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Black bounces are spacetimes that can describe, depending on certain parameters, black holes or
wormholes. In this work, we use a method to obtain the matter content that generates black bounce solutions
in general relativity. The method is constructed in a general way, and as models, we apply it to the Simpson-
Visser black bounce solution and the Bardeen-type black bounce solution. We obtain that these metrics are
solutions of Einstein’s equations when we consider the coupling of the gravitational interaction with a
phantom scalar field with a nonlinear electrodynamics. The presence of the phantom scalar field is linked to
the fact that this type of solution violates the null energy condition. We analyze separately the energy
conditions associated with the stress-energy tensor for the scalar field and for the electromagnetic field.
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I. INTRODUCTION

From the classical point of view, general relativity is the
theory that, in the simplest way, best describes gravitational
interaction [1,2]. This theory was able to solve existing
problems and predict new phenomena, such as the bending
of light and the existence of gravitational waves [3–10].
Mathematically, general relativity is described through the
Einstein equations, a set of nonlinear, second-order differ-
ential equations coupled in the components of the metric
tensor [2,11]. Depending on the imposed conditions, such
as symmetry or matter content, Einstein equations have
different solutions. One of the best known solutions is the
Schwarzschild metric. The Schwarzschild line element
can be used to study spacetime around static stars. This
solution also describes the simplest model of a black hole
that exists, since it has no spin or charge [11]. From an
astrophysical point of view, black holes are compact
objects with a strong gravitational field, which not even
light can escape [2]. This strong field allows us to test
general relativity more precisely, allowing to measure
small deviations. Currently, these experiments are the
detection of gravitational waves and images of black
holes [7,12].

Another interesting solution to Einstein equations is the
wormhole. This object is distinguished by the possibility
of connecting two different points of the same universe, or
from different universes, through a tunnel, the throat [13].
The first wormhole solution was proposed by Einstein
and Rose and is basically the maximum extension of the
Schwarzschild solution [14]. Despite connecting two
distinct regions, the Einstein–Rosen solution is not tra-
versable, which means that, no particle can cross through
the throat. The first traversable wormhole solution was
proposed by Ellis and Bronnikov, and later studied again
by Morris and Thorne [15–17]. Interestingly, wormholes
can mimic the ringdown of black holes [18]. Thus, the
signal of a gravitational wave is not a definitive proof of
the presence of an event horizon. One problem that arises
with these solutions is that exotic matter content is
required to maintain them. This exotic matter violates
energy conditions, such as phantom scalar fields and
nonlinear electrodynamics [19–25]. However, solutions
have recently emerged with a more viable material
content, considering for example a Dirac field [26–29].
In the literature there is a very extensive number of works
involving wormholes, from geodesics to the stability of
these solutions [30–37].
Nonlinear electrodynamics is also involved with another

type of solution, known as regular black hole. These
solutions are characterized by the fact that they have event
horizons but do not have singularities like traditional black

*esialg@gmail.com
†marco2s303@gmail.com

PHYSICAL REVIEW D 107, 044064 (2023)

2470-0010=2023=107(4)=044064(11) 044064-1 © 2023 American Physical Society

https://orcid.org/0000-0001-8586-0285
https://orcid.org/0000-0002-8080-9277
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.044064&domain=pdf&date_stamp=2023-02-27
https://doi.org/10.1103/PhysRevD.107.044064
https://doi.org/10.1103/PhysRevD.107.044064
https://doi.org/10.1103/PhysRevD.107.044064
https://doi.org/10.1103/PhysRevD.107.044064


holes, such as Schwarzschild [38]. The first regular
solution was proposed by James Bardeen [39]. However,
were Beato and Garcia who showed that this solution
arises from Einstein equations coupled with nonlinear
electrodynamics [40]. These solutions have interesting
properties, such as the fact that photons do not follow
geodesics or changes in the thermodynamics of these
solutions [41,42]. Using nonlinear electrodynamics, it
is also possible to construct solutions with multiple
horizons [43]. As in the case of wormholes, the study
of regular solutions has been extensively explored in recent
decades [44–55].
Recently, Simpson and Visser proposed a new type of

regular solution that, depending on the choice of parameter,
can become the Schwarzschild solution, a regular black
hole, an one-way traversable wormhole, and a two-way
traversable wormhole [56]. This type of solution is known
as a black bounce. This solution has a throat at r ¼ 0 and
the area of the event horizon has no dependence on the
parameter of the solution. In addition to the Simpson-Visser
solution, there are other black bounce models [57–60].
However, like the previous solution, most of these metrics
were not proposed as solutions to Einstein equations. Even
without knowing the material content of these solutions,
several properties can be analyzed [61–79]. However, there
are other properties that can only be studied when the
source of matter is known. Pedro and Bronnikov, in
different works, proposed ways to obtain this material
content considering the nonlinear electrodynamics with a
phantom scalar field [80–82].
Phantom scalar fields are commonly associated with

wormholes [19]. This type of source is capable of generat-
ing wormhole solutions even with minimal coupling [15].
These fields are distinguished by the presence of a negative
energy density, thus violating the known energy conditions.
In general, solutions of this type end up having a series of
complications such as instability or even poorly defined
thermodynamics [30]. Another type of solution, which are
similar to the black bounces, that can be generated by the
phantom scalar field is black universe [83–88]. In addition
to these facts, the phantom scalar field can still be treated as
a candidate for dark energy, further increasing its relevance.
Still, on the phantom scalar field, we can have black hole
solutions, also known as phantom black holes. This was first
proposed by Bergmann and Leipnik, in 1957 [89]. Later,
other authors consider this type of source to find more
solutions [90–92]. There are also regular versions of these
solutions [93–95]. Some phantom black holes, known as
cold black holes, have zero temperature [96–98].
The structure of this paper is organized as follows. In

Sec. II, we give the motivation why we should use the
phantom scalar field with nonlinear electrodynamics to
generate black bounce solutions. We also use Einstein
equations and build, in a general form, the formalism that
will be used to obtain the material content of the solutions.

In the Secs. III and IV, using the method constructed in the
section before, we obtain the material content of the
Simpson-Visser solution and the Bardeen-type black
bounce. Section V is dedicated to the study the energy
conditions for each field that makes up the source of the
solutions. Our conclusions and perspectives are present
in Sec. VI.
We adopt the metric signature ðþ;−;−;−Þ. We shall

work in geometrodynamics units where G ¼ ℏ ¼ c ¼ 1.

II. GENERAL SOLUTION

Black bounces are structures that have a throat covered
by an event horizon. These compact objects interpolate
between a regular black hole and a wormhole.
The Simpson-Visser solution describes a black bounce,

and is given by the line element [56]

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 −ΣðrÞ2ðdθ2 þ sin2 θdφ2Þ; ð1Þ

with

fðrÞ ¼ 1 −
2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ; and ΣðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
: ð2Þ

If we consider general relativity, the black bounce model
proposed by Simpson-Visser does not satisfy Einstein
equations in a vacuum. In fact, we can interpret the matter
content as being an anisotropic fluid given by

ρ ¼ −
a2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
− 4mÞ

8πðr2 þ a2Þ5=2 ; ð3Þ

p1 ¼ −
a2

8πðr2 þ a2Þ2 ; ð4Þ

p2 ¼ −
a2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
−mÞ

8πðr2 þ a2Þ5=2 ; ð5Þ

where t is the timelike coordinate, and

ρ ¼ −
a2

8πðr2 þ a2Þ2 ; ð6Þ

p1 ¼ −
a2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
− 4mÞ

8πðr2 þ a2Þ5=2 ; ð7Þ

p2 ¼ −
a2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
−mÞ

8πðr2 þ a2Þ5=2 ; ð8Þ

where t is the spacelike coordinate. The quantities ρ, p1,
and p2 are the components of the stress-energy tensor

Tμ
ν ¼ diag½ρ;−p1;−p2;−p2�; ð9Þ
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where t is the timelike coordinate, and

Tμ
ν ¼ diag½−p1; ρ;−p2;−p2�; ð10Þ

where t is the spacelike coordinate.
A first attempt to build a source for this solution would

be to consider nonlinear electrodynamics. However, the
stress-energy tensor for nonlinear electrodynamics has the
symmetry T0

0 ¼ T1
1 [41], and we see from Eqs. (3) and (4)

that T0
0 ≠ T1

1. This implies that the Simpson-Visser metric
cannot be interpreted as a solution of Einstein equations
in the presence of nonlinear electrodynamics. This type of
behavior is not unique to the Simpson-Visser solution.
To solve that problem, let us consider the theory

described by the action

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½R− 2κ2ðϵgμν∂μϕ∂νϕ−VðϕÞÞþ 2κ2LðFÞ�;

ð11Þ

where R is the Ricci scalar, gμν are the components of the
metric tensor, g is the determinant of the metric, ϕ is a scalar
field, VðϕÞ is the potential related with the scalar field and
the electromagnetic Lagrangian LðFÞ is an arbitrary func-
tion of the electromagnetic scalar F ¼ FμνFμν=4. Here,
ϵ ¼ �1. To ϵ ¼ þ1 we have a usual scalar field, and to
ϵ ¼ −1 we have a phantom scalar field [97].
The field equations related with the action (11) are

∇μ½LFFμν� ¼ 1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
LFFμν� ¼ 0; ð12Þ

2ϵ∇μ∇μϕ ¼ −
dVðϕÞ
dϕ

; ð13Þ

Rμν −
1

2
gμνR ¼ κ2Tϕ

μν þ κ2TEM
μν ; ð14Þ

where LF ¼ ∂L=∂F, Rμν is the Ricci tensor, Tϕ
μν is the

stress-energy tensor of the scalar field, and TEM
μν is the stress-

energy tensor of the electromagnetic field. The stress-energy
tensors Tϕ

μν and TEM
μν are given by

Tϕ
μν ¼ 2ϵ∂μϕ∂νϕ − gμνðϵgαβ∂αϕ∂βϕ − VðϕÞÞ; ð15Þ

TEM
μν ¼ gμνLðFÞ − LFFμ

αFνα: ð16Þ

The line element that describes a general black bounce
spacetime is written as [57]

ds2¼ fðrÞdt2−fðrÞ−1dr2−Σ2ðrÞðdθ2þ sin2 θdφ2Þ: ð17Þ

We will consider only magnetic charged solutions. So
that, the only nonzero component of the Maxwell-Faraday
tensor, Fμν, is

F23 ¼ q sin θ; ð18Þ

and the electromagnetic scalar is

FðrÞ ¼ q2

2Σ4
: ð19Þ

The equations of motion to the gravitational field and the
scalar field are

−
f0ðrÞΣ0ðrÞ

ΣðrÞ −
fðrÞΣ0ðrÞ2
ΣðrÞ2 −

2fðrÞΣ00ðrÞ
ΣðrÞ þ 1

ΣðrÞ2
¼ κ2LðrÞ þ κ2ϵfðrÞϕ0ðrÞ2 þ κ2VðrÞ; ð20Þ

−
f0ðrÞΣ0ðrÞ

ΣðrÞ −
fðrÞΣ0ðrÞ2
ΣðrÞ2 þ 1

ΣðrÞ2
¼ κ2LðrÞ − κ2ϵfðrÞϕ0ðrÞ2 þ κ2VðrÞ; ð21Þ

−
f0ðrÞΣ0ðrÞ

ΣðrÞ −
f00ðrÞ
2

−
fðrÞΣ00ðrÞ

ΣðrÞ

¼ κ2LðrÞ − κ2q2LFðrÞ
ΣðrÞ4 þ κ2ϵfðrÞϕ0ðrÞ2 þ κ2VðrÞ; ð22Þ

− 2ϵðf0ðrÞϕ0ðrÞ þ fðrÞϕ00ðrÞÞ − 4ϵfðrÞΣ0ðrÞϕ0ðrÞ
ΣðrÞ

¼ −
V 0ðrÞ
ϕ0ðrÞ : ð23Þ

From the field equations, we find that

ϕ0ðrÞ2 ¼ −
Σ00ðrÞ
κ2ϵΣðrÞ ; or ϕ0ðrÞ ¼ i

κ
ffiffiffi
ϵ

p
ffiffiffiffiffiffiffiffiffiffiffi
Σ00ðrÞ
ΣðrÞ

s
: ð24Þ

Usually, Σ00ðrÞ=ΣðrÞ > 0, so that, to guarantee that the
scalar field is real, we need ϵ ¼ −1. The scalar field is real
only to a phantom scalar field. If we calculate the null
energy condition, in regions where fðrÞ > 0, one of the
inequalities is

NEC1⇔ −
2fΣ00

κ2Σ
≥ 0: ð25Þ

As Σ00ðrÞ=ΣðrÞ > 0, the null energy condition is violated.
However, if Σ00ðrÞ=ΣðrÞ < 0, the null energy condition is
satisfied and we have a real scalar field to ϵ ¼ 1. Based on
these points, we can elaborate the following theorem:
Theorem:—For any black bounce solution that arises

from coupling the gravitational field with a scalar field and
nonlinear electrodynamics, the scalar field must necessarily
be phantom if Σ00ðrÞ=ΣðrÞ > 0, i.e., if the inequality NEC1

is violated. In this case, ϵ ¼ −1.
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From Eqs. (20)–(23) we find

LðrÞ ¼ −
f0ðrÞΣ0ðrÞ
κ2ΣðrÞ −

fðrÞΣ0ðrÞ2
κ2ΣðrÞ2 þ ϵfðrÞϕ0ðrÞ2 þ 1

κ2ΣðrÞ2 − VðrÞ; ð26Þ

LFðrÞ ¼
ΣðrÞ4f00ðrÞ

2κ2q2
−
fðrÞΣðrÞ2Σ0ðrÞ2

κ2q2
þ fðrÞΣðrÞ3Σ00ðrÞ

κ2q2
þ 2ϵfðrÞΣðrÞ4ϕ0ðrÞ2

q2
þ ΣðrÞ2

κ2q2
; ð27Þ

V 0ðrÞ ¼ 2ϕ0ðrÞðϵΣðrÞf0ðrÞϕ0ðrÞ þ 2ϵfðrÞΣ0ðrÞϕ0ðrÞ þ ϵfðrÞΣðrÞϕ00ðrÞÞ
ΣðrÞ : ð28Þ

To solve (24) and to obtain (26)–(28), we need to specify
fðrÞ and ΣðrÞ.

III. SIMPSON-VISSER SOLUTION

The Simpson-Visser model is given by the line element
(1) with (2). Here, we will consider that the parameter
a ¼ q is the magnetic charge.
We find that the scalar field, the potential, and the

electromagnetic quantities are

ϕðrÞ ¼
tan−1ðrqÞ

κ
; ð29Þ

VðrÞ ¼ 4mq2

5κ2ðq2 þ r2Þ5=2 ; ð30Þ

LðrÞ ¼ 6mq2

5κ2ðq2 þ r2Þ5=2 ; ð31Þ

LFðrÞ ¼
3m

κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p : ð32Þ

In Fig. 1 we show the behavior of the scalar field in terms of
the radial coordinate for different charge values. The field is

always positive for positive radial coordinate values and
always negative for negative radial coordinate values. We
thus see that the scalar field is not symmetric r → −r.
The electromagnetic quantities must obey the relation

LF −
∂L
∂F

¼ LF −
∂L
∂r

�
∂F
∂r

�
−1

¼ 0: ð33Þ

If we substitute the expressions (31) and (32) in Eq. (33),
we verify that it is identically satisfied.
From (29) and (19), we obtain the forms of rðϕÞ and

rðFÞ. This allows us to get VðϕÞ and LðFÞ,

VðϕÞ ¼ 4m cos5ðϕκÞ
5κ2jqj3 ; ð34Þ

LðFÞ ¼ 12
ffiffiffi
24

p
mF5=4

5κ2
ffiffiffiffiffiffijqjp ; ð35Þ

so that we obtain the material content that describes the
Simpson-Visser solution. In Fig. 2 we see that the potential
tends to a constant for a zero value of the scalar field and
is periodic as ϕ increases. The intensity of the potential
decreases for larger values of charge. We also see that the
electromagnetic Lagrangian is not a multivalued function,
as expected for a solution with a magnetic source, it tends to
zero when F ¼ 0, and grows as F increases.

IV. BARDEEN-TYPE BLACK BOUNCE

Now we consider the Bardeen-type black bounce sol-
ution described by the line element (1) with [57]

fðrÞ ¼ 1−
2mr2

ðr2þq2Þ3=2 ; and ΣðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þq2

q
: ð36Þ

The scalar field is also given by Eq. (29), since it
depends on ΣðrÞ. The potential and the electromagnetic
quantities are

VðrÞ ¼ 4mð7q2r2 − 8q4Þ
35κ2ðq2 þ r2Þ7=2 ; ð37Þ

−0.3

−0.2

−0.1

 0

 0.1

 0.2

 0.3

−4 −2  0  2  4

r/m

q=0.5m
q=m

q=1.5m
q=2m

FIG. 1. Behavior of the scalar field as a function of the radial
coordinate to different values of charge.
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LðrÞ ¼ 2mq2ð16q2 þ 91r2Þ
35κ2ðq2 þ r2Þ7=2 ; ð38Þ

LFðrÞ ¼
mð13r2 − 2q2Þ
κ2ðq2 þ r2Þ3=2 : ð39Þ

Equations (38) and (39) satisfy the condition (33).
Using (29) and (19), we find VðϕÞ and LðFÞ, that are

given by

VðϕÞ ¼ 4m cos5ðϕκÞð7 sin2ðϕκÞ − 8 cos2ðϕκÞÞ
35κ2jq3j ; ð40Þ

LðFÞ ¼ 4
ffiffiffi
24

p
F5=4mð91 − 75

ffiffiffiffiffiffi
2F

p
qÞ

35κ2
ffiffiffiffiffiffijqjp : ð41Þ

With this, we realize that the Bardeen-type solution has
more complications than the Simpson–Visser solution. The
electromagnetic field does not behaves like Maxwell in
the weak field limit. Through Fig. 3, we see graphically that
the Bardeen-type solution has more complications in its
matter content than the Simpson-Visser solution. The
potential associated with the scalar field is periodic and
in each cycle there are several maximums and minimums.
The electromagnetic Lagrangian tends to zero to F → 0.
Unlike the Simpson-Visser case, the Lagrangian does not
grow indefinitely with F. There is a maximum value that
LðFÞ can reach and after that it decreases, assuming
negative values.

V. ENERGY CONDITIONS

As we said before, these black bounce solutions violate
the null energy condition, such that the scalar field becomes
real. Once the null energy condition is violated, all other
conditions are violated. However, we can find out how the

energy conditions behave separately for the scalar field and
for the electromagnetic field. The energy conditions are
given by

NECϕ;EM
1;2 ¼ WECϕ;EM

1;2 ¼ SECϕ;EM
1;2 ⇔ ρϕ;EM þ pϕ;EM

1;2 ≥ 0;

ð42Þ

SECϕ;EM
3 ⇔ ρϕ;EM þ pϕ;EM

1 þ 2pϕ;EM
2 ≥ 0; ð43Þ

DECϕ;EM
1;2 ⇒ ρϕ;EM − pϕ;EM

1;2 ≥ 0; ð44Þ

DECϕ;EM
3 ¼ WECϕ;EM

3 ⇔ ρϕ;EM ≥ 0; ð45Þ

where the indexes ϕ and EM determine whether the energy
condition is associated with the scalar field or the electro-
magnetic field. The fluid quantities are identify through the
stress-energy tensor as

Tμ
ν ¼ diag½ρϕ;EM;−pϕ;EM

1 ;−pϕ;EM
2 ;−pϕ;EM

2 �; ð46Þ

where fðrÞ > 0. In regions where fðrÞ < 0, the fluid
quantities are identified as

Tμ
ν ¼ diag½−pϕ;EM

1 ; ρϕ;EM;−pϕ;EM
2 ;−pϕ;EM

2 �: ð47Þ

So that, in regions where fðrÞ > 0, we have the following
set of equations:

ρϕ ¼ −fðrÞϕ0ðrÞ2 þ VðrÞ; ð48Þ

pϕ
1 ¼ −fðrÞϕ0ðrÞ2 − VðrÞ; ð49Þ

pϕ
2 ¼ fðrÞϕ0ðrÞ2 − VðrÞ; ð50Þ

ρEM ¼ LðrÞ; ð51Þ

−0.03

−0.02

−0.01

 0

 0.01

 0.02

 0.03

 0  0.5  1  1.5  2  2.5

V
(

)m
2

q=m
q=1.5m
q=2m

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6

L
(F

)m
2

Fm2

q=m
q=1.5m
q=2m

FIG. 2. Behavior of the scalar field potential, as a function of ϕ, and of the electromagnetic Lagrangian, as a function of F, that
generates the Simpson-Visser solution to different values of charge.
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pEM
1 ¼ −LðrÞ; ð52Þ

pEM
2 ¼ −LðrÞ þ q2LFðrÞ

ΣðrÞ4 : ð53Þ

Finally, for regions where fðrÞ < 0, we have

ρϕ ¼ fðrÞϕ0ðrÞ2 þ VðrÞ; ð54Þ

pϕ
1 ¼ fðrÞϕ0ðrÞ2 − VðrÞ; ð55Þ

pϕ
2 ¼ fðrÞϕ0ðrÞ2 − VðrÞ; ð56Þ

ρEM ¼ LðrÞ; ð57Þ

pEM
1 ¼ −LðrÞ; ð58Þ

pEM
2 ¼ −LðrÞ þ q2LFðrÞ

ΣðrÞ4 : ð59Þ

These equations allow us to obtain the energy conditions
(42)–(45), that, to fðrÞ > 0, are given by

NECϕ
1 ¼ WECϕ

1 ¼ SECϕ
1 ⇔ −2fðrÞϕ0ðrÞ2 ≥ 0; ð60Þ

NECϕ
2 ¼ WECϕ

2 ¼ SECϕ
2 ⇔ 0; ð61Þ

SECϕ
3 ⇔ −2VðrÞ ≥ 0; ð62Þ

DECϕ
1 ⇒ 2VðrÞ ≥ 0; ð63Þ

DECϕ
2 ⇒ 2ðVðrÞ − fðrÞϕ0ðrÞ2Þ ≥ 0; ð64Þ

DECϕ
3 ¼ WECϕ

3 ⇔ VðrÞ − fðrÞϕ0ðrÞ2 ≥ 0; ð65Þ

NECEM
1 ¼ WECEM

1 ¼ SECEM
1 ⇔ 0; ð66Þ

NECEM
2 ¼ WECEM

2 ¼ SECEM
2 ⇔

q2LFðrÞ
ΣðrÞ4 ≥ 0; ð67Þ

SECEM
3 ⇔

2q2LFðrÞ
ΣðrÞ4 − 2LðrÞ ≥ 0; ð68Þ

DECEM
1 ⇒ 2LðrÞ ≥ 0; ð69Þ

DECEM
2 ⇒ 2LðrÞ − q2LFðrÞ

ΣðrÞ4 ≥ 0; ð70Þ

DECEM
3 ¼ WECEM

3 ⇔ LðrÞ ≥ 0: ð71Þ

From (61), we see that NECϕ
2 is identically satisfied to the

scalar case and from (66) we see that NECEM
1 is also

identically satisfied. For regions where fðrÞ < 0, the
structure of the energy conditions for the electromagnetic
sector does not change, remaining equal to Eqs. (66)–(71).
To the scalar sector, we find

NECϕ
1 ¼ WECϕ

1 ¼ SECϕ
1 ⇔ 2fðrÞϕ0ðrÞ2 ≥ 0; ð72Þ

NECϕ
2 ¼ WECϕ

2 ¼ SECϕ
2 ⇔ 2VðrÞ ≥ 0; ð73Þ

SECϕ
3 ⇔ 2VðrÞ ≥ 0; ð74Þ

DECϕ
1 ⇒ 2VðrÞ ≥ 0; ð75Þ

DECϕ
2 ⇒ 2fðrÞϕ0ðrÞ2 ≥ 0; ð76Þ

DECϕ
3 ¼ WECϕ

3 ⇔ VðrÞ þ fðrÞϕ0ðrÞ2 ≥ 0: ð77Þ
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−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0  0.5  1  1.5  2  2.5

V
(

)m
2

q=0.2m
q=0.3m
q=0.4m
q=0.5m

−3

−2

−1

 0
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 2

 3

 4

 5

 0  1  2  3  4  5  6

L
(F

)m
2

Fm2

q=0.2m
q=0.3m
q=0.4m
q=0.5m

FIG. 3. Behavior of the scalar field potential, as a function of ϕ, and of the electromagnetic Lagrangian, as a function of F, that
generates the Bardeen-type solution to different values of charge.
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Equations (60)–(65) are essentially different, for the most
part, from Eqs. (72)–(77). Now we have the requirements to
evaluate the energy conditions for the models studied in
this work.

A. Simpson-Visser solution

To the Simpson-Visser model, we replace Eqs. (29)–(32)
in the energy conditions, that results, to fðrÞ > 0 in

NECϕ
1 ⇔ −

2q2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p
− 2mÞ

κ2ðq2 þ r2Þ5=2 ≥ 0;

SECϕ
3 ⇔ −

8mq2

5κ2ðq2 þ r2Þ5=2 ≥ 0; ð78Þ

DECϕ
1 ⇒

8mq2

5κ2ðq2 þ r2Þ5=2 ≥ 0;

DECϕ
2 ⇒ −

2q2ð5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p
− 14mÞ

5κ2ðq2 þ r2Þ5=2 ≥ 0; ð79Þ

WECϕ
3 ⇔ −

q2ð5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p
− 14mÞ

5κ2ðq2 þ r2Þ5=2 ≥ 0; ð80Þ

NECEM
2 ⇔

3mq2

κ2ðq2 þ r2Þ5=2 ≥ 0;

SECEM
3 ⇔

18mq2

5κ2ðq2 þ r2Þ5=2 ≥ 0; ð81Þ

DECEM
1 ⇒

12mq2

5κ2ðq2 þ r2Þ5=2 ≥ 0;

DECEM
2 ⇒ −

3mq2

5κ2ðq2 þ r2Þ5=2 ≥ 0; ð82Þ

WECEM
3 ⇔

6mq2

5κ2ðq2 þ r2Þ5=2 ≥ 0: ð83Þ

If there is an event horizon, outside the horizon, the scalar
field will not violate the inequalitiesNECϕ

2 andDECϕ
1 . The

scalar field violates all the energy conditions in this region.
The electromagnetic field violates only the dominant
energy condition once only the inequality DECEM

2 is not
satisfied.
Inside the possible event horizon, we find

NECϕ
1 ⇔

2q2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p
− 2mÞ

κ2ðq2 þ r2Þ5=2 ≥ 0;

NECϕ
2 ⇔

8mq2

5κ2ðq2 þ r2Þ5=2 ≥ 0; ð84Þ

SECϕ
3 ⇔

8mq2

5κ2ðq2 þ r2Þ5=2 ≥ 0;

WECϕ
3 ⇔

q2ð5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p
− 6mÞ

5κ2ðq2 þ r2Þ5=2 ≥ 0; ð85Þ

DECϕ
1 ⇒

8mq2

5κ2ðq2 þ r2Þ5=2 ≥ 0;

DECϕ
2 ⇒

2q2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p
− 2mÞ

κ2ðq2 þ r2Þ5=2 ≥ 0: ð86Þ

The scalar field violates all energy condition once the
inequalities NECϕ

1 , WECϕ
3 , and DECϕ

2 are not satisfied.

B. Bardeen-type solution

To the Bardeen-type model, we replace Eqs. (29),
and (37)–(39) in the energy conditions, that results, to
fðrÞ > 0 in

NECϕ
1 ⇔ −

2q2ð1 − 2mr2

ðq2þr2Þ3=2Þ
κ2q2ðr2 þ q2Þ2 ≥ 0;

SECϕ
3 ⇔ −

8mq2ð8q2 − 7r2Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0; ð87Þ

DECϕ
1 ⇒

8mð7q2r2 − 8q4Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0;

DECϕ
2 ⇒ −

2q2ð5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ r2

p
− 14mÞ

5κ2ðq2 þ r2Þ5=2 ≥ 0; ð88Þ

WECϕ
3 ⇔ −

q2ð32mq2 − 98mr2 þ 35ðq2 þ r2Þ3=2Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0;

ð89Þ

NECEM
2 ⇔

mq2ð13r2 − 2q2Þ
κ2ðq2 þ r2Þ7=2 ≥ 0;

SECEM
3 ⇔ −

6mq2ð34q2 − 91r2Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0; ð90Þ

DECEM
1 ⇒

4mq2ð16q2 þ 91r2Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0;

DECEM
2 ⇒

mq2ð134q2 − 91r2Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0; ð91Þ

WECEM
3 ⇔

2mq2ð16q2 þ 91r2Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0: ð92Þ

The scalar field, where fðrÞ > 0, the inequalities NECϕ
1 ,

DECϕ
2 , and WECϕ

3 are not satisfied, so that, all energy
conditions are violated. The electromagnetic field violates
the dominant energy condition once the inequality DECEM

2
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is not satisfied to r ≫ 1. The conditions SECEM
3 and

NECEM
2 will not necessarily be violated outside of a

possible event horizon. This will depend on the charge
value of the solution. However, even if these conditions are
not violated outside the horizon, they are violated within
the horizon.
In the region where fðrÞ < 0, we find

NECϕ
1 ⇔

2q2ð1 − 2mr2

ðq2þr2Þ3=2Þ
κ2q2ðr2 þ q2Þ2 ≥ 0;

NECϕ
2 ⇔

8mð7q2r2 − 8q4Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0; ð93Þ

SECϕ
3 ⇔

8mq2ð7r2 − 8q2Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0;

WECϕ
3 ⇔

q2ð−32mq2 − 42mr2 þ 35ðq2 þ r2Þ3=2Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0;

ð94Þ

DECϕ
1 ⇒

8mq2ð7r2 − 8q2Þ
35κ2ðq2 þ r2Þ7=2 ≥ 0;

DECϕ
2 ⇒

2q2ð1 − 2mr2

ðq2þr2Þ3=2Þ
κ2q2ðr2 þ q2Þ2 ≥ 0: ð95Þ

The scalar field violates all energy condition once the null
energy condition is not satisfied.

VI. CONCLUSION

In this work, we obtain the material content of black
bounce solutions in general relativity. For this, we consider
the coupling of gravitational theory with a scalar field and
nonlinear electrodynamics.
We show that, as the stress-energy tensor of black

bounces does not satisfy certain symmetries, only nonlinear
electrodynamics is not enough to generate these solutions.
For this reason, we consider the theory described by the
action (11) and obtained the field equations for this theory.
The parameter ϵ determines whether we have the presence

of an usual scalar field or a phantom scalar field. Through
the field equations, we built the necessary formalism to
obtain the material content to a general solution. With these
results, we propose a theorem that relates the need for the
scalar field to be phantom with the fact that the null energy
condition is violated. It means that, if the null energy
condition were satisfied, the scalar field that generates the
black bounce could be nonphantom.
We applied the method to the Simpson-Visser solution

and the Bardeen-type black bounce solution and obtained
the shape of the Lagrangian LðFÞ, equations (35) and (41),
and the potential VðϕÞ, equations (34) and (40), that
generate these solutions. The functions (31), (32), (38),
and (39) are obtained independently through the field
equations. These electromagnetic functions need to satisfy
the condition (33), what really happens.
Once we have separately the stress-energy tensor of each

field that composes the source, we analyze the energy
conditions associated with each field. In the case of the
Simpson-Visser Solution, the scalar field violated all energy
conditions, while the electromagnetic field violated only the
dominant energy condition. In the case of the Bardeen-type
solution, both the scalar field and the electromagnetic field
violate all energy conditions. However, for the electromag-
netic field, it is possible to at least guarantee the positivity of
the energy density, ρEM ¼ WECEM

3 .
There are several black bounce solutions. However, it

will not always be possible to apply the method presented
in this work to obtain the material content in an analytical
way. In some cases, it is not possible to solve Eq. (28)
analytically.
Now that we have the material content of these solutions,

we can analyze other properties associated with the material
content, such as thermodynamics and perturbations.
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