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The recently proposed Skordis-Złośnik theory is the first relativistic modified Newtonian dynamics
(MOND) theory that can recover the success of the standard ΛCDMmodel at matching observations of the
cosmic microwave background. This paper aims to revisit the Newtonian and MOND approximations and
the gravitational wave analysis of the theory. For the local gravitational parameters, we show that one could
obtain both time-varying effective Newtonian gravitational constant GN and time-varying characteristic
MOND acceleration scale aMOND, by relaxing the static assumption extensively adopted in the literature.
Specially, we successfully demonstrate how to reproduce the redshift dependence of aMOND observed in the
nmagneticum cold dark matter simulations. For the gravitational waves, we show that there are only two
tensor polarizations and reconfirm that its speed is equal to the speed of light.
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I. INTRODUCTION

Modified Newtonian dynamics (MOND) is an alterna-
tive to the dark matter paradigm, through the modification
of Newton’s law of universal gravitation or Newton’s
second law of motion [1–3]. The former belongs to the
traditional modified gravity, and construction of its rela-
tivistic counterpart has been extensively discussed.
Bekenstein and Milgrom [4] proposed the first one.
However, there are two major problems: the acausal
problem [4] and the gravitational lensing problem [5].
Further modifications of the theory have been proposed to
address these issues, such as the phase coupling [6] and
disformal transformations [7–10]. These attempts made
great progress in shaping the relativistic MOND theory and
explaining the local gravitational phenomena [11].
However, for the cosmological linear perturbations, no
such theory has been shown to successfully fit all the
current data about the cosmic microwave background
anisotropies and matter power spectra [12–16]. Recently,
Skordis and Złośnik [48] proposed a new MOND theory to
address this observational fitting problem. Analysis of this
theory is the topic of this paper. In addition, we note that
modification of Newton’s second law still requires further
development to arrive at a complete and observationally
accepted theory [17–20].

MOND theories generally predict an universal radial
acceleration relation (RAR), which is a correlation between
the observed radial acceleration and that predicted by
baryons with Newtonian gravity. McGaugh et al. [21] first
observed the RAR in the SPARC database, and further data
confirmed the conclusion [22,23]. This may be regarded as
an observational evidence supporting MOND. However,
after McGaugh et al. [21], the same relation was also
observed in the N-body simulations of cold dark matter
(CDM) [24–27]. The mass discrepancy acceleration
relation, which is similar to RAR, was also predicted by
MOND, and observed in both observations [28] and
CDM simulations [29,30]. In particular, Keller and
Wadsley [25] found that the CDM simulated RAR depends
on the cosmological redshift. This result implies that, in the
framework of CDM, rotating galaxies still satisfy the
universal RAR at high redshifts. However, the parameter
characterizing the acceleration scale in RAR is redshift
dependent. Recently, Mayer et al. [58] presented an explicit
redshift evolution of this characteristic MOND acceleration
scale aMOND in the magneticum CDM simulations.
In the relativistic MOND theories, aMOND is a parameter

and could be time varying. Milgrom [1] conjectured that
aMOND ∝ cH based on the numerical coincidence of their
values at today. In the framework of TeVeS theory (a
relativistic MOND theory) [10], Bekenstein and Sagi [31]
analyzed this issue after considering the cosmological
background evolution of the relevant fields. They found
that aMOND changes on timescales much longer than the
Hubble timescale. In this paper, we present the first analysis
of the possible time evolution of the local Newtonian and
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MOND parameters in the Skordis-Złośnik theory [48]. The
method is principally the same as that in [31]. Our result
demonstrates how to reproduce the magneticum redshift
dependence [58] in such relativistic MOND theory.
The first direct detection of the gravitational wave

signal GW150914 has marked the new era of gravita-
tional wave astronomy [32]. In general relativity, there
exist two well-known gravitational wave polarizations
(plus and cross), traveling at the speed of light.
GW170814 and GW170817 observations confirmed these
predictions [33–35]. In this paper, we present a gauge-
invariant gravitational wave analysis for the Skordis-
Złośnik theory, in which the polarization content and the
propagation speed are determined.
This paper is organized as follows. Section II introduces

the Skordis-Złośnik MOND theory and summarizes the
cosmic background evolutions. Note that, in principle, most
of the results given in this section were obtained by [48].
This section is retained to provide a clear basis for our
subsequent discussions. Section III analyzes the Newtonian
and MOND approximations. Section IV discusses gravi-
tational waves in the theory. Conclusions are presented
in Sec. V.
Throughout this paper, we adopt the Hubble constant

H0 ¼ 67.4 km=s=Mpc and denote h as its reduced
value [36]. The subscript 0 indicates the cosmological
redshift z ¼ 0. In order to compare with observations, we
adopt the Systeme International units and retain all physical
constants in Secs. II and III. We set the speed of light c ¼ 1
in Sec. IV for simplicity.

II. THE THEORY AND COSMIC EVOLUTIONS

The Skordis-Złośnik MOND theory is constructed based
on a scalar field ϕ and a vector field Aμ [48]. Its action is
of the form S ¼ R

d4x
ffiffiffiffiffiffi−gp ½Rþ LMOND�=2κ þ Sm, where

κ ¼ 8πG̃=c4 and G̃ is a constant with the same dimension
of the Newtonian gravitational constant GN. The MOND
Lagrangian reads

LMOND ¼ −
KB

2
FμνFμν þ 2ð2 − KBÞJμ∇μϕ

− ð2 − KBÞY − F ðY;QÞ − λðAμAμ þ 1Þ; ð1Þ

where Fμν ¼ 2∇½μAν�, Jμ ¼ Aα∇αAμ, Y ¼ qμν∇μϕ∇νϕ,
qμν ¼ gμν þ AμAν, Q ¼ Aμ∇μϕ, F ðY;QÞ is an arbitrary
function, λ is the Lagrange multiplier (a scalar), KB is a
dimensionless constant. In our conventions, the dimension
of Aμ relates to the metric (½AμAμ� ¼ 1), ϕ is dimensionless,
and ½Y� ¼ ½Q2� ¼ ½F � ¼ ½λ� ¼ length−2.
The field equations can be derived from the variational

principle. Variation of the action with respect to the metric
gives the gravitational field equations

Gμν − KBFμ
αFνα þ ð2 − KBÞf2Jðμ∇νÞϕ − AμAν□ϕ

þ 2½Aðμ∇νÞAα − Aðμ∇jαjAνÞ�∇αϕg − FQAðμ∇νÞϕ

− ð2 − KB þ FYÞ½∇μϕ∇νϕþ 2QAðμ∇νÞϕ�
− λAμAν − gμνLMOND=2 ¼ κTμν; ð2aÞ

where FY ¼ ∂F=∂Y and FQ ¼ ∂F=∂Q. Variation of the
action with respect to ϕ gives the scalar field equation

∇μIμ ¼ 0; ð2bÞ

where Iμ¼ð2−KBÞJμ−ð2−KBþFYÞqαμ∇αϕ−FQAμ=2.
Variation of the action with respect to Aμ gives the vector
field equations

KB∇νFνμ þ ð2 − KBÞ½ð∇μAνÞ∇νϕ −∇νðAν∇μϕÞ�
− ½ð2 − KB þ FYÞQþ FQ=2�∇μϕ − λAμ ¼ 0: ð2cÞ

Variation of the action with respect to λ gives a constraint
equation for the vector field

AμAμ þ 1 ¼ 0: ð2dÞ

Energy and momentum conservation ∇νTμν ¼ 0 can be
directly derived from Eq. (2).
As we discussed in Sec. I, one goal of this paper is to

study the time evolution of the local gravitational param-
eters in the Skordis-Złośnik MOND theory. In a relativistic
theory, parameters describing the local gravitational
system can be time varying due to the cosmic evolution
of the relevant fields. For example, the effective Newtonian
gravitational constant is time varying in scalar-
tensor gravity [37–41] and nonlocal gravity [42–44].
Here we summarize the cosmic background evolution
for the Skordis-Złośnik MOND theory. We assume the
Universe is described by the flat Friedmann-Lemaître-
Robertson-Walker metric ds2 ¼ −c2dt2 þ a2dx2, where
a ¼ aðtÞ. To be consistent with Eq. (2d), we assume
Aμ ¼ ½−c; 0; 0; 0� for the vector field. The scalar field is
assumed to be ϕ ¼ ϕðtÞ. For the normal matters, we adopt
Tμ

ν ¼ diagf−ρmc2; pm; pm; pmg [45]. Substituting Eq. (2c)
into Eq. (2a) eliminates λ. Then, substituting the above
assumptions into the result, we obtain

H2 ¼ 8πG̃
3

ρm þ c2

6
ðF −QFQÞ; ð3aÞ

H2 þ 2
ä
a
¼ −

8πG̃
c2

pm þ 1

2
Fc2; ð3bÞ

with the cosmic background values Y ¼ 0 and Q ¼ _ϕ=c.
Here the Hubble parameter H ≡ _a=a, _≡ d=dt, and F and
FQ are evaluated at the background. Equation (2b) gives

TIAN, HOU, CAO, and ZHU PHYS. REV. D 107, 044062 (2023)

044062-2



dFQ

dt
þ 3HFQ ¼ 0: ð3cÞ

To test self-consistency, we confirm that Eq. (2c) gives only
trivial results except one constraint equation on λ. Energy
conservation _ρm þ 3Hðρm þ pm=c2Þ ¼ 0 can be derived
from Eq. (3) for arbitrary F function. In other words,
Eqs. (3a) and (3c) and the matter energy conservation
equation form a complete and self-consistent set. Based on
Eq. (3), we can define the effective MOND (dark matter)
mass density and pressure as

ρMOND ¼ c2

16πG̃
ðF −QFQÞ; pMOND ¼ −

Fc4

16πG̃
: ð4Þ

Then Eq. (3) can be rewritten as the two conventional
Friedmann equations and one effective MOND energy
conservation equation. The MOND relative mass density is
defined as ΩMOND ≡ 8πG̃ρMOND=ð3H2Þ.
In order to reveal the key properties of the cosmic

background evolution, and to be consistent with the
conventions adopted in [48], we rewrite the function

F ðY;QÞ ¼ ð2 − KBÞJ ðY;QÞ − 2KðQÞ: ð5Þ

Here the first term satisfies J ð0;QÞ ¼ 0, and is
used to produce the MOND behavior (see Sec. III). For
the second term, we adopt the Higgs-like function
KðQÞ ¼ ðK2=4Q2

cÞðQ2 −Q2
cÞ2, where K2 and Qc are

constant parameters [46,48]. The Q approaches to Qc in
the infinite future. In the late-time Universe, we can adopt
ρm ¼ ρbaryon ∝ a−3. Meanwhile we add the cosmological
constant Λ to Eq. (3a). Then Eq. (3c) completely deter-
mines the cosmological evolution of Q. The solid lines in
Fig. 1 show the numerical results for this ordinary differ-
ential system. The initial condition of Q and parameters of
baryon and Λ are set so that ΩBaryonh2 ¼ 0.0224 and
ΩMONDh2 ¼ 0.120 at today [36]. The MOND parameters
are K2 ¼ 8.5 × 108 and Qc ¼ 1 Mpc−1, which guarantee
good fits to the Planck CMB measurements and SDSS
matter power spectra results [48]. We set G̃ ¼ GN, which
corresponds to a special kind of J function (see Sec. III).
Note that the cosmic background evolutions are indepen-
dent of J . We emphasize that high precision calculations
are required to suppress numerical errors. The bottom part
plots the relative energy density Ωi of each component
together with the result of dark matter in the standard
ΛCDM model [36]. The coincidence between MOND and
CDM indicates that such MOND can behave as cold as the
CDM in the expanding Universe. The top part plots the
evolution of Q. Considering the extremely small value of
the dimensionless y axis, we conclude that, during the late-
time era, Q keeps almost constant while the variation of
Q −Qc is considerable. Generalizing the Taylor expansion
discussed in [48], we obtain

Q −Qc

Qc
¼ 1

2
β −

3

8
β2 þOðβ3Þ; ð6aÞ

ρMOND ¼ K2c2Q2
c

8πG̃

�
β þ 1

4
β2 þOðβ3Þ

�
; ð6bÞ

pMOND ¼ K2c4Q2
c

32πG̃
β2 þOðβ3Þ; ð6cÞ

wMOND ¼ β

4
þOðβ2Þ; ð6dÞ

where

β ¼ 3ΩMOND;0H2
0

K2c2Q2
c

�
a0
a

�
3

≪ 1: ð6eÞ

Note that 1þ z ¼ a0=a, where z is the cosmological
redshift. The ΩMOND;0 appearing in Eq. (6e) can be
regarded as a boundary condition of the differential
equation (3). The above result confirms that the MOND
is cold for the previous parameter settings. In the top part of
Fig. 1, we also plot the leading term of Eq. (6a), and the
result shows it is a good approximation. Especially, the
leading terms of Eq. (6) are valid for a generalKðQÞ once it
satisfies K ≈K2ðQ −QcÞ2 when Q → Qc.

III. NEWTONIAN AND MOND ANALYSIS

In the Skordis-Złośnik theory, the form of J ðY;QÞ
determines the local gravitational behaviors. Skordis and
Złośnik [48] pointed out two key properties. For physically
acceptable scenarios, in the strong field region [46], the
scalar field is described by the tracking or screening
solution, which corresponds to the strong asymptotic
expression J → Y or J → Yp with p ≥ 3=2, respectively.
The strong field solution determines the relation between G̃

FIG. 1. The cosmic background evolutions for the Skordis-
Złośnik MOND theory (see the main text).
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and GN. In the weak field region [47], MOND appears if
J → Y3=2. These analyzes assumed that Q appearing in J
reaches its cosmological minimum Qc. However, this may
be invalid if variables such as Q −Qc appear in J (see
Fig. 1 for the evolutions). Similar to the time-varying GN in
the scalar-tensor theory [37–41], relaxing this static
assumption may make the local MOND parameters time
varying.
Considering the great success of theΛCDMmodel in both

theories and observations [49–51], we wish to answer what
kind of J ðY;QÞ can reproduce the redshift dependence
found in the magneticum ΛCDM simulations [58].
However, we emphasize that the magneticum trend has
not been confirmed by observations. The difference between
the MOND predictions and the magneticum trend does not
mean the failure of either theory. Instead, this possible
difference provides an indicator to distinguish between
MOND and ΛCDM observationally in the future. Besides
MOND, dark sector models beyond ΛCDM, such as
dynamical dark energy and ultralight dark matter, might
also predict a different aMOND–z relation. This is due to the
fact that thesemodels could affect galaxy formation [52,53].
A complete model dictionary of aMONDðzÞ is useful for
future observational tests. The present paper only focuses on
the part about the Skordis-Złośnik MOND theory.
Following [48], we adopt the perturbed metric

ds2 ¼ −c2ð1þ 2Φ=c2Þdt2 þ ð1 − 2Φ=c2Þdx2, where the
first-order infinitesimal Φ ¼ ΦðxÞ. The vector field is
assumed to be Aμ ¼ ½−cð1þΦ=c2Þ; 0; 0; 0�, which is
consistent with Eq. (2d). The scalar field is assumed to
be ϕ ¼ ϕ̄ðtÞ þ φ, where the bar means cosmic back-
ground value and the first-order infinitesimal φ ¼ φðxÞ.
The time derivative of the first-order infinitesimal is
ignored because it is much smaller than the corresponding
space derivative [44,48]. The possible time dependence of
the local MOND parameters is encoded in ϕ̄ðtÞ, or strictly
Q̄ðtÞ. Note that we no longer assume Q̄ ¼ Qc. Calculating
the quadratic terms in the action with the above perturba-
tions, we obtain

Sð2Þ ¼ −
Z

cdtd3x

�
2 − KB

16πG̃
½j∇Φ̂j2

þ c4J ðY; Q̄Þ þmass terms� þ ρΦ
�
; ð7aÞ

where

Y ¼ j∇φj2 þmass terms; ð7bÞ

and Φ̂ ¼ Φ − φc2, ρ is the local baryon mass density,
and the mass terms indicate terms like const: ×Φn. The
KðQÞ only contributes to the mass terms because
Q ¼ Q̄ · ð1 −Φ=c2 þ 2Φ2=c4Þ. For the same reason, we
can rewrite Q̄ as Q in Eq. (7a), and only consider the

perturbation of Y in the following discussions. Hereafter
we ignore the mass terms. This is reasonable because
suitable parameters can indeed suppress the corresponding
influences on the Newtonian and MOND dynamics [48].
Integration by parts is used to eliminate the second
derivative terms (e.g., Φ∇2Φ) and obtain the above
results. Equation (7) recovers Eq. (6) in [48] when
Q̄ ¼ Qc. Hereafter we omit the bar in Q̄ and adopt
J Y ¼ ∂J ðY;QÞ=∂Y. Variation of Sð2Þ with respect to Φ̂
and φ, we obtain

∇2Φ̂ ¼ 8πG̃
2 − KB

ρ; ð8aÞ

∇½J Y∇φ� ¼ 8πG̃
ð2 − KBÞc2

ρ; ð8bÞ

respectively. The Skordis-Złośnik theory is written in the
Einstein frame with minimally coupling between matter
and other fields. Therefore, Φ ¼ Φ̂þ φc2 is the physical
gravitational potential. In the weak field region, if
J ∝ Y3=2, i.e., J Y ∝ j∇φj, then φ dominates Φ and
produces the MOND behavior [4,48].
Here we discuss the possible time evolution of GN and

aMOND. Comparison of Eq. (8) and Poisson equation in
strong field region determines GN. In the scaling case [48],
we assume J → λsY, where the dimensionless variable
λs ¼ λsðQÞ. Then Eq. (8) gives φc2 → Φ̂=λs and

GN ¼ 2G̃
2 − KB

�
1þ 1

λs

�
: ð9Þ

Note that G̃ is a constant introduced in the action, and GN

could be time varying because of its dependence on λs.
Considering ðQ −QcÞ=Qc ≪ 1 (see Fig. 1), if λs ∝ Qp,
where p is a constant, then the time evolution of GN is
unobservable. However, if λs ∝ ðQ −QcÞp ∝ a−3p, then
Eq. (9) gives

_GN

GN

≈ −
_λs
λ2s

≈
3pH0

λs;0
: ð10Þ

in which we assumed λs ≫ 1 and the last equality is valid at
the low redshift Universe. Current observations give
j _GN=GNj≲ 10−12 yr−1 ≈ 0.01H0 [54–56]. Therefore we
require λs;0 ≳ 100 for this case. The screening case [48]
corresponds to λs ¼ ∞, and results in an exactly constant
GN. This requires J ∝ Yp, where p ≥ 3=2 [48].
The parameter aMOND is determined in the weak field

region, in which φ dominates Φ. Hereafter, for simplicity,
we adopt J ∝ Y3=2 throughout the MOND region to the
Newtonian region. Considering Eqs. (7b), (8b), and (9)
with λs ¼ ∞, and Eq. (3) in [4], we see that the coefficient
of J ∝ Y3=2 equals to 2c2=ð3aMONDÞ. On the other hand,
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the coefficient can be written as a function of Q.
Theoretically, aMOND could be redshift dependent. Here
we discuss several explicit cases. Considering the dimen-
sions of the variables, one of the simplest cases is
J ¼ c1Y3=2=Q, where ci (i ¼ 1; 2; 3;…) is dimensionless
constants. This case gives nearly constant aMOND in the
late-time Universe (see Fig. 1). Replacing Q with Q −Qc

in the denominator, we obtain aMOND ∝ ð1þ zÞ3 based on
Eq. (6a). Figure 2 depicts this result together with the
magneticum result [58]. We see that this simple case fails to
accurately describe the magneticum trend. The best poly-
nomial fit of the magneticum result is aMOND ¼ ½0.9þ
0.2ð1þ zÞ2� × 10−10 m=s2 [57]. Therefore, in the Skordis-
Złośnik MOND theory, the magneticum trend could be
reproduced by

J ðY;QÞ ¼ Y3=2

c1Qc þ c2Q
1=3
c ðQ −QcÞ2=3

: ð11Þ

For the parameters used in Sec. II, we obtain c1 ¼ 4.6 ×
10−5 and c2 ¼ 1.3 × 106 for the best fit. Note that Eq. (11)
gives an exactly constant GN. Furthermore, if J ∝ Y3=2,
then its specific form does not affect the cosmological
linear perturbation analysis of the theory. The reason is that
an equation similar to Eq. (7b) can be obtained in the case
of expanding Universe.
Equation (11) could reproduce the magneticum trend,

but may not be the most natural way—the functional form
and relevant parameters require slight fine-tuning. Figure 2
also plots the case of aMOND ∝ cH, which is pretty close to
the magneticum result. Inspired by the numerical coinci-
dence between aMOND;0 and cH0, Milgrom [1] first con-
jectured this relation. A theory that aMOND is controlled by
cH multiplied by a Oð1Þ-valued redshift-dependent func-
tion seems more natural. The Skordis-Złośnik theory may
not be able to realize aMOND ∝ cH. The reason is that the

explicit time-dependent variable that exists here is
Q −Qc ∝ ð1þ zÞ3, rather than an explicit H-dependent
expression. Luckily, a minor extension of the Skordis-
Złośnik theory can achieve the desired scenario.
Considering ∇μAμ ¼ 3H=c [59], we see that replacing
J ðY;QÞ with

J ðY;∇μAμÞ ¼ c1Y3=2=∇μAμ ð12Þ

gives aMOND ¼ 2cH=c1, where the dimensionless constant
c1 ≈ 4π [60]. Note that, in the MOND analysis, we only
need to consider the background value of ∇μAμ because
Y3=2 is a high-order infinitesimal. In addition, this exten-
sion does not destroy the success of the original Skordis-
Złośnik theory in fitting the cosmological observations
[48]. This is due to the facts that Y ¼ 0 in the cosmological
background and Y3=2 only contributes the high-order terms
in the cosmological linear perturbation analysis. For the
same reason, in the framework of the Skordis-Złośnik
theory with minor extension, we can link MOND to dark
energy with

J ¼ c1Y3=2=
ffiffiffiffiffiffiffiffiffi
VDE

p
; ð13Þ

where VDE is the field potential of dark energy. Following
the conventions in [61], we know c1 is dimensionless
and ½VDE� ¼ length−2. There are some works in the
literature discussing possible links between MOND and
dark energy [60,62,63]. Here Eq. (13) provides a new
example. If dark energy is the cosmological constant, then
this case gives constant aMOND. However, if dark energy is
dynamical, then aMOND could be redshift dependent. In
Fig. 2, the green line plots an illustration for the power-law
potential with the index p ¼ 1 [64,65]. Detailed evolution
of dark energy can be found in the Appendix. We
emphasize that current observations require p < 0.06 [66],
which in turn gives a flatter aMONDðzÞ. Therefore, relativ-
istic theory linking MOND to dark energy is not a good
option to reproduce the magneticum trend.
Table I summarizes the models mentioned above. One

thing is worth mentioning here. Generally, in the T eVeS
theory [10], the aMOND changes much more slowly than
cH [31]. To our knowledge, no specific T eVeS theory has
been confirmed that can realize aMOND ∝ cH.

IV. GRAVITATIONAL WAVE ANALYSIS

Gravitational wave properties in the Skordis-Złośnik
theory can be determined by solving the linearized equa-
tions of motion about the Minkowski spacetime defined by
ḡμν ¼ ημν, Āμ ¼ δμ0, and ϕ̄ ¼ const. This background
solution requires that F̄ ¼ F̄ ðḡμν; Āμ; ϕ̄Þ ¼ 0. The per-
turbed solutions are gμν ¼ ημν þ hμν, Aμ ¼ δμ0 þ aμ, and
ϕ ¼ ϕ̄þ φ. Since the linearized equations of motion are
very complicated and coupled together, it is easier to use

FIG. 2. Four theoretical and magneticum simulated aMOND as a
function of redshift. All results are calibrated at z ¼ 0.
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the gauge-invariant formalism to decouple the equations
[68,69]. Following Gong et al. [69], one can decompose the
components of hμν and aμ as

htt ¼ 2ϕ; ð14aÞ

htj ¼ βj þ ∂jγ; ð14bÞ

hjk ¼ hTTjk þ 1

3
Hδjk þ ∂ðjϵkÞ þ

�
∂j∂k −

1

3
δjk∇2

�
ρ; ð14cÞ

at ¼ 1

2
htt ¼ ϕ; ð14dÞ

aj ¼ μj þ ∂
jω: ð14eÞ

Here, ∂khTTjk ¼ 0, ηjkhTTjk ¼ 0, and ∂jβ
j ¼ ∂jϵ

j ¼ ∂jμ
j ¼ 0.

Under the infinitesimal coordinate transformation para-
metrized by ξμ ¼ ðξt; ξjÞ ¼ ðA; Bj þ ∂

jCÞ with ∂jBj ¼ 0,
one knows that

hμν → hμν − ∂μξν − ∂νξμ; ð15aÞ
aμ → aμ þ Āν

∂νξ
μ; ð15bÞ

φ → φ: ð15cÞ
Therefore, one determines the following gauge-invariant
variables,

φ; hTTjk ; ð16aÞ

Φ ¼ −ϕþ _γ −
1

2
ρ̈; ð16bÞ

Θ ¼ 1

3
ðH −∇2ρÞ; ð16cÞ

Ξj ¼ βj −
1

2
_ϵj; ð16dÞ

Σj ¼ βj þ μj; ð16eÞ

Ω ¼ ωþ 1

2
_ρ: ð16fÞ

Then, one can try to reexpress the linearized equations of
motion to conclude that

ḧTTjk −∇2hTTjk ¼ 0; ð17aÞ

Σ̈j −∇2Σj ¼ 0; ð17bÞ

∂
2F̄
∂Q2

φ̈þ 2

�
2ð2 − KBÞ

KB

þ ∂F̄
∂Y

�
∇2φ ¼ 0; ð17cÞ

Ξj ¼ 0; ð17dÞ

Θ ¼ Φ ¼ 0; ð17eÞ

_Ω ¼ KB − 2

KB

φ; ð17fÞ

assuming ∂F̄=∂Q ¼ 0, where barred quantities are to be
evaluated at the flat spacetime background. The above
equations show that the tensor and vector modes are
propagating at the speed of light, while φ generally travels
at a different speed, which is smaller than the speed of light
for the parameter values adopted in Sec. II. This result
reconfirmed the conclusion presented in [48].
Provided that the ordinary matter couples with the metric

minimally, one can calculate the geodesic deviation equa-
tion, ẍj ¼ −Rtjtkxk, to determine the polarizations of
gravitational waves [70]. It turns out that

Rtjtk ¼ −
1

2
hTTjk : ð18Þ

Therefore, there are only two polarizations (plus and cross),
like in general relativity.

TABLE I. Models discussing the possible cosmological evolution of aMOND. Note that Eqs. (12) and (13) are extensions of the original
Skordis-Złośnik theory.

aMONDðzÞ Skordis-Złośnik theory Other theories and phenomenological motivations

∼const.a J ¼ c1Y3=2=Q T eVeS theory [31,67]
a subclass of nonlocal MOND models [59]

∝ ð1þ zÞ3 J ¼ c1Y3=2=ðQ −QcÞ � � �
∝ cHðzÞ J ¼ c1Y3=2=∇μAμ The numerical coincidence between aDE;0 and cH0 [1,60]

a subclass of nonlocal MOND models [59]
∝ c2=lDE

b J ¼ c1Y3=2=
ffiffiffiffiffiffiffiffiffi
VDE

p
The numerical coincidence between aMOND;0 and c2=lDE;0 [60]
relativistic theories linking MOND to dark energy [62,63]

Magneticum Eq. (11) � � �
aMost of the existing relativistic MOND theories give constant aMOND. Here we only consider the models that the constant aMOND can

still be obtained after analyzing the relevant cosmic background evolutions.
bHere lDE is the characteristic length scale of dark energy, which is of the order ofΛ−1=2, i.e., c=H0, at today and could be time varying

in the dynamical models.
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V. CONCLUSIONS

In this paper, we discuss the Newtonian, MOND
and gravitational wave analyses for the Skordis-Złośnik
theory [48]. In the first two cases, after abandoning the static
assumption adopted in [48], we find that whether GN and
aMOND are time varying depends on the specific form of the
J function of the theory. Screening the scalar field in strong
field region is a sufficient condition to give a constant GN,
and this scenario may be a preferred choice in both theory
and observations. For the aMOND, we highlight that the
theory with Eq. (11) could reproduce the aMOND–z depend-
ence observed in the magneticum simulations [58]. Minor
extension of the original Skordis-Złośnik theory with
Eq. (12) gives aMOND ∝ cH. For the gravitational wave
analysis, we show that there are only two tensor polar-
izations, which is preferred by the GW170814 observa-
tions [33,34].

ACKNOWLEDGMENTS

We especially thank the referee for pointing out ∇μAμ ∝
HðzÞ and suggesting that we discuss the model described
by Eq. (12). This work was supported by the National
Natural Science Foundation of China under Grants
No. 11633001, No. 11920101003, No. 12021003 and
No. 11690023, and the Strategic Priority Research
Program of the Chinese Academy of Sciences, Grant
No. XDB23000000. S. T. was supported by the Initiative
Postdocs Supporting Program under Grant
No. BX20200065 and China Postdoctoral Science
Foundation under Grant No. 2021M700481. S. H. was
supported by the National Natural Science Foundation of
China under Grant No. 12205222.

APPENDIX: COSMIC EVOLUTION
OF DARK ENERGY

Equation (13) describes a model linking MOND to dark
energy. We adopt a quintessence model with field potential
VDEðϕDEÞ ¼ VDE;0 · ðϕDE;0=ϕDEÞp [64,65], where the
index p ≥ 0. Following the conventions in [61], we have
½VDE� ¼ length−2. For the flat Friedmann-Lemaître-
Robertson-Walker Universe, the cosmic evolution equa-
tions are [61]

H2 ¼ 8πG̃
3

ðρF þ ρDEÞ; ðA1aÞ

ϕ̈DE þ 3H _ϕDE þ c2V 0
DE ¼ 0; ðA1bÞ

_ρF þ 3ð1þ wFÞHρF ¼ 0; ðA1cÞ

where 0 ≡ d=dϕDE, ρDE ¼ ðc2=8πG̃Þ · ½ _ϕ2
DE=ð2c2Þ þ VDE�

and the subscript F means fluid. Here we regard MOND as a

pressureless dark matter and include its contribution in ρF.
This is a good approximation as shown in Fig. 1. Then the
equation of state wF is given by Eq. (4) in [71]. Introducing
the dimensionless variables

x1 ¼
_ϕDEffiffiffi
6

p
H
; x2 ¼

c
ffiffiffiffiffiffiffiffiffi
VDE

p
ffiffiffi
3

p
H

; λ ¼ −
V 0
DE

VDE
¼ p

ϕDE
;

Γ ¼ V 00
DEVDE

ðV 0
DEÞ2

¼ pþ 1

p
; ðA2Þ

the above evolution equations can be rewritten as

dx1
dN

¼ −3x1 þ
ffiffiffi
6

p

2
λx22 þ

3

2
x1L; ðA3aÞ

dx2
dN

¼ −
ffiffiffi
6

p

2
λx1x2 þ

3

2
x2L; ðA3bÞ

dλ
dN

¼
ffiffiffi
6

p
λ2ð1 − ΓÞx1; ðA3cÞ

where L¼ð1−wFÞx21þð1þwFÞð1−x22Þ and N ¼ lnða=a0Þ.
The relative dark energy density ΩDE ¼ x21 þ x22.
Figure 3 presents the numerical solutions of Eq. (A3),
and illustrates the frozen and tracker properties of this
model [65]. We can use the tracker solution to calculate
aMONDðzÞ in the low-redshift Universe. Especially, we have
aMOND ∝

ffiffiffiffiffiffiffiffiffi
VDE

p
∝ λp=2. Considering the calibration at

z ¼ 0 in Fig. 2, we can directly obtain aMONDðzÞ
from the solution of λ without the value of VDE;0.
Parameters adopted in Fig. 3 are used to plot the green
line in Fig. 2.

FIG. 3. Cosmic evolution of the ΩDE and λ with model
parameter p ¼ 1. Other parameters including VDE;0 and ϕDE;0

are not necessary to do this calculation. The initial conditions are
x1;ini ¼ f10−2; 10−3; 10−5; 10−8g, x2;ini ¼ 10−8, λini ¼ 109, and
Nini ¼ −16.60. The above settings give ΩDE;0 ≈ 70%.
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