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The estimation of radiative modes is a central problem in gravitational wave theory, with essential
applications in signal modeling and data analysis. This problem is complicated by most astrophysically
relevant systems not having modes that are analytically tractable. A ubiquitous workaround is to use
not modes, but multipole moments defined by spin-weighted spherical harmonics. However, spherical
multipole moments are only related to the modes of systems without angular momentum. As a result, they
can obscure the underlying physics of astrophysically relevant systems, such as binary black hole merger
and ringdown. In such cases, spacetime angular momentum means that radiative modes are not spherical,
but spheroidal in nature. Here, we work through various problems related to spheroidal harmonics. We
show for the first time that spheroidal harmonics are not only capable of representing arbitrary gravitational
wave signals, but that they also possess a kind of orthogonality not used before in general relativity theory.
Along the way we present a new class of spin-weighted harmonic functions dubbed “adjoint-spheroidal”
harmonics. These new functions may be used for the general estimation of spheroidal multipole moments
via complete biorthogonal decomposition (in the angular domain). By construction, adjoint-spheroidal
harmonics suppress mode-mixing effects known to plague spherical harmonic decomposition; as a result,
they better approximate a system’s true radiative modes. We discuss potential applications of these results.
Lastly, we briefly comment on the challenges posed by the analogous problem with Teukolsky’s
radial functions.
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I. INTRODUCTION

Central to gravitational wave detection and the inference
of source parameters is the representation of gravitational
radiation in terms of multipole moments [1,2]. These
functions of time or frequency allow the radiation’s angular
dependence to be given by spin-weighted harmonic func-
tions. This leaves the radiation itself to be represented as
a sum over harmonic functions, with each term weighted
by a different multipole moment. The choice of represen-
tation, namely the choice of which harmonic functions to
use, is not unique. Only the radiation’s spin weight must be
respected [3,4]. While there are multiple appropriate spin-
weighted functions, only one set of harmonic functions
corresponds to the system’s natural modes.
Spin-weighted spherical harmonics are perhaps the most

commonly used functions for describing the angular behav-
ior of gravitational radiation [5,6]. They are the simplest

known functions fit for this purpose [5]. Their completeness
and orthonormality make them straightforward to use [7].
Nevertheless, the spin-weighted spherical harmonics are not
always the most physically appropriate choice.
This is readily seen in the study of single perturbed black

holes (BHs), where the analytic structure of gravitational
radiation is understood in terms of the system’s natural
modes (eigenfunctions of Einstein’s equations) [3,6,8]. On
one hand, linear perturbations of spherically symmetric
spacetimes (e.g., Schwarzschild BHs) are known to yield
radiative modes whose angular behavior is spherical har-
monic [5,6,9]. On the other hand, linear perturbations of
spacetimes with angular momentum (e.g., Kerr BHs) are
known to yield radiative modes whose angular behavior is
spheroidal harmonic [3,8–14]. There, due to the complete
and orthogonal nature of spherical harmonics, spherical
harmonic multipole moments may indeed be used to re-
present gravitational radiation. However, doing so obscures
the necessarily simpler information in the system’s natural
spheroidal modes [8,14–16].*lionel.london@kcl.ac.uk
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The use of spherical harmonics is known to complicate
the morphology of gravitational wave signal models,
with downstream impact on data analysis [8,16–22]. In
particular, the artificial “mixing” of spheroidal modes is a
potentially unnecessary complication, with direct impact on
models of binary black hole (BBH) merger and ringdown
[8,14–17]. The need to overcome such complications drives
ongoing interest in representing gravitational waves using
harmonics that are as closely as possible related to the
system’s natural modes [8,11,12,16].
In this context, spheroidal harmonics represent a logical

alternative to spherical harmonics. They are used extensively
in black hole perturbation theory and are integral to the
calculation of gravitational waves from extreme mass-ratio
inspirals [10,23,24]. However, spheroidal harmonics have
not been used more broadly in post-Newtonian (PN) theory
or numerical relativity (NR), in part, for technical reasons.
In the late inspiral, merger and ringdown of extreme

or comparable mass-ratio BH coalescence, spheroidal
harmonics are the complex-valued, nonorthogonal eigen-
functions of Einstein’s equations, which are themselves
non-Hermitian in these regimes [3,9,10,25]. Due in part to
these features, it has thus far not been shown whether
spheroidal harmonics possess the key properties that make
spherical harmonics so useful: completeness (the ability to
exactly represent arbitrary gravitational wave signals) and
orthogonality (the ability to decompose gravitational wave
signals into independent moments of information).
Here, we will see how these technical hurdles can be

overcome. The primary result of this work is a class of new
special functions that we will call the adjoint-spheroidal
harmonics. They are related to the complex conjugates of
the regular spheroidal harmonics but differ from them in
important ways. For example, Fig. 1 shows that the
absolute values of adjoint harmonics differ nontrivially
from the traditional spheroidal harmonics. In this work we
lay the mathematical foundation for the adjoint-spheroidal
harmonics. For the first time we show that they are
complete when defined over the quasinormal modes
(QNMs) and that they exhibit a kind of orthogonality in
that setting. These properties are naturally connected to the
existence of the adjoint-spheroidal harmonics.
While many aspects of our discussion will be specific

to the spheroidal harmonics of Kerr BHs, others will be
physically general. For example, Sec. I C begins a dis-
cussion of how spheroidal harmonics of general math-
ematical interest relate to the physical spheroidal harmonics
that are particular to Kerr QNMs. Perhaps most impor-
tantly, in Sec. III it is concluded that the spheroidal
harmonics related to Kerr QNMs form a complete bio-
rthogonal sequence of functions.1 This is equivalent to the

mathematically general statement that such spheroidal
harmonics may be used to represent gravitational waves
from arbitrary gravitational wave sources, even those not
strictly within the scope of linear BH perturbation theory.
This latter point may be of particular physical relevance
since all nonlinear departures from Kerr contribute directly
to the time-dependent excitation amplitude of each sphe-
roidal moment [26–28].
In a companion paper (paper II, Ref. [29]), we present

example applications of the adjoint-spheroidal harmonics
to gravitational waves from extreme and comparable mass-
ratio BBHs, and we discuss potential applications of the
adjoint-spheroidal harmonics in gravitational wave theory.
Although our presentation will focus on linear gra-

vitational perturbations of Kerr, their QNMs, and thus
their related spheroidal harmonics [9], we expect that the
mathematical structure of our results applies (exactly or
approximately) to any spin-weighted harmonics related to
the modes of axisymmetric spacetimes with angular
momentum.
For simplicity, we consider only spheroidal harmonics

corresponding to pro- or retrograde QNMs (i.e., exclusively
pro- or retrograde perturbations with respect to the BH spin).

FIG. 1. Examples of this work’s central result for spin weight
−2 and Kerr spin parameter of a ¼ 0.7: The new adjoint-
spheroidal harmonics, −2S̃lmn, differ from the spheroidal har-
monics, −2Slmn, in subtle but nontrivial ways. Top: a comparison
of harmonic amplitudes for ðl; m; nÞ ¼ ð2; 2; 0Þ. Bottom: a
comparison of harmonic phases for ðl; m; nÞ ¼ ð2; 2; 0Þ. Note
that, for ease of presentation, phases have been scaled by a factor
of 100. Here, argðxþ iyÞ ¼ tan−1ðy=xÞ.

1Note that in Sec. III we describe how this conclusion applies
to only sets of Kerr spheroidal harmonics whose members have
the same overtone label.
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The resulting adjoint-spheroidal harmonics can be used to
calculate spheroidal harmonic multipole moments via bio-
rthogonal decomposition, i.e., orthogonality between two
sets of functions rather than one [30,31]. Like the spin-
weighted spherical harmonics, the spin-weighted spheroidal
and adjoint-spheroidal harmonics allow the representation of
general gravitational wave signals. Unlike the spherical
harmonics, the spheroidal harmonics and their multipole
moments are closely related to the natural modes of sta-
tionary spacetimes with angular momentum [3,9].
We will discuss QNM orthogonality and completeness in

the context of only the polar (i.e., θ) dependence of each
mode. In this sense, the presented work focuses on the
solutions of Teukolsky’s angular equation [3,9]. One could
alternatively focus on Teukolsky’s master equation, which
describes all spatial dependencies of perturbations and
separates into the radial and angular equations. In that
setting, one would be interested in the master equation’s
self-adjointness, with respect to an appropriately con-
structed weight function. From that perspective, as well
as what will be investigated here, the underlying premise is
that the known uniqueness of QNM eigenvalues (see
Sec. III A) strongly implies the existence of a (bi)orthogo-
nal solution space.
Here, we have chosen to investigate this topic by

focusing on the angular equation because of its relative
simplicity. Recently, the author learned of ongoing and
complementary work which investigates orthogonality of
QNMs from the perspective of the master equation [32,33].
That work, as well as what we present here, are potential
first steps toward a more general representation of gravi-
tational radiation that is closely related to a spacetime’s
natural modes.

A. Resources for this work

The quantitative results of this work may be repro-
duced using routines from the openly available PYTHON

package POSITIVE [34,35]. Of principle use are the Kerr
QNM frequencies and the spheroidal harmonics. Both of
these quantities may be determined using, for example,
Leaver’s analytic representation [9]. In POSITIVE, the QNM
frequencies may be accessed via the positive.qnmobj
class, which automatically collects a QNM’s frequency,
spheroidal and radial harmonics. The class contains con-
venient routines for calculating spherical-spheroidal
inner products and can be made consistent with various
popular QNM conventions (see positive.qnmobj.explain_
conventions). Similarly, POSITIVE contains multiple inter-
consistent routines for calculating the central objects of
current interest, the spheroidal harmonic functions. These
may be accessed via positive.slm, which uses Leaver’s
representation, and positive.slmcg, which uses a spherical
harmonic representation. This work’s central result, namely
the adjoint-spheroidal harmonics, may be accessed via
positive.calc_adjoint_slm_subset.

B. Notation and conventions

We will at times adopt slightly different notations for
convenience and brevity, and we will at times bypass
mathematically rigorous definitions, language, and struc-
ture with the intent of expediting access to physical
concepts. Proofs of various key ideas will be left to
Refs. [30,31,36]. We will work under geometrized units
G ¼ c ¼ 1 with M ¼ 1.
It will very often be useful to discuss different kinds of

functions, e.g., different kinds of spheroidal harmonics. In
each case, by “kinds,” “vector space,” or “set,” we mean
ordered sets of complex-valued square-integrable functions
which we may treat as abstract vectors.
Outside of introductory sections we will drop the spin-

weight labels from the harmonics; for example, spheroidal
harmonics sSlmn will be denoted Slmn. We will denote
the spherical harmonics sYlm as Ylm. While wewill only be
concerned with outgoing gravitational radiation (i.e., spin
weight −2) most aspects of our discussion apply to all spin
weights. In discussion where both spherical and spheroidal
harmonics are relevant, we will denote spherical harmonic
indices with an overbar. We will be centrally concerned
with the θ dependence of each harmonic; thus, Ylm and
Slmn will refer to YlmðθÞ and Slmðθ; γlmnÞ, respectively,
where γlmn is the QNM’s oblateness.
In some cases, we will consider the oblateness to not

depend on l and n. There, to emphasize the difference
between the fixed-oblateness spheroidal harmonics and the
physical ones, we will refer to the fixed-oblateness sphe-
roidal harmonics as Zlmðθ; γÞ.
The reader should note that in both spherical and

spheroidal settings, axisymmetry means that ϕ depen-
dence of radiation is eimϕ. Since eimϕ are orthogonal in
m, any radiation may be decomposed into moments with
like m. Thus we will exclusively work in settings where m
is fixed.
Regarding the spheroidal oblateness, we will let a denote

the BH spin magnitude per unit mass, a ¼ J=M, and ω̃lmn
denote the complex-valued QNM frequency. This allows
the oblateness to be defined as

γlmn ¼ aω̃lmn; ð1Þ

where n is an overtone label [26,37,38]. There will be
special cases in which multiple overtones are irrelevant;
in these cases the overtone label will be dropped, and the
oblateness will simply be denoted as γ [i.e., it need not
be interpreted according to Eq. (1)]. Related spheroidal
harmonics will be written as Slm or Slmðθ; γÞ.
Sums over indices will always be between some lower

bound and infinity unless otherwise stated. For the spheri-
cal polar indices, we will use the usual bounds:
maxðjmj; jsjÞ ≤ l < ∞ and −l ≤ m ≤ l.
Bra-ket notation, h·j·i, will frequently be adopted as

shorthand for the scalar product. We will use a standard
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polar inner- product, where the one-dimensional integral is
performed over u ¼ cosðθÞ:

hpjqi ¼
Z

1

−1
pðuÞ�qðuÞdu: ð2Þ

In Eq. (2), pðuÞ and qðuÞ are square-integrable functions
of u, and pðuÞ� denotes the complex conjugate of pðuÞ.
A spheroidal harmonic ket e.g., jSlmni is effectively
shorthand for Slmðθ; γlmnÞ, except in the setting of the
scalar product. All harmonics are normalized with respect
to Eq. (2) unless otherwise stated.
Lastly, we will only discuss sets of functions with like

azimuthal index m and spin weight s [4]. The identity
operator I will specifically refer to the space spanned by
such functions.

C. Outline of the problem

General gravitational wave signals can be represented in
terms of spin-weight −2 spherical harmonic multipole
moments, but here we wonder if another, perhaps more
physical route is possible. If we denote an arbitrary gravi-
tational wave signal (i.e., strain [25]) as hðr; t; θ;ϕÞ, then its
spherical harmonic expansion is

hðr; t; θ;ϕÞ ¼ 1

r

X
l;m

hYlmðtÞ−2YlmðθÞeimϕ: ð3Þ

In Eq. (3), r is the radiation’s luminosity distance, θ and ϕ
are polar and azimuthal angles, respectively, describing an
observer’s orientation with respect to a source centered
frame, and hYlmðtÞ is the signal’s spherical harmonic multi-
pole moment [6,11,25].
Here we will interpret the natural starting point for

Eq. (3) to be that the spherical harmonics are naturally
related to the QNMs of nonspinning (spherically symmet-
ric) spacetimes [6,9]. In that context, hYlmðtÞ is naturally a
sum over possible overtone contributions [9,38]. Each
overtone QNM ultimately originates from the radial part
of the linearized Einstein’s equations, and the physical
situation’s initial data determine how much each overtone
is excited [8,9,38]. For general gravitational wave signals,
hYlmðtÞ may be understood to encode information about
the structure and dynamics of the spacetime, including the
source [5,25]. Despite only corresponding to the modes
of spherically symmetric spacetimes, it is well known
(e.g., from Sturm-Liouville theory) that the spin-weighted
spherical harmonics are complete, orthogonal, and
thereby readily applicable to general gravitational wave
signals [36].
Here, our primary goal is to understand whether the

spheroidal harmonics are also applicable to general gravi-
tational wave signals, thereby justifying a spheroidal
harmonic multipole moment expansion of the form

hðr; t; θ;ϕÞ ¼ 1

r

X
l;m

hSlmðtÞ−2Slmðθ; γlmÞeimϕ: ð4Þ

In Eq. (4), hSlmðtÞ are spheroidal harmonic multipole
moments, and γlm are their closely related oblateness
parameters. Note that, like in the case of perturbed spheri-
cally symmetric spacetimes, for perturbed Kerr BHs,
each hSlmðtÞ may contain information about multiple over-
tone modes.
In the present work we seek to understand whether

Eq. (4) is physically well motivated and mathematically
well defined. In paper II we seek to understand whether the
relationship hSlm and spacetime modes (e.g., QNMs) makes
them useful tools for gravitational wave astronomy [29].
Here, we will work through the following technical

questions.
(i) It is well known that the spheroidal harmonics

depend on an oblateness parameter [Eq. (1)]. In
this way, each spheroidal harmonic with polar and
azimuthal quantum numbers l and m also depends
on additional information: the spacetime angular
momentum, and the mode frequency which encodes
information about the spacetime’s radial structure.
What consequences does this additional information
have for how we must think about the differential
equations which define the QNMs’ spheroidal
harmonics?

(ii) Can the spheroidal harmonics be used to exactly
represent arbitrary gravitational wave signals, par-
ticularly during e.g., BBH postmerger, but also
during merger and inspiral? Equivalently, are the
QNMs’ spheroidal harmonics complete?

(iii) Do the QNMs’ spheroidal harmonics possess a kind
of orthogonality?

In forthcoming sections our task is to answer each of these
questions.
Along the way we will find that several ideas are

intertwined. Whether the spheroidal harmonics are com-
plete is inseparable from how one defines Eq. (4)’s
oblateness parameters, γlm. Completeness of the spheroidal
harmonics implies the existence of the existence of the
adjoint-spheroidal harmonics, and the spheroidal harmonic
multipole moments are well defined when the adjoint-
spheroidal harmonics are themselves well defined. This
work concludes with a discussion of the adjoint function’s
application in the representation of gravitational waves. BH
ringdown is chosen as a simple and concrete setting for this
discussion. The application of adjoint-spheroidal functions
to gravitational radiation from the inspiral, merger, and
ringdown of extreme and comparable mass ratio BBHs is
the subject of paper II [29].
In Sec. II we address question (i), for which a peda-

gogical review of the spheroidal harmonic differential
equation is useful. In short, the differential operator for
which the spheroidal harmonics, or simply “spheroidals,”
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are eigenfunctions can be shown to result from Einstein’s
equations linearized about the Kerr solution (i.e.,
Teukolsky’s equations) [3,9]. For the QNMs, each sphe-
roidal harmonic differential operator depends on the
mode’s oblateness, γlmn ¼ aω̃lmn, according to

Llmn ¼ VSðu; γlmnÞ þ ∂uð1 − u2Þ∂u; ð5Þ

where u ¼ cos θ and the operator’s potential is

VSðu; γlmnÞ ¼ sþ uγlmnðuγlmn − 2sÞ − ðm0 þ suÞ2
1 − u2

: ð6Þ

In Eq. (6), s is the field’s spin weight, and m0 is the
equation’s analog of the associated Legendre index.
Since each QNM corresponds to a different oblateness,

each physical spheroidal harmonic is the eigenfunction
of a different differential operator. In turn, each operator
is of the associated Legendre type, with a potential given
by Eq. (6). Therefore each operator has its own set of
eigenfunctions which we may label in l0 and m0. Our
primary interest will be in the solutions for which l0 ¼ l
and m0 ¼ m. These are the physical spheroidal harmonics
relevant to gravitational wave theory and experiment
[8,9,37,39]. We will at times simply refer to these har-
monics as the “physical spheroidals.” As there is an infinity
of such harmonics, we are ostensibly faced with an infinity
of related different differential operators.
This technical aspect of the QNMs does not appear

to have been investigated previously; thus, in Sec. II we
introduce conceptual tools (ideas and notation) that will
help us navigate this “issue of many operators” and its
related situations. These tools draw upon ideas from
functional analysis and quantum mechanics [31,40].
In Sec. III, we use these tools to address questions (ii)

and (iii). We will show that subsets of the physical
spheroidal harmonics with fixed overtone label can support
biorthogonality with the adjoint-spheroidal harmonics
and that related subsets can be complete. If we denote
the adjoint-spheroidals as S̃lmðθ; γlmnÞ, then when we refer
to them as the biorthogonal dual of the spheroidal har-
monics, we simply mean that

Z
π

0

S̃lmðθ; γlmnÞS�l0mðθ; γl0mnÞ sinðθÞdθ ∝ δll0 : ð7Þ

These conclusions are supported by two key ideas from
functional analysis. The first is that physical spheroidal
harmonics with fixed overtone label form a minimal set,
meaning that any one spheroidal harmonic cannot be
exactly represented by an infinite sum over the others [31].
The second key idea is that a set of functions can have a
biorthogonal dual if and only if it is minimal [31]. The goal
of Sec. III is to discuss each of these ideas for the spheroidal
harmonics of Kerr QNMs.

Section III is the most technical section of this work. It is
organized into two subsections. Section III A combines
ideas presented in Sec. II with old and new perturbation
theory results to show that the overtone solutions of Kerr
are linearly independent but not minimal. As will be
described in Sec. III A, this means that from the perspective
of the angular harmonics, QNMs with the same values of l
and m, but different overtone labels n, do not encode
distinct mode information. This is exactly the situation that
one should expect from the Schwarzschild QNMs [9]. The
key corollary of this conclusion is that fixed overtone
subsets areminimal. They are therefore a simple and useful
way to organize mode information.
Given that the physical spheroidal harmonics on a fixed

overtone subset are minimal, the existence of the related
adjoint-spheroidal harmonics is assured [31]. While proof
of this fact may be found in Ref. [31], the end of Sec. III A
provides a brief conceptual overview. The reader should
note that the full proof does not immediately facilitate
calculation of the adjoint-spheroidals, but it does allow us
to draw conclusions from their existence.
In particular, existence of the adjoint-spheroidal har-

monics allows the construction of a unique linear map (an
isomorphism) between spherical and spheroidal harmonics.
Once again drawing from results in functional analysis
(e.g., [30]), Sec. III B shows that the uniqueness of this
“spherical-to-spheroidal” map means that the spheroidal
harmonics are complete [31]. Like the adjoint-spheroidal
harmonics, the existence of a spherical-to-spheroidal map is
assured by the properties of the spheroidal harmonics but
not in a way that immediately lends to calculation.
However, for concreteness, Sec. III B illustrates a way to
explicitly define spherical-to-spheroidal maps using the
standard spherical harmonic expansion along with related
raising and lowering operators defined in Ref. [41].
Section IV goes a step further by showing that spherical-

to-spheroidal maps may be expressed as infinite-
dimensional matrices of inner products. The truncation of
these matrices enables practical nonperturbative calculation
of the adjoint-spheroidal harmonics. Section IV presents an
algorithm to this end. That algorithm is the central result
of this work. Numerical examples are provided for the
dominant m ¼ 2 Kerr spheroidal harmonics.
Section V provides a pedagogical discussion of what

spheroidal harmonic decomposition might look like in
practice. This section completes our discussion of the
potential role of overtones within spheroidal harmonic
decomposition [Eq. (4)]. In particular, a quantitative com-
parison of mode mixing between spherical and spheroidal
representations closes our discussion.
Section VI summarizes our work thus far and points the

way to future development.
Appendix A provides a perturbation theory derivation

of spherical-spheroidal mixing coefficients that provides
leading-order estimates at arbitrary perturbative orders.
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Appendix B revisits the issue of many operators by
introducing two new operators of relevance to the physical
spheroidal harmonics. The first operator is one for which
all physical spheroidal harmonics are eigenfunctions. The
second is an operator for which all adjoint-spheroidal
harmonics are eigenfunctions. While this second operator
is simply the adjoint of the first, its introduction helps
illuminate the role of isospectrality and operator interwind-
ing in the adjoint-spheroidal harmonics.

II. THE ISSUE OF MANY OPERATORS

Standard arguments for orthogonality and completeness
assume that a single operator defines the space of interest.
This is true e.g., for the spherical harmonics. But this is not
true for the physical spheroidal harmonics, with their
oblateness values that depend on l. Here we briefly work
through standard arguments for orthogonality and com-
pleteness in the context of a simple kind of spheroidal
harmonic wherein all oblateness values are the same for
different values of l andm (i.e., not the physical spheroidal
harmonics). This special case will allow us to briefly
review the concepts of orthogonality and biorthogonality.
We then show why the standard arguments underpinning
these concepts do not trivially generalize to the physical
spheroidal harmonics. We conclude with a summary of the
ideas necessary to generalize the standard arguments to the
physical spheroidals.
We will use bra-ket notation to facilitate various manip-

ulations.Wewill also use different symbols to distinguish the
spheroidal harmonicswith fixedoblateness from the physical
spheroidal harmonics. Thusly we will denote the spheroidal
harmonics with fixed oblateness as Zlmðθ; γÞ and the asso-
ciated kets as jZlmi. Similarly, we will denote the physical
spheroidal harmonics as Slmðθ; γlmnÞ and the associated kets
as jSlmni. The reader should note that, as discussed in the
context of Eq. (6), the fixed-oblateness spheroidals are related
to the physical spheroidals when the oblateness varies with l
(and/or overtone label n) according to

Slmnðθ; γlmnÞ ¼ Zlmðθ; γÞjγ¼γlmn
: ð8Þ

Equation (8) communicates that while each Zlm and Slmn are
closely related, their key difference is whether they are
members of a sequence of harmonics in which the oblateness
parameter varies between different harmonics in the sequence.
Our current aim is to describe select properties of the

fixed-oblateness spheroidals and by doing so highlight key
aspects of physical spheroidals. In this setting, the sphe-
roidal harmonic differential operator is

Lo ¼
�
sþ uγðuγ − 2sÞ − ðmþ suÞ2

1 − u2

�
þ ∂uð1 − u2Þ∂u:

ð9Þ

The fixed-oblateness spheroidal harmonic kets jZlmi are
then eigenvectors of Lo with eigenvalues −Alm:

LojZlmi ¼ −AlmjZlmi: ð10Þ

In the context of perturbed Kerr BHs, Alm is the separation
constant for Teukolsky’s master equation [3].
We are now prepared to demonstrate how the properties

of Lo provide information about the completeness and
orthogonality (or as we shall see biorthogonality) of the
fixed-oblateness spheroidal harmonics. Pedagogical argu-
ments to this end for e.g., the spherical harmonics begin by
determining the adjoint of their differential operator and
then analyzing the matrix elements of that operator in a
spherical harmonic basis. Here we may proceed in the same
manner, but we must take extra care, as γ can be complex
valued [e.g., Eq. (5)]. As a result, the operator adjoint Lo

†,
as defined by

hpjLojqi ¼ hpjLoqi ¼ hLo
†pjqi; ð11Þ

can be shown (via integration by parts) to simply be

Lo
† ¼ Lo

�: ð12Þ

The first equality of Eq. (11) simply communicates that Lo
acting on an arbitrary ket jqi results in a new ket, jLoqi.
Equation (12) is a slight departure from Sturm-Liouville
theory which, if γ is real, simply yields that Lo

† ¼ Lo (i.e.,
if γ is real, then Lo is self-adjoint) [36]. Equations (12)
and (10) can be used to show that

Lo
†jZ�

lmi ¼ −A�
lmjZ�

lmi; ð13Þ

meaning that the eigenvectors of Lo
† are simply conjugates

of the spheroidal harmonics.
We are now prepared to write matrix elements of Lo in a

vector space for which rows are spanned by eigenvectors
of Lo

† and columns are spanned by eigenvectors of Lo.
Doing so yields two equivalent expressions:

hZ�
l0mjLojZlmi¼hZ�

l0mjLoZlmi¼−AlmhZ�
l0mjZlmi ð14Þ

and

hZ�
l0mjLojZlmi ¼ hLo

†Z�
l0mjZlmi ¼ −Al0mhZ�

l0mjZlmi:
ð15Þ

Equation (14) uses the eigenvalue relation for Lo, while
Eq. (15) uses the definition of the adjoint [Eq. (11)] and
the eigenvalue relation for Lo

†. Since Eqs. (14) and (15)
represent the same quantity in two different ways, their
difference must be zero. Subtracting Eq. (14) from Eq. (15)
yields
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ðAl0m − AlmÞhZ�
l0mjZlmi ¼ 0: ð16Þ

For l0 ≠ l, Eq. (16) communicates that hZ�
l0mjZlmi ¼ 0 or,

equivalently,

hZ�
l0mjZlmi ∝ δl0l: ð17Þ

There are many lessons to be learned from this simple
example. Broadly, these lessons can help us distinguish
between orthogonality, biorthogonality, and the relevance
of many operators for the physical spheroidal harmonics.
These lessons are prerequisites for our ultimately under-
standing the physical spheroidal harmonics’ biorthogon-
ality and completeness.
One lesson pertains to the case of zero oblateness. There,

γ ¼ 0, and Eq. (9) can be used to show that Lo reduces to
the spherical harmonic differential operator. In that setting
Eq. (17) reduces to the known fact that the spin-weighted
spherical harmonics are orthogonal in l [4].
Another lesson pertains to cases where the oblateness is

complex valued. In that case, Eq. (9) means that the
spheroidal harmonics with fixed oblateness are not
orthogonal with themselves but rather with their complex
conjugates. Because two sets of functions are needed,
Eq. (17) is a statement of biorthogonality [30,31,36].
Thus it is said that the conjugate spheroidal harmonics
Z�
lm are biorthogonal duals of Zlm. In particular, we note

that Eq. (17) differs from the usual statement of orthogon-
ality due to the presence of Z�

lm rather than Zlm in its ket.
In Sec. III A, we will begin to generalize this simple kind
of biorthogonality to the physical spheroidal harmonics.
While Eq. (17) is a simple result that has been known to
functional analysis for some time (e.g., Refs. [30,36]), this
appears to be the first time it has been pointed out in the
context of spheroidal harmonics relevant to BHs.
We now turn to the key lesson of Eqs. (14)–(17) and the

motivating issue of this section. Our previous conclusions
of orthogonality or biorthogonality hinge upon the fact that
Lo does not depend explicitly on l. It is this point that
allows us to calculate matrix elements in Eqs. (14) and (17).
To examine this point, we may begin to consider the case of
the physical spheroidal harmonics and their operators,
Llmn [i.e., Eqs. (5) and (6)].
Following Eqs. (14)–(17), we may attempt to write

down the matrix elements of Llmn using the physical
spheroidal harmonics and their conjugates. As with the
fixed-oblateness spheroidals, this yields two equivalent
expressions:

hS�l0mnjLlmnjSlmni ¼ hS�l0mnjLlmnSlmni ð18Þ

¼ −AlmnhS�l0mnjSlmni ð19Þ

and

hS�l0mnjLlmnjSlmni ¼ hL†
lmnS

�
l0mnjSlmni ð20Þ

≠ −Al0mnhS�l0mnjSlmni: ð21Þ
Since Llmn and jSlmni have the same oblateness parameter,
namely γlmn, Eqs. (18) and (19) simply communicate that
jSlmni is an eigenket of Llmn. Thus far, this mirrors the
result of our special case.
However, since Llmn and jSl0mni have different oblate-

ness parameters, namely γlmn and γl0mn, jSl0mni is not an
eigenvector of Llmn. Thus Eq. (20) is not equal to Eq. (21).
This turn of events means that standard arguments for
orthogonality and biorthogonality do not apply to the
physical spheroidal harmonics.
One could also investigate the completeness properties

of the spheroidal harmonics with fixed oblateness,
Zlmðθ; γÞ. Since their operator Lo is of Sturm-Liouville
form, there is a standard argument in functional analysis to
show that Zlmðθ; γÞ form a complete set: The Sturm-
Liouville form of Lo means that there exists an invertible
operator, say T o, that transforms spherical harmonics into
spheroidal harmonics. As maths go, one may prove that T o
exists without showing explicitly how to calculate it
[30,31]. Nevertheless, the existence of T o can then be
used to prove that Zlmðθ; γÞ form a complete set. Crucially,
as with Lo, a key assumption is that T o is independent of l.
Thus this standard argument also falls short of applying to
the physical spheroidal harmonics. (This line of reasoning
will be revisited in Sec. III B.)
With the breakdown of standard arguments comes ques-

tions. Given that we know the QNM frequencies ω̃lmn, and
therefore the oblatenesses γlmn ¼ aω̃lmn, we therefore
know all of the operators for which the physical spheroidal
harmonics are eigenfunctions. Does this not imply that we
should be working within a framework that explicitly
accounts for the spheroidal harmonics’ multiple operators?
In such a framework, what form should the collection of
spheroidal harmonic operators take? Is it possible to use this
framework to determine whether the physical spheroidals
form a complete set? Does this framework shed light on
whether there exist functions that, along with the physical
spheroidals, form a biorthogonal set?
Hints to each of these question may be found in BH

perturbation theory, quantum mechanics and functional
analysis literature.
Single BH perturbation theory provides algorithms for

computing the physical spheroidal harmonics [9,42]. In
effect, these algorithms provide a computational definition
of a single operator L, for which all physical spheroidals
are eigenfunctions, i.e.

LjSlmni ¼ −AlmnjSlmni for all ðl; m; nÞ: ð22Þ
But it appears that this knowledge has never been articu-
lated mathematically rather than algorithmically. In par-
ticular, although we may algorithmically understand the
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action of L, we cannot begin to determine whether it has
an adjoint, L†, without a better understanding of its
precise mathematical form. We revisit the form of L in
Appendix B.
From quantum mechanics, Ref. [40] studies the proper-

ties of operators (Hamiltonians) whose eigenfunctions are
biorthogonal. There it is useful to work with a vector space
representation of operators (i.e., as is typically done in
quantum mechanics with the identity operator).
Lastly, in Refs. [30,31] (and many others), the existence

of a biorthogonal dual and the completeness of the related
vector space are discussed in the language of functional
analysis. In that setting it is known that a sequence of
vectors has a biorthogonal dual if it is not only linearly
independent, but also minimal (in the sense described in
Sec. I C) [31].
Our current task is to apply these hints to questions

about the physical spheroidal harmonics and their many
operators Llmn.

III. SPHEROIDAL HARMONIC
BIORTHOGONALITY AND COMPLETENESS

Here we work through two problems regarding the
biorthogonality and completeness of the physical spheroi-
dal harmonics. For concreteness, our discussion will center
about the spheroidal harmonics of Kerr QNMs. The first
problem to be addressed has to do with how we should
conceptualize the QNMs’ spheroidal harmonics. The result
of this discussion is in effect an existence proof of the
adjoint-spheroidal harmonics. The second problem has
to do with the completeness of the physical spheroidal
harmonics. Given the existence of the adjoint-spheroidal
harmonics, as well as the existence of an operator that maps
spherical-to-spheroidal harmonics, this section concludes
that the spheroidal harmonics are complete and therefore
may be used to represent arbitrary gravitational radiation.
Regarding how the spheroidal harmonics are conceptu-

alized, it is well known that the QNMs of Schwarzschild
BHs are naturally organized into spherical harmonic
moments, where each may be a sum of overtones:

hQNMSchwarzschild ¼
1

r

X
l;m

�X∞
n¼0

blmne−iω̃lmnt

�
−2YlmðθÞeimϕ:

ð23Þ

In Eq. (23), blmn is a complex-valued QNM amplitude, and
the net expression describes the QNM part of BH ring-
down [9]. It may be seen in Eq. (23) that for Schwarzschild
BHs, every overtone mode labeled with l and m has
exactly the same angular “shape” given by −2YlmðθÞ.
The matter would seem to be very different for Kerr

QNMs. The oblateness parameter’s appearance in the sphe-
roidal harmonic differential operator [Eqs. (5) and (6)]means
that every overtone labeled with l andm is associated with a

different spheroidal harmonic, −2Slmðθ; γlmnÞ. Restricting
our consideration to (exclusively) only pro- or retrograde
Kerr QNMs [43,44]

hQNMKerr ¼ 1

r

X
l;m

�X∞
n¼0

blmne−iω̃lmnt
−2Slmðθ; γlmnÞ

�
eimϕ;

ð24Þ

where we use the convention that

ω̃lmn ¼ −ω̃�
l−mn: ð25Þ

The simplified perspective of Eq. (24) is relevant to e.g., the
postmergers of nonprecessing BBHs (e.g., [8,45–47]), and it
has been shown to apply to a large variety of precessing
systems [48]. We will discuss the implications of that
simplification in Sec. VI. For now, with Eqs. (23) and (24)
in mind, the key matter of concern is the extent to which it is
meaningful to think of different Kerr overtones as having
different angular shapes given by −2Slmðθ; γlmnÞ.
In Sec. III A we will show that the multiple overtones in

Eq. (24) provide redundant angular information. This will
be accomplished by an investigation of the harmonics’
large-l behavior in three limits: zero oblateness, linear in
oblateness, and general oblateness. We will show that, to
linear order in γlmn, the spheroidal harmonics become
identical to the spherical harmonics as l → ∞, regardless
of overtone number. We will also see that this conclusion
generalizes in a simple way to arbitrary values of γlmn. In
this sense we will see that the conceptual structure of
Eq. (23) prevails—it is not robust to think of the different
overtones’ spheroidal harmonics as being distinct from one
another.
It is then fair to wonder whether there exists an

alternative representation of Eq. (24) that explicitly
accounts for redundancy in the overtones’ spheroidal
harmonics. In other words, is there a systematic way to
organize the physical spheroidal harmonics into minimal
(i.e., nonredundant) subsets? While there are surely many
mathematical answers to this question, Sec. III A adopts an
approach that is physically motivated: The fundamental
(i.e., n ¼ 0) QNMs are known to be the most excited and
persist in time domain signals for the longest duration
[8,9,47,49,50]. In physical scenarios, such as the nonlinear
BBHmerger, where it may be possible for higher overtones
to play a significant role, it is currently unclear whether
QNMs apply at all, given that the background spacetime is
changing at its fastest rate in the entire coalescence,
strongly implying that it is not stationary and thus not
Kerr [51]. This reasoning motivates our consideration of
what we will call fixed overtone subsets of the spheroidal
harmonics. In particular, numerical examples in Sec. III A
provide evidence that the set of n ¼ 0 spheroidal harmonics
is minimal and thus supports a biorthogonal dual.
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The reader should note that when we refer to adjoint-
spheroidal harmonics we specifically mean those defined
on a single overtone subset and that all numerical results
pertain to the n ¼ 0 subset which is known to be both
astrophysically relevant and spectrally stable [52].
Section III B addresses the question of whether physical

spheroidal harmonics may, in principle, be used to exactly
represent general gravitational wave signals. In this dis-
cussion we begin to address the issue of many operators by
constructing a spherical-to-spheroidal map that is appro-
priate for the physical spheroidal harmonics. We apply this
map to a standard argument for completeness and show that
the physical spheroidal harmonics with n ¼ 0 form a
complete set.
While these discussions of biorthogonality and com-

pleteness rely on functions and operators that have been
shown to simply exist without explicit definition, Sec. III B
provides an approximate expression for the basic spherical-
to-spheroidal map. The reader may look to Sec. IV for a
nonperturbative definition of that map and the adjoint-
spheroidal harmonics.

A. Minimal spheroidal harmonic subsets

Wewill now show that overtone subsets are minimal and
therefore support the existence of the adjoint-spheroidal
harmonics. By overtone subsets, we mean sets of Kerr
spheroidal harmonics where all members have the same
overtone index n. For example, all spheroidal harmonics
with n ¼ 0 define the “lowest” or “fundamental” overtone
subset. By minimal, we mean that

jSl0mni ≠
X
l≠l0

cljSlmni for all possible cl and l0:

ð26Þ

Equation (26) expresses that we cannot equate any member
of the overtone subset in terms of a linear combination of
all other members. While this may remind the reader of
linear independence, it should be noted that linear inde-
pendence strictly applies to sets of finite size and so is not
quite applicable here. In particular, since Eq. (26) sums
over l through infinity, we must investigate the spheroidal
harmonics in that limit.Our goal is to determinewether a kind
of linearly dependent behavior emerges asymptotically.
To proceed, it suffices to apply a standard argument for

linear independence and then consider the limit as l → ∞
in that context.2 To show that a finite subset of harmonics is
linearly independent, we may rely on a standard lesson
from linear algebra: If the eigenvalues of an operator are
unique, then that operator’s eigenfunctions are linearly

independent. While there exists a standard proof for this
statement (e.g., Ref. [53]), the first half of this section
provides a brief overview for transparency and conven-
ience. The latter half of this subsection provides a large-l
analysis of the spheroidal harmonic eigenvalues, followed
by a brief discussion of why minimal sets support
biorthogonality.
Toward the linear independence of a finite subset of

harmonics, we begin in the spirit of contradiction: We may
assume that any two spheroidal harmonics, with labels
ðl; m; nÞ and ðl0; m; n0Þ, are linearly dependent:

cljSlmni þ cl0 jSl0mn0 i ¼ 0: ð27Þ

We may then apply L from Eq. (22):

AlmncljSlmni þ Al0mn0cl0 jSl0mn0 i ¼ 0: ð28Þ

We may also scale Eq. (27) by Al0mn0 :

Al0mn0cljSlmni þ Al0mn0cl0 jSl0mn0 i ¼ 0: ð29Þ

Subtracting Eq. (28) from Eq. (29) gives

ðAl0mn0 − AlmnÞcljSlmni ¼ 0: ð30Þ

Equation (30) is a key pedagogical step toward our
connecting linear dependence to eigenvalues. The left-hand
side of Eq. (30) can only be zero if cl is zero or Almn equals
Al0mn0 . Equation (27) means that if cl is zero, then cl0 must
also be zero; i.e., only trivial linear dependence is possible
if eigenvalues are distinct. Thus, if Almn and Al0mn0 are
distinct, then we must conclude that cl and cl0 are zero, and
so jSlmni and jSl0mn0 i are linearly independent. Whether
applied to an arbitrary finite subset of spheroidal harmonics
(e.g., one that includes multiple overtones) or specifically
to an overtone subset, this argument extends to multiple
spheroidals by induction.
We now turn to the physical spheroidal harmonics’

eigenvalues [Eqs. (10) and (22)]. Our aim is to apply the
preceding argument of linear independence to spheroidal
harmonics that differ in l and/or n. If, for a fixed spin
parameter a, each Almn is distinct as l → ∞, then the
related spheroidal harmonics constitute a set that is not only
linearly independent, but also minimal.
The spheroidal harmonic eigenvalues may be calculated

to perturbative orders in γlmn (e.g., [7,13,54,55]) or
numerically via e.g., Leaver’s method [9]. We will first
use a perturbative approximate to investigate general
analytic properties and then a numerical estimate particular
to the n ¼ 0 spheroidals of Kerr QNMs. For the numerical
check, Leaver’s method will be used to compute the QNM
frequencies ω̃lmn from the BH spin parameter a. From this,
the oblateness values γlmn ¼ aω̃lmn will be used to
calculate Almn according to Leaver’s algorithm [9].

2Note that one might also consider the limit as n → ∞. While
not considered here, it should be noted that such a “large n”
analysis would be suited to the study of Teukolsky’s radial
equation, from which n originates [3].
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Using the results of Ref. [54] to expand Almn to second
order in γlmn gives

Almn ¼ lðlþ 1Þ − sðsþ 1Þ ð31aÞ

−γlmn
2s2m

lðlþ 1Þ ð31bÞ

þ γ2lmn½fðlþ 1Þ − fðlÞ − 1� þOðγ3lmn=l
4Þ;
ð31cÞ

where

fðlÞ ¼
ðl2 − l2

minÞðl2 − s2Þðl2 − m2s2

l2min
Þ

2ðl − 1
2
Þl3ðlþ 1

2
Þ ð32Þ

and lmin ¼ maxðjmj; jsjÞ. Equation (31a) has been written
to highlight the perturbative and large-l properties of Almn.
The first line of Eq. (31a) is simply the spherical harmonic
eigenvalue. Equation (31b) shows the first-order correction
in γlmn, and Eq. (31c) shows the second-order correction
along with the order of the remainder. In Eq. (31c) we have
taken care to note that the dominant part of the remainder is
proportional to both γ3lmn and l−4. Similarly, higher-order
corrections are inversely proportional to l at increasing
powers [54].
We may now use Eqs. (31a)–(32) to inspect the large-l

behavior Almn. The spherical harmonic eigenvalues are
distinct in l but degenerate in n; thus, the same is true for
the contribution shown in Eq. (31a). Equation (31b) and
Eq. (31c)’s last term vanish as l → ∞, and an asymptotic
expansion of Eq. (31c)’s γ2lmn term shows that its asymptote
is −γ2lmn=2. In particular, it is not hard to show that,
as l → ∞,

fðlþ 1Þ − fðlÞ − 1 ∼ −
1

2
þOðl−2Þ: ð33Þ

Together these points constrain the large-l (i.e., asymp-
totic) behavior of the eigenvalues:

Almn ∼ lðlþ 1Þ − sðsþ 1Þ − γ2lmn=2: ð34Þ

In Eq. (34), “∼” denotes asymptotic equivalence.
As written, Eq. (34) helps us inspect three limits: the

zero-oblateness limit, the linear-in-oblateness limit, and the
general oblateness limit where the l dependence of γlmn
plays a key role. We will now briefly discuss the spheroidal
eigenvalues in each of these contexts.
At γlmn ¼ 0, Eq. (34) communicates that the spheroidal

eigenvalues are equal to the spherical ones. While this fact
is also evident from Eqs. (6) and (31), we emphasize here
that the overtone harmonics are neither linearly indepen-
dent nor minimal for all physically relevant oblatenesses.

We may also draw from Eq. (34) that, at linear order in
oblateness, the spheroidal harmonic eigenvalues are equal
to the spherical harmonic ones (i.e., one takes γ2lmn to zero
at linear order in γlmn). Thus it is not only that the
spheroidal harmonics reduce to the spherical harmonics
at zero oblateness, but also that in the small oblateness
limit, large-l spheroidal harmonics have eigenvalues that
are asymptotically equivalent to those of the spherical
harmonics. Since the spherical eigenvalues only depend on
l and s, the different overtones’ spheroidal harmonic in n
are asymptotically equivalent.
Finally, for large but physical values of the oblateness

parameter, Eq. (34) helps us imagine scenarios where the l
dependence of γlmn plays a central role. For this we may
draw from the fact that γlmn ¼ aω̃lmn and that the QNM
frequencies ω̃lmn are known (e.g., from Ref. [56]) to have
the following large-l form:

ω̃lmn ∼ lωOrb þ igLðnþ 1=2Þ: ð35Þ

In Eq. (35), ωOrb is the Keplerian orbital frequency for a
circular photon orbit, and gL is related to the Lyapunov
exponent of that orbit. For simplicity, we have written
Eq. (35) to only the dominant terms in l. It is important to
note that both ωOrb and gL are geometric quantities and are
thus independent of l. It is also important to note that n
appears in Eq. (35) additively with respect to l, meaning
that for finite n, as l → ∞, n becomes fractionally
insignificant.
With Eq. (35) in hand, we may now consider the regime

where l is large with respect to n for n ≥ 0 and the l
dependence of γlmn dominates (i.e., where l ≫ n). There,
the n-dependent terms in Eq. (35) may be neglected,
yielding

ω̃lmn ∼ lωOrb: ð36Þ

When combined with Eq. (34), the asymptotic behavior
Eq. (36) allows us to further distill the large-l behavior
of the spheroidal eigenvalues. Keeping only the largest
powers of l, this yields

Almn ∼ l2ð1 − a2ω2
Orb=2Þ: ð37Þ

Thus, in the large-l limit, and for large and physical values
of oblateness, Almn asymptotically lose their dependence
on the overtone index n. In other words, the related
overtones’ spheroidal harmonics become (again) asymp-
totically equivalent: For any two overtone harmonics with
label n and n0 (and like values of s and m), there always
exists some l ≫ n and l ≫ n0, such that 1 − jAlmn=Almn0 j
is arbitrarily small.
From these three settings (zero oblateness, linear-in-

oblateness, and general oblateness), we may conclude that
the standard argument for linear independence holds for
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different overtones if l is finite but does not hold as
l → ∞. This is because different overtones with the same
value of l have the same asymptotic (i.e., large-l) behavior.
As a result, the full set of spheroidal harmonics, including
all overtones, is not minimal according to the infinite sum
in Eq. (26). Conversely, and perhaps more importantly, we
may also conclude that any subset of physical spheroidal
harmonics for which every value of l uniquely labels one
harmonic is minimal according to Eq. (26). In what follows
we take that the simplest and most physically relevant
minimal subset is that with n ¼ 0 (i.e., the fundamental
QNM subset3).
Figure 2 graphically demonstrates that, for all allowed

spin parameters a, the n ¼ 0 Kerr oblatenesses are distinct,
and so are their related eigenvalues. While it is known that
values of l between 2 and 5 are more than sufficient to
accurately represent gravitational radiation for current
ground-based detectors (e.g., [11,17,25,57]), Fig. 2 shows
up to l ¼ 10 as might be relevant for future detectors. The
left and right panels plot quantities with respect to the spin
parameter a. We use the convention that a < 0 corresponds
to perturbations that are retrograde to the BH spin direction
[43,46]. By the convention used in e.g., Ref. [14], our
a < 0 corresponds to m < 0. In the left panel of Fig. 2, the
sharp feature about a ¼ 0 corresponds to γlmn passing
through zero and being (approximately) negated. The
absolute value of γlmn is plotted; the sharp feature simply
indicates reflection. The underlying real and imaginary
parts of γlmn are smooth functions of a [43,46]. Outside of
jaj ≈ 0, it is clear that for the QNMs shown, jγlmnj are
distinct in l.
The right panel of Fig. 2 shows the absolute value of

spheroidal eigenvalues derived from γlmn in the right panel

of Fig. 2 using Leaver’s method [9]. The y-axis’ tick marks
are defined by the spherical harmonic eigenvalues. By
comparing the y-axis’ tick-marks to the curves for each
eigenvalue, it is clear that the spherical harmonic contri-
bution to each eigenvalue dominates. For each spin value
shown, each n ¼ 0 eigenvalue is distinct, supporting the
minimal nature of the fundamental QNM subset for
all spins.
Having reviewed the minimal nature of overtone subsets,

what remains is to understand the connection between a
minimal subset and the existence of that subset’s biorthog-
onal dual (i.e., the adjoint-spheroidal harmonics). The
claimed connection is that the physical spheroidal harmon-
ics of overtone subsets jSlmni (where only l varies) have
biorthogonal duals jS̃lmni if and only if the overtone subset
is minimal. Although we refer the reader to Ref. [31] for the
full proof of this statement, we conclude this section by
outlining the proof’s key ideas.
The claim has two assertions: (i) that jS̃lmni exist if

jSlmni are minimal and (ii) if jSlmni are minimal, then
jS̃lmni exist. The proof in question must address each of
these assertions separately.
Assertion (i) is perhaps the simplest to demonstrate, as

the biorthogonality of jS̃lmni and jSlmni mean that

hSlmnjS̃l0mni ∝ δl;l0 : ð38Þ

This idea is then applied to the notion of whether any data
that can be exactly represented in a linear combination of
jSlmni may also be exactly represented using jS̃lmni. In
particular, it can be shown that Eq. (38) means that jSlmni
cannot be represented as a linear combination of the
remaining spheroidals with l ≠ l0. This statement is
equivalent to Eq. (26). Thus, if biorthogonal duals exist,
then the related set is minimal.

FIG. 2. Examples of how physical spheroidal harmonics have distinct oblatenesses for each l and that the related eigenvalues are also
distinct. Left: the absolute value of oblatenesses for different Kerr BH spins, a ¼ J=M, for spin weight s ¼ −2, azimuthal indexm ¼ 2,
and overtone number n ¼ 0, and l from 2 to 10. The horizontal dashed line marks zero oblateness, where the spheroidal harmonics are
equal to the sphericals. Open circles signify that extremal BH spins are not shown. Right: eigenvalues for the left panel’s physical
spheroidal harmonics. The y axis of this panel has tick marks defined by the spherical harmonic eigenvalue, lðlþ 1Þ − sðsþ 1Þ.

3Some authors use n ¼ 1 to denote the fundamental overtones.
We choose to not do this here.
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The proof of assertion (ii) is somewhat more technical.
It can be shown that the right-hand side of Eq. (26) is
related to a projection operator, Ul, which projects a
ket onto the space of all spheroidal harmonics with the
exception of jSlmni. Note that Ul is labeled by the
same value of l as jSlmni. By definition, Ul is such
that hSl0mnjðI − UlÞSlmni ∝ δl0;l, meaning that jS̃lmni ∝
jðI − UlÞSlmni. Thus if jSlmni are minimal, then
jS̃lmni exist.

B. Maps between spherical and
spheroidal harmonics

The existence of the adjoint-spheroidal harmonics
means that we may, in principle, decompose arbitrary
gravitational wave signals into spheroidal harmonics
moments. In this, the right-hand side of Eq. (4) is
justified, and Sec. IV will provide a method to calculate
the adjoint harmonics. For now, a key remaining issue is
whether we may generally equate any square-integrable
gravitational wave signal with its spheroidal harmonic
decomposition. In other words, the current topic of
discussion is whether the physical spheroidal harmonics,
and their adjoint functions, are complete.
It is useful to frame this topic with a few pedagogical

ideas: The spin-weighted spherical harmonics are known to
be complete because they are closely related to the
trigonometric functions, and the trigonometric functions
themselves are known to be complete in a rudimentary way
(e.g., the Fourier series) [30,36]. Completeness of the
spherical harmonics means that any square-integrable
gravitational wave signal (ket), say jhi, may be equated
with

jhi ¼
X
l

jYlmihYlmjhi: ð39Þ

Equivalently, we may define an identity operator in terms of
the spherical harmonics:

I ¼
X
l

jYlmihYlmj; ð40Þ

such that Eq. (39) can be compactly written as jhi ¼ Ijhi.
In this language, our present task is to determine whether
the identity operator in Eq. (40) may be alternatively
represented in terms of the physical spheroidal harmonics
and their adjoint functions:

I ¼
X
l

jSlmnihS̃lmnj: ð41Þ

In Eq. (41), the reader should note that I is specifically the
identity operator for all functions (e.g., parts of gravita-
tional wave signals) corresponding to a fixed m and s.

To proceed, we will first rely on a standard argument
from functional analysis applied to the fixed-oblateness
harmonics4 jZlmi. This argument essentially says that the
mean difference between the spherical and spheroidal
harmonics is proportional to 1=l, and so the two harmonics
are “close” and as so have related properties. These related
properties are defined by a linear operator that maps
between spherical and spheroidal harmonics. In this section
we will focus on how the existence of such a map means
that the physical spheroidal harmonics inherit completeness
from the sphericals. The details of supporting arguments
are left to the appendixes. In what follows, the oblateness
parameter is fixed for all values of l. The forthcoming
discussion will be generalized to l-dependent oblateness
momentarily [see Eq. (49)].
That the spherical and spheroidal harmonics are close is

shown in Appendix A. There, perturbative and recursive
methods are used to show that, for any spherical harmonic
expansion of a spheroidal harmonic,

jZlmi ¼ cljYlmi þ cl
X
l0≠l

σl0ljYl0mi; ð42Þ

where cl is a normalization constant and

σl0l ¼ hYl0mjZlmi ð43Þ

≈
1

jl0 − lj!
�
−γs
2l

�jl0−lj
: ð44Þ

In Eq. (44), γ is an l-independent oblateness parameter.
Equation (44) itself results from recognizing that perturba-
tion theory has an inherently recursive structure which, in
the case of the spherical-spheroidal inner products, has an
exact solution at leading order in the oblateness parameter.
The fact that Eq. (44) describes σl0l as shrinking rapidly
as jl0 − lj increases is central to general convergence
of Eq. (42) and (see e.g., Ref. [30]) the existence of an
invertible operator, T o, that maps spherical-to-spheroidal
harmonics:

T ojYlmi ¼ jZlmi: ð45Þ

It is the existence and invertibility of T o that can be
used to show that the spheroidal harmonics with fixed
oblateness, γ, inherit the completeness of the spherical
harmonics [30,31].
We are presently concerned with generalizing the argu-

ments of e.g., Ref. [30] to the n ¼ 0 physical spheroidal
harmonics to show that they too are complete and can
therefore exactly represent arbitrary gravitational wave
signals. This will be done by defining an operator for

4Recall that while oblateness values are fixed (i.e., independent
of l) for jZlmi, they are not fixed for jSlmni and jS̃lmni.
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the physical spheroidals, T , that is the generalization of T o.
Together T o and T , and their inverses, Vo and V, will play
central roles in our showing that the spheroidals are
complete:

I ¼
X
l

jSlmnihS̃lmnj: ð46Þ

Per discussion in Sec. III A, Eq. (46) is defined for fixed n.
As implied by Eq. (46), a key component of our discussion
will be the fact that adjoint-spheroidal harmonics may only
exist on overtone subsets.
The reader may note that the following arguments do

not explicitly assume that n ¼ 0. By calling attention to
this point, we wish to emphasize that a fixed overtone
subset is only essential for defining and computing adjoint-
spheroidal harmonics related to that subset. Although we
will continue to keep in mind the n ¼ 0 subset due to
its dominating the late ringdown of gravitational wave
signals, we discuss in Sec. V the practical consequences of
decomposing an arbitrary gravitational wave signal with
adjoint-spheroidal harmonics derived from any fixed-n
subset. There we will see that mode mixing between
overtones is not removed, but mixing between different
values of l within the select overtone subset is removed.
Let us begin. Given the closeness5 of the spherical and

spheroidal harmonics [i.e., Eq. (44)], we may be assured
that there exists a linear operator T o that transforms
spherical harmonics into spheroidals [30,31]. For now
we need only know that such an operator exists.
Nevertheless, it may be worthwhile to briefly discuss its
construction. For example, it must be the case that T o acts
on jYlmi to exactly the effect of Eq. (42)’s right-hand side.
It is also true that spherical harmonics with different values
of l are related by linear differential “raising” and “low-
ering” operators [41]. Combining these ideas allows us to
think of T o as a kind of differential operator. If we let Pl
and Ql be the l raising and lowering operators [Eqs. (29)
and (30) of Ref. [41]), respectively, then

T o ≈ clð1þ σl−1;lQl þ σlþ1;lPlÞ; ð47Þ

with

QlYlm ¼ Yl−1;m and PlYlm ¼ Ylþ1;m: ð48Þ

In Eq. (48) the raising and lowering operators are of the
form c0ðθÞ þ c1ðθÞ∂θ [41]. In Eq. (47) we have only kept
the adjacent spherical harmonic contributions for simplic-
ity. We will see in Sec. IV that it is much more useful to
think of T o as an infinite-dimensional matrix whose

elements are simply related to spherical-spheroidal inner
products σl0l.
Given the existence of T o, our first task is to determine a

generalization for the physical spheroidal harmonics: T o
transforms a spherical harmonic into a spheroidal harmonic
with fixed oblateness [Eq. (47)]. Its generalization should
transform a spherical harmonic into a physical spheroidal
harmonic. The development of this generalization begins
with our recalling that each physical oblateness γlmn
defines a set of fixed oblateness harmonics. Therefore
there exists a sequence spherical-to-spheroidal maps that
are essentially T o but parametrized by the different
physical oblateness γlmn. We will refer to each of these
maps as T lmn, where

T lmnjYlmi ¼ jSlmni: ð49Þ

Similarly, we will refer to related inverse maps as Vlmn,
where

VlmnjSlmni ¼ jYlmi: ð50Þ

We are now tasked with determining whether there exists
some generalization, say T and V, such that

T jYlmi ¼ jSlmni for all l; ð51Þ

VjSlmni ¼ jYlmi for all l: ð52Þ

We may consider the following vector space representa-
tions:

T ¼
X
l0

T l0mnjYl0mihYl0mj ð53Þ

¼
X
l0

jSl0mnihYl0mj ð54Þ

and

V ¼
X
l0

Vl0mnjSl0mnihS̃l0mnj ð55Þ

¼
X
l0

jYl0mihS̃l0mnj: ð56Þ

In Eq. (53), we have explicitly written T in terms of the
objects we wish to generalize, T l0mn. In Eq. (54), we apply
T l0mn to jYl0mi. As represented in Eqs. (53) and (54),
T may be easily shown to map spherical harmonics to
physical spheroidal harmonics, as expected.
In Eq. (55), we have also written V in terms of the objects

we wish to generalize, Vl0mn. In Eq. (56), we apply the
action of Vl0mn on jSl0mni. As with L, V may be easily
shown to have the correct behavior [i.e., Eq. (51)] when
acting on spheroidal harmonics. In this case, the correct

5Here, by “closeness” it is meant that the inner products given
by Eq. (44) drop off faster than 1=l. See e.g., the arguments
before Eq. (9) of Ref. [30].
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behavior is assured by the existence and biorthogonality of
the adjoint-spheroidal harmonics S̃lmn.
What remains to be shown is whether V is a unique left

and right inverse of T . To this end, it suffices to evaluate
T V and VT . From Eqs. (54) and (56), we have that

VT ¼
X
l0;l

jYl0mihS̃l0mnjSlmnihYlmj ð57Þ

¼
X
l

jYlmihYlmj ¼ I ð58Þ

and

T V ¼
X
l0;l

jSlmnihYlmjYl0mihS̃l0mnj ð59Þ

¼
X
l

jSlmnihS̃lmnj: ð60Þ

In Eqs. (57) and (59) we have used the biorthogonality
and orthogonality of the spheroidal and spherical harmon-
ics. In Eq. (58), we simply find that VT is the identity
operator represented in terms of spherical harmonic bras
and kets. However, it may not be immediately clear that
Eq. (60) is this same identity operator represented with
physical spheroidal harmonics. To clarify the matter, it may
help to consider that I2 ¼ I, and so

I ¼ VT VT ð61Þ

¼ VðT VÞT : ð62Þ

In Eq. (61), we have simply equated the identity operator
with its square. In Eq. (62), we have used the associative
property of linear operators to group T with V. If T V is
not I, then we might use I to construct a contradiction:
VIT ≠ VðT VÞT ¼ I, which reduces to I ≠ I. Clearly,
I ¼ I, so we must conclude that T V ¼ I, and equivalently

I ¼
X
l

jSlmnihS̃lmnj: ð63Þ

An alternative but ultimately equivalent argument is that
since each physical spheroidal harmonic within an overtone
subset is uniquely associated with a single spherical
harmonic (via T lmn), T V must transform to the same
space as VT . Thus if VT ¼ I, then so must T V [31].
In Eq. (63), we have essentially found that overtone

subsets of the physical spheroidal harmonics are complete.
The ideas and arguments leading to this conclusion have a
number of relevant reductions and alternative framings. For
example, if we consider the fixed-oblateness spheroidals
instead of the physical spheroidals, then it may be shown
that Eq. (63) reduces to

I ¼
X
l

jZlmihZ�
lmj: ð64Þ

Equation (64) follows from Eq. (63) because T and V
reduce to T o and Vo in the fixed oblateness limit [see
Eqs. (53) and (55)]. Thus, in that limit, the arguments
resulting in Eq. (63) simplify and yield Eq. (64), in direct
analogy the arguments of Ref. [30].
Further, since the identity operator is self-adjoint (i.e.,

I ¼ I†), we may also conclude that reversing the order of
S̃lmn and Slmn in Eq. (63) yields

I ¼
X
l

jS̃lmnihSlmnj: ð65Þ

Similarly, one might redevelop Eqs. (53)–(63) with the
adjoint operators T † and V†. These may be found by
simply adjugating Eqs. (54) and (56):

T † ¼
X
l0

jYl0mihSl0mnj; ð66Þ

V† ¼
X
l0

jS̃l0mnihYl0mj: ð67Þ

From Eqs. (66) and (67) it is straightforward to use
biorthogonality and orthogonality to show that

T †jS̃lmni ¼ jYlmi for all l; ð68Þ

V†jYlmi ¼ jS̃lmni for all l: ð69Þ

With Eqs. (63)–(69) we have an abundance of con-
ceptual tools to help us work with and think about the
physical spheroidal harmonics. Our next task is to use these
tools to nonperturbatively calculate the adjoint-spheroidal
harmonics.

IV. CALCULATION OF THE ADJOINT-
SPHEROIDAL HARMONICS

Here we present a nonperturbative algorithm for calcu-
lating the physical adjoint-spheroidal harmonics. The
starting point of our discussion is the completeness of
the physical spheroidal harmonics on fixed overtone sub-
sets. This result, and related spherical-spheroidal maps, will
be used to show that the adjoint-spheroidal harmonics may
be calculated using a simple spherical harmonic expansion:

jS̃lmni ¼
X
l0

jYl0mihYl0mjS̃lmni: ð70Þ

In this, our core task is to determine the inner-product
values between spherical and adjoint-spheroidal harmon-
ics, hYl0mjS̃lmni. Recall that Slmn refer to the physical
spheroidal harmonic functions, for which oblateness γlmn
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varies with l (see Sec. I B). Thus, in this section sums over
l that involve Slmn correspond to varying oblateness.
We begin by recalling that Eq. (66) provides us with T †,

which transforms adjoint-spheroidal harmonics into spheri-
cal ones. We may write T † as an infinite-dimensional
matrix by expanding its spheroidal harmonic bras in
spherical harmonics,

T † ¼
X
l;l0

jYl0mihSl0mnjYlmihYlmj: ð71Þ

Equation (71) simply communicates that, in the spherical
harmonic basis,T † is simply amatrix of spherical-spheroidal
inner-products. For practical numerical calculations, wemay
consider the N × N-dimensional truncation of T †:

T †
ðNÞ ¼

XN
l;l0

jYl0mihSl0mnjYlmihYlmj: ð72Þ

In Eq. (72), l and l0 are between maxðjsj; jmjÞ and N.
Noting that V† is the inverse of T †, we may use matrix

inversion to numerically estimate the matrix elements of
V†
ðNÞ, the N × N truncation of V†:

V†
ðNÞ ≈ T †−1

ðNÞ ð73Þ

≈
XN
l;l0

jYl0mihYl0mjS̃lmnihYlmj: ð74Þ

In Eq. (73) we denote V†
ðNÞ as being approximately equal to

T †−1
ðNÞ, up to truncation error. In Eq. (74), we have expanded

Eq. (67)’s adjoint-spheroidal harmonics in sphericals to
highlight that the matrix elements of V†

ðNÞ are the inner

products of interest. In particular, if we denote the matrix
elements of V†

ðNÞ as

σ̃ðNÞl0l ¼ hYl0mjV†
ðNÞjYlmi ð75Þ

≈ hYl0mjS̃lmni; ð76Þ

then the adjoint-spheroidal harmonics may be numerically
estimated as

jS̃lmni ≈
XN
l0

σ̃ðNÞl0ljYlmi: ð77Þ

Equivalently, if we write the adjoint-spheroidals as func-
tions (in full notation) rather than vectors, then

−2S̃lmðθ; γlmnÞ ≈
XN
l0

−2YlmðθÞσ̃ðNÞl0l: ð78Þ

Equations (77) and (78) encapsulate the key result of this
section. Equation (77) is a way of nonperturbatively

calculating the adjoint-spheroidal harmonics, given the
spherical-spheroidal inner products. The approximately
diagonal nature of T † means that values along the Nth
row and column of V†

ðNÞ are least accurate. In practice, it is

found that Nth row and column elements of T † rapidly
converge with increasing N, with N ¼ lþ 6 being suffi-
cient to estimate the harmonics to machine precision.
An implementation of Eqs. (72)–(77) is included in
positive.aslmcg [35].
Figures 1 and 3 show example evaluations of the

ðl; m; nÞ ¼ ð2; 2; 0Þ and (3, 2, 0) adjoint-spheroidal
harmonics. There each harmonic is normalized when
integrated over the solid angle. Prograde QNMs are
used (i.e., those with positive QNM frequencies at
m ¼ 2). Each adjoint harmonic is derived from the
n ¼ 0 overtone subset according to Eq. (77), with
jl−l0j≤8. This choice corresponds to the jl−l0j¼8
terms contributing less than 0.01% in amplitude for
each case. Related spheroidal harmonics are calculated
from Leaver’s method (i.e., Ref. [9]), and positive.phy-
sics.qnmobj class has been used to reference QNM
frequencies and related spheroidal harmonics with con-
sistent conventions [35].

FIG. 3. The same as Fig. 1 but for ðl; m; nÞ ¼ ð3; 2; 0Þ.
Examples of this work’s central result for spin weight −2
and Kerr spin parameter of a ¼ 0.7. Top: a comparison of
harmonic amplitudes for ðl; m; nÞ ¼ ð3; 2; 0Þ. Bottom: a com-
parison of harmonic phases for ðl; m; nÞ ¼ ð3; 2; 0Þ. Here,
argðxþ iyÞ ¼ tan−1ðy=xÞ.
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V. SPHEROIDAL HARMONIC DECOMPOSITION

We have now developed an understanding of why the
adjoint-spheroidal harmonics exist and why an arbitrary
gravitational wave signal may be equated with its sphe-
roidal harmonic expansion. While there are still questions
of theory within immediate reach, such as whether there
exists an operator for which jS̃lmni are eigenvectors (see
Appendix B), for now, we may begin to focus on somewhat
more practical matters. In this section we will be concerned
with how one might apply the adjoint-spheroidal harmonics
to physical problems.
For simplicity and concreteness we will consider the

application of Kerr n ¼ 0 spheroidal harmonics to arbitrary
gravitational wave signals. We will then discuss the specific
case of Kerr ringdown (i.e., a sum of QNMs). Lastly, we
will discuss the conditions for which a signal’s spheroidal
multipole moments may be exactly equated with the
physical system’s modes.
It will be useful to recall that the adjoint-spheroidal

harmonics may only be defined for a fixed overtone subset,
meaning that for each Slmn and S̃lmn there exists a single
spherical harmonic Ylm. The result of this fact is that the
forthcoming discussion of spheroidal harmonic decompo-
sition will share key traits with the usual spherical harmonic
decomposition. In particular, we will see that just as the
spherical harmonic decomposition of e.g., Eq. (23) involves
a sum over different overtone terms intrinsic to the signal,
so will a spheroidal harmonic decomposition [see Eq. (91)].
We will also see that the key difference is that spheroidal
harmonic decomposition may be constructed such that
mode mixing between different values of l are suppressed
[see Eq. (97)].
Let us begin by considering the basic situation of

gravitational wave theory wherein we wish to represent
a gravitational wave signal, hðr; t; θ;ϕÞ, in terms of
radiative multipole moments. In the case of e.g., PN theory,
one might want to analytically relate the radiative multipole
moments of h to the source’s multipole moments [5,25]. In
the case of NR, including the numerics of particle pertur-
bation theory, one might be provided with numerical
radiation and then want to decompose that data into
multipole moments that are useful for e.g., the development
of signal models [11,16,17,57–59]. At the intersection of
perturbative and nonperturbative gravitational wave theory,
one might want to represent the information perturbing an
isolated BH in a way that is closely aligned with the BH’s
intrinsic modes [15,16,59,60]. In all of these settings, a
spheroidal harmonic representation is of potential use. For
each, a choice of oblateness must be made prior to pursuing
a spheroidal harmonic decomposition.
In principle, the oblatenesses may be developed to suit

the specific physical problem. For example, the Kerr n ¼ 0
spheroidal harmonics have oblatenesses determined by
the BH spin parameter a and the pro- or retrograde
QNM frequencies ω̃lmn. In that setting oblateness values

are ordered by l and relate to two physical quantities: the
spacetime angular momentum and its linear mode frequen-
cies. The mode frequencies themselves are largely deter-
mined by the problem’s radial structure [9,56]. One might
also imagine a physical settings and related mathema-
tical frameworks wherein a (fixed backgroundþ adiabatic
foreground) Kerr BH’s geometry changes adiabatically
(e.g., post-Newtonian and particle perturbation theory
[24,25,33]). In that case it might be natural to also consider
oblateness values that evolve in time (or frequency) [26].
Such a framework may be the topic of future work.
For now, it is illustrative to consider oblateness values

given by Kerr overtone subsets. This course allows us to
concretely discuss applications while maintaining the basic
structure of general spheroidal systems (i.e., oblateness
values that depend on l). While the n ¼ 0 subset is of
primary interest, we will proceed by referring to subset
oblateness values as γlmn̄, where it should be understood
that n̄ is fixed. In cases where the overtone index is not
associated with a fixed overtone subset, n will be used.
Given oblateness values γlmn̄, Eq. (46) allows us to

exactly equate gravitational wave strain with its spheroidal
harmonic decomposition6:

hðr; t; θ;ϕÞ ¼ 1

r

X
l;m

hSlmn̄ðtÞ−2Slmðθ; γlmn̄Þeimϕ; ð79Þ

where the spheroidal harmonic multipole moment hSlmn̄ is

hSlmn̄ ¼
Z

2π

0

Z
π

0
−2S̃

�
lmðθ; γlmn̄Þe−imϕ

× hðr; t; θ;ϕÞ sinðθÞdθdϕ: ð80Þ

In Eq. (79), −2Slmðθ; γlmn̄Þ are the physical spheroidal
harmonics as may be calculated e.g., by Leaver’s method
[9]. In Eq. (80), −2S̃lmðθ; γlmn̄Þ are the adjoint-spheroidals
defined by Eq. (78). It may be easily verified that the
biorthogonality of the physical spheroidals makes Eqs. (79)
and (80) interconsistent. For this, one would begin by
substituting the right-hand side of Eq. (79) into Eq. (80).
One would then apply the following biorthogonality
relationship:Z

π

0

S̃�lmðθ; γlmn̄ÞSl0mðθ; γl0mn̄Þ sinðθÞdθ ¼ δll0

2π
: ð81Þ

For consistency with Eqs. (79) and (80), in Eq. (81)
we define the spheroidal harmonics and their adjoint

6Note that Eq. (79) should not be confused with the spheroidal
harmonic expansion that is the general solution to the QNM
problem, Eq. (24). If the QNM overtones are orthogonal as
suggested by Refs. [32,33], then future work may show that it is
possible to explicitly project out fixed-overtone subsets, thus
removing the need to mix the perspectives of Eqs. (24) and (79).
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functions to be normalized when integrated over the solid
angle, not just over the polar dimension. This introduces
the factor 1=2π, which accounts for the fact thatR
eiðm−m0Þϕdϕ ¼ 2πδmm0 .
With Eqs. (79)–(81) we have at our disposal the ability to

calculate the spheroidal harmonic expansion of arbitrary
gravitational wave signals. If, rather than h, many spherical
harmonic moments are provided, a standard change-of-
basis approach may be preferable to the direct integration
of Eq. (80). However, the accuracy of that method is
inherently limited by the number of available spherical
harmonic moments. Direct integration and change of
basis are equivalent if the latter method is applied with
enough spherical moments to reproduce h up to the desired
numerical precision. For both methods, completeness of the
spheroidal harmonics allows them to encode gravitational
waves from arbitrary physical scenarios.
While this is also true of the spherical harmonics, the

potential benefit of the spheroidal harmonics is their
proximity to the underlying modes of axisymmetric sys-
tems. To illustrate this point let us consider BH ringdown,
where the underlying spheroidal mode structure is provided
by analytic relativity [3,9,37]. If we denote the gravitational
radiation from BH ringdown as hRDðr; t; θ;ϕÞ, then linear
BH perturbation theory has that

rhRD ¼
X
l;m

eimϕ
X∞
n¼0

hProlmn−2Slmðθ; γlmnÞ

þ hRetlmn−2Slmðθ; γ0lmnÞ: ð82Þ

where

hProlmn ¼ blmne−iω̃lmnt; ð83Þ

hRetlmn ¼ b0lmne
−iω̃0

lmnt: ð84Þ

In the left-hand side of Eq. (82) we have written rhRD to
simplify our consideration of the right-hand side’s terms
which are all independent of r. We recall that r is the source’s
luminosity distance [Eq. (3)]. We have written Eq. (82) to
emphasize that all spheroidal moments have the same
azimuthal dependence eimϕ. We have also written Eq. (82)
to emphasize that BH perturbation theory predicts the
existence of radiative modes corresponding to perturbations
prograde and/or retrograde with respect to the BH angular
momentum direction. In Eqs. (82)–(84), hProlmn and hRetlmn,
respectively, correspond to pro- and retrograde QNMs.
Similarly, in Eqs. (82)–(84) we denote prograde QNM
frequencies with ω̃lmn and retrograde ones with ω̃0

lmn. The
related oblatenesses are γlmn ¼ aω̃lmn and γ0lmn ¼ aω̃0

lmn.
Equation (82) is the fully general form of Eq. (24), and as

was done there for ω̃lmn, we use the convention that
ω̃0
lmn ¼ −ω̃0�

l−mn. Under this convention, the pro- and
retrograde frequencies are related by

ω̃lmnðaÞ ¼ ω̃0
lmnð−aÞ: ð85Þ

In Eq. (85), we note that the QNM frequencies may be
parametrized by the BH spin, just as was done in Fig. 2.
It should also be noted that a → −a has the principal effect
of inverting the BH’s spin axis. In this sense, Eq. (82)
communicates that BH ringdown may generally correspond
to concurrent pro- and retrograde excitations.
We now wish to decompose Eq. (82)’s rhRD into

spheroidal harmonic moments, as defined by the n ¼ n̄
overtone subset. Our aim is to better understand the
relationship between the QNMs of perturbation theory
and the spheroidal multipole moments hSlmn̄. To proceed
we will focus on sets of like m by defining

hRDm ¼ r
Z

2π

0

e−imϕhRDdϕ ð86Þ

¼ 2π
X
l;n

hProlmn−2Slmðθ; γlmnÞ

þ hRetlmn−2Slmðθ; γ0lmnÞ: ð87Þ

In Eqs. (86) and (87) we define hRDm by simply applying
the orthogonality of the complex exponentials to Eq. (82).
It is convenient to rewrite Eq. (87) using the more compact
bra-ket notation:

jhRDm i ¼ 2π
X
l;n

ðhProlmnjSlmni þ hRetlmnjS0lmniÞ: ð88Þ

In Eq. (88), jS0lmni correspond to the retrograde spheroidal
harmonics −2Slmðθ; γ0lmnÞ.
With Eq. (88), the spheroidal moments of hRDm are

determined according to

hSlmn̄ ¼ hS̃lmn̄jhRDm i ð89Þ

¼ 2π
X
l0;n

ðhProl0mnhS̃lmn̄jSl0mni þ hRetl0mnhS̃lmn̄jS0l0mniÞ:

ð90Þ

In Eq. (89), the inner product [i.e., Eq. (2)] simply
corresponds to the θ integral of Eq. (80). In Eq. (90),
we introduce l0 to sum over polar indices.
We may find in Eq. (90) a starting point for many

practical insights. In particular, Eq. (90) may be used to
consider two basic cases: one, where only pro- or retro-
grade modes dominate, and another where both are
similarly present. The first case is well known to be
relevant to BBH merger remnants from nonprecessing to
moderately precessing progenitors [47,48,58,59,61]. The
second case is known to be most relevant to BBHs which
undergo significant precession just prior to merger [48,58].
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For the first and simplest case, we may hold that only
prograde modes are excited, leaving

hSlmn̄ ¼ 2π
X
l0;n

hProl0mnhS̃lmn̄jSl0mni ð91Þ

¼ hProlmn̄ ð92Þ

þ 2π
X
l0≠l

hProlmnhS̃lmnjSlmni ð93Þ

þ 2π
X
n≠n̄

hProl0mnhS̃lmn̄jSl0mni ð94Þ

þ 2π
X

l0≠l;n≠n̄

hProl0mnhS̃lmn̄jSl0mni: ð95Þ

In Eq. (91) we have simply written a prograde-only
ringdown. In Eqs. (92)–(95) we have organized the
right-hand side of Eq. (91) into four parts.
The first part is Eq. (92). This is simply the term for

which l0 ¼ l and n ¼ n̄. There, 2πhS̃lmn̄jSlmn̄i ¼ 1,
making the term likely to dominate. For all other terms
[Eqs. (93)–(95)] normalization of each harmonic [Eq. (81)]
means that the inner products therein are necessarily
smaller than one:

2πjhS̃lmn̄jSl0mnij< 1 for all l≠l0 and n≠ n̄: ð96Þ

We might next consider the remaining terms for which
n ¼ n̄ and l ≠ l0, Eq. (93). In the case of spherical
harmonic decomposition (e.g., replacing S̃lm with Ylm),
these terms would be the next largest and are known to be
the cause of nonphysical mode-mixing effects [8,16,57].
Here, due to biorthogonality of the adjoint-spheroidals
[Eq. (81)], these terms are zero, meaning that the use of
the adjoint-spheroidal harmonics completely suppressed
the primary cause of mode mixing:

2π
X
l0≠l

hProlmnhS̃lmnjSlmni ¼ 0: ð97Þ

We might next consider Eq. (94), which collects terms
for which l0 ¼ l and n ≠ n̄. In the limit of spherical
symmetry (i.e., zero oblateness), these terms lose their
dependence on hS̃lmn̄jSl0mni and reduce to a sum over
overtone contributions, exactly as one would expect from
Eq. (23). In this sense, these terms are inherent to the
physical situation and do not result from our choice of
spheroidal basis.
Lastly, we are left with Eq. (95) which collects terms for

which l0 ≠ l and n ≠ n̄. In the limit of spherical symmetry,
these terms become exactly zero. These terms exist in
axisymmetry because of our choice of basis. However, the
asymptotic equivalence of different overtone harmonics

means that these terms’ inner products are generally small
relative to unity. Thus these terms are likely to contribute
the least.
So far, the ideas applied to Eq. (91) apply to any choice

of n̄ (i.e., any overtone subset), and our conclusions would
not change if we were to consider only retrograde ringdown
with adjoint-spheroidal harmonics derived in that setting.
We will now briefly consider cases where pro- and
retrograde modes are excited such that both are needed
to accurately describe the gravitational radiation. In this
setting, many of the ideas discussed thus far apply. If, as in
Eq. (90), wewish to decompose the net signal into prograde
spheroidal moments, then we will still be left with the four
parts seen in Eqs. (92)–(95). However, due to the presence
of retrograde modes, we will have four additional parts:
analogs of Eq. (91)’s four parts corresponding to mixing
between pro- and retrograde modes. Using the ideas of
Sec. III A, it may be shown that the pro- and retrograde
harmonics represent redundant spatial information (e.g.,
they are exactly equivalent in the zero-oblatenesses limit
and are each minimal). Thus, like overtones, pro- and
retrograde modes cannot be separated by decomposition
into only angular harmonics.
This situation is not dissimilar from what one would

encounter during spherical harmonic decomposition.
However, the key difference is that terms for which
l ≠ l0 and n ¼ n̄ are either nullified [as in the case of
the prograde sector, Eq. (97)] or lessened (as in the case of
mixing between pro- and retrograde modes). Nevertheless,
just as in spherical harmonic decomposition, it is clear that
multipole moments from spheroidal decomposition alone
are not generally modes (e.g., QNMs).
With that in mind, we conclude this section with a

brief discussion of exactly when spheroidal multipole
moments hSlmn̄ may be exactly identified with the modes
of physical systems. We will limit this discussion to
ringdown’s spheroidal decomposition. We expect aspects
of that context transfer to other settings in which adjoint-
spheroidal harmonics may be developed.
For ringdown’s spheroidal decomposition, hSlmn̄ will

only correspond to a mode when the radiation is dominated
by perturbations that are linear, either pro- or retrograde,
and excite only one overtone subset. While ostensibly
narrow, these cases are known to include BBH ringdown
from systems with weak or no precession [47,48,58,59,61].
However, even in such astrophysically relevant scenarios,
there are limitations. Within the QNMs, there is currently
uncertainty regarding the importance of overtones [52,62].
Furthermore, linearly perturbed black holes are known to,
in principle, generate various kinds of gravitational radi-
ation [26]. The QNMs are known to be by far the most
dominant, but other types include power-law tails and
direct emission [38]. Like overtones, neither power-law
tails nor direct emission are amenable to decomposition
with angular harmonics. For these reasons the spheroidal
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harmonic decomposition discussed here represents a tool
for estimating, but not exactly extracting, information about
spheroidal modes. However, relative to spherical harmonics
decomposition, the explicit lack of mode mixing on the
chosen overtone subset is spheroidal decomposition’s
primary advantage.

VI. CONCLUDING REMARKS

When seeking to represent gravitational radiation in
terms of multipole moments, there has been tension. The
spherical harmonics are the typical choice for defining
radiative multipole moments [5,6,25]. However, they are
most appropriate for systems with zero angular momentum,
of which, in nature, we may expect none [1,6,9,63]. In this
context, we have investigated the inclusion of angular
momentum in how we represent gravitational waves.
By considering the spheroidal harmonics, and their

angular-momentum-dependent oblateness parameters, we
have adopted the simplest known physically motivated
alternative to spherical harmonics [3,9]. In doing so, we
have encountered multiple challenges.
In Sec. II we have illustrated a previously uninvestigated

aspect of the Kerr spheroidal harmonics: Each spheroidal
harmonic differential operator depends on an oblateness
parameter, γlmn, and each Kerr QNM possesses a different
oblateness. In this sense, each QNM’s spheroidal harmonic
is an eigenfunction a different differential operators. From
this “issue of many operators” follows many nonstandard
properties of the physical spheroidal harmonics. While
these properties are not standard in gravitational wave
physics, they are familiar to other fields.
In Sec. III, we have drawn from functional analysis to

show that (i) physical spheroidal harmonics posses a kind
of orthogonality and (ii) the physical spheroidal harmonics
are complete. Most importantly, notion (ii) means that
spheroidal harmonics of e.g., Kerr BHs may be used to
exactly represent arbitrary gravitational wave signals. In
Sec. III A we have shown that only subsets of spheroidal
harmonics with the same overtone index n encode unique
angular information, and we have used results from func-
tional analysis to conclude that these “fixed overtone
subsets” possess a kind of biorthogonality. In this sense,
Sec. III A concludes that there exist angular harmonics
S̃lmn that are orthogonal to the physical spheroidal har-
monics: hS̃l0mnjSlmni ∝ δl0l. We have named these new
angular functions the “adjoint-spheroidal harmonics.”
In Sec. III B we have drawn inspiration from quantum

mechanics and functional analysis literature to show that
the spheroidal harmonics are complete [7,31,40,64]. We
have shown that the spheroidal harmonics may be related to
the spherical harmonics by an invertible operator, T . In
adopting a vector space construction of T , we took our
first step toward overcoming the issue of many operators.
This, in turn, allowed us to show that the spherical
harmonics and their adjoint functions support a kind of

decomposition. This “spheroidal harmonic decomposition”
shares many features with spherical harmonic decomposi-
tion but accomplishes our goal of including spacetime
angular momentum directly in the definition of the
radiative moments.
In Sec. IV we place the adjoint-spheroidal harmonics on

concrete footing by showing how they may be calculated.
In deeming it essential to first provide a nonperturbative
method to calculate the adjoint harmonics, we have left a
thorough analytic treatment for future work. We provide
example evaluations of the new harmonics in Figs. 1 and 3.
In Sec. V we have outlined what spheroidal harmonic

decomposition looks like in practice. There we have
addressed general applications, as well specific cases, such
as the spheroidal harmonic decomposition of radiation
from gravitational wave ringdown. Section V concluded
with a general discussion of when spheroidal decomposi-
tion allows for the exact extraction of a system’s intrinsic
modes, rather than simply multipole moments which may
only approximate modes. There we illustrated that the
suppression of mode mixing is spheroidal decomposition’s
primary advantage.
Many aspects of the presented work may be refined and

expanded upon. For example, we have only briefly dis-
cussed the potential applications of spheroidal decompo-
sition. Multifaceted investigations are needed to better
determine the potential use of the adjoint-spheroidals.
Paper II, with its focus on applications to extreme and
comparable BBHs, is one such investigation [29]. It may
also be possible to better understand spacetime oblate-
nesses, particularly for spacetimes that, unlike Kerr, are
not stationary. This direction may also be followed in
future work.
Each of these potential investigations brings new and

potentially useful questions. Does the analytic structure
of adjoint-spheroidal harmonics inform the broader non-
Hermitian nature of Einstein’s equations? Can any of the
techniques used here also be applied to solutions to
Teukolsky’s radial equation? How should the oblateness
parameter be defined in systems where mass and spin
are radiated nonadiabatically? And can the answer to
these questions inform yet unprobed aspects of BBH
merger?
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APPENDIX A: PERTURBATION THEORY
APPROXIMATION OF THE SPHERICAL-
SPHEROIDAL MIXING COEFFICIENTS

Perturbation theory arguments may be used to estimate
the spherical-spheroidal mixing coefficients. The preamble
to these arguments is largely insensitive to the details of the
problem at hand; however, they are useful for the efficient
clarification of the matter. In this section, we will use
beyond linear order perturbation theory to derive Eq. (44):

σl�p;l ≈
1

p!

�
−γs
2l

�
p
: ðA1Þ

Relative to Eq. (44), in Eq. (A1) we have labeled the
oblateness as γ rather than γlmn as Eq. (44) holds regardless
of whether the spheroidal oblateness is fixed with respect
to physical indices. Here, we have chosen to define
p ¼ jl0 − lj, making Eq. (44)’s l0 ¼ l� p. Without loss
of generality we will continue to consider both m and s
fixed. We will at times find it useful to use alternative
notation for the polar index l. For example, jYl̄mi
represents a spherical harmonic where l ¼ l̄.
While the following derivation shares many steps in

common with e.g., Refs. [10,14,55,65], here we point out
that there is an underlying recursive structure that may be
solved exactly to estimate the value of inner products
between spherical and spheroidal harmonics.
We begin by framing the general perturbative problem as

a kind of recursion relation. We then use the specific nature
of the spheroidal potential to show that each perturbative
order depends on the absolute difference jl0 − lj.
Let the zero oblateness spheroidal operator be K [i.e.,

Eq. (9) with γ ¼ 0] and the perturbing potential be

VðSÞ ≈ −2su: ðA2Þ

In Eq. (A2) we deliberately neglect the full potential’s γu2

term as, at every perturbative order, it introduces higher-order
terms which are peripheral to our final approximation [i.e.,
including the γu2 termproduces contributions that decay inp
at least as fast as Eq. (A1)]. From this perspective, the
spheroidal harmonics are eigenfunctions of the operator

Lo ¼ Kþ γVðSÞ ðA3Þ

and the spherical harmonics of eigenfunctions of K. Using
kets to represent the harmonics, the eigenrelationships are

LojZlmi ¼ −AlmjSlmi; ðA4Þ

KjYl0mi ¼ −El0mjYl0mi: ðA5Þ

Toward Eq. (A1), our first choice in representing jSlmi is a
nonperturbative one. The completeness of the spherical
harmonics as well as the natural reduction of the spheroidals
to the sphericals when γ ¼ 0 mean that a good Ansatz for
jSlmi is

jZlmi ¼
X
l0

σl0ljYl0mi; ðA6Þ

where σl0l is the spherical-spheroidal mixing coefficient of
interest, σl0l ¼ hYl0mjSlmi. Using Eq. (A4) to apply this
Ansatz to Eq. (A5) gives

ðKþ γVðSÞÞ
X
l0

σl0ljYl0mi ¼ −Alm

X
l0

σl0ljYl0mi: ðA7Þ

In Eq. (A7) we can see that the quantity LojSlmi can be
written in terms of only spherical harmonics. With this in
mind, acting on Eq. (A7) with hY l̄mj and then applying the
spherical harmonics eigenvalue relation [Eq. (A5)] yieldsX

l0
γσl0lhY l̄mjVðSÞjYl0mi ¼ ðEl̄m − AlmÞσl̄l: ðA8Þ

It is well known that hYl̄mjVðSÞjYl0mi is only nonzero when
jl̄ − l0j ≤ 1; thus, Eq. (A8) is in effect a three-term recursion
relation. While one may be tempted to investigate its
solutions via the roots of its characteristic polynomial, here
we will look for approximate solutions using standard
perturbation theory Ansätze:

σl0l ¼
X
j¼0

σl0l
ðjÞγj; ðA9Þ

Alm ¼
X
q¼0

AðqÞ
lmγ

q: ðA10Þ

Applying Eq. (A9) to Eq. (A8) and for brevity defining

VðSÞ
l̄l0 ¼ hY l̄mjVjYl0mi yieldX

j;q

γjþqAðqÞ
lmσ

ðjÞ
l̄l

¼ El̄m

X
j

σðjÞ
l̄l
γj −

X
l0;j

σl0l
ðjÞγjþ1VðSÞ

l̄l0 :

ðA11Þ

Having applied our perturbative Ansatz, our aim is to enforce
that Eq. (A11) holds for each power of γ. To this end, we are
free to rewrite sums such that coincident powers of γ appear in
each. This may be accomplished in the left-hand side of
Eq. (A11) by letting jþ q ¼ v and on the right-hand side of
Eq. (A11) by letting jþ 1 ¼ z with z > 0. These changes
along with relabeling back to p yields
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X
j¼0

γj
�Xj

v¼0

Aðj−vÞ
lm σðvÞ

l̄l

�

¼ El̄m

X
j¼0

σðjÞ
l̄l
γj −

X
l0;j¼1

σl0l
ðj−1ÞγjVðSÞ

l̄l0 : ðA12Þ

For clarity, all summation lower bounds are written in
Eq. (A12). Enforcing that the summed coefficients of γj

amount to zero gives

X
l0

σl0l
ðj−1ÞVðSÞ

l̄l0 ¼ El̄mσ
ðjÞ
l̄l

−
Xj

v¼0

Aðj−vÞ
lm σðvÞ

l̄l
; ðA13Þ

where if j ¼ 0, then

σð0Þ
l̄l
ðEl̄m − Að0Þ

lmÞ ¼ 0: ðA14Þ

Equation (A14) communicates that either σð0Þ
l̄l

¼ 0 or

El̄m − Að0Þ
lm ¼ 0. The necessary coincidence between the

zeroth-order approximant and γ ¼ 0 requires that

σð0Þ
l̄l

¼ δl̄l; ðA15Þ

Að0Þ
lm ¼ Elm: ðA16Þ

Using Eq. (A15), the v ¼ j term may be extracted from the
sum in Eq. (A13)’s right-hand side, allowing its dependence

on σðjÞ
l̄l

to be clarified. Thus, for j > 0,

X
l̄

σl0l
ðj−1ÞVðSÞ

l̄l0 ¼ ðEl̄m − ElmÞσðjÞl̄l
−
Xj−1
v¼0

Aðj−vÞ
lm σðvÞ

l̄l
:

ðA17Þ

Equation (A17) is useful: Evaluating it for perturbative orders

j ¼ 1 and greater allows the determination of σðjÞ
l̄l
.

For j > 0, Eq. (A13) represents a kind of variable order
recursion relation. An analog of Eq. (A13) may be derived
for all perturbative expansions. Equation (A15) is the j ¼ 0
boundary condition.
For the linear in γ approximant, we need only consider

Eqs. (A13)–(A15) with j ¼ 1. In this, it may be straight-
forwardly shown that the standard perturbation theory
results follow:

Að1Þ
lm ¼ −VðSÞ

ll ðA18Þ

and if l̄ ≠ l, then

σð1Þ
l̄l

¼ VðSÞ
l̄l

El̄m − Elm
; ðA19Þ

where if l̄ ¼ l, then

σð1Þll ¼ 0: ðA20Þ

Thus, to linear order in γ, we have the spherical-spheroidal
mixing coefficients are

σl̄l ¼
(
1; for l̄ ¼ l

γ
VðSÞ
l̄l

El0m−Elm
; for l̄ ≠ l

)
: ðA21Þ

Equation (A21) marks the end of our case-insensitive
preamble. To make progress, we must apply problem

specific knowledge about VðSÞ
l̄l
. According to our approxi-

mate VðSÞ ¼ −2us, it follows that its spherical harmonic

averages VðSÞ
l̄l

involve hY l̄mjujYlmi, which are well known
in terms of Clebsch-Gordan coefficients [3,23,24]:

VðSÞ
l̄l

¼ −2shYl̄mjujYlmi ðA22Þ

¼ −2s
�
c�1ðlÞ; for l̄ ¼ l� 1

0; otherwise

�
; ðA23Þ

where

c−1ðlÞ ¼
1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðlþmÞðl − sÞðlþ sÞ

ð2l − 1Þð2lþ 1Þ

s
ðA24Þ

and

cþ1ðlÞ ¼ −c−1ðlþ 1Þ: ðA25Þ

In the zeroth- and linear-order approximants, we begin to
see a pattern emerge. Equation (A15) communicates that
orthogonality of the spherical harmonics means that at
zeroth order in γ, σl̄l is only nonzero when l̄ ¼ l.
Equations (A22)–(A25) communicate that the structure
of VðSÞ results in a linear in γ approximant for σl̄l that is
nonzero only if l̄ ∈ fl − 1;lþ 1g. At second order in γ,
evaluating Eq. (A17) with p ¼ 2 yields that

σð2Þ
l̄l

¼ ðEl̄m − ElmÞ−1
�
Að1Þ
lmσ

ð1Þ
l̄l

þ
X
l̄

σð1Þ
l̄l
VðSÞ
l̄l̄

�
: ðA26Þ

In this, the pattern extends at second order by activating
nonzero contributions when l̄ ∈ fl − 2;l − 1;lþ 1;
lþ 2g. Owing to the nature of VðSÞ [Eqs. (A22) and

(A23)] leading-order contributions for σð2Þl�2;l are neces-
sarily the simplest. They emerge from the last term of
Eq. (A26), when l̄ ¼ l� 1 and l̄m ¼ l� 2:
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σð2Þl�2;l ¼ σð1Þl�1;l

VðSÞ
l�2;l�1

El�2 − El
: ðA27Þ

Subsequent orders follow this pattern, with the leading-
order behavior of each σl�p;l inner product obeying the
straightforward generalization of Eq. (A27):

σðpÞl�p;l ¼ σðp−1Þl�ðp−1Þ;l
VðSÞ
l�p;l�ðp−1Þ
El�p − El

: ðA28Þ

In Eq. (A28), we note the appearance of the absolute
difference between l and l̄, namely,

p ¼ jl̄ − lj: ðA29Þ

With Eq. (A28), we have arrived at a recursive formula that
is almost ready to lend qualitative insight into the behavior
of the spherical-spheroidal inner products, σl̄l.
To go further, we may consider the large-p behavior of

Vl�n;l�ðp−1Þ. It is also useful to recall that the spherical
harmonic eigenvalue is

Elm ¼ ðl − sÞðlþ sþ 1Þ: ðA30Þ

Thus, the Clebsch-Gordan coefficients [Eq. (A24)] along
with Eq. (A30) communicate that

VðSÞ
l�p;l�ðp−1Þ ∼ −2γs

�
1

2
þOð1=p2Þ

�
; ðA31Þ

El�p;m − Elm ¼ pð1þ 2lþ pÞ: ðA32Þ

Applying Eqs. (A31)–(A32) to the recursion relation
presented in Eq. (A27) yields

σðpÞl�p;l ≈
−γs

pð1þ 2lþ pÞ σ
ðp−1Þ
l�ðp−1Þ;l: ðA33Þ

Equation (A27) is the recursive formula for a series whose
boundary condition is given by the zeroth-order correction,

σð0Þll ¼ 1. In Eq. (A33) we have used Eq. (A31) as it is
qualitatively accurate for p > 1. Recursive evaluation of
Eq. (A33) yields the rather factorial heavy

σðpÞl�p;l ≈ ð−γsÞp ð2lþ 1Þ!
p!ðpþ 2lþ 1Þ! : ðA34Þ

A somewhat simpler but more approximate picture emerges
for large l,

l ≫ p ≫ 1 ðA35Þ

whence we may think of Eq. (A33)’s denominator as

El�p;m − Elm ≈ 2lp: ðA36Þ

From this perspective the iterative solution to Eq. (A33)
becomes

σðpÞl�p;l ≈
1

p!

�
−γs
2l

�
p
: ðA37Þ

In Eq. (A37), we have nearly arrived at our destination.
Although it was derived under a large l assumption, it is
qualitatively accurate for l ≥ jmj.
To finish our proof, we need only note that Eq. (A34)

pertains to the leading-order perturbative contribution

σðpÞl�p;l rather than the full quantity σl�p;l only as a matter

of asymptotics. The full quantity σl�p;l is equal to σðpÞl�p;l

plus subdominant higher-order terms. But as we are only
interested in the leading-order approximation, Eq. (A34) is
equivalent to our prompt, Eq. (A1).
Figure 4 presents an example of Eq. (A1) applied to Kerr

with a ¼ 0.01. There, the assumption that VðSÞ ≈ −2su and
the final approximation [Eq. (A1)] are compared to the
exact numerical calculation. Good agreement is shown.

APPENDIX B: REVISITING THE ISSUE OF
MANY OPERATORS: PHYSICAL SPHEROIDAL

HARMONICS AS EIGENFUNCTIONS
OF A SINGLE OPERATOR

The structure of the spherical-spheroidal map T and the
existence of the physical adjoint-spheroidal harmonics imply
an intriguing possibility:We should now be able to construct
a single operator for which all of the physical spheroidal
harmonics are eigenfunctions. In turn, this raises the pos-
sibility that there may be an operator of which the physical
adjoint-spheroidal harmonics are eigenfunctions.We explore
these possibilities in this section. Along the way we

FIG. 4. Example of approximate for spherical-spheroidal inner
products σl0l [Eq. (A1)] for Kerr with dimensionless spin a ¼
0.01 and l ¼ 6. Curves compare exact results for the full and
approximate spheroidal potentials, VðSÞ ¼ −2suþ u2γ and
VðSÞ ≈ −2su, respectively. Note that the spheroidal differential
equation depends on γVðSÞ [see e.g., Eq. (A3)].
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encounter a so-called “interwinding” relationship indicative
of two operators which share eigenvalues [41,64,66].

1. A unified operator for the physical
spheroidal harmonics

In the presence of spacetime angular momentum, a
spacetime’s natural modes are spheroidal in nature. The
physical spheroidal harmonics naturally emerge in this
context. Unlike the fixed oblateness harmonics discussed
previously, the physical spheroidal harmonics must be
solved simultaneously with a spheroidal radial equation
and as a result have oblatenesses proportional to the polar
index l [56]. Although the physical spheroidal harmonics
are considered to be a single set of functions, each of these
functions has typically been considered to be the eigen-
function of a distinct spheroidal harmonics operator Llmn.
This is the operator presented in Eq. (9) and duplicated
below for convenience:

Llmn ¼ ðsð1 − sÞ þ
�
uγlmn − sÞ2 − ðmþ suÞ2

1 − u2

�
þ ∂uð1 − u2Þ∂u: ðB1Þ

Here, we are motivated by the possibility that biortho-
gonality in such systems is consistent with the existence of
a single operator for which all physical spheroidal har-
monics are eigenfunctions. Further, we are motivated by the
possibility that this implies the existence of a single such
operator for the physical adjoint harmonics, as well as
individual operators L̃lmn for which each jS̃lmni is an
eigenfunction.
To this end, we start by noting that the physical

spherical-spheroidal map T [Eq. (53)] already has the
key properties of such an operator: When acting on select
functions with label lmn, it has the effect of a lmn-specific
operator. With this in mind, we seek an operator L,
such that

LjSlmni ¼ LlmnjSki ¼ −AlmnjSlmni for all lmn: ðB2Þ

With this in mind, the structure of T and the existence of
the physical adjoint-harmonics allow for L of the form

L ¼
X∞
l0

Ll0mnjSl0mnihS̃l0mnj ðB3Þ

¼
X∞
l0

−Al0mnjSl0mnihS̃l0mnj: ðB4Þ

Equation (B3) is required for Eq. (B2) to hold, and Eq. (B4)
is simply the matrix representation of L in the bases of
spheroidal harmonics (rows) and adjoint spheroidals (col-
umns). In this way the existence of the adjoint-spheroidal

harmonics enables the physical spheroidals to be unified
under a single operator, L.

2. An operator for the physical adjoint-spheroidal
harmonics

We are now interested in whether an analog of the
spheroidal harmonic differential equation Llmn [Eq. (B1)]
may be constructed for the physical adjoint harmonics.
Such an operator should be manifestly consistent with the
biorthogonality between the spheroidal harmonics and their
adjoints. Recalling our discussion of the fixed oblateness
spheroidals, it is clear that the adjoint-spheroidal harmonics
must be eigenfunctions of L’s adjoint:

L† ¼
X
l0

jS̃l0mnihSl0mnjL†
l0mn ðB5Þ

¼
X
l0

− A�
l0mnjS̃l0mnihSl0mnj: ðB6Þ

Equations (B5) and (B6) generalize the same relationship
for the fixed oblateness harmonics presented during our
discussion of the adjoint eigenfunctions under fixed oblate-
ness [Eq. (9)]. In Eq. (B5), we have used the fact that
adjugating a product of operators reverses ordering [31,67].
In Eq. (B6), we have simply adjugated the last statement
of Eq. (B3).
Interestingly, Eq. (B5) communicates that, if there exist

operators L̃lmn such that jS̃lmni are eigenfunctions, thenX
l0

L̃l0mnjS̃l0mnihSl0mnj ¼
X
l0

jS̃l0mnihSl0mnjL†
l0mn; ðB7Þ

with

L̃l0mnjS̃l0mni ¼ −A�
l0mnjS̃l0mni: ðB8Þ

Perhaps uninterestingly, Eq. (B8) is the generalization of
the adjoint eigenvalue relation for the fixed oblateness
harmonics [Eq. (13)]. Equation (B7) is perhaps more
interesting: Applying hSlmnj on the left and jS̃lmni on
the right allows the extraction of termsX

l0
hSlmnjL̃l0mnjS̃l0mnihSl0mnjS̃lmni

¼
X
l0

hSlmnjS̃l0mnihSl0mnjL†
l0mnjS̃lmni; ðB9Þ

X
l0

hSlmnjL̃l0mnS̃l0mnihSl0mnjS̃lmni

¼
X
l0

hSlmnjS̃l0mnihLl0mnSl0mnjS̃lmni; ðB10Þ

hSlmnjL̃lmnS̃lmni ¼ hLlmnSlmnjS̃lmni: ðB11Þ
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In Eqs. (B9)–(B11) we have taken care to render the
connection between Llmn and L̃lmn, as it may not be
immediately clear from Eqs. (B7) and (B8). In going from
Eq. (B9) to Eq. (B10) we have grouped operators with
harmonics that have the same label. In Eq. (B10)’s right-
hand side, we have used the defining property of the adjoint
operator [Eq. (11)]. In Eq. (B11) we have applied bio-
rthogonality [Eq. (38)].
Together, Eqs. (B2)–(B11) illustrate the required rela-

tionships betweenLlmn and L̃lmn. Equations (B2) and (B8)
communicate that L̃lmn has the same eigenvalues as L�

lmn,
and by Eq. (12) we recall that

L†
lmn ¼ L�

lmn: ðB12Þ

In this sense, we say that L̃lmn is isospectral with L†
lmn

[40,64]. Finally, Eq. (B11) communicates that in the case
of fixed oblateness, L̃lmn would simply be the adjoint
of Llmn.
The condition of isospectrality is most interesting. Two

operators are isospectral if there exists an operator P, with
inverse Q, such that

PL†
lmn ¼ L̃lmnP; ðB13Þ

L†
lmnQ ¼ QL̃lmn; ðB14Þ

or, equivalently, since L†
lmn ¼ L�

lmn,

L̃lmn ¼ PL�
lmnQ: ðB15Þ

Equation (B13) presents what are called interwinding
relationships [64,66]. Equation (B15) communicates that,
given P and Q, we may transform L�

lmn into L̃lmn.
The use of Eqs. (B13) and (B14) is that they relate

eigenfunctions of L�
lmn to those of L̃lmn. For example,

applying jS�lmni on the left of Eq. (B13) gives

L̃lmnPjS�lmni ¼ PL�
lmnjS�lmni; ðB16Þ

L̃lmnPjS�lmni ¼ −A�
lmnPjS�lmni: ðB17Þ

In going from Eq. (B16) to Eq. (B17), we apply the
eigenvalue relationship appropriate for the conjugate har-
monics [Eq. (13)]. Equation (B17) communicates that
PjS�lmni is an eigenfunction of L̃lmn, and so PjS�lmni must
be an adjoint-spheroidal function. Thus P maps conjugated
spheroidal harmonics to physical adjoint harmonics, andQ
must have the opposite effect:

jS̃lmni ¼ PjS�lmni; ðB18Þ

jS�lmni ¼ QjS̃lmni: ðB19Þ
Like T , which uses biorthogonality to map spherical

harmonics into spheroidals, we may write P and Q as a
sum over projectors:

P ¼
X
l0

jS̃l0mnihS̃�l0mnj; ðB20Þ

Q ¼
X
l0

jS�l0mnihSl0mnj: ðB21Þ

In Eq. (B20) we have noted and made use of the fact that
the complex conjugates of the physical spheroidals and
their adjoints are also biorthogonal:

hS̃�l0mnjS�lmni ¼ hS̃l0mnjSlmni� ¼ δl0l: ðB22Þ
Using Eq. (B22) it may be easily verified that the P and Q
of Eq. (B20) have the properties given in Eqs. (B18) and
(B19). Together, Eqs. (B15) and (B20) allow L̃lmn to be
written as

L̃lmn ¼
X
l0;l00

jS̃l0mnihS̃�l0mnjL�
lmnjS�l00mnihSl00mnj: ðB23Þ

Equation (B23) presents a matrix representation for
L̃lmn, the operator for which the adjoint-spherical harmon-
ics are eigenfunctions. It is fair to think of L̃lmn as a
“heterogeneous adjoint,” as Eq. (B23) communicates that it
relies on multiple physical oblatenesses rather than one. It
may be of future interest to determine whether L̃lmn has a
linear differential form that does not require prior knowl-
edge of its eigenfunctions.
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