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As the only gravity theory with quadratic curvature terms and second-order field equations, Einstein-
dilaton-Gauss-Bonnet gravity is a natural test bed to probe the high-curvature regime beyond general
relativity in a fully nonperturbative way. Due to nonperturbative effects of the dilatonic coupling, black
holes in this theory have a minimum mass which separates a stable branch from an unstable one. The
minimum mass solution is a double point in the phase diagram of the theory, wherein the critical black hole
and a wormhole solution coexist. We perform extensive nonlinear simulations of the spherical collapse onto
black holes with scalar hair in this theory, especially focusing on the region near the minimum mass. We
study the nonlinear transition from the unstable to the stable branch and assess the nonlinear stability of the
latter. Furthermore, motivated by modeling the mass loss induced by Hawking radiation near the minimum
mass at the classical level, we study the collapse of a phantom field onto the black hole. When the black-
hole mass decreases past the critical value, the apparent horizon shrinks significantly, eventually unveiling a
high-curvature elliptic region. We argue that evaporation in this theory is bound to either violate the weak
cosmic censorship or produce horizonless remnants. Addressing the end state might require a different
evolution scheme.
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I. INTRODUCTION

Penrose’s weak cosmic censorship conjecture [1] posits
that—within Einstein’s general relativity (GR)—naked
singularities cannot form from typical regular initial data
(see Ref. [2] for an overview). Lacking a rigorous proof of
this conjecture, great effort has been devoted to devise
gedanken experiments [3] aimed at supporting or disprov-
ing it. This has been done by trying to overcharge/overspin
a black hole (BH) past extremality in order to destroy
the BH horizon and unveil the curvature singularity con-
cealed in its interior (see Refs. [4–14] for various different
attempts).
While most attempts have focused on the dynamics of

test particles/fields onto a fixed BH geometry, this regime is
insufficient to test the conjecture, since backreaction and
finite-size effects can be key to avoid naked-singularity
formation (see, e.g., Refs. [15,16]). Therefore, gedanken
experiments relying on the fully nonlinear dynamics of a
theory are particularly important [17].
In this paper (a companion of Ref. [18]), we perform

extensive nonlinear numerical simulations of the spherical

collapse of scalar fields onto BHs in a theory of gravity
with quadratic curvature terms. Our test bed is Einstein-
dilaton-Gauss-Bonnet (EdGB) gravity [19], a theory that
stands out within those containing curvature-squared terms
as the only one featuring second-order field equations. This
avoids Ostrograski’s instability [20] and allows studying
the theory at the fully nonperturbative level [21–28], i.e.,
beyond an effective field theory (see Refs. [29–34] for
simulations in the perturbative regime). Thus, one of the
questions we wish to explore here is whether naked
singularities can form dynamically in the high-curvature
regime when this theory dramatically differs from GR.
Another broad motivation for our study is an intriguing

aspect of BHs in this theory that is often overlooked.
By simple dimensional arguments, any theory with
ultraviolet curvature-squared terms has a natural length
scale l below which GR deviations become dominant.
Indeed, due to nonperturbative effects, in this theory, BHs
may have a minimum radius and a minimum mass, both of
OðlÞ [19,35–37]. This is a striking difference with respect
to GR, where the BH mass is an unconstrained free
parameter, so in GR, BHs can have any size. As we shall
discuss in details, in EdGB gravity, the minimum-radius
solution and the minimum-mass solution exist but do
not coincide [35,38–40]. Furthermore, the minimum-mass
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solution—like all BH solutions in this theory—actually
corresponds to a double point in the phase space in which
the BH solution and a regular wormhole solution [41]
coexist [39].
Remarkably, as we shall show, the Hawking temperature

[42] and graybody factor of BHs in this theory are finite and
nonvanishing, even at the critical (i.e., minimum mass)
solution (see also Ref. [43]). This unveils a conundrum:
what is the final fate of Hawking evaporation in this theory
since a BH cannot evaporate completely? [35,44]1 We shall
argue that, due to nonperturbative high-curvature effects,
EdGB gravity is bound to either violate the weak cosmic
censorship2 or produce horizonless remnants.
One might argue that Hawking evaporation is irrelevant

for real BHs and that also higher-curvature corrections are
negligible if the fundamental length scale l is much smaller
than the typical size of an astrophysical BH. However, the
problem has potentially deep implications, as put forward
by the following gedanken experiment. Imagine a BH with
radius (and mass) much bigger than l (we shall use natural
units henceforth). In this regime, higher-curvature correc-
tions are negligible, and EdGB gravity reduces to GR. Due
to Hawking evaporation, the BH mass (and size) decreases
and inevitably reaches the length scale l. In that regime,
nonperturbative EdGB effects become important as testi-
fied by the fact that there is a critical mass, Mmin ∝ l,
below which no static BH solutions exist. Since Hawking
emission is not halted at the critical point, something
dramatic must happen to the system. Note that this
conclusion holds no matter how small l is; Hawking
radiation will dynamically bring the system toward the
nonperturbative regime.
With the above motivations in mind, we wish to perform

a gedanken experiment which is similar (in spirit) to
Hawking evaporation, by studying the dynamics of a
nearly critical BH in EdGB gravity past the minimum
mass. In order to mimic the mass loss due to Hawking
evaporation at the classical level, we shall use a massless
“phantom” scalar field with the “wrong” sign of the kinetic
term. In this setup, a BH would reduce its mass after
absorbing a phantom perturbation.
The rest of this paper is organized as follows. In Sec. II,

we present the theory and field equations in covariant form,
as well as the sets of coordinates used in different parts of
the analysis. In Sec. III, we discuss static BH solutions in

this theory and compute their temperature and graybody
factors and their interior. We also discuss the phase
space of static solutions in EdGB gravity, which includes
wormholes and singular solitons. Section IV presents our
numerical setup, whereas Sec. V is devoted to our numeri-
cal simulations using both dilaton and phantom perturba-
tions. We conclude with a discussion of the results in
Sec. VI. The paper is supplemented by several Appendices.
Appendix A gives the set of field equations to be solved for
the static solutions and for the initial-value problem.
Appendix B provides details on the static wormholes
and soliton solutions. Finally, Appendix C presents some
details and convergence tests of our code.

II. FRAMEWORK

We consider the action of Einstein-scalar-Gauss-Bonnet
gravity [19] with an additional (real) phantom scalar field,

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p fR − ð∇μϕÞð∇μϕÞ

þ ð∇μξÞð∇μξÞ þ 2F½ϕ�Gg; ð1Þ
whereR is the scalar curvature, ϕ is the dilatonic field, ξ is
the phantom field, F½ϕ� is the coupling function, G ¼
1
4
δμναβρσλωR

ρσ
μνRαβ

λω is the Gauss-Bonnet invariant, and

δμναβρσλω ¼ ϵμναβϵρσλω is the generalized Kronecker delta, with
ϵμναβ ¼ ϵμναβ being the Levi-Civita symbol.
From this action, we obtain the following field equations,

Rμν −
1

2
gμνR ¼ 8πTμν; ð2Þ

□ϕ ¼ −
δF½ϕ�
δϕ

G; ð3Þ

□ξ ¼ 0; ð4Þ

where □ ¼ ∇μ∇μ and

Tμν ¼
1

8π

�
ð∇μϕÞð∇νϕÞ −

1

2
ð∇αϕÞð∇αϕÞgμν

− ð∇μξÞð∇νξÞ þ
1

2
ð∇αξÞð∇αξÞgμν

þ −2ð∇γ∇αF½ϕ�ÞδγδκλαβρσR
ρσ

κλδ
βðμgνÞδ

�
ð5Þ

is the effective stress-energy tensor. For concreteness, we
will consider a dilatonic coupling function of the form [46]

F½ϕ� ¼ λe−γϕ; ð6Þ
where λ is the Gauss-Bonnet coupling constant and γ is the
dilaton coupling constant. We expect that several of the
qualitative features discussed below hold also with different
coupling functions, as long as the quadratic-curvature

1Note that a similar question emerges in other scenarios with a
new fundamental length scale, e.g., in the context of the
generalized uncertainty principle [45].

2Note that one might consider a version of the weak cosmic
censorship that requires matter fields to satisfy some energy
conditions [2], in which case Hawking radiation (and the
phantom field we shall use to mimic it at the classical level)
would be excluded as a possible dynamical process to test this
conjecture. Here, we shall adopt a more agnostic viewpoint and
define the violation of the weak cosmic censorship as the
formation of naked singularity from typical regular initial data.
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interactions are sufficiently strong. Henceforth, we will
refer to this class of quadratic-gravity theories as EdGB
gravity.
Note that, in term of the generic length scale discussed in

the introduction, λ ≃ l2 since the coupling is dimensionally
the inverse of a curvature.
We shall construct static BH solutions in this theory and

compute their Hawking temperature and graybody factor.
We shall also study their nonlinear stability by performing
numerical simulations in full-fledged EdGB gravity. We
use different coordinate systems for these studies. To
compute the Hawking temperature and graybody factors,
we use Schwarzschild-like coordinates ðt; r; θ;φÞ and
assume the following ansatz for the metric,

ds2 ¼ −eΓðrÞdt2 þ eΛðrÞdr2 þ r2dΩ2; ð7Þ

where ΓðrÞ and ΛðrÞ are functions of the areal radius r. On
the other hand, when performing nonlinear simulations of
wave packets absorbed by dilatonic BHs, we use Painlevé-
Gullstrand (PG-)like coordinates ðt; R; θ;φÞ that penetrate
the BH horizon, since in this case we are also interested in
monitoring the BH interior. The line element in this case
reads

ds2 ¼ −αðt; RÞ2dt2 þ ðdRþ αðt; RÞζðt; RÞdtÞ2 þ R2dΩ2;

ð8Þ

where R is the areal radius. These two coordinates are
connected by

dr ¼ dR; dt ¼ dt −
ζ

αð1 − ζ2Þ dR: ð9Þ

In some selected cases, we checked that the solutions
obtained with different coordinates are consistent with
each other.

III. STATIC DILATONIC BHS AND OTHER
HORIZONLESS SOLUTIONS IN EdGB GRAVITY

In this section, we construct static dilatonic BH solutions
in EdGB gravity and discuss the minimum BHmass and the
Hawking emission (Sec. III A) as well as construct the
BH interior (Sec. III B) which would be needed for
the initial data of the simulations performed in the next
sections. In Sec. III A 2, we shall also discuss the phase space
of static objects in this theory and present other horizonless
solutions. In this section, we switch off the phantom field,
thus dealing with pure EdGB gravity in vacuum.

A. Static dilatonic BH solutions
in Schwarzschild-like coordinates

We consider static and spherically symmetric solutions
to the field equations (2) and (3), when the phantom field

vanishes. In particular, we are interested in BH solutions
with a dilaton hair that vanishes at spatial infinity [19]. In
Schwarzschild-like coordinates, Eq. (7), we obtain a set of
differential equations for the metric functions and the
dilaton, which are given in Appendix A.
The metric functions and dilaton near the BH horizon

(r ∼ rH) read8>><
>>:

eΓðrÞ ≃ Γ1ðr − rHÞ þO½ðr − rHÞ2�
e−ΛðrÞ ≃ λ1ðr − rHÞ þO½ðr − rHÞ2�
ϕðrÞ ≃ ϕH þ ϕ0

Hðr − rHÞ þO½ðr − rHÞ2�;
ð10Þ

where Γ1 is related to a time rescaling and can be set by
requiring eΓðrÞ → 1 at infinity, whereas λ1 and ϕ0

H can
be written in terms of ϕH and rH through the field
equations [19]

ϕ0
H ¼ rH

8γλ
eγϕH

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

192γ2λ2

r4H
e−2γϕH

s !

λ1 ¼
1

rH − 4γλe−γϕHϕ0
H
: ð11Þ

Thus, for a fixed coupling function and choosing units such
as rH is fixed, the near-horizon solution depends on a single
parameter, ϕH. Near spatial infinity,

eΓðrÞ ≃ e−ΛðrÞ ≃ 1 −
2MBH

r
þOðr−2Þ ð12Þ

ϕðrÞ ≃ C −
D
r
þOðr−2Þ; ð13Þ

where MBH is the BH mass and D is the dilaton charge.
We integrate the field equations from the horizon outward
and find a family of asymptotically flat BH solutions by
adjusting ϕH in order to impose C ¼ 0 at spatial infinity.
We do so with two different procedures; details are given in
Sec. III B.
For concreteness, we shall now focus on the γ ¼ 4 case;

different couplings are discussed later and give qualita-
tively similar results, including γ ¼ ffiffiffi

2
p

, which is motivated
by string theory [46]. In Fig. 1, we show the areal radius
of the event horizon as a function of the BH mass MBH in
this theory. When λ=r2H ≪ 1, there exists only one asymp-
totically flat solution for given BH mass, which reduces to
the GR Schwarzschild BH in the λ → 0 limit. In this limit,
one gets rH ≈ 2MBH as in GR. However, for any finite λ,
there exists a minimum-mass3 BH solution [19,35–37],
MBH ≥ Mcrit ≃ 8.244

ffiffiffi
λ

p
. The critical BH divides two

branches of solutions with the same mass and different

3As later discussed, other values of γ ≳ 1 change the propor-
tionality factor of the minimum mass, but in general Mcrit ∝

ffiffiffi
λ

p
.
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radii. The upper branch (i.e., larger radii) is linearly stable,
whereas the lower branch (i.e., smaller radii) is linearly
unstable [39,47]. As later discussed, the details (and
existence) of the second branch depends on the specific
values of γ. In our context, it is important to highlight that,
just as the Schwarzschild solution, these metrics have a
curvature singularity inside the horizon [36], except for the
solution at the end of the unstable branch in which such
singularity coincides with the horizon and becomes naked
(see, e.g., Refs. [48,49] for BHs in shift-symmetric theories
with F½ϕ� ∝ ϕ). Since for γ ≳ 1 the singular solution does
not coincide with the minimum-mass solution, the latter is
regular on and outside the horizon, just as in the GR case.
On the other hand, the singular solution is unphysical as it
is part of the unstable branch.

1. BH temperature and graybody factor

We are interested in how these modified BH solutions
emit Hawking radiation. Thus, we first compute their
Hawking temperature [50]

TBH ¼ 1

4π
lim
r→rH

dgtt=drffiffiffiffiffiffiffiffiffiffiffi
gttgrr

p : ð14Þ

As shown in Fig. 2, the temperature of a dilatonic BH in
EdGB gravity is always higher than that of the correspond-
ing Schwarzschild BH with same mass. This suggests that
a BH evaporates faster in EdGB gravity than in GR.
Furthermore, we note that the temperature is always non-
vanishing also for the minimum-mass solution. This
suggests that the BH continues emitting energy once it
reaches the minimum mass configuration.

However, the BHmass loss depends also on its graybody
factor GlmðωÞ, which is the fraction of energy flux at
frequencyω coming from spatial infinity that is captured by
the horizon. Specifically,

dM
dt

¼ −
1

2π

X
lm

Z
dω

ωGlmðωÞ
eω=TBH � 1

; ð15Þ

where the sum is over the ðl; mÞ angular mode of the
radiation and, at the denominator, the plus/minus applies to
the emission of fermions/bosons. Thus, in order to study the
BH evaporation, it is not sufficient to compute its temper-
ature; we also need the behavior of the graybody factors
relative to the emitted modes. We compute these quantities
for minimally coupled scalar massless particles and for
photons4 (see also Ref. [43]). In particular, we consider the
lowest angular modes, i.e., l ¼ 0 and l ¼ 1, for the scalar
and vector emission, respectively, which give the leading
contribution to the mass loss in this case.
The scalar Ψ and electromagnetic Aμ fields satisfy the

following field equations,

∇μ∂
μΨ ¼ 0;

∇μð∂μAν − ∂
νAμÞ ¼ 0; ð16Þ

on the background metric described by the dilatonic BH
solution. Since the background metric (7) is spherically

FIG. 1. Areal radius of the event horizon as a function of the
BH mass for static BH solutions in EdGB gravity with coupling
F½ϕ� ¼ λe−4ϕ. The gray dashed line is the Schwarzschild limit
rH ¼ 2MBH, reached when M ≫ Mcrit ≈ 8.244

ffiffiffi
λ

p
. The inset is a

zoom-in around the minimum-mass solution, which separates a
stable branch from an unstable branch. The minimum-mass,
minimum-radius, and singular BH solutions are denoted by a
circle, cross, and triangle, respectively.

FIG. 2. Hawking temperature of a dilatonic BH in EdGB
gravity as a function of the BH mass. The horizontal
dashed line denotes the temperature of a Schwarzschild BH,
TGR
BH ¼ 1=ð8πMBHÞ ≈ 0.0398=MBH. The inset is a zoom-in

around the minimum-mass solution. The minimum-mass, mini-
mum-radius, and singular BH solutions are denoted by a circle,
cross, and triangle, respectively.

4Of course, also gravitons would be radiated, and in EdGB
theory, the gravitational sector is coupled to the dilaton. The
computation of the graybody factor for gravitons and dilatons is
technically more involved but does not change the qualitative
picture.
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symmetric, it is possible to decompose the scalar field in
spherical harmonics Ylmðθ;φÞ and the electromagnetic
field in vector harmonics [51]:

Ψðt; r; θ;φÞ ¼
X
lm

Rlmðt; rÞ
r

Ylm;

Aμðt; r; θ;φÞ ¼
X
lm

0
BBB@

flmðt; rÞ
hlmðt; rÞ

almðt; rÞ 1
sin θ ∂φ þ klmðt; rÞ∂θ

almðt; rÞ sin θ∂θ − klmðt; rÞ∂φ

1
CCCAYlm:

Substituting these expansions in the field equations (16)
and assuming a time dependence e−iωt, the radial part of the
equations separates and takes the form of a Schröedinger-
like equation,

d2

dr2�
ΘlmðrÞ þ ½ω2 − VslmðrÞ�ΘlmðrÞ ¼ 0; ð17Þ

where Θlm collectively denotes the master function for the
scalar or the electromagnetic field, and

Vs¼0ðrÞ ¼
lðlþ 1Þ

r2
eΓðrÞ þ e

ΓðrÞ−ΛðrÞ
2

1

r
d
dr

e
ΓðrÞ−ΛðrÞ

2 ;

Vs¼1ðrÞ ¼
lðlþ 1Þ

r2
eΓðrÞ; ð18Þ

for the scalar (s ¼ 0) and electromagnetic (s ¼ 1) cases,
respectively. In the above equations, r� is the generalized
tortoise coordinate defined through

dr�
dr

¼ e
ΛðrÞ−ΓðrÞ

2 : ð19Þ

The potentials in Eq. (18) vanish both at the horizon
and at spatial infinity, and their radial profile is in fact
qualitatively very similar to the case of a Schwarzschild
BH. The asymptotic solutions are ingoing/outgoing waves
in tortoise coordinates, Θlm ∼ e�iωr� . If we normalize the
flux coming from infinity, the graybody factor is simply
related to the transmission coefficient of the master
function,

�
Θlm ¼ e−iωr� þRlmeiωr� r� → ∞
Θlm ¼ Glme−iωr� r� → −∞

: ð20Þ

We have studied this scattering problem for the lowest
angular modes of the massless scalar and the electromag-
netic field, for different values of the coupling constant λ.
In Fig. 3, we show the graybody factors of the dilatonic
BH with minimum mass, compared with those of a
Schwarzschild BH of equal mass. Overall, these two
quantities are very similar to each other for any value of

the coupling (of course, the agreement further improves for
smaller values of the coupling than that shown in Fig. 3).
This is consistent with the fact that the graybody factor is
mainly governed by the BH photon sphere, which is
slightly outside the horizon, where the higher-curvature
corrections are already smaller relative to their value at and
inside the horizon.
Therefore, the main difference between the spectrum of a

dilatonic and a Schwarzschild BH comes from the (slightly)
different temperature. Since the temperature of a dilatonic
BH is (slightly) higher than that of a Schwarzschild BH
of the same mass, the former evaporates (slightly) faster
than the latter. Using Eq. (15), we estimate that near the
minimum mass a dilatonic BH evaporates ≈7% and ≈14%
faster than in GR for scalar and vector modes, respectively.
Intriguingly, when the dilatonic BH reaches the mini-

mum mass configuration, the graybody factor and temper-
ature are finite and nonvanishing. In other words, the BH
should continue evaporating, but since there are no static
BH solutions with lower mass, it is natural to ask toward
which state the BH evolves.

2. Phase diagram in EdGB gravity

To start addressing the question related to the evolution
of BHs past the minimummass in EdGB gravity, it is useful
to study in detail the parameter space of static and spheri-
cally symmetric solutions in this theory. In particular,
one might entertain the idea of phase transitions from
the critical BH toward some other solutions, should the
parameter space allow for that. Interestingly, EdGB gravity
admits other, horizonless, asymptotically flat solutions:
traversable wormholes [41,52] and particlelike (solitonic)
solutions characterized by a singularity in the second

FIG. 3. Graybody factors of the dilatonic BH with minimum
mass (λ ≈ 0.01552 in units such that rh ¼ 2, as we shall fix from
now on), for the emission of massless scalar particles (purple)
and photons (orange) in their lowest angular modes (l ¼ 0, 1,
respectively). We compare each curve with the corresponding
graybody factors of a Schwarzschild BH with same mass (dashed
blue lines).
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derivative of the dilaton field [53,54]. We have built these
solutions following Refs. [41,52–54]. Details are presented
in Appendix B.
In Fig. 4, we present the phase diagram ðD=M; λ=M2Þ,

first computed in Refs. [53,54]. BHs and solitons form a
one-parameter family of solutions, so they are represented
by curves which encloses a two-dimensional surface.
The latter is the domain of existence of the wormhole
solutions. An interesting feature of this phase diagram is
that the BH solutions (including the minimum mass)
correspond to double points in the phase space, wherein
the BH and the wormhole solution coexist (see inset in
Fig. 4). Furthermore, the singular BH solution at the end of
the unstable branch connects also to the solitonic solution
which has a derivative singularity (i.e., a cusp), being
therefore a triple point in the phase space of the theory.
Thus, even though the soliton solution is probably not a
good candidate for the end point of a phase transition, the
regular wormhole solution is more appealing.

B. Static solutions in horizon-penetrating coordinates

As discussed in Sec. IV, for our nonlinear simulations,
we are interested also in the BH interior. Therefore, we
need to construct initial data using horizon-penetrating
coordinates such as PG-like ones [Eq. (8)]. Since we are
interested in simulating the BH evolution close to the
critical configuration, for which the curvature singularity is

close to the horizon, we also need small grid steps to
resolve properly the BH region. In order to reduce the
computational cost by increasing the resolution only in the
central region, we define the areal radius RðrÞ in terms of a
radial coordinate r. As explained in Appendix C, the
function RðrÞ is accurately chosen as to achieve better
resolution in high-curvature regions while keeping a uni-
form grid for the coordinate radius r. The line element in
PG-like coordinates can thus be written as

ds2 ¼ −α2dt2 þ ðR0ðrÞdrþ αζdtÞ2 þ RðrÞ2dΩ2; ð21Þ

where α and ζ depend in general on ðr; tÞ. In the following
equations, we shall often leave the r dependence of R
implicit.

1. Equations and boundary conditions

Replacing the static line element (21) into the field
equations (2)–(3) and performing algebraic operations, we
obtain two first-order equations for α and ζ and a second-
order equation for ϕ, which are reported in Appendix A.
The expansion of the future-directed outgoing null

geodesics normal to the 2-spheres SR of (areal) radius R
is given by

θðlÞ ¼
2

R
ð1 − ζÞ; ð22Þ

where lμ ¼ ð1α ; 1−ζR0 ; 0; 0Þ is the future-directed null vector
normal to SR. Thus, the horizon rh is located where ζ ¼ 1.
The denominator of the right-hand side of the equation

for the dilaton [Eq. (A8)] goes to zero at the horizon, and
imposing that the singular terms in ϕ00

h ≔ ϕ00ðrhÞ vanish, we
recover the regularity condition [19],

ϕ0
h ¼

R0
hð−R2

h þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4
h − 192F0½ϕh�2

p
Þ

8RhF0½ϕh�
; ð23Þ

where the subscript h indicates that the quantities are

evaluated at the horizon, and F0½ϕ� ¼ δF½ϕ�
δϕ . This expression,

together with the regularity condition ζh ¼ 1, are the
analog of Eq. (11) in different coordinates.
In PG-like coordinates, the spatial 3-metric is flat, and

thus the Arnowitt-Deser-Misner mass identically vanishes.
Following Ref. [55], we use the asymptotic value of the
Misner-Sharp mass function mMSðrÞ as a definition of the
total mass of the spacetime:

MMS ≔ lim
r→þ∞

mMSðrÞ ¼ lim
r→þ∞

R
2
ζ2: ð24Þ

We can now write the asymptotic behaviors of ϕ, α, and ζ in
the asymptotically flat case as

FIG. 4. Families of asymptotically flat solutions to EdGB
gravity as plotted in the phase space ðD=M; λ=M2Þ, where D
is the dilatonic charge and M is the mass of the object measured
by an observer at spatial infinity (see also Refs. [41,52–54]). The
gray region represents the domain of existence of the wormhole
solutions, and each colored line represents a family of wormhole
solutions characterized by a specific value of λ (in units where the
wormhole throat is r0 ¼ 2): λ ¼ 0.0015 (orange), λ ¼ 0.009
(yellow), λ ¼ 0.0156 (green), λ ¼ 0.023 (dark green), and λ ¼
0.032 (light blue). The upper black line (asterisks) corresponds to
regular wormhole solutions in the f0 → ∞ limit (see Appen-
dix B). The lower black line (crosses) corresponds to BH
solutions, whereas the dashed line (dots) corresponds to solitonic
solutions with a singularity in the second derivative of the dilaton.
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ϕ ¼ −
D
R
þO

�
1

R2

�
; ð25Þ

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
MMS

R

r
þO

�
1

R5=2

�
; ð26Þ

α ¼ AþO
�

1

R2

�
; ð27Þ

where the constant A in Eq. (27) is a free parameter, since α
can be arbitrarily rescaled by a constant with a redefinition
of the coordinate time.

2. Numerical procedures

We used two procedures for constructing the static
dilatonic BH solutions.
The first is a standard shooting, wherein (for fixed values

of the coupling constant λ and the horizon radius Rh)
we integrate the equations from the horizon outward,
using Newton’s method to find the value of the only free
parameter ϕh for which the asymptotic boundary condi-
tions (25)–(27) are satisfied. We finally obtain the static
dilatonic solution by performing an integration both outside
and inside the BH region. Note that, since the equations for
ϕ and ζ do not depend on α, we do not integrate the
equation for this metric function.
The second procedure is based on the invariance of the

theory under the transformation

ϕ → ϕþ C λ → λeγC; ð28Þ

where C is a real constant. The strategy is similar to the one
outlined in Ref. [56]. Namely, we start by fixing the horizon
radius and setting the coupling constant to a generic value.
We initialize ϕh, and then ζh and ϕ0

h with the conditions
at the horizon. We then integrate Eqs. (A6) and (A7),
obtaining the generic asymptotic behavior for ϕ ∼ cost − D

R.
Finally, we perform a symmetry transformation (28) to
impose (25). This second procedure has the advantage of
being faster, since it does not require solving the field
equations multiple times to construct a single solution.
Furthermore, it simplifies finding multiple solutions for the
same coupling constant, when they exist. On the other
hand, since it takes advantage of a symmetry of the theory,
it can only be used with couplings such that the action is
invariant under (28).
In both cases, we perform the numerical integration

using the fourth-order accurate Runge-Kutta method,
starting from the horizon and moving both inward and
outward. Even though from an analytical point of view the
conditions at the horizon guarantee the regularity of the
field equations, the presence of ð1 − ζ2Þ at the denominator
of the equation for the dilaton can cause instabilities when
used in a numerical integration algorithm. To overcome this

issue, we use the following strategy. First, we integrate the
field equations with the fourth-order accurate Runge-Kutta
method for a single step from rh to rh þ Δr

2
, where Δr is the

required grid step. We use the analytic expression of ϕ00
h and

ζ0h [Eqs. (A9) and (A10)] as the right-hand sides of the
equations at the horizon, while we use Eqs. (A7) and (A6)
in the intermediate steps. Then, we continue the numerical
integration up to the outer boundary usingΔr as integration
step. We repeat the same procedure inside the BH region,
and we obtain that in the final numerical data the horizon is
staggered between two grid points. We have found that,
when the static solution is used to initialize the evolution
code described in the next section, this strategy produces a
better behaved constraint violation with respect to the
standard Taylor’s expansion at the horizon.
Let us stress that the BH solutions have a curvature

singularity inside the horizon [36], so we can only integrate
the equations from the horizon inward up to the radius of
such singularity. The position of the singularity inside the
horizon depends on the specific value of the coupling
constant, which motivates the discussion presented in the
next subsection.

3. Properties of the solutions for different γ’s

In Fig. 5, we show the usual Rh −MBH plane for some
representative values of γ. For γ ¼ 1, there is only one
branch of solutions and no local minimum of the BH mass.
In this case, the minimum-mass solution is also singular at
the horizon, as in the shift-symmetric case [48,49]. For
slightly larger values of γ (e.g., γ ¼ ffiffiffi

2
p

in the plot), there is
a critical (minimum-mass) BH which is regular in and
outside the horizon. This solution separates two branches,

FIG. 5. Dilatonic solutions in the Rh −MBH plane for different
values of γ. For γ ¼ 1, the singular configuration has minimum
mass; for γ ¼ ffiffiffi

2
p

, a second branch forms and the singular
configuration has minimum radius; while for γ ¼ 4, both the
minimum-mass and minimum-radius solutions are regular at
the horizon.
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with the lower one terminating at the minimum-radius
solution, which is singular at the horizon [35,38]. Finally,
for even larger values of γ (e.g., γ ¼ 4 in the plot), also
the minimum-radius solution is regular in the BH exterior
[40]. In this case, the second branch terminates at a dif-
ferent solution which is not the minimum-mass nor the
minimum-radius one. Note, however, that the lower branch
is linearly unstable [47], as we shall also find at the fully
nonlinear level in Sec. V. Therefore, the physically inter-
esting solutions are those on the upper branch, and we are
particularly interested in the critical (minimum-mass) BH
in those cases in which it is regular.
It is also interesting to investigate in more details the

location Rs of the curvature singularity inside the horizon
as a function of the dilaton coupling. To identify the
singularity, we considered the numerical data obtained
from the integration in the BH region, which starts from
the horizon and proceeds inward. At the singularity, the
denominator Dϕ in the right-hand side of the equation for
the dilaton [Eq. (A7)] vanishes; thus, the algorithm fails,
and the numerical data become less smooth, featuring
spurious jumps. We determine Rs as the radius where this
happens, imposing numerical conditions that detect
changes of sign or discontinuities in Dϕ and its derivatives
near the root. In Fig. 6, we compare the location of the
singularity with the horizon radius at the critical BH
solution for different values of γ. The units are fixed in
such a way that Rh ¼ 2. Overall, the smaller the γ, the
smaller the areal distance between the singularity and the
horizon, which also requires higher resolution to resolve
the region around the horizon. Thus, in order to reduce the
computational cost of the nonlinear time evolution pre-
sented in the next section, in addition to using the radial

transformation RðrÞ, we decided to set γ ¼ 4. We also
checked different values of γ, finding a qualitatively similar
behavior. Note that in Fig. 6 we also show the radius of the
excised region, Re, obtained by initializing the evolution
algorithm presented in Sec. IV. Details on the excision are
given later on.
Finally, in Fig. 7, we show the behavior of the excision

radius (black curve) and of the singularity (red curve) with
respect to the coupling constant λ when γ ¼ 4. As antici-
pated, for the minimum-mass solution the singularity is
well within the horizon, whereas near the singular confi-
guration both the excision and the singularity approach the
horizon radius. Moreover, since these solutions are com-
puted at fixed horizon areal radius Rh ¼ 2, the coupling
constant starts decreasing after the configuration that
minimizes Rhffiffi

λ
p .

IV. NUMERICAL SETUP: INITIAL VALUE
PROBLEM IN EdGB GRAVITY

In this section, we discuss our numerical setup for the
spherical collapse of fields onto a dilatonic BH in EdGB
gravity. We mostly follow the formalism used in Ref. [55]
for shift-symmetric (i.e., F½ϕ� ∝ ϕ) EdGB gravity. We
remind the reader that we consider the collapse both of
the dilatonic field ϕ directly coupled to the higher-curvature
terms and that of a phantom field ξ, which is needed to
mimic BH evaporation at the classical level.

A. System of equations and hyperbolicity

To obtain the evolution equations for the system, we start
by defining the variables

Q ¼ ∂rϕ; Θ ¼ ∂rξ ð29Þ

FIG. 6. Position of the excision boundary and curvature
singularity at the critical configuration for different choices of
the parameter γ. Given a fixed value of the horizon radius, the
radii of the excision boundary and the singularity at the critical
configuration decrease as γ increases. For this reason, using larger
values of γ allows us to use larger grid steps and reduce the
computational cost.

FIG. 7. Position of the excision boundary (black) and the
curvature singularity (red) for the static dilatonic solutions in
the case of γ ¼ 4. Both curves reach the horizon (blue line) at the
singular configuration.
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and the conjugate momenta

P ¼ 1

α
∂tϕ −

ζQ
R0ðrÞ ; Π ¼ 1

α
∂tξ −

ζΘ
R0ðrÞ : ð30Þ

We then substitute these definitions and the ansatz for the
metric in the field equations and obtain a set of seven
evolution equations for ϕ, Q, P, ξ, Θ, Π, and ζ, plus 2
constraint equations for α and ζ. All equations are reported
in Appendix A. The evolution equations for ϕ and ξ are
redundant, since the profiles of the scalar fields can be
obtained using Eqs. (29) as constraints.
In PG-like coordinates, the system of evolution equa-

tions and constraints is not everywhere hyperbolic [55]. In
order to identify elliptic regions during the numerical
evolution, we computed the discriminant of the character-
istic equation following Ref. [22].
In particular, we consider the principal symbol of our

system of equations

PIJ ¼
δEvI

δ∂μvJ
ημ; ð31Þ

where vI ¼ ðϕ; Q; P; ξ;Θ;Π;α; ζÞ schematically denotes a
variable of the system of equations, EvI is the Ith field
equation written in implicit form (six evolution equations
for ϕ, Q, P, ξ, Θ, Π, and 2 constraint for ζ, α), and ημ is a
4-vector. The determinant of P has the form

detP ∝ η2t η
2
r

�
aξ

�
ηt
ηr

�
2

þ bξ

�
ηt
ηr

�
þ cξ

�

×

�
aϕ

�
ηt
ηr

�
2

þ bϕ

�
ηt
ηr

�
þ cϕ

�
; ð32Þ

where aϕ, bϕ, cϕ, aξ, bξ, and cξ are lengthy expressions that
depend on all the fields. This determinant vanishes if
η2t η

2
r ¼ 0, aϕðηtηrÞ2 þ bϕðηtηrÞ þ cϕ ¼ 0, or aξðηtηrÞ2 þ bξðηtηrÞ þ

cξ ¼ 0. The first equation has two solutions ηr ¼ 0, which
come from the fact that α and ζ are constrained degrees of
freedom, and two solutions ηt ¼ 0, which come from the
redundancy of the equations for ∂tϕ and ∂tξ.
The second and the third equations have real solutions if

the corresponding discriminants, Δ ¼ b2 − 4ac, are non-
negative. In this case, the characteristic velocities c� ¼
−ðηtηrÞ� are given by

cðϕÞ� ¼ bϕ �
ffiffiffiffiffiffi
Δϕ

p
2aϕ

; cðξÞ� ¼ bξ �
ffiffiffiffiffiffi
Δξ

p
2aξ

: ð33Þ

In order for the system to be hyperbolic, we need to impose
that both discriminants

Δϕ ¼ b2ϕ − 4aϕcϕ; Δξ ¼ b2ξ − 4aξcξ ð34Þ

are positive, so that there are four different real character-
istic velocities. As we shall later discuss, we use an excision
procedure to exclude the spacetime region where the
system is not hyperbolic.

B. Initial data

Our purpose is to simulate the evolution of small
perturbations of scalar fields around initially static dilatonic
BHs. To construct these initial configurations, we first use
the procedures described in Sec. III to find the profiles
ϕ0ðrÞ, Q0ðrÞ, and ζ0ðrÞ corresponding to a static isolated
BH. Next, we initialize the dilaton as

ϕðr; t ¼ 0Þ ¼ ϕ0ðrÞ þ δϕðrÞ;
Qðr; t ¼ 0Þ ¼ Q0ðrÞ þ δQðrÞ;

Pðr; t ¼ 0Þ ¼ P0ðrÞ þ δPðrÞ ¼ −
ζ0ðrÞQ0ðrÞ

R0ðrÞ þ δPðrÞ;

ð35Þ

where

δϕðrÞ ¼ A0;ϕ

RðrÞ e
−
ðRðrÞ−R0;ϕÞ2

σ2
ϕ ;

δQðrÞ ¼ ∂rδϕðrÞ;

δPðrÞ ¼ δϕðrÞ
RðrÞ þ ∂RδϕðrÞ ¼

δϕðrÞ
RðrÞ þ 1

R0 δQðrÞ: ð36Þ

Similarly, since the phantom field vanishes in the back-
ground, we initialize its perturbation as

ξðr; t ¼ 0Þ ¼ δξðrÞ ¼ A0;ξ

RðrÞ e
−
ðRðrÞ−R0;ξÞ2

σ2
ξ ;

Θðr; t ¼ 0Þ ¼ δΘðrÞ ¼ ∂rδξðrÞ;

Πðr; t ¼ 0Þ ¼ δΠðrÞ ¼ δξðrÞ
RðrÞ þ ∂RδξðrÞ

¼ δξðrÞ
RðrÞ þ

1

R0 δΘðrÞ: ð37Þ

In Eqs. (36) and (37), A0;ϕ and A0;ξ represent the amplitudes
of the dilaton and phantom perturbations, respectively; R0;ϕ

and R0;ξ represent the peak value of the Gaussian profiles;
whereas σϕ and σξ are the typical widths. The conjugate
momenta of the perturbations are similar to Ref. [22]. With
this choice, the wave packets are approximately inward
moving.
We then integrate the constraints with the fourth-order

accurate Runge-Kutta method, starting from the first grid
point outside the horizon and moving both outward and
inward. We assume that the perturbations of both fields are
far enough from the horizon that we can consider the metric
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to be initially unperturbed in that region, and we start the
numerical integration using the value of ζ obtained from the
shooting procedure. Initially we set α ¼ 1, and at the end of
the initialization process we rescale it in such a way that
αðr∞Þ ¼ 1, where r∞ is the outermost grid point.
The fourth-order accurate Runge-Kutta method requires

evaluating the right-hand side of the equations in inter-
mediate grid points. In order to obtain the values of the
dilatonic field in these points, we construct the static BH
solution using a double resolution compared to that
required by the numerical evolution. Namely, if we want
the grid step of the numerical evolution to be Δr, we
perform the shooting procedure with Δr

2
as a grid step, and

we use half of the grid points as intermediate values for the
Runge-Kutta method. We then discard them at the end of
the initialization procedure. We evaluate ∂rQ and ∂rP on
the right-hand side of the constraints by applying the
fourth-order accurate centered finite differences scheme
on the data from the shooting procedure, i.e., using the
profiles obtained with grid step equal to Δr

2
.

C. Numerical evolution algorithm

We perform the numerical integration with the method of
lines, using the fourth-order accurate Runge-Kutta method
for the time integration, and the fourth-order accurate finite
differences method for computing the radial derivatives. In
particular, at each step of the time integration, we use
Eqs. (A11)–(A17) to evaluate the intermediate profiles of
ϕ, Q, P, ξ, Θ, Π, and ζ required by the Runge-Kutta
method, and we perform a fourth-order accurate numerical
integration of Eq. (A20) to obtain the profile of α.
This latter numerical integration cannot be performed

using the Runge-Kutta method, as it requires the evaluation
of the fields in intermediate grid steps, which cannot be
done in our setup due to the fact that the fields are only
defined on the grid points. Nevertheless, the constraint for α
can schematically be written as

∂rα

α
¼ L½R;ϕ; Q; P;Θ;Π; ζ�; ð38Þ

where L does not depend on α. The solution then reads

αðrÞ ¼ exp

�
ln αðr∞Þ þ

Z
r

r∞

Ldr

�
; ð39Þ

where αðr∞Þ is given by the boundary conditions on the
outermost grid point. We compute the integral in the above
equation using the trapezoidal rule when r and r∞ are
adjacent grid points, and with a combination of the
Simpson’s rules in the other cases. In this way, we obtain
an accuracy of order four in all the numerical grid except in
the last grid step.
We use an excision procedure to remove the region

where the system is not hyperbolic. The strategy is similar

to the one used in Ref. [55]: at the end of each time step, we
compute the discriminants (34), find the outermost radius
in which at least one of the two is nonpositive, and then
excise the region in the interior. The field equations are not
evolved in the excised region, thus the radius of the
excision boundary Re cannot decrease, but would at most
remain constant if the elliptic region shrinks.
We also monitor the evolution of the apparent horizon,

which is located at the coordinate radius rh where the
expansion vanishes, θðlÞðrhÞ ¼ 0. We estimate rh using a
linear interpolation. Since the results of the numerical
integration lose physical meaning when an elliptic region
appears outside the BH,5 we stop the simulation if the
apparent horizon enters in the excision boundary.
Finally, we implemented a fifth-order Kreiss-Oliger

dissipation scheme in order to stabilize the integration
algorithm against high-frequency modes arising from the
inner- and near-horizon region. The action of the dissipa-
tion term is restricted to the central region by means of a
weighting function ρðrÞ. Specifically, if we schematically
denote a generic variable with u, we add to the right-hand
side of each evolution equation the term Qu contained in
Appendix C of Ref. [57], which we write as

Qu ¼ ηKO
64Δt

ðΔrÞ6ðD3þÞρðD3
−Þu; ð40Þ

where ηKO is a constant, Δr is the grid step, Δt is the time
step, ρ ¼ ρðrÞ is the weighting function, and D� are the
operators of first-order numerical differentiation with the
one-sided finite difference scheme. In particular, we use
ηKO ¼ 0.1 and

ρðrÞ ¼ 1

1þ e5ðRðrÞ−5Þ
: ð41Þ

Since the computation of the numerical derivatives in
Eq. (40) requires three grid points on each side, we do not
use the dissipation term in the three grid points near each
boundary of the domain of integration.

D. Boundary conditions

We do not impose conditions at the excision boundary.
Since the elliptic region lies always inside the horizon
(otherwise we stop the simulation), all the characteristics
are ingoing. For this reason, we use the upwind differ-
entiation scheme in the first two grid points outside the
excision, while we use the centered scheme in the rest of
the grid.

5Note, however, that since the apparent horizon does not
coincide with the event horizon in dynamical situations, the
emergence of an elliptic region outside the apparent horizon is not
necessarily pathological. In other words, we cannot exclude in
general that an elliptic region outside the apparent horizon would
remain confined within the event horizon.
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At the outer boundary, we impose αðr∞Þ ¼ 1, and we
keep all the other variables constant in the outermost three
grid points, which are used only for computing the
numerical derivatives. This can be done as long as we
use a numerical grid large enough that the signals coming
from the outer boundary do not reach the horizon region we
are interested in. Actually, in the code, the condition α ¼ 1
is imposed at the first point in which the time integration is
performed (the fourth outermost grid point); however, the
errors introduced in α are of order 1

R2 and do not affect
the accuracy of the code at late times, as we can see from
the results of the test simulations reported in Appendix C.
We tested our implementation of the integration algo-

rithm by checking the scaling of the violation of the
constraint for ζ. Our code appears to be accurate and
reliable for the evolution of a static dilatonic BH and for the
collapsing scenarios that we will discuss in the next
sections. The results of the convergence tests are presented
in Appendix C.

V. NONPERTURBATIVE GEDANKEN
EXPERIMENTS WITH DILATONIC BLACK

HOLES IN EdGB GRAVITY

We now turn to describe our simulations of the spherical
collapse of wave packets on static dilatonic BHs in EdGB
gravity. In Secs. VA and V B, we consider the case of
dilatonic perturbations onto BHs in the upper and lower
branches, respectively. In Secs. V C, V D, and V E, we
consider different setups of phantom perturbations that
reduce the BH mass, thus mimicking BH evaporation at the
classical level. We remind the reader that we use units such
that the horizon areal radius of the initial BH is
Rhðt ¼ 0Þ ¼ 2, which corresponds to setting the initial
BH mass to unity in the GR limit.

A. Collapse of a dilaton field on a BH
in the upper branch

Let us first discuss the case of an initial dilatonic BH
in the upper branch. We set the coupling constant to
λ ¼ 0.01536, and we construct the initial data using the
procedure described in Sec. IV B. The parameters Aϕ, Rϕ,
and σϕ are set to

A0;ϕ ¼ 0.02; R0;ϕ ¼ 15; σϕ ¼ 0.5; ð42Þ

while Aξ ¼ 0, which implies that the phantom field is
always zero in this case. The outer boundary is at
R∞ ¼ 520, the final simulation time is T ¼ 500, and the
grid step is Δr ¼ 0.01, with a Courant-Friedrichs-Lewy
(CFL) factor CFL ¼ Δt

Δr ¼ 0.025.6

Since the upper branch is expected to be linearly stable
[47], after the dilaton wave packet is absorbed, the BH
mass should increase, and the end state of the numerical
simulation should be approximated by a (slightly heavier)
static dilatonic configuration in the upper branch. In order
to check this, we initialized the shooting algorithm
described in Sec. III B with the horizon data at the end
of our simulation (t ¼ T) and constructed a static dilatonic
BH solution. We then compared it with the profile of the
dilaton at the end of the simulation; see Fig. 8. The profile
obtained by the shooting procedure (orange curve) is in
excellent agreement with that obtained at the end of the
numerical evolution (blue curve), except in the outer region.

FIG. 8. Profile of the dilaton ϕ at the end of the simulation of
the collapse of a dilaton wave packet on a static BH in the upper
branch. The blue curve is obtained at the end of the numerical
evolution, while the orange curve is obtained from the shooting
procedure initialized with the horizon data at t ¼ T.

FIG. 9. Evolution in the Rh −MMS plane for the collapse of a
dilaton wave packet on a BH in the upper branch. The blue curve
is the domain of existence of static dilatonic solutions, while the
blue point represents the static BH configuration that approx-
imates the end state of the numerical evolution.

6This small CFL factor is required by the fact that near and
inside the horizon the areal radius step ΔR is approximately 20
times smaller than Δr.
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This is consistent with the fact that the information of the
absorption of the pulse has not yet reached the outer
boundary.
In Fig. 9, we show the evolution of the system during

the simulation in theRh −MMS plane. The point correspond-
ing to the initial configuration (red circle) is on the right of
the domain of existence of static dilatonic BH solutions
(blue curve), since the wave packet of the dilaton adds a
positive contribution to the total Misner-Sharp mass. The
initial (isolated) BH solution is marked by an empty circle,
connected to the red one by a horizontal dotted line. The blue
full circle represents the static configuration that approx-
imates the end state of the numerical integration. It is clear
that the final state of the evolution is in the upper branch,
providing a first numerical confirmation of the stability of
this family of solutions at the fully nonlinear level.

B. Collapse of a dilaton field on a BH
in the lower branch

We now perform a set of four simulations of the same
type with different values of the coupling constant λ in the
range [0.01554, 0.0156]. In this regime, there are two BH
solutions for each mass, and we consider those in the lower
branch (i.e., with smaller radii) as initial configurations.
These solutions should be linearly unstable [47].
We consider a dilaton wave packet with parameters

A0;ϕ ¼ 0.01; R0;ϕ ¼ 15; σϕ ¼ 2.5: ð43Þ

The outer boundary is at R∞ ¼ 2850, the grid step is
Δr ¼ 0.02, and the total integration time is T ¼ 2800.
In Fig. 10, we show the evolution of the systems in the

Rh −MMS plane. In this case, the BHs in the lower branch
migrate toward the upper branch, hinting at the instability
of the former and stability of the latter at the fully nonlinear

level. In order to show the dynamics of the transition, we
plot in Fig. 11 the evolution of the apparent horizon areal
radius. After the absorption of the wave packet, Rh
increases with time and approaches a constant value, which
corresponds to the horizon radius of the final stable BH
configuration.

C. Collapse of a phantom field on a dilatonic BH

In the previous section, we discussed the evolution of
a BH when it absorbs a wave packet of the dilaton.
However, with this setup, we are not able to test the
behavior of the system when the BH mass falls below the
critical value, since the pulse of the dilaton adds a
positive contribution to the total mass and the initial
setup is always supercritical. We now move to investigate
the dynamics of dilatonic BHs under a mass loss due to
absorption of the phantom field, i.e., a scalar field whose
kinetic term has the opposite, “wrong” sign. We stress
that the role of the phantom field is solely to mimic the
mass loss due to BH evaporation at the classical level,
but after the absorption of the initial perturbation, the
evolution is governed only by the nonlinear dynamics of
the theory, and the Hawking radiation is not taken into
account anymore during the simulation. This allows us to
dynamically reduce the BH mass below the critical value
and investigate the intrinsic behavior of the classical
theory in this peculiar regime.
One might be concerned by the fact that a phantom field

can lead to pathological dynamics, but this is not the case in
spherical symmetry. Indeed, in this case, the phantom field
does not induce runaway instabilities due to the absence of
gravitational-wave emission. We have checked this point
by performing test simulations of the spherical collapse
of a phantom field onto a Schwarzschild BH in GR (see
Appendix C). As we are going to discuss, in this case, the

FIG. 10. Same as in Fig. 9 but for the simulations starting from
dilatonic BHs in the lower branch. These solutions are unstable
and migrate toward stable static BH configurations in the upper
branch.

FIG. 11. Evolution of the apparent horizon for a dilatonic
perturbation on an initially static BH in the lower branch,
showing the dynamics of the transition from the lower (unstable)
to the upper (stable) branch.
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phantom perturbation is simply absorbed by the BH, which
settles down to a stable Schwarzschild solution with a
slightly smaller mass (and smaller horizon). Note that here
the second law of BH thermodynamics is violated even in
GR, since the phantom field does not satisfy the null energy
condition.
We performed different simulations of this process choos-

ing the coupling constant λ ¼ f0.01543; 0.01545; 0.01547;
0.01549; 0.01551g, which correspond to Rh=

ffiffiffi
λ

p ¼ f16.10;
16.09; 16.08; 16.07; 16.06g. The parameters of the initial
phantom perturbation [see Eq. (37)] are

A0;ξ ¼ 0.01; R0;ξ ¼ 15; σξ ¼ 2.5: ð44Þ

The initial BH is always in the upper branch, and when
λ ¼ 0.01551, the totalMisner-Sharpmass at the beginningof
the simulation is slightly smaller than the critical mass. The
outer boundary is at R∞ ¼ 2850, the grid step isΔr ¼ 0.02,
and the final time of integration isT ¼ 2800. The CFL factor
is again set to 0.025.
The results of the simulations are shown in Fig. 12, in

which we can see that the BH reaches a final stable
configuration as long as the total mass in the spacetime
at t ¼ 0 is larger than the critical value. For λ ¼ 0.01551,
the situation changes dramatically. In this case, the apparent
horizon shrinks significantly until it crosses the excision
boundary and the simulation is stopped.
In this specific case, we have repeated the numerical

integration at different resolutions, Δr ¼ f0.01; 0.005;
0.0025g; see Sec. V D. In Fig. 13, we show the dynamics
of the apparent horizon and of the excision boundary
using the highest resolution. During the last stages of the

simulation, the horizon shrinks increasingly fast,7 and at the
same time, the excised region expands at a similar pace.
Eventually, they cross each other, and the simulation stops.

D. Naked singularity formation in EdGB gravity?

Since in the final time steps of the mass-loss evolution
past the critical mass the apparent horizon is rapidly
shrinking, it is interesting to understand whether it crosses
the singularity, thus violating the weak cosmic censorship
[1]. Furthermore, as we have previously discussed, in the
static case the curvature singularity is always inside
the elliptic region, and thus it is natural to ask whether
the expansion of the elliptic region8 is related to the
curvature singularity moving outward.
To address this point, in Fig. 14, we show the spacetime

evolution of the Ricci scalarR in this simulation. The black
area is the excised region, while the gray area contains the
first three grid points in the hyperbolic region. We decided
to exclude this region from the computation ofR in order to
avoid possible inconsistencies due to the change of the
derivation and dissipation schemes.

FIG. 12. Collapse of a wave packet of the phantom field on
different dilatonic BH configurations in the upper branch. The
BH reaches a final stable configuration as long as the total mass in
the spacetime at t ¼ 0 is above the critical valueMcrit ∼ 8.244

ffiffiffi
λ

p
.

Instead, when λ ¼ 0.01551, the apparent horizon shrinks sig-
nificantly, and the excised region expands, until it emerges out of
the apparent horizon and the simulation is stopped; see Fig. 13.

FIG. 13. Evolution of the apparent horizon and excision
boundary for the accretion of a phantom wave packet on a
dilatonic BH in the subcritical case. After the initial absorption of
the wave packet, on a much longer timescale, the apparent
horizon shrinks, and the excised region expands, until they cross
each other. When this happens, the simulation is stopped, due to
the presence of elliptic regions outside the BH.

7Note that the small phantom field is accreted in ≈10 (in our
units). Therefore, as discussed in more detail below, the dramatic
shrink shown in Fig. 13 at much later times is entirely due to the
intrinsic (nonperturbative but classical) dynamics of the theory
past criticality, regardless of the details of the phantom-field
accretion.

8The elliptic region is always inside the excised region,
and since the excised region cannot shrink, we do not know
the real dynamics of the elliptic region. However, the evolution of
the excision boundary is governed by the discriminants of the
characteristic equation; therefore, if the radius of this boundary
increases, then also the elliptic region is expanding.

NONPERTURBATIVE GEDANKEN EXPERIMENTS IN EINSTEIN- … PHYS. REV. D 107, 044061 (2023)

044061-13



The curvature at the horizon is modest at the beginning
of the simulation (Rðrh; t ¼ 0Þ ≈ 0.0089). However, by the
time the apparent horizon crosses the excision (in fact,
already when it crosses the gray area in Fig. 14), the Ricci
scalar at the apparent horizon has grown by a factor ≈ 58
compared to its initial value. Furthermore, we have per-
formed this simulation with different spatial resolutions
(Δr ¼ f0.02; 0.01; 0.005; 0.0025g), finding that the curva-
ture converges well until t ¼ 2569.0. This is shown in
Fig. 15, in which we present the radial profile of the Ricci
scalar at different time snapshots and for different reso-
lutions. As a reference, at t ≈ 2569.6, the apparent horizon
has crossed the excision boundary, i.e., only 0.6 after
the last snapshot of the bottom panel.9 Although the simu-
lation becomes increasingly more demanding, our results
suggest that the curvature when the apparent horizon crosses
the gray region keeps growing as the grid step decreases.
This suggests that a large curvature region located just across
the excision is emerging out of the apparent horizon.
An important point is that the apparent horizon is folia-

tion dependent and, in highly dynamical configurations, it
does not generically coincides with the event horizon.
Furthermore, due to the violation of the null energy con-
dition [19] in EdGB gravity, the GR theorem [58] proving
that the apparent horizon, if it exists, should always be
enclosed by the event horizon does not necessarily apply. To
explore the dynamics of the event horizon, we have studied
the motion of null geodesics, tracing them backward in time
and determining the surface where they converge (see, e.g.,
Ref. [59] for a similar computation in a different context). In
particular, for a given null tangent vector nμ, we compute the
null geodesic equation by solving nμnνgμν ¼ 0. In PG-like
coordinates, this translates into

drðtÞ
dt

¼ −
αðt; rÞ
R0ðrÞ ðζðt; rÞ − 1Þ; ð45Þ

for outgoing rays described by the radial coordinate
r ¼ rðtÞ. We solve this equation backward in time with
initial condition rðtFÞ ¼ rF where tF is near the final time of
our simulation (which does not necessarily correspond to a
stationary configuration) and rF is a free parameter. The
result is presented in the upper panel of Fig. 16. This shows
two interesting features:

(i) In the last stages of the simulation, the event horizon
is inside the apparent horizon; this effect is forbidden
in GR, and it is due to the GB coupling.10

(ii) The event horizon shrinks in time following the
same behavior as the apparent horizon, probing
regions of increasing curvature.

Intrigued by the fact that the event horizon is located
inside the apparent horizon, we have performed ray tracing
also in other configurations. First of all, already for the
same aforementioned simulation, we note that the event
horizon and the apparent horizon coincide at times earlier
than those shown in the upper panel of Fig. 16. This is
because the dynamics is initially slow. Furthermore, when
the dynamics is less extreme, the behavior of the event
horizon is more similar to what is expected in GR. This is
shown in the lower panel of Fig. 16, in which we present
the ray tracing for a transition from an unstable BH in the
lower branch to a stable BH in the upper branch (rightmost
simulation in Fig. 10). The event horizon approximately
tracks the apparent horizon also in this case, but it is
(slightly) outside of it, as in GR.
Since the curvature singularity is always located inside

the excised region, our simulations cannot access the region

FIG. 14. Contour plot of the Ricci scalar near the BH region for the simulation that passes the minimum BH mass. The black region is
the excised region, and the gray region has been excluded from the computation to avoid inconsistencies due to the change of derivation
and dissipation schemes near the excision boundary. The level curves of the R follow the behavior of the excision boundary, and the
region of high curvature expands. In the left panel, we show the full evolution, while in the middle and right panels, we focus on the
region where the apparent horizon is about to cross the gray area.

9As a further check of our code, we have computed the Ricci
scalar R by replacing the field equations in its definition both at
the analytical and numerical level. The two computations give the
same result.

10Note that the phantom field is tiny at late times, since it is
initially already small and soon gets absorbed by the BH. Thus,
the phantom perturbation cannot be responsible for the different
dynamics of the horizons at late times.
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whereR actually diverges.11 Nonetheless, it is important to
note that the level curves in Fig. 14 follow the trajectory of
the excision boundary, suggesting that also the radius of
the curvature singularity increases during the evolution.
Although our formalism is limited, these results might
suggest that a naked singularity can form as the outcome of
BH evaporation in EdGB gravity. Wewill come back to this
point in the concluding discussion in Sec. VI.

E. Emulating Hawking pair production:
Negative- and positive-energy wave packets

emitted near a dilatonic BH

So far, we have emulated BH mass loss through the
accretion of a phantom perturbation. This was a trick to
mimic one of the salient features of Hawking evaporation at
the classical level. However, Hawking emission can be

roughly interpreted as pair creation of entangled particles
near the horizon [60], with one (“positive-energy”) particle
escaping to infinity and theother (“negative-energy”) particle
falling inside the BH and decreasing its mass. In order to
emulate Hawking pair production more closely, in this
section, we consider an extended setup in which we evolve
two wave packets initially located near the horizon of a
dilatonic BH. In particular, besides “vacuum” EdGB gravity,
the matter content of the model is described by the action

Smatter ¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðð∇ξÞ2 − ð∇χÞ2Þ; ð46Þ

where ξ is again the phantom field (that will emulate
the negative-energy Hawking quantum), while χ is a new

FIG. 15. Radial profile of the Ricci curvature for the same
simulation shown in Fig. 14 using different resolutions. Each
panel shows a different time snapshot very close to the end of the
simulation (as a reference, the apparent horizon has crossed the
gray region in Fig. 14 at t ≈ 2569.6). Dashed vertical lines denote
the outer boundary of the gray region in Fig. 14, so the elliptic
region starts close on their left. Overall, as the apparent horizon
approaches the elliptic region, an increasingly higher resolution is
required to make the curvature converge. Furthermore, the
curvature dramatically grows before the simulation stops.

FIG. 16. Upper panel: ray tracing for the simulation showed in
Fig. 14 to find the event horizon, which corresponds to the
surface where the geodesics converge. The event horizon tracks
the apparent horizon and shrinks in time toward higher-curvature
regions. The fact that the event horizon is within the apparent
horizon is a feature of EdGB gravity but is not generic. This is
shown in the lower panel for a transition from the unstable to the
stable branch (rightmost simulation in Fig. 10). In this case, the
event horizon is slightly outside the apparent horizon, as in GR.

11Note that for the minimum-mass solution the curvature
singularity is initially already very close to the outer boundary
of the elliptic region, see Fig. 6, so the high-curvature region is
just across the boundary of the elliptic region.
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minimally coupled scalar field that will emulate the positive-
energy Hawking quantum.
For concreteness, we shall present the simulation of a

dilatonic BH near the critical configuration to which we add
two Gaussian perturbations. For ξ, we have used the profile
in Eq. (37), while we initialized χ with the profile

χðr; t ¼ 0Þ ¼ δχðrÞ ¼ A0;χ

RðrÞ e
−
ðRðrÞ−R0;χ Þ2

σ2χ ;

Yðr; t ¼ 0Þ ¼ δYðrÞ ¼ ∂rδχðrÞ;

Hðr; t ¼ 0Þ ¼ δHðrÞ ¼ −
δχðrÞ
RðrÞ − ∂RδχðrÞ

¼ −
δχðrÞ
RðrÞ −

1

R0 δYðrÞ; ð47Þ

where Y ≔ ∂rχ and H ≔ 1
α ∂tχ −

ζY
R0ðrÞ is the conjugate

momentum of the scalar field χ. With these choices, the
initial perturbation of the phantom field ξ is (approxi-
mately) ingoing, whereas the initial perturbation of the
ordinary field χ is (approximately) outgoing.
The parameters of the profiles (37) and (47) are set to

Aξ ¼ 8 × 10−4; R0;ξ ¼ 2.1; σξ ¼ 0.02; ð48Þ

Aχ ¼ 7 × 10−3; R0;χ ¼ 2.1; σχ ¼ 0.02: ð49Þ
In this way, the pulses are generated inside the BH photon
sphere (located at R ≈ 3.05 for an almost critical con-
figuration) and close to the horizon (initially located at
RH ¼ 2), but the scalar perturbations approximately vanish
on it. The amplitudes are chosen in such a way that the total
Misner-Sharp mass is approximately the same as the one of
the initial BH, but when the phantom field is absorbed, the

BH mass decreases below the critical value by an amount
similar to those of the simulations presented in the previous
section. We also tried different choices for the wave packet
initial location (e.g., inside and outside the photon sphere)
and width, the latter parametrizing the frequency content
and hence—within the Hawking pair emission analogy—
the temperature scale of the evaporating BH.We used a grid
step Δr ¼ 0.005 since, as we can see from Fig. 15, this is
sufficient to obtain results accurate enough for our pur-
poses. In all cases we obtained the same qualitative features
as presented below.
Overall, we observe a very similar dynamics as that

presented in Sec. V C for a single phantom perturbation. As
an example, in the left panel of Fig. 17, we show the
equivalent of Fig. 12, but for this setup with a pair of
negative- and positive-energy wave packets. In this case,
the Misner-Sharp mass shown on the horizontal axis is
evaluated at R ¼ 500, so for t≳ 500, it represents the BH
mass without the (positive) contribution of the outgoing
field χ. The behavior is qualitatively the same as previously
reported: due to the absorption of the small phantom
perturbation, the BH mass immediately goes slightly past
criticality, where no static BH solutions exist. On much
longer timescales, the horizon starts shrinking. The behav-
ior of the Misner-Sharp mass function,mMSðRÞ, at different
time snapshots is shown in the right panel of Fig. 17, from
which it is evident that the BH mass shrinks upon accreting
the phantom field ξ, whereas the (positive-energy) con-
tribution of the ordinary field χ moves outward as this wave
packet reaches infinity.
To further support the generality of this dynamics, in

Fig. 18, we compare the dynamics of the apparent horizon
and excision boundary for two simulations with and
without the initial perturbation of the ordinary field χ,

FIG. 17. Left panel: analog of Fig. 12 for a simulation of a pair of negative- and positive-energy wave packets onto a dilatonic BH near
the critical mass. As in the leftmost evolution shown in Fig. 12, the BH mass decreases past criticality upon accreting the phantom
perturbation, triggering a runaway instability on much longer timescales. Right panel: some time snapshots of the Misner-Sharp mass
function, mMSðRÞ, for the same simulation. While the Misner-Sharp mass decreases near the BH due to the accretion of the phantom
field, as the ordinary field χ moves outward, it gives an outgoing positive contribution to the mass function.
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showing that the qualitative behavior already presented in
Fig. 13—in particular the formation of a naked elliptic
region—is the same. This is expected since, as discussed
above, there exists a hierarchy of scales between the
accretion of the phantom field (reducing the BH mass past
criticality) and the formation of a naked elliptic region. The
latter occurs when the small phantom field perturbation has
been already accreted and cannot play any role in the
late-time dynamics. Indeed, the shrinking of the horizon
and the appearance of a naked elliptic region are entirely
due to the intrinsic, nonperturbative, dynamics of the theory
triggered by going past the critical BH solution.
Finally, in Fig. 19, we show the analog of Fig. 14 in this

setup with a pair of negative- and positive-energy wave
packets. The striking similarity between Figs. 14 and 19
confirms that the late-time dynamics does not depend on
the details of the BH mass loss past criticality.

VI. CONCLUDING DISCUSSION

In this paper, we have performed extensive numerical
simulations of the spherical collapse onto dilatonic BHs in
EdGB gravity, especially focusing on solutions near the
minimum mass that emerges as a very special feature
of gravity theories with higher-curvature terms. We have
also offered some broad motivations for this kind of studies,
including the enigma related to the fate of Hawking
evaporation in this theory.
While the current numerical formalism is insufficient to

provide a definite answer to this puzzle, we wish to advance
here some speculations supported by our results and
anticipate some interesting future directions.
First of all, the absence of BHs with mass smaller

than the critical value makes it almost inevitable for
Hawking evaporation in EdGB gravity to either violate
the weak cosmic censorship (implying a breakdown of the
theory and the need of a full quantum gravity completion)
or to form (potentially classical) horizonless remnants.
Exploring the first option might require an evolution
scheme (if it exists, see Ref. [61]) in which the system
of equations remains hyperbolic at the singularity. Since the
dynamics of the elliptic region depends on the gauge choice
[18,21,22,62], a putative different formalism might be
required to follow the evolution even if the weak cosmic
censorship is preserved. On the other hand, an intriguing
result supporting the hypothesis of horizonless remnants
is provided by the fact that the critical, minimum-mass
solution actually corresponds to one of the double points
in the phase space of the theory, wherein a BH and a
wormhole solution coexist. One could therefore entertain
the possibility that the minimum-mass BH can transit
toward a (regular and horizonless) wormhole solution with
slightly smaller mass, which cannot evaporate any further
(see also Refs. [44,63] for a model in which Hawking
evaporation is halted). Here, one interesting aspect for
future investigation is the fact that the wormhole solution
has matter at the throat [41,52], whereas the BH is a
vacuum solution of EdGB theory. However, we note that

FIG. 19. Analog of Fig. 14 but for an ingoing phantom perturbation and an outgoing standard field perturbation both starting near the
horizon (which would more closely mimic the production of a Hawking quantum pair); see main text for details.

FIG. 18. Analog of Fig. 18 but for the case of a pair of phantom
field ξ and ordinary scalar field χ. Solid and dashed curves
correspond to the apparent horizons and excision boundaries,
respectively. Regardless of the presence of χ and of the details of
the initial phantom field, the dynamics is very similar and, on
long timescales, leads to a shrink of the apparent horizon and to
the formation of a naked elliptic region.
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such transition requires mass loss and can therefore be
triggered only by Hawking evaporation. It would be
interesting to explore if Hawking particles around the
minimum-mass BH can provide the correct matter content
to support the wormhole throat. The possibility of a
transition toward the soliton seems more unlikely, given
the fact that this solution connects to the unstable BH
branch and has a singularity in the second radial derivatives
of the scalar field [53,54]. However, given the special
nature of this singularity, forming these solitons dynami-
cally should be studied in more details.
Other possible outcomes of the evaporation might be

simple dispersion of the fields or BH fragmentation, as
argued in Ref. [64] using thermodynamical arguments.
However, complete dispersion would require the disap-
pearance of the apparent horizon, which seems incompat-
ible with the existence of an elliptic region in the BH
interior even at t ∼ 0. The only option here would be if the
elliptic region shrinks together with the horizon but (i) this
is the opposite to what our simulations show (the elliptic
region actually expands), and (ii) our formalism could not
capture a shrinking of the elliptic region even in the case
this occurs. Concerning fragmentation [64], this is at least
not an option in the spherically symmetric case discussed
here and should anyway occur above the minimum mass to
allow for the fragmented BHs to exist.
Overall, beside formation of a naked singularity, it seems

that any other less pathological outcome would require a
change of topology of the spacetime. An intriguing
extension of our work concerns how to implement this
dynamically in a consistent framework or at least to
understand if the pathologies that dynamically emerge in
this theory could be related to a change of topology. It
might also be interesting to revisit the causal structure of the
theory (e.g., Refs. [65,66]) in the regimewe have identified.
Although we are admittedly providing more questions

than answers, we hope that this intriguing problem will
motivate further studies in several directions. The possibility
of forming horizonless remnants is particularly appealing,
since these objects evade all the constraints on microscopic
BHs [67] which arise from Hawking evaporation and could
form the entirety of the dark matter. Indeed, the expectation
that primordial BHs formed in the early Universe with
masses belowM ∼ 1015 g should be completely evaporated
by the present epoch and cannot therefore contribute to the
darkmatter is based on the assumption that GR is valid all the
way down to full evaporation, which is most likely not the

case. On the contrary, higher-curvature terms are bound to
become dominant in the final stage of the evaporation. Aswe
have discussed, in EdGB gravity this occurs at the length
scale Mcrit ∝

ffiffiffi
λ

p
, which might be much larger than the

Planck length. The scenario we have in mind here is a
microscopic primordial BH formed in the early Universe
with mass much larger than Mcrit ∝

ffiffiffi
λ

p
, so that initially its

dynamics is governed by GR. However, during Hawking
evaporation, the higher-curvature terms become stronger
until the BH reaches the dynamical regime that we have
explored here at the full nonperturbative level.
Given the nonperturbative nature of this phenomenon, an

important extension of our work is to study possible higher-
order terms and other corrections in the EdGB action. Some
of these terms arise as naturally as the GB coupling in
ultraviolet GR completions, so they might play an important
role in the nonlinear dynamics near the critical length scale.
Finally, our setup might provide a concrete first-principle

model to form (stable?) horizonless remnants, which are
interesting in the context of the information-loss paradox
[42,68,69]; see Refs. [70,71] for a review.
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APPENDIX A: EQUATIONS

In this Appendix, we provide the system of equations
that we integrated numerically, both for the construction of
static dilatonic solutions and for the simulations of the
spherical collapse.

1. Equations for constructing the static dilatonic BH solutions

a. Schwarzschild-like coordinates

Λ0
�
1þ 4

r
F0½ϕ�ϕ0

�
−
1 − eΛ

r
−
1

2
rϕ02 þ 4

r
F0½ϕ�½−3e−ΛΛ0ϕ0 þ 2ðe−Λ − 1Þϕ00� þ 8

r
F00½ϕ�ϕ02ðe−Λ − 1Þ ¼ 0; ðA1Þ
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Γ0
�
1þ 4

r
F0½ϕ�ϕ0

�
þ 1 − eΛ

r
−
1

2
rϕ02 −

12

r
e−ΛΓ0F0½ϕ�ϕ0 ¼ 0; ðA2Þ

Γ00 þ Γ0
�
1

r
þ Γ0 − Λ0

2

�
−
Λ0

r
þ ϕ02 þ 4

r
F0½ϕ�½Γ0ϕ0e−Λð3Λ0 − Γ0Þ − 2e−Λðϕ0Γ00 þ Γ0ϕ00Þ� − 8

r
e−ΛF00½ϕ�ϕ02Γ0 ¼ 0; ðA3Þ

ϕ00 þ Γ0 − Λ0

2
ϕ0 þ 2ϕ0

r
þ 2

r2
F0½ϕ�½Γ0ðΓ0 − Λ0 þ 3e−ΛΛ0 − e−ΛΓ0Þ þ 2Γ00ð1 − e−ΛÞ� ¼ 0: ðA4Þ

b. PG-like coordinates

In the static and spherically symmetric case ϕ, α and ζ depend only on the coordinate radius r, and since we are interested
in the dilatonic BH solutions, we set the phantom field to zero, and we consider only the equations for the metric and the
dilaton [Eqs. (2) and (3)].
After substituting the ansatz for the metric (21) in the field equations, we perform some algebraic manipulation using

Wolfram Mathematica, obtaining the following system of ordinary differential equations:

α0 ¼ α

4R0ðRR0 þ 4ð3ζ2 − 2Þϕ0F0½ϕ�Þ f48ζ
3R0ζ0ϕ0F0½ϕ� þ 4ζR0ζ0ðRR0 − 8ϕ0F0½ϕ�Þ

þ ζ2ðR2R0ϕ02 þ 2R03Þ þ R2R0ϕ02 þ 16ζ4ðR0ϕ02F00½ϕ� þ F0½ϕ�ðR0ϕ00 − R00ϕ0ÞÞg; ðA5Þ

ζ0 ¼ 1

4ζR0ðRR0 þ 4ð3ζ2 − 2Þϕ0F0½ϕ�Þ fR
2R0ϕ02 − 16ζ4½R0ϕ02F00½ϕ� þ F0½ϕ�ðR0ϕ00 − R00ϕ0Þ�

− ζ2ð16R00ϕ0F0½ϕ� þ R0ðϕ02ðR2 − 16F00½ϕ�Þ − 16ϕ00F0½ϕ�Þ þ 2R03Þg; ðA6Þ

ϕ00 ¼ −
1

Dϕ
fðζ2 − 1ÞR02ϕ0½ðζ2 − 1ÞF0½ϕ�ϕ03 − R0R00�R5 þ R0ϕ0½ðζ2 − 2ÞR04

− 4ζ2ðζ2 − 1Þϕ02F00½ϕ�R02 − 4ð7ζ4 − 13ζ2 þ 6ÞF0½ϕ�ϕ0R00R0 − 8ðζ2 − 1Þ2F0½ϕ�2ϕ04�R4

þ 4R0F0½ϕ�ϕ02½ð12ζ4 − 25ζ2 þ 12ÞR03 − 4ζ2ð3ζ4 − 5ζ2 þ 2Þϕ02F00½ϕ�R0

− 24ðζ2 − 1Þ2ð3ζ2 − 2ÞF0½ϕ�ϕ0R00�R3 − 32ðζ2 − 1ÞF0½ϕ�2ϕ03½6ðζ2 − 1ÞR0ϕ02F00½ϕ�ζ4
þ ð−21ζ4 þ 32ζ2 − 12ÞR03 þ 2ð15ζ6 − 39ζ4 þ 32ζ2 − 8ÞF0½ϕ�ϕ0R00�R2

þ 4R02F0½ϕ�½720F0½ϕ�2ϕ04ζ8 − 24ϕ0ð94F0½ϕ�2ϕ03 þ R02F00½ϕ�ϕ0 − R0F0½ϕ�R00Þζ6
þ ð2624F0½ϕ�2ϕ04 − 3R0ðR03 − 8ϕ02F00½ϕ�R0 þ 8F0½ϕ�ϕ0R00ÞÞζ4 − 1344F0½ϕ�2ϕ04ζ2

þ 256F0½ϕ�2ϕ04�R − 96ζ4ðζ2 − 1ÞR02F0½ϕ�2ϕ0½R03 þ 8ðζ2 − 1Þϕ02F00½ϕ�R0

− 8ðζ2 − 1ÞF0½ϕ�ϕ0R00�g; ðA7Þ

where

Dϕ ¼ ðζ2 − 1ÞR0½96ð3ζ4 − 5ζ2 þ 2ÞR0F0½ϕ�2ϕ02R3 þ 64ð15ζ6 − 39ζ4 þ 32ζ2 − 8ÞF0½ϕ�3ϕ03R2

þ R03ðR4 − 96ζ4F0½ϕ�2ÞRþ 4R02F0½ϕ�ðR4ð7ζ2 − 6Þ − 192ζ4ðζ2 − 1ÞF0½ϕ�2Þϕ0�: ðA8Þ

In these equations, F0½ϕ� ¼ δF½ϕ�
δϕ , while ζ0, α0, ϕ0, and R0 are radial derivatives.

The denominator Dϕ vanishes at the horizon, since ζ ¼ 1. However, the field equations are regular when the condition
(23) is imposed. In this case, ζ0h and ϕ00

h are given by

ϕ00
h ¼ −

3

R4
hR

0
hðR4

h − 96F0½ϕh�2Þ þ 4R7
hϕ

0
hF

0½ϕh�
½32R4

hR
00
hϕ

0
hF

0½ϕh�2 þ 4R5
hR

0
hR

00
hF

0½ϕh�

þ R3
hR

0
h
2ϕ0

hð4R2
hF

00½ϕh� þ R4
h − 32F0½ϕh�2Þ þ 48R0

h
3ðR2

hF
0½ϕh�F00½ϕh� þ 4F0½ϕh�3Þ�; ðA9Þ
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ζ0h ¼ −
R0
h
2

2RhR0
h þ 8ϕ0

hF
0½ϕh�

: ðA10Þ

2. System of equations for the simulation
of the spherical collapse

We now turn to discuss the system of equations used in
the time evolution code. In this case, the scalar fields and
the metric functions depend on ðr; tÞ.
The evolution equations for the scalar fields have been

obtained from the definition of the conjugate momenta
[Eq. (30)] and are

∂tϕ ¼ αPþ αζQ
R0 ; ðA11Þ

∂tξ ¼ αΠþ αζΘ
R0 : ðA12Þ

Note that we use a prime to indicate differentiation with
respect to the single variable of a function, whereas we use
∂r and ∂t to denote partial differentiation of spacetime
variables. The evolution equations forQ andΘ are obtained
by performing the time derivative of their definitions and
substituting the radial derivatives of Eqs. (A11) and (A12)
in place of the mixed derivatives of the scalar fields. We get

∂tQ ¼ ∂r

�
αPþ αζQ

R0

�
; ðA13Þ

∂tΘ ¼ ∂r

�
αΠþ αζΘ

R0

�
: ðA14Þ

We finally used the field equations to obtain three evolution
equations for P, Π, and ζ and two constraints for α and ζ.
The evolution equations are

∂tP ¼ 1

DP
fαR02½QðR0ð∂rαÞ − αR00Þ þ R0ðPζR0ð∂rαÞ þ αðð∂rQÞ þ R0ðζð∂rPÞ þ Pð∂rζÞÞÞÞ�R4

− 2αR0½2F0½ϕ�ððζ2 þ 4ÞR0ð∂rαÞ þ αðζR0ð∂rζÞ − 4R00ÞÞQ2 þ R0ð20PζR0F0½ϕ�ð∂rαÞ
þ αð−R02 þ 4F0½ϕ�ð2ζð∂rPÞ þ 3Pð∂rζÞÞR0 þ 8F0½ϕ�ðð∂rQÞ − PζR00ÞÞÞQ
þ R0ð10P2ζF0½ϕ�ðζð∂rαÞ þ αð∂rζÞÞR02 þ Pαζð−R02 þ 8ζF0½ϕ�ð∂rPÞR0 þ 8F0½ϕ�ð∂rQÞÞR0

− 2ð2ΘΠR0 þ ζðΘ2 þ Π2R02ÞÞF0½ϕ�ðζð∂rαÞ þ αð∂rζÞÞÞ�R3 − 2αF0½ϕ�½8αζ2R0F00½ϕ�Q4

− 8ð2ðζ2 þ 2ÞR0F0½ϕ�ð∂rαÞ þ αðF0½ϕ�ððζ2 − 4ÞR00 þ 2ζR0ð∂rζÞÞ − 2PζR02F00½ϕ�ÞÞQ3

þ R0ðαððð8ðP2 − Π2ÞF00½ϕ� − 3Þζ2 þ 16ÞR02 þ 8ð−2ζðΘΠF00½ϕ� þ 2F0½ϕ�ð∂rPÞÞ
− Pðζ2 þ 8ÞF0½ϕ�ð∂rζÞÞR0 − 8ζðζΘ2F00½ϕ� − 6PF0½ϕ�R00Þ þ 8ðζ2 − 4ÞF0½ϕ�ð∂rQÞÞ
− 8Pζðζ2 þ 16ÞR0F0½ϕ�ð∂rαÞÞQ2 þ 2ðPαζð15R02 − 32ζF0½ϕ�ð∂rPÞR0 − 24F0½ϕ�ð∂rQÞÞR02

þ 4ð2ΘΠR0 þ ζðΘ2 þ Π2R02ÞÞF0½ϕ�ð2ζR0ð∂rαÞ þ αðζR00 þ 2R0ð∂rζÞÞÞ
− 4P2ζF0½ϕ�ð16ζR0ð∂rαÞ − 3αðζR00 − 4R0ð∂rζÞÞÞR02ÞQþ ζR0ð8R0ð∂rαÞðPζð2ΘΠR0

þ ζðΘ2 þ ðΠ2 − 5P2ÞR02ÞÞF0½ϕ� þ R0ð∂rζÞÞ þ αð−32P2ζ2F0½ϕ�ð∂rPÞR03

þ 2ΘΠðR02 þ 8PF0½ϕ�ð∂rζÞR0 − 8F0½ϕ�ð∂rQÞÞR0 þ ζð17P2R04 − Π2R04 þ 3Θ2R02

− 24P2F0½ϕ�ð∂rQÞR02 − 8Π2F0½ϕ�ð∂rQÞR02 þ 8PðΘ2 þ ðΠ2 − 5P2ÞR02ÞF0½ϕ�ð∂rζÞR0

− 8Θ2F0½ϕ�ð∂rQÞÞÞÞ�R2 − 8R0F0½ϕ�½4α2ðζ2 − 4ÞR0F0½ϕ�Q3 þ 4αζR0ðPαðζ2 − 12ÞR0F0½ϕ�
þ 2ζF00½ϕ�ð∂rαÞÞQ2 þ 4ζð2R0F0½ϕ�ð∂rαÞ2ζ3 þ α2R0ð2F0½ϕ�ð∂rζÞ2 þ 2PR0F00½ϕ�ð∂rζÞ
− ðΘ2 þ ð13P2 − Π2ÞR02ÞF0½ϕ�Þζ þ 2αð∂rαÞðζð3PζR02F00½ϕ� − F0½ϕ�R00Þ
þ 2ðζ2 − 2ÞR0F0½ϕ�ð∂rζÞÞÞQþ ζ2R0ð−20P3α2ζF0½ϕ�R03 þ 16P2αζF00½ϕ�ðζð∂rαÞ þ αð∂rζÞÞR02

þ 4PF0½ϕ�ðζððΠ2R02 − Θ2Þα2 þ 2ð∂rαÞ2Þ − 6αð∂rαÞð∂rζÞÞR0 þ αððR0ðð2ζ2 − 1ÞR0

þ 8ζð3 − 2ζ2ÞF0½ϕ�ð∂rPÞÞ þ 8F0½ϕ�ð∂rQÞÞð∂rαÞ þ 2αR0ðζR0

þ 4ð1 − 2ζ2ÞF0½ϕ�ð∂rPÞÞð∂rζÞÞÞ�Rþ 4ζF0½ϕ�½ζð64QR0ð2Qþ PζR0ÞF0½ϕ�2ð∂rζÞ2
þ 8F0½ϕ�ð−8ζR0F00½ϕ�Q3 þ 8ð2PF00½ϕ�R02 þ ζF0½ϕ�R00ÞQ2 þ R0ðR0ð5ζR0ð8F00½ϕ�P2 þ 1Þ
þ 16ð1 − 2ζ2ÞF0½ϕ�ð∂rPÞÞ − 8ζF0½ϕ�ð∂rQÞÞQþ PζR03ð3ζR0ð8F00½ϕ�P2 þ 1Þ
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þ 8ð1 − 3ζ2ÞF0½ϕ�ð∂rPÞÞÞð∂rζÞ þ ζR0ð8ζR0F00½ϕ�P2 þ 8QF00½ϕ�Pþ ζR0

− 8ðζ2 − 1ÞF0½ϕ�ð∂rPÞÞðR03 − 8ðF00½ϕ�Q2 þ F0½ϕ�ð∂rQÞÞR0 þ 8QF0½ϕ�R00ÞÞα2
þ 8F0½ϕ�ð∂rαÞð16ζR0F00½ϕ�Q3 þ 16ðζð4PζR02F00½ϕ� − F0½ϕ�R00Þ þ 2ðζ2 − 1ÞR0F0½ϕ�ð∂rζÞÞQ2

þ 2ζR0ððζ2ð36F00½ϕ�P2 þ 2Þ − 1ÞR02 þ 4F0½ϕ�ð2ζð3 − 2ζ2Þð∂rPÞ þ 3Pðζ2 − 2Þð∂rζÞÞR0

þ 8F0½ϕ�ðð∂rQÞ − PζR00ÞÞQþ Pζ2R02ðð3ζ2ð8F00½ϕ�P2 þ 1Þ − 2ÞR02

− 8F0½ϕ�ðζð3ζ2 − 5Þð∂rPÞ þ 2Pð∂rζÞÞR0 þ 16F0½ϕ�ð∂rQÞÞÞα
þ 128ζ2R0ðQζ þ PR0ÞðQþ PζR0ÞF0½ϕ�2ð∂rαÞ2�g; ðA15Þ

∂tΠ ¼ RR0ð∂rαÞðR0ζΠþ ΘÞ þ α½R0ðRðR0ð∂rζÞΠþ ð∂rΘÞÞ þ R0ζð2R0Πþ Rð∂rΠÞÞÞ þ Θð2R02 − RR00Þ�
RR03 ; ðA16Þ

∂tζ ¼ 1

4R0ζð8F0½ϕ�ðR0Pζ þQÞ − RR0Þ f2ζ
2½αð8ð∂rζÞF0½ϕ�ð2R0Pζ þQÞ þ R0ð−8R0P2ζF00½ϕ�

− R0ζ − 8PQF00½ϕ� þ 8ð∂rPÞðζ2 − 1ÞF0½ϕ�ÞÞ − 8R02ð∂tPÞζF0½ϕ��
þ R2αð2R0ðΘΠ − PQÞ þ R02ζðΠ2 − P2Þ þ ζðΘ2 −Q2ÞÞ − 4RR0αζ2ð∂rζÞg; ðA17Þ

where

DP ¼ R02½αR03R4 − 16αR02ðQþ PζR0ÞF0½ϕ�R3 þ 64αR0ðQþ PζR0Þ2F0½ϕ�2R2

þ 128ζ3R02F0½ϕ�2ðζð∂rαÞ þ αð∂rζÞÞR − 32ζ3F0½ϕ�2ð8ζR0ð4Qþ 3PζR0ÞF0½ϕ�ð∂rαÞ
þ αðζðR03 − 8ðF00½ϕ�Q2 þ F0½ϕ�ð∂rQÞÞR0 þ 8QF0½ϕ�R00Þ
þ 8R0ð4Qþ 3PζR0ÞF0½ϕ�ð∂rζÞÞÞ�: ðA18Þ

The constraints are

∂rζ ¼ −
1

4R0ζðRR0 − 8F0½ϕ�ðR0Pζ þQÞÞðRR0 − 4F0½ϕ�ð3R0Pζ þ 2QÞÞ f8R
02ζ2F0½ϕ�ðR0P

þQζÞ½R2ðPQ − ΘΠÞ þ 8ζ2ðPQF00½ϕ� þ ð∂rPÞF0½ϕ�Þ� − ½4F0½ϕ�ðQðζ2 − 2Þ − 2R0PζÞ
þ RR0�½R2R0ð2R0ζðPQ − ΘΠÞ þ R02ðP2 − Π2Þ þQ2 − Θ2Þ
þ 2ζ2ðR0ð8R0ζðPQF00½ϕ� þ ð∂rPÞF0½ϕ�Þ þ 8Q2F00½ϕ� þ 8ð∂rQÞF0½ϕ� − R02Þ − 8R00QF0½ϕ�Þ�g; ðA19Þ

∂rα ¼ α

2R0ζðRR0 − 8F0½ϕ�ðR0Pζ þQÞÞðRR0 − 4F0½ϕ�ð3R0Pζ þ 2QÞÞ f2R
2R0F0½ϕ�½R02ζð5P2Q

− 6PΘΠþQΠ2Þ þ 4R0QðPQ − ΘΠÞ þQζðΘ2 −Q2Þ� − 8RR03ζ2ðPQF00½ϕ� þ ð∂rPÞF0½ϕ�Þ
þ R3R03ðΘΠ − PQÞ þ 4ζ2F0½ϕ�½−8R0Q3ζF00½ϕ� þ 24R03Pð∂rPÞζF0½ϕ� þ R0Qð16R0ð∂rPÞF0½ϕ�
þ ζðR02ð24P2F00½ϕ� þ 1Þ − 8ð∂rQÞF0½ϕ�ÞÞ þ 8Q2ðR00ζF0½ϕ� þ 2R02PF00½ϕ�Þ�g: ðA20Þ

These equations have been derived using Wolfram
Mathematica.

APPENDIX B: PHASE DIAGRAM IN EDGB
GRAVITY: BHS, WORMHOLES, AND SOLITONS

Here, we present the methods used to find the static
wormholes and the solitonic solutions with cusp sin-
gularities discussed in Sec. III A 2, and we discuss some
of their properties [41,52–54]. We start with the wormhole

solution. In spherical symmetry, the starting point is to
consider the ansatz (7) in Schwarzschild coordinates.
However, in this ansatz, wormholes have a coordinate
singularity, that can be removed defining the new coor-
dinate l2 ¼ r2 − r20, where l > 0 and r0 is the wormhole
throat [41]. In terms of the coordinates ðt; l; θ;φÞ, we use
the following ansatz for the metric:

ds2 ¼ −e2νðlÞdt2 þ fðlÞdl2 þ ðl2 þ r20Þðdθ2 þ dφ2Þ: ðB1Þ
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Substituting into the modified Einstein equations (2)–(3), this yields

f0 þ f
lr2

ðfr2 − l2 − 2r20Þ −
r2

2l
fðϕ0Þ2 − 4γλ

lr2
e−γϕ

�
4lr20
r2

ϕ0 þ
�
r2 −

3l2

f

�
f0ϕ0 þ 2γϕ02ðr2f − l2Þ þ 2ϕ00ðl2 − r2fÞ

�
¼ 0;

ðB2Þ

ν0 − ν0
4γλ

l
e−γϕ

�
1 −

3l2

r2f

�
ϕ0 þ l

2r2
−

f
2l

−
r2

4l
ϕ02 ¼ 0; ðB3Þ

ν00 þ ν02 þ ν0
�
l
r2

−
f0

2f

�
−

lf0

2r2f
þ r20
r4

þ 1

2
ϕ02 þ 4γλ

r2f
e−γϕ

��
2r20
r2

− 3
lf0

f
þ 2lν0 − 2lγϕ0

�
ν0ϕ0þ2lϕ0ν00 þ 2lν0ϕ00

�
¼ 0; ðB4Þ

ϕ00 þ ν0ϕ0 þ
�
2l
r2

−
f0

2f

�
ϕ0 þ 4e−γϕγλ

r2f

�
−4

lr20
r4

ν0 þ 2

�
f −

l2

r2

�
ν00 þ

�
3l2

r2f
− 1

�
f0ν0 þ

�
2f −

2l2

r2

�
ν02
�
¼ 0: ðB5Þ

To impose the boundary conditions, we first expand the
dilaton and themetric functions at the throat (i.e., near l ∼ 0),

fðlÞ ¼ f0 þ f1lþOðl2Þ;
e2νðlÞ ¼ e2ν0ð1þ ν1lÞ þOðl2Þ;
ϕðlÞ ¼ ϕ0 þ ϕ1lþOðl2Þ; ðB6Þ

where the parameters ðf1; ν1;ϕ1Þ are functions of
ðf0; ν0;ϕ0Þ [41,52]. At spatial infinity, we require

fðlÞ ¼ 1þ 2M
l

þOðl−2Þ

νðlÞ ¼ −
M
l
þOðl−2Þ

ϕðlÞ ¼ −
D
l
þOðl−2Þ; ðB7Þ

where M and D are the mass and scalar charge of the
wormhole as measured by an observer at infinity. To obtain
the wormhole solutions, we integrate Eqs. (B2)–(B5) from
the throat at l ¼ 0 outward, imposing Eqs. (B6) as initial
conditions. The parameter ν0 is fixed though a rescaling by
requiring asymptotic flatness of the metric, while ϕ0 is fixed
through a shooting procedure such that the dilaton field at
infinity vanishes as in Eq. (B7). We use units such that
r0 ¼ 2. In this case, the dimensionality of the parameter
space is larger than for BHs: for each value of λ, there exists a
one-parameter family identified by f0. This yields a two-
dimensional domain of existence; see Fig. 4.
In particular, for λ < 0.015228 in the limit f0 → 1, we

obtain wormhole solutions that coexist with BH solutions,
as can be seen from the inset of Fig. 4. For λ ¼ 0.015228
and f0 → 1, the wormhole solutions coexist with the
singular BH at the end of the unstable branch. For
λ > 0.015228, we find f0 > 1 for all wormhole solutions.
In particular, at the minimum value of f0 allowed for
these families, the wormhole solutions coexist with

asymptotically flat and horizonless solutions, characterized
by a singularity in the second radial derivative of the dilaton
field. These “cusp” solutions also bound the domain of
existence of horizonless, particlelike solutions whose scalar
field diverges at the origin [53,54].
The coordinates in Eq. (B1) cover only part of the

spacetime. If we try to extend them to values l < 0, we find
a curvature singularity [52]. An interesting feature of these
wormhole solutions is that this singularity disappears if we
consider the existence of matter at the throat, as discussed
extensively in Ref. [52].

APPENDIX C: CODE DETAILS AND
CONVERGENCE TESTS

1. Nonuniform grid in areal radius coordinate

As discussed in the main text, in order to increase
resolution in the high-curvature regions, we introduce a
radial coordinate r such that the areal radius is given by
R ¼ RðrÞ, where
(
R ¼ η2rþ 1−η1

Δ lnð1þe−Δðr−r1Þ
1þeΔr1 Þ þ η2−1

Δ lnð1þe−Δðr−r2Þ
1þeΔr2 Þ

∂R
∂r ¼ η1 þ 1−η1

1þe−Δðr−r1Þ þ
η2−1

1þe−Δðr−r2Þ

; ðC1Þ

and Δ, η1 < 1, η2 > 1, and r1 ≤ r2 are real parameters.
In Fig. 20, we show a representative plot of R0ðrÞ. As we

can see, in the inner region R0 ∼ η1 < 1, and in the outer
region R0 ∼ η2 > 1; therefore, if we discretize the radial
coordinate r using a uniform grid step, we will obtain a
higher resolution in R in the inner region and a lower
resolution in the outer region. In particular, η1 and η2
represent the ratio between the grid steps in R and in r in the
inner and in the outer regions, respectively, while Δ−1 and
r1;2, respectively, represent the width and the positions of
the buffer regions where the resolution in the areal radius
changes.
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In this way, we can reduce the computational cost of
the simulations by avoiding the use of high resolution in all
the spatial domain of integration, thus restricting the use
of a small grid step only near the BH region, where the
singularity and the horizon are situated.
Throughout the paper, the parameters in the transforma-

tion (C1) are set to

Δ ¼ 1; η1 ¼ 0.05; η2 ¼ 15;

r1 ¼ 51; r2 ¼ 61: ðC2Þ

2. Code testing and convergence

Here, we discuss the simulations we performed to test the
accuracy of the integration algorithm.
We first evolved a static BH in the upper branch (γ ¼ 4,

λ ¼ 0.01536) in the absence of perturbations of both scalar
fields (Aϕ ¼ Aξ ¼ 0). The outer boundary is placed at
R∞ ¼ 520, the final time is T ¼ 500, and the CFL factor
was set to CFL ¼ 0.025.
In Fig. 21, we show how the violation CVζ of the

constraint (A19) at t ¼ T scales with the resolution. As
we can see, the fourth-order scaling is not satisfied in all the
radial domain. This can be due to the fact that CVζ assumes
small values and is dominated by noise. However, as we can
see from the insets, the constraint violation scales as a fourth-
order term in Δr in the horizon region, and as a fifth-order
term in the region 3≲ R≲ 6. While the behavior near the
horizon is consistent with the accuracy of the evolution
algorithm, the fifth-order scaling might be due to the Kreiss-
Oliger dissipation term, which is of order 5 in Δr.
Moreover, we observe that the profile of the dilaton field

remains constant in time, which is consistent with the
fact that our starting configuration is a static solution to the
field equations.

In order to corroborate the reliability of the integration
algorithm in the region in which the constraint violation is
dominated by noise, we used a second-order accurate
version of the code. In this way, CVζ is typically larger,
allowing us to check its scaling properties above the noise
floor. The modifications introduced alter as little as possible
the structure of the integration algorithm, and they can be
summarized as follows:

(i) We use the second-order Runge-Kutta method for
the time integration.

(ii) We use the second-order accurate finite differences
method for the radial derivatives; we continue using
the (second-order) upwind scheme for the first two
grid points (instead of one).

(iii) We perform the integration of the constraint for α
using only the trapezoidal rule.

(iv) We perform the integration in the shooting pro-
cedure and in the initialization part with the second-
order accurate Runge-Kutta method.

(v) We compute the numerical derivatives in the
right-hand side of the constraints during the
initialization part with second-order accuracy;
however, the resolution of the shooting pro-
cedure is still the double of the resolution in
the evolution (half of the grid points are discarded
after initialization).

(vi) We use the third-order Kreiss-Oliger dissipation
term

Qu ¼ −
ηKO
16Δt

ðΔrÞ4ðD2þÞρðD2
−Þu; ðC3Þ

where u is a generic field, ηKO ¼ 0.05, and

ρ ¼ 1

1þ e5ðR−15Þ
; ðC4Þ

FIG. 21. Scaling of the violation CVζ of the constraint (A19), at
the end of the evolution of a stable static dilatonic BH configu-
ration. We can see a fourth-order scaling near the horizon and a
fifth-order scaling for 3≲ R≲ 6.

FIG. 20. Schematic behavior of the derivative of the trans-
formation function RðrÞ between coordinate and areal radius. The
resolution in areal radius is higher in the inner region, where
R0 → η1 < 1, and lower in the outer region, where R0 → η2 > 1.
r1;2 identify the position of the buffer regions between two
different resolutions.
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we continue excluding the innermost and outermost
three grid points from the computation of the dis-
sipation term (instead of two).

(vii) We use CFL ¼ 0.01 since we observed that when
using the second-order accurate code a lower CFL is
needed.

We performed the numerical evolution of the same initial
configuration as before with this version of the code. In
Fig. 22, we show the scaling of the constraint violation at
the end of the simulations with resolutions Δr ¼ 0.005 and
Δr ¼ 0.01. In this case, we obtain the expected second-
order scaling in all the radial domain except in a small
region around R ∼ 15 where CVζ seems to scale as a third-
order term. This may be due to the Kreiss-Oliger dis-
sipation term, which is of order 3.
We then moved to consider some collapsing scenarios in

order to test the behavior of our second- and fourth-order
accurate codes in the dynamical setups of our interest. We
first considered the collapse of a wave packet of the dilaton
on a Schwarzschild BH in GR (λ ¼ 0). In this case, we can
estimate the BH mass at the horizon as Mh ¼ Rh

2
, and we

can compare it with the Misner-Sharp mass at infinity to
check that the results of the numerical evolution are in
agreement with physical expectations. We obtained that
initially Mh < MMS since part of the total mass in the
spacetime is stored in the profile of the dilaton outside
the horizon, while at the end, Mh ¼ MMS with excellent
accuracy. This is consistent with the fact that the pulse of
the dilaton has been absorbed by the BH.
We then considered a wave packet of the phantom field

instead of the dilaton. In this case, Mh > MMS at the
beginning of the simulation since the profile of the phantom
field outside the BH adds a negative contribution to the

total Misner-Sharp mass. At the end of the simulation
instead, Mh ¼ MMS. Also in this case, the results of the
simulations are consistent with physical expectations since
the BH mass decreases upon absorbing the phantom
perturbation.
We finally studied the convergence in some collapsing

scenarios when λ ≠ 0. We discuss here a test simulation of
the collapse of a wave packet of the phantom field on a
static dilatonic BH in the case λ ¼ 0.01528. The outer
boundary is at R∞ ¼ 720, the final time of integration is
T ¼ 700, and the parameters of the initial wave packet are

A0;ξ ¼ 0.02; R0;ξ ¼ 15; σξ ¼ 0.5: ðC5Þ
In the upper panel of Fig. 23, we show the scaling of
the constraint violation at the end of the numerical
evolution. As we can see, it is not possible to evaluate
the convergence of the code since CVζ is very small and
dominated by noise. However, we repeated the simulation

FIG. 23. Scaling of the constraint violation at the end of the
simulation of the collapse of a wave packet of the phantom field
on a dilatonic BH in the upper branch. The upper and the lower
panels refer, respectively, to the fourth- and the second-order
accurate versions of the code.

FIG. 22. Scaling of the constraint violation at the last time step
of the evolution of a static stable dilatonic BH with λ ¼ 0.01536
using the second-order accurate code. In this case, CVζ scales as a
second-order term, except in a region around R ∼ 15, where there
is third-order scaling. This behavior may be due to the presence of
the Kreiss-Oliger dissipation term.
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with the second-order accurate version of the code, and we
obtained the expected scaling properties (see the lower
panel of Fig. 23).
In summary, even though it is not possible to evaluate

properly the convergence of the code, the constraint
violation appears to be very small and dominated by noise.
The results of the test simulations are consistent with

physical expectations, and the good scaling properties of
the second-order accurate version of the code corroborate
the reliability of our implementation of the integration
algorithm that we used.
Finally, for some selected simulations, we have also

checked that the time evolution is in agreement between the
second- and fourth-order accurate codes.
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