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Motivated by events in which black holes can lose their environment due to tidal interactions in a binary
system, we develop a waveform model in which the tidal deformability interpolates between a finite value
(dressed black hole) at relatively low frequency and a zero value (naked black hole) at high frequency. We
then apply this model to the example case of a black hole dressed with an ultralight scalar field and
investigate the detectability of the tidal Love number with the Einstein Telescope. We show that the
parameters of the tidal deformability model could be measured with high accuracy, providing a useful tool
to understand dynamical environmental effects taking place during the inspiral of a binary system.
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I. INTRODUCTION

Tidal interactions in close astrophysical systems carry
golden information on the internal composition of compact
objects. They affect the dynamics of binary sources,
leaving a footprint within the emitted signals, both in
the gravitational-wave (GW) and in the electromagnetic
spectrum [1]. Pioneering calculations, performed at the
beginning of the twentieth century, have paved the ground
for a rigorous analytical description of tidal effects in terms
of a set of quantities, the tidal Love numbers (TLNs), which
encode the deformability properties of self-gravitating
bodies [2]. Initially exploited to study the structure of
planets in the Solar System within Newtonian gravity,
TLNs have been generalized to a fully relativistic descrip-
tion [3–5], and have raised considerable attention in the
context of binary neutron star (NS) mergers, with the
tantalizing possibility of constraining the equation of state
of dense matter from GW observations [6–33] (see
Refs. [34,35] for some reviews).
More recently, measurements of the TLNs from com-

pact binaries have been proposed as a new tool to infer the
properties of the environment in which the systems
evolve. This possibility arises from the remarkable result
that, within General Relativity, the TLNs of naked black
holes (BHs) (i.e., BHs in vacuum) vanish [4,5,36–43].

This property however is fragile, as it is broken for BH
mimickers [44], in extended theories of gravity [44–46],
in higher dimensions [47–49], or in nonvacuum environ-
ments [50–53]. In particular, during their cosmological
evolution, environmental effects may provide an effective
dress to BHs, resulting in nonzero TLNs. Such dresses
may be formed around BHs due to secular effects
like accretion1 or superradiant instabilities of ultralight
bosonic fields [57], for which it has been shown that the
TLNs would be proportional to inverse powers of the
boson mass [50,52].
Love numbers of dressed BHs could be sufficiently large

to leave an observable signature within GW signals emitted
by coalescing binaries and, if measured, they could provide a
smoking gun for the existence of nonvacuum “structures”
close to BHs. Unlike NS matter however, a low-density
environmental dress may be unraveled during the last phases
of the inspiral. In analogy with mass-shedding events
occurring for stars with small compactness, disruption of
the dress usually takes place when the binary semimajor axis
is comparable with the Roche radius [58]. For smaller orbital
radii, the environment progressively disappears and the
coalescence proceeds with two naked BHs. This process
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1Accretion-driven dresses may be particularly important for
primordial BHs, which are expected to be surrounded by a dark
matter halo if they do not comprise the totality of the dark matter
in the Universe [54,55]. The detection of tidal effects can thus be
used to distinguish primordial BHs (with their clouds) from other
scenarios [56].
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can be modelled through time-dependent TLNs, that
smoothly approach zero.2 A similar phenomenon may occur
when, during the common envelope phase of a neutron star
binary, at least one of the objects with a mass very close to
the Chandrasekhar limit turns into a BH [63], changing its
TLNs from a finite value to zero.
The scope of this work is to study the relevance of such

effect on BH binaries potentially observable by third-
generation (3G) detectors like the Einstein Telescope
(ET) or Cosmic Explorer [64–69], and to assess their
ability to constrain the features of time-varying TLNs. We
embed the latter within a BH waveform template properly
built to model a smooth transition of the TLNs to zero,
showing how few GW observations could shed new light
on the matter content of the binary environment, and on
the dynamical processes that lead to its tidal disruption.
Hereafter we use geometric units, G ¼ c ¼ 1.

II. SETUP

We model the GW signal emitted by the binary using a
modified version of the IMRPhenomD waveform model,
which takes into account the inspiral, merger and ringdown
phases of the coalescence [70,71]. The inspiral regime is
further broken up into an early and a late component, with
the former being described by the post-Newtonian (PN)
expansion, in which tidal effects add linearly to point-
particle contributions and are fully encoded by the Love
numbers. In Fourier space, the early part of the signal is
given by [72,73],

h̃ðfÞ ¼ CΩAPNeiψPPðfÞþiψTidalðfÞ; ð1Þ

where ψPP contains terms up to the 3.5PN order [26,73–75],
and depends on the binary chirp mass M ¼ ðm1m2Þ3=5=
ðm1 þm2Þ1=5 and the symmetric mass ratio η ¼ η1η2 ¼
m1m2=ðm1 þm2Þ2, where m1;2 are the component masses.
The phase ψPP also includes linear spin terms up to 3PN
order through the (anti)symmetric combinations of the
individual spin components χs ¼ ðχ1 þ χ2Þ=2 and χa ¼
ðχ1 − χ2Þ=2, and quadratic spin corrections entering at
2PN order, which include the spin-induced quadrupole
moments. For sake of simplicity we assume that the latter
correspond to their (naked) Kerr values, and that the effect of
the dress is subdominant. An additional contribution to the
GW phase comes from tidal heating, which depends on the
energy absorbed at the horizon and is proportional to the BH
cross section. This effect introduces a higher-order PN
correction [76,77], which is typically small and negligible

for our analysis, and hence we assume that is the same as for
naked BHs [52]. The waveform amplitudeA, also expanded
up to the 3PN order, depends on ðM; η; χs; χaÞ, with the
leading term reading

APN ¼
ffiffiffiffiffi
5

24

r
M5=6f−7=6

π2=3dL
ð1þ PN correctionsÞ; ð2Þ

where dL is the luminosity distance. Finally the geometric
factor CΩ ¼ ½F2þð1þ cos2ιÞ2 þ 4F2

× cos ι�1=2 depends on
the inclination ι which identifies the angle between the
binary line of sight and its orbital angular momentum, and
on the detector antenna pattern functions Fþ;×ðθ;φ;ψÞ
which are functions of the source position in the sky
ðθ;φÞ and on the polarization angle ψ .
The dominant tidal correction enters the waveform at

the 5PN order as ψTidalðfÞ ¼ − 39
2
Λ̃ðπMfÞ5=3, in terms of

the total mass of the binary M ¼ m1 þm2 and of the
effective tidal deformability parameter Λ̃, which depends
on the masses and TLNs of each binary component [8,13].
We neglect higher-order PN contributions (starting at 6PN
order) since they are hardly measurable and increase the
dimensionality of the parameter space.
We assume that the halo surroundings the BHs is

dynamically disrupted during the coalescence, i.e., that
tidal effects disappear progressively from a characteristic
cutoff frequency fcut. To this aim we introduce a frequency-
dependent tidal deformability

Λ̃ → SðfÞ · Λ̃ ¼
�
1þ e−fcut=fslope

1þ eðf−fcutÞ=fslope

�
· Λ̃; ð3Þ

which is cast in terms of a smoothing function SðfÞ that
approaches zero at frequencies larger than the cutoff with a
characteristic slope fslope. A representative example of the
smoothing function is shown in Fig. 1. In our analysis tidal
effects are therefore fully described by three quantities,
ðΛ̃; fcut; fslopeÞ, while the overall waveform model depends

FIG. 1. Smoothing function SðfÞ as a function of the frequency
for different values of the slope parameter.

2Note that this is different from the notion of dynamical tidal
deformability investigated in [59–61] (see also [62]). In our case
the TLNs are time dependent because of the gradual disappear-
ance of the environment around a BH, while the dynamical tidal
deformability defined in [59–61] measures the BH response to
time-dependent tidal perturbations.
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on 14 parameters θ⃗ ¼ fM; η; χs; χa; tc;ϕc; dL; θ;ϕ;ψ ; ι; Λ̃;
fcut; fslopeg, where ðtc;ϕcÞ are the time and phase at the
coalescence.
We study the detectability of the tidal parameters by

using a Fisher-matrix approach [44,78,79]. For signals with
large signal-to-noise ratio (SNR), as those expected for 3G
detectors, the posterior distribution of θ⃗ can be described by
a multivariate Gaussian distribution centered around the

true values ⃗θ̂, with covariance Σ ¼ Γ−1, where

Γij ¼
�
∂h
∂θi

���� ∂h
∂θj

�
θ⃗¼ ⃗θ̂

ð4Þ

is the Fisher information matrix, and statistical error on
the ith parameter is given by σi ¼ Σ1=2

ii . In the previous
expression we have introduced the scalar product over the
detector noise spectral density SnðfÞ between two wave-
form templates h1;2,

hh1jh2i ¼ 4Re
Z

fmax

fmin

h̃1ðfÞh̃⋆2ðfÞ
SnðfÞ

df; ð5Þ

where ⋆ denotes complex conjugation. The SNR of a given
signal is SNR ¼ hhjhi1=2. In our analysis we fix the mini-
mum and maximum frequency of integration to fmin ¼ 1 Hz

and fmax ¼ 1.2fRD, where fRD is the remnant’s ringdown
frequency [71].
Hereafter we consider optimally-oriented binaries,

removing the four angles from the Fisher analysis, thus
reducing Γ to a 10 × 10 square matrix. We also fix χ1 ¼
χ2 ¼ 0 and tc ¼ ϕc ¼ 0. We assume that dressed binary
BHs are observed by ET adopting the design ET-D
sensitivity curve [65].

III. RESULTS

A. General framework

We apply the framework discussed above to investigate
the detectability of the tidal parameters. The results of the
Fisher analysis are shown in Fig. 2, for different choices of
Λ̃ ¼ ð102; 103; 104Þ. Larger values would break the con-
vergence of the post-Newtonian expansion, leading the tidal
term to dominate over the lower PN orders. For simplicity
we focus on binaries with mass ratio m2=m1 ¼ 1=2,
although both masses are included as waveform parameters
of the Fisher analysis. Different choices provide similar
results. The ISCO frequency fisco for each binary is
computed taking into account self-force effects due to the
lighter component of the binary [80].
The top panels of Fig. 2 assume fcut ¼ fisco=10 and

fslope ¼ fcut=5 for the cutoff and slope frequency,

FIG. 2. (Top row) Relative percentage error on the effective tidal Love number (left), the cutoff frequency (center), and the slope
frequency (right) for a binary with mass ratiom2 ¼ m1=2, observed by ETat a luminosity distance of dL ¼ 1 Gpc. From left to right, the
upper bars show the values of the cutoff frequency, of the ISCO frequency, and of the binary SNR. Errors are computed assuming
fcut ¼ fisco=10 and fslope ¼ fcut=5. (Bottom row) Same as top panels but choosing fcut ¼ fisco=5 and fslope ¼ fcut=5.

MODELING FREQUENCY-DEPENDENT TIDAL DEFORMABILITY … PHYS. REV. D 107, 044058 (2023)

044058-3



respectively. Note that for all binary configurations analyzed
we have checked that the cutoff frequency is (well) below
the frequency describing the transition between the early
and the late inspiral, fei-li ≃ 0.018=MBH [70,71]. The panels
of Fig. 2 show that all the tidal parameters can be measured
with high accuracy for sufficiently large values of the
effective tidal Love number. In particular, considering a
dressed BH system with primary mass m1 ¼ 50M⊙ and
mass ratio m2 ¼ m1=2 at a distance dL ¼ 1 Gpc, ET will
be able to measure its tidal deformability with a relative
accuracy of a few percent and an SNR of a few hundred. A
similar precision can be reached for the cutoff and the slope
frequency of the smoothing function, showing the potential
of ET in measuring the transition point where the TLN
vanishes. These results slightly improve if we assume fcut ¼
fisco=5 and fslope ¼ fcut=5, as shown in the bottom panels
of Fig. 2. This is expected since larger value of the cutoff
frequency translates into a longer inspiral phase in which
tidal effects are active. Changing the slope frequency does
not significantly modify the results of our analysis. For
example, we have checked that a decrease in fslope, which
results into a sharper cutoff, does not strongly impact on the
estimated errors.

B. First-principle model: BHs dressed
by ultralight bosons

We can now focus on a specific example of a dress
sourced by an ultralight bosonic scalar field with mass
mb undertaking a phase of accretion or superradiant
instability [57] onto a BH. In this case it was shown that
the TLN of each body is proportional to the inverse of the
gravitational coupling αi ¼ mimb, namely [52]

Λ̃ ¼ 32

39

�
12

η1
− 11

	
η51k

ð1Þ
2 þ ð1 ↔ 2Þ; ð6Þ

where kðiÞ2 ∝ 1=α8i . For this model, the effective tidal
deformability vanishes when the clouds surrounding
each binary component are tidally disrupted, that is when
the binary semimajor axis is comparable to the Roche
radius. For different binary components this results into
different cutoff frequencies ficut for each body. We there-
fore introduce an effective frequency-dependent TLN as

kðiÞ2 → SiðfÞkðiÞ2 , where each smoothing function SiðfÞ is
determined by the same slope frequency fslope, but by
different cutoff frequencies [52]

fRocheðαi; miÞ ¼
3

ffiffiffi
3

p

πγ3=2
α3i

�
Ms

mi

	
1=2

fisco; ð7Þ

in terms of a numerical coefficient γ ∼Oð2Þ which takes
values from 1.26 for rigid bodies to 2.44 for fluid ones, and
of the total mass enclosed in the scalar cloudMs. We fix the
latter to the upper bound Ms ¼ 0.1mi, which saturates
the regime of validity of the perturbative expansion. Note
that, in a first-principle model such as this one, the number
of waveform parameters to be constrained is smaller than in
the general model, since the gravitational couplings αi
dictate both the TLNs and the cutoff frequencies.
The results for the Fisher analysis for this case are shown

in Fig. 3. The left panel shows the relative percentage error
on the gravitational coupling as a function of the primary
BH mass, assuming a luminosity distance of dL ¼ 1 Gpc
and mass ratio m2=m1 ¼ 1=2. The upper and lateral bars
identify the corresponding ISCO and Roche frequencies,
respectively. One can appreciate that in the mass range
m1 ∈ ð2 ÷ 200ÞM⊙ ET could measure the coupling with an
accuracy of a few percent. This result improves the one
discussed in [52] where the integration in Eq. (5) was cut at
the ISCO frequency, also assuming the signal amplitude to
vanish afterward. Frequencies after the cutoff, which can be

FIG. 3. (Left): Relative percentage error on the scalar field mass mb for a binary system with primary mass m1 and mass ratio
m2 ¼ m1=2, detected by ETat a luminosity distance of dL ¼ 1 Gpc. Upper and lateral bars show the values of the ISCO and of the Roche
frequency, respectively. Errors are computed assuming fslope ¼ fRoche=5. (Right) Maximum luminosity distance for which the scalar field
mass mb, assuming α1 ¼ m1mb ¼ 0.2, can be constrained by ETwith a relative percentage accuracy of 10% (green) and 50% (yellow).
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consistently taken into account within the PhenomD wave-
form model, provide here a significant boost to the
parameter’s reconstruction, which in turn translates into
an improvement on the errors of the tidal parameters.3 In
the right panel of Fig. 3 we show the maximum luminosity
distance for which ETwould be able to constrain the scalar
field mass mb with a relative percentage error of 10%
(green line) and 50% (yellow line), assuming a gravita-
tional coupling α1 ¼ 0.2. The result shows that ET could
measure the scalar field mass with high accuracy within
distances of a few Gpc.
Finally, let us stress that, as tidal interactions take place

and lead to the disruption of the clouds, the effective mass
of the BHþ halo system decreases, probably resulting into
a naked binary system coalescing within an unbound and
more diluted halo. As a proof of concept, in order to
estimate the effect of this mass decrease in the waveforms,
we have introduced a similar suppression factor SðfÞ as the
one discussed above to the BH masses, i.e., mi → SðfÞmi,
which interpolates between unity and 0.9, as the cloud’s
mass accounts at most for about 10% of the BH masses in
relevant scenario like superradiance. By introducing this
frequency-dependent factor for the masses through all PN
orders, we found that the error on Λ̃ increases by only a
factor of 2, while the errors on fcut and fslope become much
smaller, as these parameters appear also at lower PN orders
and are therefore better constrained. Another interesting
extension is to account for the orbital energy loss associated
with the halo disruption [81,82]. We leave a better inves-
tigation of these interesting effects to future work.

IV. CONCLUSIONS

Tidal interactions active during the inspiral phase of
binary coalescences carry unique information on the inter-
nal structure of compact objects and on the properties of the
surroundings in which the systems evolve. BHs dressed by a
halo formed by dark matter, by a phase of accretion, or by
the superradiant instability of a ultralight boson, provide
some astrophysical scenarios in which the external envi-
ronments leave a footprint on the emitted GW signal [83],
encoded in particular in nonvanishing TLNs [50–53]. In
these cases, however, the gravitational interaction with the
BH companion may destroy the halo, leading to tidal effects
that fade away in the waveform at higher frequency.
Motivated by such examples, in this paper we have

investigated the potential of 3G detectors like ET to

measure the variation of the Love number once the binary
inspiral crosses a given cutoff frequency. To this aim we
have augmented the standard IMRphenomD waveform
with the inclusion of an effective tidal deformability
which interpolates the transition between a finite effective
Love number Λ̃ and the full vacuum regime. We have
carried out a statistical analysis on a wide range of sources
observable by ET, finding that, together with Λ̃, both the
cutoff frequency and the slope of the effective deform-
ability are potentially measurable, with an accuracy of a
few percent for stellar mass binaries. The simultaneous
measurements of all tidal parameters would provide key
information on the composition of the BH environment,
and on the mechanisms responsible for the vanishing of
the Love number.
These results also pave the avenue for multiband

analyses between ET and LISA [84], for sources in a
specific mass range [85,86]. For example, one can envisage
a scenario in which a binary system of two dressed BHs
with masses m1 ∼m2 ∼ 102M⊙ inspirals within the fre-
quency band of LISA, with a cutoff frequency falling into
the ET bandwidth. A statistical analysis for LISA only
would suggest that all the parameters of the effective tidal
deformability are unmeasurable. However, a joint analysis
which takes into account that the binary keeps evolving in
ET with fading Love number, would dramatically improve
the parameter reconstruction. For a ð102–102ÞM⊙ binary,
and assuming Λ̃ ¼ 103, the multiband analysis would lead
to a stringent constraint on the environment Love number at
the level of σΛ̃=Λ̃ ≈ 1%.
Finally, let us stress that a frequency-dependent TLN can

be used to disentangle dressed BHs from neutron stars in
the solar mass range, since the latter are characterized by
tidal effects which persist until the last stages of the merger.
We plan to investigate this point in a future work.
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[27] X. Jiménez Forteza, T. Abdelsalhin, P. Pani, and L.

Gualtieri, Phys. Rev. D 98, 124014 (2018).
[28] B. Banihashemi and J. Vines, Phys. Rev. D 101, 064003

(2020).
[29] T. Dietrich, A. Samajdar, S. Khan, N. K. Johnson-McDaniel,

R. Dudi, and W. Tichy, Phys. Rev. D 100, 044003 (2019).
[30] T. Dietrich, T. Hinderer, and A. Samajdar, Gen. Relativ.

Gravit. 53, 27 (2021).
[31] Q. Henry, G. Faye, and L. Blanchet, Phys. Rev. D 102,

044033 (2020).
[32] C. Pacilio, A. Maselli, M. Fasano, and P. Pani, Phys. Rev.

Lett. 128, 101101 (2022).

[33] A. Maselli, A. Sabatucci, and O. Benhar, Phys. Rev. C 103,
065804 (2021).

[34] A. Guerra Chaves and T. Hinderer, J. Phys. G 46, 123002
(2019).

[35] K. Chatziioannou, Gen. Relativ. Gravit. 52, 109 (2020).
[36] T. Damour and O. M. Lecian, Phys. Rev. D 80, 044017

(2009).
[37] P. Pani, L. Gualtieri, A. Maselli, and V. Ferrari, Phys. Rev. D

92, 024010 (2015).
[38] P. Pani, L. Gualtieri, and V. Ferrari, Phys. Rev. D 92, 124003

(2015).
[39] N. Gürlebeck, Phys. Rev. Lett. 114, 151102 (2015).
[40] R. A. Porto, Fortschr. Phys. 64, 723 (2016).
[41] A. Le Tiec and M. Casals, Phys. Rev. Lett. 126, 131102

(2021).
[42] H. S. Chia, Phys. Rev. D 104, 024013 (2021).
[43] A. Le Tiec, M. Casals, and E. Franzin, Phys. Rev. D 103,

084021 (2021).
[44] V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo,

Phys. Rev. D 95, 084014 (2017); 95, 089901(A) (2017).
[45] V. Cardoso, M. Kimura, A. Maselli, and L. Senatore, Phys.

Rev. Lett. 121, 251105 (2018).
[46] V. De Luca, J. Khoury, and S. S. C. Wong, arXiv:2211

.14325.
[47] B. Kol and M. Smolkin, J. High Energy Phys. 02 (2012) 010.
[48] V. Cardoso, L. Gualtieri, and C. J. Moore, Phys. Rev. D 100,

124037 (2019).
[49] L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R. Solomon,

J. Cosmol. Astropart. Phys. 04 (2021) 052.
[50] D. Baumann, H. S. Chia, and R. A. Porto, Phys. Rev. D 99,

044001 (2019).
[51] V. Cardoso and F. Duque, Phys. Rev. D 101, 064028 (2020).
[52] V. De Luca and P. Pani, J. Cosmol. Astropart. Phys. 08

(2021) 032.
[53] V. Cardoso, K. Destounis, F. Duque, R. P. Macedo, and

A. Maselli, Phys. Rev. D 105, L061501 (2022).
[54] K. J. Mack, J. P. Ostriker, and M. Ricotti, Astrophys. J. 665,

1277 (2007).
[55] J. Adamek, C. T. Byrnes, M. Gosenca, and S. Hotchkiss,

Phys. Rev. D 100, 023506 (2019).
[56] G. Franciolini, R. Cotesta, N. Loutrel, E. Berti, P. Pani, and

A. Riotto, Phys. Rev. D 105, 063510 (2022).
[57] R. Brito, V. Cardoso, and P. Pani, Lect. Notes Phys. 906, 1

(2015).
[58] S. L. Shapiro and S. A. Teukolsky, Black Holes, White

Dwarfs, and Neutron Stars: The Physics of Compact Objects
(A Wiley-Interscience Publication, New York, 1983).

[59] J. Steinhoff, T. Hinderer, A. Buonanno, and A. Taracchini,
Phys. Rev. D 94, 104028 (2016).

[60] G. Creci, T. Hinderer, and J. Steinhoff, Phys. Rev. D 104,
124061 (2021); 105, 109902(E) (2022).

[61] D. Consoli, F. Fucito, J. F. Morales, and R. Poghossian,
J. High Energy Phys. 12 (2022) 115.

[62] S. Nair, S. Chakraborty, and S. Sarkar, arXiv:2208.06235.
[63] D. Singh, A. Gupta, E. Berti, S. Reddy, and B. S.

Sathyaprakash, arXiv:2210.15739.
[64] S. Dwyer, D. Sigg, S. W. Ballmer, L. Barsotti, N. Mavalvala,

and M. Evans, Phys. Rev. D 91, 082001 (2015).
[65] S. Hild et al., Classical Quantum Gravity 28, 094013

(2011).

DE LUCA, MASELLI, and PANI PHYS. REV. D 107, 044058 (2023)

044058-6

https://doi.org/10.1093/mnras/69.6.476
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevD.80.084018
https://doi.org/10.1103/PhysRevD.80.084018
https://doi.org/10.1103/PhysRevD.80.084035
https://doi.org/10.1103/PhysRevLett.105.261101
https://doi.org/10.1103/PhysRevD.84.024017
https://doi.org/10.1103/PhysRevD.83.084051
https://doi.org/10.1103/PhysRevD.83.084051
https://doi.org/10.1103/PhysRevD.84.104017
https://doi.org/10.1103/PhysRevD.84.104017
https://doi.org/10.1103/PhysRevD.88.024046
https://doi.org/10.1103/PhysRevD.88.024046
https://doi.org/10.1103/PhysRevD.85.044061
https://doi.org/10.1103/PhysRevD.89.043009
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevLett.112.101101
https://doi.org/10.1103/PhysRevD.89.021303
https://doi.org/10.1103/PhysRevD.88.023007
https://doi.org/10.1103/PhysRevD.88.104040
https://doi.org/10.1103/PhysRevD.88.104040
https://doi.org/10.1103/PhysRevLett.111.071101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa9994
https://doi.org/10.1103/PhysRevLett.120.261103
https://doi.org/10.1088/1361-6382/aac7e3
https://doi.org/10.1088/1361-6382/aac7e3
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevD.99.044051
https://doi.org/10.1103/PhysRevD.98.104046
https://doi.org/10.1103/PhysRevD.98.104046
https://doi.org/10.1103/PhysRevD.98.124014
https://doi.org/10.1103/PhysRevD.101.064003
https://doi.org/10.1103/PhysRevD.101.064003
https://doi.org/10.1103/PhysRevD.100.044003
https://doi.org/10.1007/s10714-020-02751-6
https://doi.org/10.1007/s10714-020-02751-6
https://doi.org/10.1103/PhysRevD.102.044033
https://doi.org/10.1103/PhysRevD.102.044033
https://doi.org/10.1103/PhysRevLett.128.101101
https://doi.org/10.1103/PhysRevLett.128.101101
https://doi.org/10.1103/PhysRevC.103.065804
https://doi.org/10.1103/PhysRevC.103.065804
https://doi.org/10.1088/1361-6471/ab45be
https://doi.org/10.1088/1361-6471/ab45be
https://doi.org/10.1007/s10714-020-02754-3
https://doi.org/10.1103/PhysRevD.80.044017
https://doi.org/10.1103/PhysRevD.80.044017
https://doi.org/10.1103/PhysRevD.92.024010
https://doi.org/10.1103/PhysRevD.92.024010
https://doi.org/10.1103/PhysRevD.92.124003
https://doi.org/10.1103/PhysRevD.92.124003
https://doi.org/10.1103/PhysRevLett.114.151102
https://doi.org/10.1002/prop.201600064
https://doi.org/10.1103/PhysRevLett.126.131102
https://doi.org/10.1103/PhysRevLett.126.131102
https://doi.org/10.1103/PhysRevD.104.024013
https://doi.org/10.1103/PhysRevD.103.084021
https://doi.org/10.1103/PhysRevD.103.084021
https://doi.org/10.1103/PhysRevD.95.084014
https://doi.org/10.1103/PhysRevD.95.089901
https://doi.org/10.1103/PhysRevLett.121.251105
https://doi.org/10.1103/PhysRevLett.121.251105
https://arXiv.org/abs/2211.14325
https://arXiv.org/abs/2211.14325
https://doi.org/10.1007/JHEP02(2012)010
https://doi.org/10.1103/PhysRevD.100.124037
https://doi.org/10.1103/PhysRevD.100.124037
https://doi.org/10.1088/1475-7516/2021/04/052
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1103/PhysRevD.99.044001
https://doi.org/10.1103/PhysRevD.101.064028
https://doi.org/10.1088/1475-7516/2021/08/032
https://doi.org/10.1088/1475-7516/2021/08/032
https://doi.org/10.1103/PhysRevD.105.L061501
https://doi.org/10.1086/518998
https://doi.org/10.1086/518998
https://doi.org/10.1103/PhysRevD.100.023506
https://doi.org/10.1103/PhysRevD.105.063510
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1103/PhysRevD.94.104028
https://doi.org/10.1103/PhysRevD.104.124061
https://doi.org/10.1103/PhysRevD.104.124061
https://doi.org/10.1103/PhysRevD.105.109902
https://doi.org/10.1007/JHEP12(2022)115
https://arXiv.org/abs/2208.06235
https://arXiv.org/abs/2210.15739
https://doi.org/10.1103/PhysRevD.91.082001
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/0264-9381/28/9/094013


[66] B. S. Sathyaprakash et al., arXiv:1903.09221.
[67] M. Maggiore et al., J. Cosmol. Astropart. Phys. 03 (2020)

050.
[68] R. Essick, S. Vitale, and M. Evans, Phys. Rev. D 96, 084004

(2017).
[69] B. P. Abbott et al. (LIGO Scientific Collaboration),

Classical Quantum Gravity 34, 044001 (2017).
[70] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X.
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