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We present rapidly rotating neutron stars featuring wormholes in their centers. They arise in general
relativity in the presence of a ghost scalar field. The nuclear matter is described by a polytropic equation of
state, yielding realistic masses and radii for the neutron stars. The wormholes possess small circumferential
radii of size up to 3 km. With increasing wormhole size, the masses and radii of the stars decrease, while the
domain of existence of these rotating mixed neutron-star-plus-wormhole systems retains the characteristic
properties of a rotating neutron star domain. The question of stability of the mixed configurations under
consideration is briefly discussed.
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I. INTRODUCTION

Wormholes have been the subject of numerous inves-
tigations in the past few decades (see, e.g., Refs. [1,2]). To a
certain extent, this is caused by the discovery of the
accelerated expansion of the present Universe at the end
of the 1990s. One of the possible explanations of such
acceleration is the assumption about the existence in the
Universe of a special form of matter—dark energy [3]. A
distinctive feature of the latter is that it must necessarily
violate one of the energy conditions. For a convenient
description of such a violation, one can introduce some
effective equation of state relating an effective pressure p
and energy density ε of dark energy. “Soft” models of dark
energy imply that it is described by matter violating the
strong energy condition when p < −ε=3. However, it is not
impossible that, for an adequate description of the accel-
erated expansion of the Universe, one has to involve a more
exotic form of dark energy violating the null/weak energy
condition when p < −ε. Such exotic matter, filling the
Universe homogeneously and isotropically on large scales,
supports the observable acceleration.
If the exotic matter does really exist in the Universe, a

natural question arises as to the possibility of the formation

of localized wormhole-type objects supported by such
matter. Indeed, the possibility of violating the null/weak
energy condition inherent in the exotic matter is just that
ingredient which is necessary for ensuring the presence of a
nontrivial spacetime topology inherent in a wormhole. In
the simplest case, a description of the exotic matter can be
given by using the so-called ghost (or phantom) scalar
fields, which may be massless [4–6] or possess a potential
energy [7,8]. In turn, such static solutions can be gener-
alized to the case with rotation [9–14].
However, apart from the possibility of forming objects of

the type pure wormholes (i.e., systems containing only
exotic matter and possessing a nontrivial spacetime top-
ology), one can also imagine a situation where exotic
matter is only one of components forming some mixed
configurations containing other types of matter as well. As
an example of such mixed configurations with nontrivial
topology, we can point out systems considered by us
earlier, where, apart from a ghost scalar field, there is
also either neutron matter [15–21], or an ordinary scalar
field [22], or a chiral field [23]. As in the case of pure
wormholes, such mixed systems can also be generalized to
the case where rotation is present [24,25].
In the present paper we focus attention on further

studying mixed configurations supported by a ghost scalar
field (which ensures the presence of a nontrivial spacetime
topology) and ordinary neutron star matter. As mentioned
above, we have earlier considered static neutron-star-plus
wormhole configurations of this type [15–21]. Such mixed
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systems possess properties both of wormholes and of
ordinary stars. Namely, on the one hand, from the point
of view of a distant observer, they are similar to ordinary
neutron stars having masses and sizes which are typical for
such stars. On the other hand, the presence of a nontrivial
wormholelike spacetime topology gives rise to the appear-
ance of some new distinctive characteristics which could, in
principle, be revealed in astrophysical observations (for
instance, this can be lensing effects [18], specific distri-
butions of magnetic fields [19], accretion disks and black
hole mimickers [21]). In principle, it is not impossible that,
along with ordinary neutron stars, such systems might exist
in nature, since their physical characteristics are compa-
rable to those typical of neutron stars. However, since real
neutron stars are rotating configurations, it is natural to
generalize static mixed systems considered by us earlier to
the case of rotating systems. This is the goal of the
present paper.
The paper is organized as follows. In Sec. II, we state the

problem and present the general-relativistic equations for
the systems under consideration. These equations have
been solved numerically, and the solutions are discussed in
Sec. III for static and rotating configurations. The question
of their stability is briefly addressed in Sec. III F. Finally, in
Sec. IV we summarize the results obtained.

II. GENERAL EQUATIONS

We consider a gravitating system consisting of a
wormhole supported by a ghost scalar field ϕ and filled
by ordinary matter in the form of a neutron fluid. For
simplicity, we consider a massless scalar field. The
Lagrangian of this system can be chosen as follows:

L ¼ −
c4

16πG
R −

1

2
∂μϕ∂

μϕþ Lfl; ð1Þ

with the curvature scalar R, Newton’s constant G, and the
Lagrangian of the perfect isotropic fluid Lfl ¼ p [26],
where p is the pressure of the fluid.
Varying the action with the Lagrangian (1) with respect

to the metric, we derive the Einstein equations

Eν
μ ≡ Rν

μ −
1

2
δνμR −

8πG
c4

Tν
μ ¼ 0 ð2Þ

with the energy-momentum tensor

Tν
μ ¼ ðεþ pÞUμUν − δνμp − ∂μϕ∂

νϕþ 1

2
δνμ∂σϕ∂

σϕ;

where ε is the energy density of the fluid, andUμ represents
the four-velocity of the fluid, with the norm of Uμ being a
dimensionless quantity.
In order to describe rotating configurations, we use the

following line element for a stationary, axially symmetric
spacetime [11,12,14]:

ds2 ¼ efðdx0Þ2 − eq−f
�
ebðdη2 þ hdθ2Þ

þ h sin2θ

�
dφ −

ω

c
dx0

�
2
�
; ð3Þ

where the metric functions f, q, b, and ω depend solely on
the radial coordinate η and the polar angle θ, x0 ¼ ct, and
the auxiliary function h ¼ η2 þ η20 contains the throat
parameter η0. The z-axis (θ ¼ 0) represents the symmetry
axis of the system. Asymptotically (as η → �∞), the
functions f, q, b, ω → 0; i.e., the spacetime approaches
Minkowski spacetime.
In order to describe the neutron matter filling the

wormhole, we have to choose an appropriate equation of
state (EOS). For the sake of simplicity, we employ here a
polytropic equation of state which adequately approximates
a more or less realistic neutron-star EOS. Namely, we take

p ¼ Kρ1þ1=n
b ; ε ¼ ρbc2 þ np; ð4Þ

with the constant K ¼ kc2ðnðchÞb mbÞ1−γ , the polytropic
index n ¼ 1=ðγ − 1Þ, and ρb ¼ nbmb denotes the rest-mass
density of the neutron fluid. Here nb is the baryon number

density, nðchÞb is a characteristic value of nb, mb is the
baryon mass, and k and γ are parameters whose values
depend on the properties of the matter the neutron star is
composed of.
As in our previous works concerning mixed star-plus-

wormhole systems [16–18], we here, for simplicity, take
only one set of parameters for the neutron star fluid.

Namely, we choose mb¼1.66×10−24 g, nðchÞb ¼0.1 fm−3,
k ¼ 0.0195 and γ ¼ 2.34 [27], adjusted to fit the equation
of state II of Ref. [28]. We employ these values of the
parameters in the numerical calculations of Sec. III.
We study here uniform (or rigid) rotation of the neutron

star fluid; such an assumption is well justified for most
neutron stars [29]. In this case the four-velocity is of the form

Uμ ¼
�
u; 0; 0;

Ω
c
u

�
; ð5Þ

where Ω is a constant parameter denoting the angular
velocity of the system.
For numerical calculations, it is convenient to introduce

the dimensionless variables

η̃ ¼ η

L
; ϕ̃ ¼

ffiffiffiffiffiffiffiffiffi
8πG

p

c2
ϕ; ω̃ ¼ L

c
ω;

Ω̃ ¼ L
c
Ω; where L ¼ c2ffiffiffiffiffiffiffiffiffi

8πG
p

ϕ1

; ð6Þ

and to use the standard reparametrization of the fluid
density,
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ρb ¼ ρb0Θn; ð7Þ

where ρb0 is some characteristic density of the neutron star
fluid. The parameter ϕ1 appearing in (6) corresponds to the
central value of the derivative of the scalar field with respect
to the radial coordinate (the square of this derivative being
the “kinetic energy” of the scalar field).
Next, using the fact that for the four-velocity UμUμ ¼ 1

and making use of the metric (3) and the expression (5), the
velocity u can be expressed in terms of the metric functions
f, q, and ω as

u2 ¼ e−f½1 − eq−2fðη2 þ η20Þ sin2 θðΩ − ωÞ2�−1: ð8Þ

This expression is already written in terms of the dimen-
sionless variables (6); in order to make the notation simpler,
hereafter we usually omit the tilde sign over the dimen-
sionless variables.
In turn, the conservation law ∇μTμν ¼ 0 gives the

differential equations

∂rp
εþ p

¼ ∂ru
u

;
∂θp
εþ p

¼ ∂θu
u

:

Substituting here the EOS (4) [using also Eq. (7)] and
integrating these equations, one can find the following
expression for the function Θ in terms of the four-velocity:

Θ ¼ c0u −
1

σðnþ 1Þ ;

where c0 is an integration constant and σ ¼ Kρ1=nb0 =c2.
Introducing instead of c0 a new arbitrary constant
A ¼ ½c0σðnþ 1Þ�−1, the above expression can be rewritten
as

Θ ¼ u − A
Aσðnþ 1Þ : ð9Þ

The physical meaning of A is that it is the time component
of the four-velocity of the fluid at the edge of the neutron
fluid where Θ vanishes (see below).
The Einstein equations (2) give the following system of

equations for the metric functions f, q, b, and ω [written in
terms of the dimensionless variables (6)]:

fηη − e−2fþqsin2θðhω2
η þ ω2

θÞ þ
�
2η

h
þ 1

2
qη

�
fη þ

fθθ
h

þ 1

2h
ð2 cot θ þ qθÞfθ

¼ Beb−fþqΘnfefu2 þ σ½2þ efðnþ 1Þu2�Θþ eq−fu2hsin2θ½1þ σðnþ 1ÞΘ�ðΩ − ωÞ2g; ð10Þ

qηη þ
1

2
q2η þ

3η

h
qη þ

1

h

�
qθθ þ

1

2
q2θ þ 2 cot θqθ

�
¼ 4Bσeb−fþqΘnþ1; ð11Þ

bηη −
3

2
e−2fþqsin2θðhω2

η þ ω2
θÞ þ

1

2
ðf2η − q2ηÞ þ

1

h

�
bθθ þ ηðbη − 2qηÞ þ

1

2
ðf2θ − q2θÞ − 2 cot θqθ −

2η2

h
þ 2

�

¼ 2Beb−fþqΘnf−σΘþ eq−fu2h sin2θ½1þ σðnþ 1ÞΘ�ðΩ − ωÞ2g þ ϕ2
η þ

ϕ2
θ

h
; ð12Þ

ωηη þ
�
4η

h
− 2fη þ

3

2
qη

�
ωη þ

1

h

�
ωθθ þ

�
3 cot θ − 2fθ þ

3

2
qθ

�
ωθ

�
¼ −2Bebþqu2Θn½1þ σðnþ 1ÞΘ�ðΩ − ωÞ: ð13Þ

Here the lower indices denote differentiation with respect to
the corresponding coordinate and B ¼ ρb0c2=ϕ2

1. These
equations represent the following combinations of the com-
ponents of the Einstein equations (2): ðEt

t−Eη
η−Eθ

θ −Eφ
φþ

2ω=cEt
φÞ ¼ 0, ðEη

ηþEθ
θÞ¼ 0, ðEφ

φ−Eη
η−Eθ

θ−ω=cEt
φÞ¼ 0,

and Et
φ ¼ 0.

In turn, the equation for the scalar field ∇μ∇μϕ ¼ 0

yields

ϕηη þ
ϕθθ

h
þ
�
2η

h
þ 1

2
qη

�
ϕη þ

1

h

�
cot θ þ 1

2
qθ

�
ϕθ ¼ 0:

ð14Þ

In addition to the Einstein equations (10)–(13), which are
elliptic partial differential equations, one has two more
equations of gravitation Eη

θ ¼ 0 and ðEη
η − Eθ

θÞ ¼ 0, whose
structure is not of Laplace form; they may be regarded as
“constraints.”According to arguments given in Ref. [30], in
order to find a self-consistent solution to Eqs. (10)–(13), it
is sufficient to verify that the constraint equation Eη

θ ¼ 0 is
satisfied on all boundaries; this in turn implies that this
constraint is also satisfied throughout the region of inte-
gration. Then the constraint ðEη

η − Eθ
θÞ ¼ 0 must be

imposed only at a single point to ensure that it is satisfied
throughout the integration region as well. In our numerical
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calculations we will always verify that these constraints are
satisfied, in order to have self-consistent numerical
solutions.

III. NUMERICAL SOLUTIONS

In this section we solve Eqs. (10)–(14) to get solutions
describing static and rotating configurations with system
parameters lying in the physically relevant range.

A. Boundary conditions

Our aim is to find globally regular solutions describing
localized, finite-mass configurations embedded in an
asymptotically flat spacetime. To do this, one has to impose
appropriate boundary conditions for the metric functions at
the center (η ¼ 0), at spatial infinity (η → ∞), on the
positive z-axis (θ ¼ 0), and, using reflection symmetry
with respect to θ → π − θ, in the equatorial plane
(θ ¼ π=2). Namely, we take

∂f
∂η

����
η¼0

¼ ∂q
∂η

����
η¼0

¼ ∂b
∂η

����
η¼0

¼ ∂ω

∂η

����
η¼0

¼ 0;ϕjη¼0 ¼ 0;

fjη¼∞ ¼ qjη¼∞ ¼ bjη¼∞ ¼ωjη¼∞ ¼ 0;ϕjη¼∞ ¼ const;

∂f
∂θ

����
θ¼0;π=2;π

¼ ∂q
∂θ

����
θ¼0;π=2;π

¼ ∂b
∂θ

����
θ¼0;π=2;π

¼ ∂ω

∂θ

����
θ¼0;π=2;π

¼ ∂ϕ

∂θ

����
θ¼0;π=2;π

¼ 0: ð15Þ

Note here that, in order to ensure the absence of a conical
singularity, we must take bjθ¼0;π ¼ 0 (the elementary
flatness condition).

B. Asymptotic behavior

Asymptotic flatness of the spacetime implies that the
metric approaches the Minkowski metric at spatial infinity,
i.e., f, q, b, ω → 0 and ϕ → const, asymptotically. For the
extraction of the global charges, one needs to study the
behavior of the metric functions at infinity,

f ≈ −
2GM
c2η

; ω ≈
2GJ
c2η3

:

The total mass of the star M and the angular momentum J
appearing in the above expressions may then be represented
in the form [14]

M ¼ c2

2G
lim
η→∞

η2∂ηf; J ¼ c2

2G
lim
η→∞

η3ω: ð16Þ

C. Central region and surface of the configurations

The central energy density and pressure of the system
under consideration can be obtained from Eqs. (4) and (7)

using Eqs. (9) and (8) evaluated at the center (in the
dimensional form):

Pc ¼ ρb0c2σΘnþ1
c ; εc ¼ ρb0c2Θn

cð1þ nσΘcÞ

with Θc ¼
uc − A

Aσðnþ 1Þ :

By choosing different values of the arbitrary constant A, it
is possible to construct sequences of solutions describing
configurations possessing different physical characteristics
(see below).
The configuration under consideration is a system in

which neutron star matter is coupled to a ghost scalar field.
Formally, the energy density of the latter vanishes only at
infinity, whereas the neutron star has a finite boundary and
a surface with radius ηbðθÞ where ε → 0 (correspondingly,
p → 0 as well). One can construct an embedding diagram
that describes the intrinsic geometry of the stellar surface
[i.e., the spacetime slice with t ¼ const and η ¼ ηbðθÞ]. To
do so, it is necessary to embed the stellar surface in a flat
three-dimensional space [31]. Then the metric of the star’s
surface induced by the four-dimensional metric (3) is

ds2b ¼ eqb−fbfebb ½ð∂θηbÞ2 þ hb�dθ2 þ hb sin2 θdφ2g;

and here the index b corresponds to the boundary of the
neutron star where the metric functions are given [for
example, fb ≡ fðηbðθÞ; θÞ]. If we change to cylindrical
coordinates fρ; z;φg for the flat space, we then have the
following formulas [31]:

ρðθÞ ¼ eðqb−fbÞ=2
ffiffiffiffiffi
hb

p
sinθ;

zðθÞ ¼
Z

π=2

θ
dθ0

�
eqb−fbþbb

��
dηb
dθ0

�
2

þhb

�
−
�
dρ
dθ0

�
2
	

1=2
;

where hb ¼ η2b þ η20.
The equatorial and polar radii of the embedded surface

are then given by

Re ¼ ρ

�
θ ¼ π

2

�
¼ eðqb−fbÞ=2

ffiffiffiffiffi
hb

p
jθ¼π=2; ð17Þ

Rp ¼ zðθ ¼ 0Þ

¼
Z

π=2

0

dθ0
�
eqb−fbþbb

��
dηb
dθ0

�
2

þ hb

�
−
�
dρ
dθ0

�
2
	

1=2
:

ð18Þ

Let us now find an expression for the limiting angular
velocity of rotation (or the Keplerian limit) of the configu-
ration under consideration. This limit corresponds to the
case of a system rotating with the angular velocity Ω
approaching the angular velocity Ωp of a free particle
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moving on a circular orbit in the equatorial plane. In this
case, gravitational forces are no longer sufficiently strong
as to keep such a particle confined to the stellar surface, and
this ultimately results in losing mass.
In order to derive the corresponding expression for Ωp,

we use the geodesic equation for the angular velocity of the
particle [32]

ðΩp − ωbÞ2 − 2apcðΩp − ωbÞ þ c2bp ¼ 0; ð19Þ

where ωb ≡ ωðηb; π=2Þ and

ap ¼ 1

c

∂ηω

∂ηðq − fÞ þ 2η=h

����
ηb;π=2

;

bp ¼ −
e2f−q∂ηf

h½∂ηðq − fÞ þ 2η=h�
����
ηb;π=2

:

Solving Eq. (19) for Ωp, we have

Ωp

c
¼ ωb

c
þ ap þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2p − bp

q
:

By definition, the Keplerian angular velocity isΩK ¼ Ωp. A
necessary condition for a stationary rotating object to exist is
that the equatorial velocity of a fluid element is smaller than
the Keplerian velocity of a free particle moving on a circular
orbit in the equatorial plane. TheKeplerianvelocity is related
to the Keplerian angular velocity ΩK, also called the mass-
shedding angular velocity.

D. Numerical approach

We have solved numerically the system of five coupled
nonlinear elliptic partial differential equations (10)–(14) for
the functions f, q, b, ω, and ϕ together with the boundary
conditions (15). Bearing in mind that we are interested in
even parity solutions symmetrical about the equatorial
plane θ ¼ π=2, all calculations have been performed only
in the region 0 ≤ θ ≤ π=2. Furthermore, for the numerical
computations, we have introduced the new compactified
coordinate

η̄ ¼ η

1þ η
; ð20Þ

in order to map the infinite interval ½0;∞Þ to the finite
region [0, 1].
The results of the numerical computations for axisym-

metric systems presented in Sec. III E have been obtained
using the package FIDISOL [33]. This package employs the
Newton-Raphson method which provides an iterative
procedure for obtaining an exact solution starting from
some approximate solution (an initial guess). As the initial
guess, it is possible to use spherically symmetric solutions
describing nonrotating (i.e., static) configurations, which

can be obtained by solving Eqs. (10)–(14) with Ω;ω;
b ¼ 0. In this limit the equations reduce to the system of
three ordinary differential equations for the functions f, q,
and ϕ. This latter set of equations has been solved using the
package Mathematica.
The partial differential equations (10)–(14) have been

solved on a grid of 361 × 61 points which covers the
integration region 0 ≤ η̄ ≤ 1 [given by the compactified
radial coordinate, Eq. (20)] and 0 ≤ θ ≤ π=2. In solving
these equations, we have kept track of the behavior of the
functionΘ, defined in Eq. (7), at every point in space ðη; θÞ.
This enables us to determine the location of the edge of the
neutron fluid ηbðθÞ where Θ → 0. If Θ < 0, this indicates
that the meshpoint is outside the fluid; in this case we set to
zero the neutron matter parts in the right-hand sides of
Eqs. (10)–(13), retaining only the terms coming from the
scalar field (that is, we solved the Einstein-scalar
equations).

E. Static and rotating solutions

In this subsection we discuss the families of solutions
describing the systems under consideration, obtained by
using the numerical approach outlined above. In particular,
we employed the following strategy: As seed configura-
tions, we first obtained nonrotating, spherically symmetric
configurations; to do this, we started the integration in the
vicinity of the center using the Taylor series expansion for
the metric functions

f ≈ fc þ
1

2
f2η2 þ…; q ≈ qc þ

1

2
q2η2 þ…

In order to ensure asymptotic flatness of the spacetime, we
had to take central values fc and qc that provide f; q → 0 at
spatial infinity (i.e., we dealt with an eigenvalue problem).
Then, by varying the integration constant A appearing in
the expression (9), we could obtain a family of nonrotating
configurations (ω ¼ Ω ¼ 0) with varying masses and radii
of the neutron star fluid; these systems are parametrized
by A.
Next, using the nonrotating configurations obtained as

an initial guess, we slowly increased the angular velocity
(Ω ≠ 0) keeping track of changes in the characteristics of
the configurations under investigation. The results of these
computations are exhibited in Fig. 1 which shows the mass-
radius relation for the objects rotating with different angular
velocities. To plot these curves, the following dimensional
quantities have been employed [they are obtained using
Eqs. (6) and (16)]:

ηbðθÞ ¼
η̄b

1 − η̄b
L; M ¼ c2L

2G
lim
η̄→1

η̄2
∂f
∂η̄

:

To determine the equatorial radius Re, it is necessary to
substitute this expression for ηbðθÞ into Eq. (17). In turn,
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the spin frequency of the systems under consideration is
determined as

f ≡ Ω
2π

¼ c
2πL

Ω̃:

Examples of the domains of the configurations are
shown in Fig. 1. Their boundaries arise according to the
following physical reasons:

(i) The left boundary of the domain corresponds to the
set of nonrotating systems (Ω ¼ 0); their mass
increases monotonically with decreasing the radius
up to the maximal mass. In the case of pure neutron
stars (i.e., the systems without a wormhole) the

presence of this maximum signals the transition of the
neutron stars from stable to unstable ones, where the
radial oscillations acquire an unstable mode [35,36].
However, for the mixed configurations under consid-
eration, all static configurations are unstable, since
there is always an unstable radial mode present in the
mixed configurations that is inherited from the static
wormhole [17]. However, at the maximum mass, a
second unstable radial mode is expected to arise, that
would now result from the instability of the neutron
star matter with respect to radial oscillations.

(ii) The right boundary of the domain is the locus of the
points corresponding to configurations rotating with
the Keplerian angular velocity Ω ¼ ΩK. Here, with

FIG. 1. The mass-radius relation for configurations rotating with different angular velocities Ω (designated by the numbers near the
curves) in the physically relevant domain. The top panel shows the curves for pure neutron stars. The curves for mixed neutron-star-plus-
wormhole systems are constructed for the fixed values of the throat radius Rth ¼ 1 km and Rth ¼ 3 km [for its definition, see below
Eq. (21)]. For all configurations, we took L ¼ 10 km and the parameters of the polytropic fluid given below Eq. (4). The dimensionless
angular velocity Ω ¼ 0.01 corresponds to a frequency f ≈ 47.7 Hz. For Ω ¼ 0.15, the frequency is f ≈ 716 Hz (the frequency of the
fast rotating pulsar [34]).
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decreasing radius, the mass of the system also in-
creasesmonotonically up to amaximal value that, as in
the case of the pure neutron stars, exceeds the
maximum mass of the static configurations consid-
erably.

(iii) The two boundaries discussed in items (i) and (ii) are
connected by the so-called secular instability line
(shown by the dashed line) which is the locus of
the extreme points corresponding to maxima of
masses of the systems possessing different constant
angular velocities Ω. For the pure neutron stars, this
secular instability line again separates the unstable
(located to the left of this line) and stable configura-
tions. We conjecture the presence of such a secular
instability also for the mixed configurations (see
below in Sec. III F).

To obtain the curves corresponding to the configurations
rotating with the Keplerian angular velocity, we succes-
sively increased the value of Ω up to the point where
Ω ≈Ωp. Technically, it is not possible to continue numeri-
cal integration to the point Ω ¼ Ωp; for this reason, to
obtain physical parameters of the objects rotating at the
Keplerian limit, we extrapolated them as functions of Ω in
the limit Ω → Ωp [37].
A crucial ingredient of the systems under consideration

is the wormhole throat, which is defined as a surface
possessing minimum area. To describe it, consider the
circumferential radius ReðηÞ in the equatorial plane,

ReðηÞ ¼
ffiffiffi
h

p
eðq−fÞ=2jθ¼π=2: ð21Þ

When η → 0, the circumferential radius reaches itsminimum
value Rth ≡ Reð0Þjθ¼π=2, and the corresponding surface
possessing minimum area corresponds to the wormhole
throat.
Figure 1 shows the results of the calculations for

ordinary neutron stars (i.e., for systems without a worm-
hole) and for mixed neutron-star-plus-wormhole configu-
rations with two fixed values of the throat radius Rth. By
comparing the behavior of the mass-radius curves of the
systems under consideration, one can see that the inclusion
of a wormhole at the center of a neutron star does not
change the qualitative behavior of the boundary curves and
thus the domains. As the size of the throat increases, the
maximum masses of the systems under consideration
decrease together with their sizes. Whereas the radii remain
comparable to those of ordinary neutron stars, the masses
fall short of reaching the observational bound.

F. Stability

Let us now address the question of stability of the systems
under consideration in more detail. In Refs. [17,18], it was
demonstrated that spherically symmetric mixed neutron-
star-plus-wormhole systems are unstable with respect
to radial linear perturbations. As in the case of static

Ellis wormholes supported by a massless ghost scalar
field [38–40] and of wormholes consisting of scalar fields
with a potential [17,41], this radial instability is caused by the
presence of a ghost scalar field in the static mixed configu-
rations. Inclusion of rotation tremendously complicates a
linear stability analysis in four spacetime dimensions. For
instance, a linear mode analysis without approximations
was performed only recently for rapidly rotating neutron
stars [42,43]. It presents a challenge to extend such a type of
analysis to mixed neutron-star-plus-wormhole systems. We
note, however, that in the case of five spacetime dimensions
the presence of rotation does lead to the disappearance of the
pertinent radial instability of Ellis wormholes for sufficiently
rapid rotation [44]. Thus this instability might also disappear
for mixed systems when rotating sufficiently fast.
However, even without performing an ambitious stability

analysis, it is clear that, for stable configurations, as the
mass increases, their radii should decrease [45]. This fact
forms the basis of the turning-point method [46], which
does not require a perturbative stability analysis. In the case
of static systems, this method permits one to estimate
stability by studying the behavior of a mass-central density
curve MðεcÞ. According to this method, instability occurs
at the first point where ∂M=∂εc ¼ 0 (the turning point).
Such an instability evolves on a secular timescale [46].
For rotating configurations, apart from the central

density, there are extra parameters like the angular velocity
and the angular momentum. It is then possible to construct
a sequence of rotating configurations for which the central
energy density varies in a range that is constrained by
stability limits when the selected second parameter is held
fixed [47]. As demonstrated in Ref. [46], such a turning-
point method can also be employed to study the stability of
uniformly rotating stars. For instance, for a family of
configurations rotating with a constant angular velocity
Ω, the boundary between secularly stable and unstable
systems is located at the turning point where ∂Mðεc;ΩÞ=
∂εcjΩ¼const ¼ 0. Thus, by finding the turning points for
configurations rotating with different fixed values of Ω and
connecting them, one can construct the secular instability
line. For pure neutron stars, the secular instability line is
depicted by the dashed curve in the top panel of Fig. 1. The
point where this line intersects the Keplerian sequence
corresponds to a system possessing the largest possible
angular velocity.
In the case of the mixed neutron-star-plus-wormhole

systems under consideration, this simple stability criterion
is also applied for the secular instability. Thus, analogously
to rapidly rotating ordinary neutron stars, we have con-
nected the maxima of the mass-radius curves by a secular
line in Fig. 1 to exclude certainly unstable systems located
to the left of this line.
However, as already pointed out above, the static spheri-

cally symmetric mixed neutron-star-plus-wormhole sys-
tems possess an unstable radial mode due to the ghost
scalar field [17,18]. By continuity, it is therefore expected
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that the rotating axisymmetric systems studied in the
present paper will be dynamically unstable as well, at least
for slow rotation. In contrast, for rapid rotation, it is
conceivable that this instability might disappear, analo-
gously to the case of rotating wormholes in five spacetime
dimensions [44]. Resolution of this question will require a
mode analysis of these rapidly rotating mixed systems.

IV. CONCLUSION

In the present paper, we have continued our previous
investigations of the mixed neutron-star-plus-wormhole
configurations began in Refs. [15–21]. For this purpose,
we have generalized the static systems considered earlier by
including rapid rotation and studied its influence on the
physical characteristics of such mixed objects. In order to
have a nontrivial wormhole-type spacetime topology in the
system, we have used a massless ghost scalar field. In turn,
the neutron matter has been modeled by the simplest
polytropic equation of state in the form (4) that adequately
approximates more realistic EOSs of matter at nuclear
density. The use of such a polytropic EOS enabled us to
integrate analytically the differential equations coming
from the conservation law and to represent expressions
for the neutron fluid energy density and pressure in terms of
metric functions. Together with the ghost scalar field, these
expressions serve as a source of a gravitational field
modeled within Einstein’s general relativity.
We now summarize the results obtained:
(i) We have found regular solutions to the Einstein

equations sourced by a massless ghost scalar field
and neutron star matter. These solutions describe

families of static and uniformly rotating mixed
neutron-star-plus-wormhole configurations possess-
ing nontrivial spacetime topology.

(ii) By choosing two different fixed values of the throat
radius, the mass-radius relations for the systems
under consideration have been constructed. This
enabled us to establish the physically relevant
domain which is bounded by the Keplerian limit
and the secular instability line.

(iii) It has been demonstrated that the physical char-
acteristics of the rotating mixed neutron-star-plus-
wormhole configurations are close to those typical
of rotating neutron stars.

Also, the question of stability has been discussed. It was
pointed out that the rotating mixed systems are expected to
be dynamically unstable, at least for slow rotation, but one
might expect that a rapid rotation could stabilize them, as it
takes place in the case of rotating wormholes in five
spacetime dimensions.
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