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Black bounces are spacetimes that can describe, depending on certain parameters, black holes or
wormbholes. In this work, we use a method to obtain the matter content that generates black bounce solutions
in general relativity. The method is constructed in a general way, and as models, we apply it to the Simpson-
Visser black bounce solution and the Bardeen-type black bounce solution. We obtain that these metrics are
solutions of Einstein’s equations when we consider the coupling of the gravitational interaction with a
phantom scalar field with a nonlinear electrodynamics. The presence of the phantom scalar field is linked to
the fact that this type of solution violates the null energy condition. We analyze separately the energy
conditions associated with the stress-energy tensor for the scalar field and for the electromagnetic field.

DOI: 10.1103/PhysRevD.107.044064

I. INTRODUCTION

From the classical point of view, general relativity is the
theory that, in the simplest way, best describes gravitational
interaction [1,2]. This theory was able to solve existing
problems and predict new phenomena, such as the bending
of light and the existence of gravitational waves [3—10].
Mathematically, general relativity is described through the
Einstein equations, a set of nonlinear, second-order differ-
ential equations coupled in the components of the metric
tensor [2,11]. Depending on the imposed conditions, such
as symmetry or matter content, Einstein equations have
different solutions. One of the best known solutions is the
Schwarzschild metric. The Schwarzschild line element
can be used to study spacetime around static stars. This
solution also describes the simplest model of a black hole
that exists, since it has no spin or charge [11]. From an
astrophysical point of view, black holes are compact
objects with a strong gravitational field, which not even
light can escape [2]. This strong field allows us to test
general relativity more precisely, allowing to measure
small deviations. Currently, these experiments are the
detection of gravitational waves and images of black
holes [7,12].
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Another interesting solution to Einstein equations is the
wormhole. This object is distinguished by the possibility
of connecting two different points of the same universe, or
from different universes, through a tunnel, the throat [13].
The first wormhole solution was proposed by Einstein
and Rose and is basically the maximum extension of the
Schwarzschild solution [14]. Despite connecting two
distinct regions, the Einstein—Rosen solution is not tra-
versable, which means that, no particle can cross through
the throat. The first traversable wormhole solution was
proposed by Ellis and Bronnikov, and later studied again
by Morris and Thorne [15-17]. Interestingly, wormholes
can mimic the ringdown of black holes [18]. Thus, the
signal of a gravitational wave is not a definitive proof of
the presence of an event horizon. One problem that arises
with these solutions is that exotic matter content is
required to maintain them. This exotic matter violates
energy conditions, such as phantom scalar fields and
nonlinear electrodynamics [19-25]. However, solutions
have recently emerged with a more viable material
content, considering for example a Dirac field [26-29].
In the literature there is a very extensive number of works
involving wormholes, from geodesics to the stability of
these solutions [30-37].

Nonlinear electrodynamics is also involved with another
type of solution, known as regular black hole. These
solutions are characterized by the fact that they have event
horizons but do not have singularities like traditional black
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holes, such as Schwarzschild [38]. The first regular
solution was proposed by James Bardeen [39]. However,
were Beato and Garcia who showed that this solution
arises from Einstein equations coupled with nonlinear
electrodynamics [40]. These solutions have interesting
properties, such as the fact that photons do not follow
geodesics or changes in the thermodynamics of these
solutions [41,42]. Using nonlinear electrodynamics, it
is also possible to construct solutions with multiple
horizons [43]. As in the case of wormholes, the study
of regular solutions has been extensively explored in recent
decades [44-55].

Recently, Simpson and Visser proposed a new type of
regular solution that, depending on the choice of parameter,
can become the Schwarzschild solution, a regular black
hole, an one-way traversable wormhole, and a two-way
traversable wormhole [56]. This type of solution is known
as a black bounce. This solution has a throat at »r = 0 and
the area of the event horizon has no dependence on the
parameter of the solution. In addition to the Simpson-Visser
solution, there are other black bounce models [57-60].
However, like the previous solution, most of these metrics
were not proposed as solutions to Einstein equations. Even
without knowing the material content of these solutions,
several properties can be analyzed [61-79]. However, there
are other properties that can only be studied when the
source of matter is known. Pedro and Bronnikov, in
different works, proposed ways to obtain this material
content considering the nonlinear electrodynamics with a
phantom scalar field [80-82].

Phantom scalar fields are commonly associated with
wormholes [19]. This type of source is capable of generat-
ing wormhole solutions even with minimal coupling [15].
These fields are distinguished by the presence of a negative
energy density, thus violating the known energy conditions.
In general, solutions of this type end up having a series of
complications such as instability or even poorly defined
thermodynamics [30]. Another type of solution, which are
similar to the black bounces, that can be generated by the
phantom scalar field is black universe [83—88]. In addition
to these facts, the phantom scalar field can still be treated as
a candidate for dark energy, further increasing its relevance.
Still, on the phantom scalar field, we can have black hole
solutions, also known as phantom black holes. This was first
proposed by Bergmann and Leipnik, in 1957 [89]. Later,
other authors consider this type of source to find more
solutions [90-92]. There are also regular versions of these
solutions [93-95]. Some phantom black holes, known as
cold black holes, have zero temperature [96-98].

The structure of this paper is organized as follows. In
Sec. II, we give the motivation why we should use the
phantom scalar field with nonlinear electrodynamics to
generate black bounce solutions. We also use Einstein
equations and build, in a general form, the formalism that
will be used to obtain the material content of the solutions.

In the Secs. III and IV, using the method constructed in the
section before, we obtain the material content of the
Simpson-Visser solution and the Bardeen-type black
bounce. Section V is dedicated to the study the energy
conditions for each field that makes up the source of the
solutions. Our conclusions and perspectives are present
in Sec. VL.

We adopt the metric signature (4, —,—, —). We shall
work in geometrodynamics units where G = A = ¢ = 1.

II. GENERAL SOLUTION

Black bounces are structures that have a throat covered
by an event horizon. These compact objects interpolate
between a regular black hole and a wormhole.

The Simpson-Visser solution describes a black bounce,
and is given by the line element [56]

ds?> = f(r)dt* — f(r)~'dr* — 2(r)*(d6* + sin> 0d¢?), (1)

with
2m 5 3
flr)=1 T — and X(r)=Vr +a. (2)

If we consider general relativity, the black bounce model
proposed by Simpson-Visser does not satisfy Einstein
equations in a vacuum. In fact, we can interpret the matter
content as being an anisotropic fluid given by

p:_az(Vr2+a2—4m)’ (3)

8x(r? + a?)>/?

2

a
=55 4
P 8x(r? + a*)? “)
a*(Vrt4+at—m) (5)
p2= 8x(r? + a?)/?
where ¢ is the timelike coordinate, and
2
a
- 6
P 8x(r* + a*)? (6)
B az(\/m —4m) 7)
Pr= 8x(r> +a?)>*
AT R —m
pr =L ) (3)

8x(r? + a?)/?

where t is the spacelike coordinate. The quantities p, py,
and p, are the components of the stress-energy tensor

T+, = diaglp, —py, —p2. —pal. ©)
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where ¢ is the timelike coordinate, and

T*, = diag[~py. p, —p2. —pal; (10)

where ¢ is the spacelike coordinate.

A first attempt to build a source for this solution would
be to consider nonlinear electrodynamics. However, the
stress-energy tensor for nonlinear electrodynamics has the
symmetry 70, = T, [41], and we see from Egs. (3) and (4)
that 7%, # T',. This implies that the Simpson-Visser metric
cannot be interpreted as a solution of Einstein equations
in the presence of nonlinear electrodynamics. This type of
behavior is not unique to the Simpson-Visser solution.

To solve that problem, let us consider the theory
described by the action

5= [ dr/mgIR -2 e 0, p0,4 - V(@) + 24L(P)L
(1)

where R is the Ricci scalar, g, are the components of the
metric tensor, g is the determinant of the metric, ¢ is a scalar
field, V(¢) is the potential related with the scalar field and
the electromagnetic Lagrangian L(F) is an arbitrary func-
tion of the electromagnetic scalar F = F*F,, /4. Here,
e = +1. To € = +1 we have a usual scalar field, and to
€ = —1 we have a phantom scalar field [97].
The field equations related with the action (11) are

Wwﬂﬂz¢%%W%hWﬂ=Q (12)

av(e)
2V, Viep = — , 13
eV, Vi o (13)
1 ()
Ry =5 9uR = K2TH, + K2TEM, (14)

where L, = 0L/0F, RW is the Ricci tensor, TZ’,, is the
stress-energy tensor of the scalar field, and 770" is the stress-
energy tensor of the electromagnetic field. The stress-energy
tensors 7%, and TEM are given b

124 )12% given by

T = 260,00, — g,,(e9 0,950 — V(). (15)
TEZIIVI = g;wL(F) - LFF/,taFuu' (16)

The line element that describes a general black bounce
spacetime is written as [57]

ds*> = f(r)dt* — f(r)~'dr* = 2*(r)(d6? 4 sin® @dg?). (17)

We will consider only magnetic charged solutions. So
that, the only nonzero component of the Maxwell-Faraday

tensor, F s is

F23 =dq sin 9, (18)
and the electromagnetic scalar is
(19)

The equations of motion to the gravitational field and the
scalar field are

_SOE) _fOZ()? 2f(02'(r) 1
Z(r) (r)? Z(r) X(r)?
=2L(r) + K*ef(r)¢'(r)* + >V (r), (20)
SO0 _fEE? 1
X(r) (r? I
— L) - Ref (NP + V), (21)

f'(E(r) () f()x"(r)

(r) 2 (r)
= L) =L e P V), ()
4 X (r)g'
=27 () + £ ) = LT )
Vi(r)
=7 23
70 29
From the field equations, we find that
e 2(r) oy L 2
V0P =—amy o YO = s 9
Usually, ~"(r)/Z(r) > 0, so that, to guarantee that the
scalar field is real, we need ¢ = —1. The scalar field is real

only to a phantom scalar field. If we calculate the null
energy condition, in regions where f(r) > 0, one of the
inequalities is

2fz//
s 2 0. (25)

NEC, < —
As X'(r)/Z(r) > 0, the null energy condition is violated.
However, if X"(r)/X(r) < 0, the null energy condition is
satisfied and we have a real scalar field to ¢ = 1. Based on
these points, we can elaborate the following theorem:
Theorem:—For any black bounce solution that arises
from coupling the gravitational field with a scalar field and
nonlinear electrodynamics, the scalar field must necessarily
be phantom if "(r)/X(r) > 0, i.e., if the inequality NEC|
1s violated. In this case, ¢ = —1.
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From Egs. (20)—(23) we find

/ r ! r r / r 2
() =~ LEE TR cr 00 (07 + = VO (26)
(P (r PE(r)2E (r)? NEFPE(r)  2ef(NZ(r)*P' (r)?  Z(r)?
Lot = 2L _SORPTCR SR R 2 o)
Vi(r) = 29" (r)(eX(r)f' (@' (r) + 2ef(NZ (r)d'(r) + ef (r)Z(r)¢" (1)) ' (28)

(r)

To solve (24) and to obtain (26)—(28), we need to specify
f(r) and X(r).

III. SIMPSON-VISSER SOLUTION

The Simpson-Visser model is given by the line element
(1) with (2). Here, we will consider that the parameter
a = g is the magnetic charge.

We find that the scalar field, the potential, and the
electromagnetic quantities are

¢(r) = tan: ol : (29)
V) = s (30)
L0) = s G1)
Le(r) = (32)

In Fig. 1 we show the behavior of the scalar field in terms of
the radial coordinate for different charge values. The field is

0.3

02 F

0.1 f

FIG. 1. Behavior of the scalar field as a function of the radial
coordinate to different values of charge.

[

always positive for positive radial coordinate values and

always negative for negative radial coordinate values. We

thus see that the scalar field is not symmetric r — —r.
The electromagnetic quantities must obey the relation

oL oL (oF\~!
If we substitute the expressions (31) and (32) in Eq. (33),
we verify that it is identically satisfied.

From (29) and (19), we obtain the forms of r(¢) and
r(F). This allows us to get V(¢) and L(F),

4 5
vig) = 0. (34
L(F) = 712\4?'"1:5/4, (35)
564/l

so that we obtain the material content that describes the
Simpson-Visser solution. In Fig. 2 we see that the potential
tends to a constant for a zero value of the scalar field and
is periodic as ¢ increases. The intensity of the potential
decreases for larger values of charge. We also see that the
electromagnetic Lagrangian is not a multivalued function,
as expected for a solution with a magnetic source, it tends to
zero when F = 0, and grows as F' increases.

IV. BARDEEN-TYPE BLACK BOUNCE

Now we consider the Bardeen-type black bounce sol-
ution described by the line element (1) with [57]

2mr?

- 2 2
P+ T

flr)=1- and X(r)= (36)

The scalar field is also given by Eq. (29), since it
depends on X(r). The potential and the electromagnetic
quantities are

_ 4m(7¢°r* - 84*)
35k (g 4 2)2

V(r)

(37)
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FIG. 2. Behavior of the scalar field potential, as a function of ¢, and of the electromagnetic Lagrangian, as a function of F, that
generates the Simpson-Visser solution to different values of charge.

2mq* (16> + 91r%)
L(r) = 35K2(q2 + r2)7/2

) (38)

m(13r2 — 24?%)
Lp(r) = 2(E+ AR

Equations (38) and (39) satisfy the condition (33).
Using (29) and (19), we find V(¢) and L(F), that are
given by

__ 4mcos’ (¢hx) (7 sin®(¢hx) — 8 cos?(¢x))

v 35lq]

,  (40)

42F4m(91 — 75v2Fq)
L(F) = . :
35k%1/ 14

(41)

With this, we realize that the Bardeen-type solution has
more complications than the Simpson—Visser solution. The
electromagnetic field does not behaves like Maxwell in
the weak field limit. Through Fig. 3, we see graphically that
the Bardeen-type solution has more complications in its
matter content than the Simpson-Visser solution. The
potential associated with the scalar field is periodic and
in each cycle there are several maximums and minimums.
The electromagnetic Lagrangian tends to zero to F — 0.
Unlike the Simpson-Visser case, the Lagrangian does not
grow indefinitely with F. There is a maximum value that
L(F) can reach and after that it decreases, assuming
negative values.

V. ENERGY CONDITIONS

As we said before, these black bounce solutions violate
the null energy condition, such that the scalar field becomes
real. Once the null energy condition is violated, all other
conditions are violated. However, we can find out how the

energy conditions behave separately for the scalar field and
for the electromagnetic field. The energy conditions are
given by

NEC‘f*zEM = WEC‘{’;EM -9 ECTEM o phEM pf,zEM > 0.

(42)
SECY™ & ptiM 4 p ™M 12 pfBM > o, (43)
DECT;™ = pt™M — piy™ > 0, (44)
DEC?™ = WEC?™ & p#EM > ), (45)

where the indexes ¢ and EM determine whether the energy
condition is associated with the scalar field or the electro-
magnetic field. The fluid quantities are identify through the
stress-energy tensor as

T+, = diagp?™, ™ —pd™™ 2] (46)
where f(r) > 0. In regions where f(r) <0, the fluid
quantities are identified as

$EM

T#, = diag|~p] R

pPEM —pP R —pT R (47)

So that, in regions where f(r) > 0, we have the following
set of equations:

PP = (" (r)? + V(r), (48)
Pl ==f(NP (r? = V() (49)
Py = f()d (r)? = V(r), (50)
P = L(r), (51)
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0.6

FIG. 3.

pr = —L(r). (52)
P = —Lin) + . (53)
Finally, for regions where f(r) < 0, we have

p? = f(r)g'(r)*+V(r), (54)

pl = F(r)g (r)? = V(r), (55)

= f(r)g'(r)> = V() (56)

p™M = L(r), (57)

piM = —L(r), (58)

P =i+ . (59)

These equations allow us to obtain the energy conditions
(42)—(45), that, to f(r) > 0, are given by

NEC? = WEC? = SEC! & —2f(r)¢/(r)? > 0, (60)
NEC? = WEC? = SEC? = 0, (61)
SEC? & —2V(r) >0, (62)
DEC? = 2V(r) >0, (63)
DECY = 2(V(r) = f(r)¢' (r)?) > 0, (64)
DEC! = WECY & V(r) = f(r)¢(r)* 2 0 (65)

Behavior of the scalar field potential, as a function of ¢, and of the electromagnetic Lagrangian, as a function of F, that
generates the Bardeen-type solution to different values of charge.

NECIM = WECPM = SECPM & 0, (66)
2
L
NECIM — WECEM — SECM & TEF ) 5 o (g7
Z(r)
2q Lp(r)
SECM & =120 _o1(r) > 0, 68
o 2 21> (68)
DECtM = 2L(r) > 0, (69)
*Lp(r)
DECM = 21,(r) - L2F , 70
2 = (r) Z(I")4 = ( )
DECIM = WECPM & L(r) > 0. (71)

From (61), we see that NECZ’ is identically satisfied to the
scalar case and from (66) we see that NECPM is also
identically satisfied. For regions where f(r) <0, the
structure of the energy conditions for the electromagnetic
sector does not change, remaining equal to Egs. (66)—(71).

To the scalar sector, we find

NEC? = WEC? = SEC! < 2f(r)¢/(r) > 0, (72)
NEC! = WEC? = SEC? < 2V(r) >0, (73)
SEC? & 2V(r) > 0, (74)
DEC? = 2v(r) > 0, (75)
DEC? = 2f(r)¢'(r)* > 0, (76)
DEC} = WECY & V(r) + f(r)¢ (r)? 2 0. (77)
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Equations (60)—(65) are essentially different, for the most
part, from Eqgs. (72)—(77). Now we have the requirements to
evaluate the energy conditions for the models studied in
this work.

A. Simpson-Visser solution

To the Simpson-Visser model, we replace Egs. (29)—(32)
in the energy conditions, that results, to f(r) > 0 in

2¢°(\/¢* +1* = 2m)

NEC! & - >0,
: (g + PR T
8mq’®
SEC{ & ——————>>0, 78
3 51<2(q2 +r2)5/2 = ( )
8 2
DEC? = na >0,

5K (g% + )2 =

2¢%(5v/q* + r* — 14m)

b
DECS = S + 2P >0, (79)
2(5v/q* +r* 14
WECH e — 9 T ) 5o, (80)
5K (g% + )32
3mg?
EM
NEC Kz( 2_|_r )5/2 O’
18mg?
EM
SEC; 52 1 AP >0, (81)
12mg?
DECM = 0,
! 5k%(q% + r?)>/?
3mg?
EM
DEC2 = _W >0, (82)
6 2
WECHM & i > 0. (83)

51('2(6]2 4 r2)5/2 =

If there is an event horizon, outside the horizon, the scalar
field will not violate the inequalities NE Cg and DE C‘f. The
scalar field violates all the energy conditions in this region.
The electromagnetic field violates only the dominant
energy condition once only the inequality DECEM is not
satisfied.

Inside the possible event horizon, we find

(V@ +r* —2m)
K.Q(qz 4 r2)5/2
8mq?
5K2(q> +r

2
NEC? &

Z Yy

NEC? & >0, (84)

)5/2 =

8mg” >0

5K2(q2 + 7)1 =
7*(5v/q* + r* — 6m)
51<2(q2 4 r2)5/2

SEC! &

WEC? &

8mq?

—20,
5k%(q* + 7))
2¢*(V q* + r* —2m) 0. (86)

2(f + PP Z

DEC! =

DECY =

The scalar field violates all energy condmon once the
inequalities NEC¢, WEC¢, and DEC2 are not satisfied.

B. Bardeen-type solution

To the Bardeen-type model, we replace Eqs. (29),
and (37)—(39) in the energy conditions, that results, to

f(r)>0in

NEC? & - ¢ (1 - )
! @ (r* + ¢*)?
8mq*(8¢* —7r?)
¢ q-\5q
O e a2 7
8m(7q*r* — 84*)
DEC! = > 0.
VT 35k (g2 + )12
2¢°(5\/¢* + 17 = 14m)
¢ q q
DEC2 = - 5K2(C]2 T }"2)5/2 >0, (88)
WEC¢ 612(32mq2 —98mr? + 35(612 + r2)3/2) -0
3 & — 35K2(q2 + ’,,2)7/2 2 Y,
(89)
2 2 2
em .. Mg (13r* = 2g°)
NEC2 < Kz(qz + 7’2)7/2 b
6mg* (344> —91r%)
SECEM & — 352 1 )" >0, (90)
4mq*(16g> +91r?
DECIIEM:> mq-(16g° + r)ZO,
352(4 + 2)72
2 2 2
em . Mg (134 = 91r7)
DECY = 351('2(6]2 + }’2)7/2 >0, (91)
2ma?(16a> + 912
WECEM & 214 (16¢* +91r%) )

35K2(q2 + r2)7/2

The scalar field, where f(r) > 0, the inequalities NEC?,
DECZS, and WEC are not satisfied, so that, all energy
conditions are V1olated The electromagnetic field violates
the dominant energy condition once the inequality DECEM
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is not satisfied to r> 1. The conditions SECM and
NEC™ will not necessarily be violated outside of a
possible event horizon. This will depend on the charge
value of the solution. However, even if these conditions are
not violated outside the horizon, they are violated within
the horizon.

In the region where f(r) < 0, we find

2
2q2(1 - (qzermrg)yz)
K2q2(r2+q2)2

8 722_84
LU B 93)
35k (g +r2)7/

NEC? &

NEC? &

8mq*(7r* — 84*) >0
353 (g>+r2)F T
q*(=32mq? — 42mr* + 35(g* + r*)3/?)

SEC? &

WEC! < >0,
3 35K2(q2 + r2)7/2 -
(94)
8mq*(7r* — 84°)
DEC? = >0,
1 35K2(L]2 + },2)7/2
2q2(1 _ 2mr23 )
DEC? = ) s (95)

K.2q2(r2 + q2>2

The scalar field violates all energy condition once the null
energy condition is not satisfied.

VI. CONCLUSION

In this work, we obtain the material content of black
bounce solutions in general relativity. For this, we consider
the coupling of gravitational theory with a scalar field and
nonlinear electrodynamics.

We show that, as the stress-energy tensor of black
bounces does not satisfy certain symmetries, only nonlinear
electrodynamics is not enough to generate these solutions.
For this reason, we consider the theory described by the
action (11) and obtained the field equations for this theory.
The parameter € determines whether we have the presence

of an usual scalar field or a phantom scalar field. Through
the field equations, we built the necessary formalism to
obtain the material content to a general solution. With these
results, we propose a theorem that relates the need for the
scalar field to be phantom with the fact that the null energy
condition is violated. It means that, if the null energy
condition were satisfied, the scalar field that generates the
black bounce could be nonphantom.

We applied the method to the Simpson-Visser solution
and the Bardeen-type black bounce solution and obtained
the shape of the Lagrangian L(F'), equations (35) and (41),
and the potential V(¢), equations (34) and (40), that
generate these solutions. The functions (31), (32), (38),
and (39) are obtained independently through the field
equations. These electromagnetic functions need to satisfy
the condition (33), what really happens.

Once we have separately the stress-energy tensor of each
field that composes the source, we analyze the energy
conditions associated with each field. In the case of the
Simpson-Visser Solution, the scalar field violated all energy
conditions, while the electromagnetic field violated only the
dominant energy condition. In the case of the Bardeen-type
solution, both the scalar field and the electromagnetic field
violate all energy conditions. However, for the electromag-
netic field, it is possible to at least guarantee the positivity of
the energy density, pPM = WECEM.

There are several black bounce solutions. However, it
will not always be possible to apply the method presented
in this work to obtain the material content in an analytical
way. In some cases, it is not possible to solve Eq. (28)
analytically.

Now that we have the material content of these solutions,
we can analyze other properties associated with the material
content, such as thermodynamics and perturbations.
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