr+dy+ Y di—. (29
-1 T

and solve the field equations. It is straightforward to show
that d_, = 0. It can also be proven in the same manner that
higher order terms are 0 too. As such, we can conclude that
d(r) ~r in the case of analytic solutions. After some
calculations, we find that for n =7 =2, only a trivial
solution with a constant scalar exists. The reason is similar
to that of the case of nonvanishing graviton mass. But if we
increase n and [ to 4, there seems to be a nontrivial solution
besides the trivial one that reads

bO — O,
ap = In (Jfl),
dy = 3“18d‘1 . (30)

Also d_; is determined by
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VOB |+ (WW = 3vWg? + v =0.  (31)

The derivatives of the potentials are taken at ¢ = 0. The
remaining coefficients can be solved order-by-order for given
a; and o,. In other words, a; and o, are free to choose and
there are three branches corresponding to one such choice.
This solution can potentially describe a physical star, but the
problem discussed in Sec. IV will arise since it has branches,
namely a mismatch between the parameter space of the
solution at r = 0 and that of infinity. The validity of the
solution can only be checked by numerical methods, we will
investigate this solution further in future studies.

B. Full model

In this section, we study the relativistic star solutions in
the full model with the same settings for the mass and scalar
potentials as in the minimal model. The structure of the
system is still the same, DAEs of index-2 with two
constraints. However, the field equations become too
lengthy and inconvenient to write down, especially for b,
d and the two constraints.

We first study the nonanalytic, asymptotically flat sol-
utions in the case of nonvanishing graviton mass by setting
a(r) = ag+ éa(r), b(r) = by + b(r), o(r) = 5o(r), and
d(r) =d_;r+dy+ 6d(r). In the full model there will be
more background solutions that satisfy the field equation
compared to the minimal model. After solving the linearized
system of field equations, we find that for any value of n and
[, the solutions in the minimal model are reproduced, there
also exists a new solution in a very similar form with a
different background, which reads

pd*, —2(a+p)d_, +2a+p+1
(a+p)d*, —=2Qa+p+1)d_; +3a+p+3"
(32)

a0=1n

The solution for d_; is multivalued,

3a+ 28+ /3(3d% — 4p)
d_, = 2% ) (33)

Also, we have b, = 0. This solution is essentially the same as
Eq. (25) but with different constants, so it also has an
|

arbitrarily small ADM mass and cannot describe a physical
star. A new and different solution also exists that gives the
following background, but it requires f = %az.

In @
ay = ,
0 oa+2

bOZO,
L a+?2

d . 34
= (34)

it is in agreement with Eqs. (32) and (33). The unique
feature of this solution is that it is analytic by not
possessing a Yukawa term even with a finite graviton
mass. However, as an analytic solution, its validity should
be checked accordingly. Simply linearizing the system
does not properly reflect the magnitude relation between
1/r and the infinitesimals in the approximate solution at
spatial infinity.

We move on to the analytic asymptotically flat solution
by expanding the system in terms of 1/r with the same
settings as in the minimal model. In all of the situations we
could only recover trivial solutions, even if g = 3 a?. Still,
that particular choice of parameters might hold some
interesting properties in dRGT.

In the case of vanishing graviton mass, we first study the
nonanalytic solution. For the same reason as in the minimal
model, no valid solution exists for 5d(r) in both cases of
n=1=2 and n=1=4. As for analytic solutions, we
could only recover a trivial solution for n=1[=2.
However, if we set n = [ = 4 there is a nontrivial solution
in addition to the trivial one, just as in the minimal model.
It is characterized by the value of d_;, given by the
following quartic equation,

V(@ = a = f)d, + 2V (<2 +a+2p+ 1),
+ (VO(6a> — 68 =3) + W (—a +  + 1))d?,
—2(VW (262 +a—2p) + pWH)d_,
+ V@ +a-p+1)+WH(a+p)=0.  (35)

All the derivatives of the potentials are taken at ¢ = 0. We
also have

VO((a=p= 1), + 32, ~3(a+p)dy +1+2a+p)

f=In (d_1v<4>(—ﬁd%1 +3(a+p)dy —32a+p+ 1)+ VA (Ba+p+3) - W(“)>’ .

and by, = 0. The rest of the coefficients can be solved order-
by-order except for a; and ¢,. The solution is analogous to
the one in the minimal model with the same problem and a
much more complicated equation on d_,. If we increase n
and [/ to higher values, the solution still has multiple

[
branches but the equation regarding the different branches
changes yet again. If one could draw a conclusion, it is that
for vanishing graviton mass one possible analytic solution
with multiple branches exists, but its form is dependent on
potentials, in particular the mass potential V.
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VI. SUMMARY AND DISCUSSION

We have studied the relativistic star solutions in MVYMG
with a diagonal physical metric. The system is dramatically
different from the one with a nondiagonal physical metric
[22], in the sense that field equations form a system of
DAEs of index-2 instead of a system of ODEs. We
transform the system by taking derivatives of the field
equation that function as an algebraic constraint twice, and
obtain a system of ODEs with two additional constraints.

The first observation that can be made about the system
is that there is no possibility of an oscillating solution in the
case of vanishing graviton mass, due to the two additional
constraints. The absence of oscillating solutions is unusual
in MVMG, as they can be found in the previous studies
[14,21,22]. It may also lead to difficulties in obtaining
nonoscillating solutions because such solutions are usually
the outcome of fine-tuning the oscillating solutions.

We focus the rest of the paper on finding the approx-
imations of the possible solutions at a large radius. In the
case of a diagonal physical metric, we find that the choice
of mass potential and scalar potential affects the solutions
of the system at a fundamental level, which is very different
from the case of a nondiagonal physical metric. To include
as many circumstances as possible, we study four cases
separately based on whether graviton mass is nonvanishing
or not and whether mass potential and scalar potential are
quadratic or higher.

Overall, there are three types of asymptotically flat
solutions. In both the minimal model and the full model,
trivial solutions can be found, which have a constant
graviton mass and are not meaningful in MVMG. In the
case of nonvanishing graviton mass, there exist nonanalytic
solutions without the Schwarzschild background, caused
directly by the two constraints. The solutions are not
suitable to describe physical stars because the ADM mass
of the solutions is 0. Finally, we have found noteworthy
solutions if the graviton mass is allowed to be 0, and the

mass potential is quartic or higher. These solutions take the
standard form of approximate solutions and can be
expressed in a series of 1/r. They might be candidates
for describing physical stars but these solutions suffer from
the problem of having multiple branches. Because the
approximate solution at the center of the star is unique, it
cannot be matched one-to-one with the asymptotic solution
and may lead to other issues. We will investigate this type
of solution further in future studies.

In the case of nonvanishing graviton mass, we can
conclude that there is no possible nontrivial physical star
solution. In the case of vanishing graviton mass, there are
possible candidates for physical star solutions if their
unusual nature is ignored. However, the oscillating sol-
utions are missing which makes the task of finding possible
solutions numerically very difficult, as an improper choice
of parameters will always lead to a divergent solution
instead of an oscillating one. We tried to find relativistic star
solutions numerically using boundary conditions generated
by approximate solutions at the center of the star. However,
we have not been able to find suitable solutions as they tend
to diverge very fast. As a result, a nondiagonal physical
metric is much preferable when studying relativistic star
solutions in MVMG. The findings in this paper might be
related to the difficulties in the studies of relativistic star
solutions in dRGT with a diagonal physical metric [25], in
which case a nondiagonal physical metric might be worth
considering. It seems that by introducing more degrees of
freedom, the extra constraints leading to the absence of
well-behaved solutions will be eliminated, which could be
accomplished by introducing a nondiagonal physical met-
ric or a dynamical reference metric.
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