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Contrary to a prevailing assumption that black holes would swiftly discharge, we argue that black holes
can charge preferentially when boosted through an ambient magnetic field. Though the details are very
different, the preference for charge is related to the precipitation of the Wald charge on a spinning black
hole in an ambient magnetic field. The gravitoelectrodynamics upstage naive arguments about screening
electric fields—in vacuum—in determining the value of the charge accrued. Charged test particles, which
build up the black hole charge, exhibit chaotic behavior as evidenced by fractal basin boundaries between
dynamical regions. Charged, boosted black holes will generate their own electromagnetic fields and
thereby their own luminous signatures, even if they are initially bare. We therefore add boosted black holes
to the growing list of potentially observable black hole signatures, alongside black hole batteries and black
hole pulsars. The implications should be relevant for supermassive black holes that are boosted relative to a
galactic magnetic field as well as black holes merging with magnetized neutron stars.
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I. INTRODUCTION

Detailed direct observations of black holes this century
motivate a renewed interest in the electromagnetic poten-
tiality of black holes. Even bare, initially dark black
holes cleverly exploit ambient magnetic fields—whether
seeded by cohabitating neutron stars or anchored in a
diffuse background—to power novel luminous channels.
For instance, black hole batteries turn on during merger
with a highly magnetized neutron star, leading to faint
electromagnetic counterparts to gravitational wave obser-
vations [1–4]. Relatedly, a spinning black hole in an external
magnetic field will preferentially acquire charge, as shown in
an oft overlooked observation attributable to Wald [5]. A
spinning chargegenerates amagnetic dipole inducing a black
hole pulsar [6]. Even the Penrose process is enormously
amplified around charged and magnetized black holes [7].
All of these phenomena—black hole batteries, black hole
pulsars, the electromagnetic Penrose process—are distinct
yet interrelated. They are each consequences of themotion of
a black hole through a magnetic field.
We extend the range of luminous phenomena by con-

sidering black holes that are relativistically boosted through
a uniform magnetic field. Like spinning black holes,
these boosted black holes will acquire charge, although

the details are rather different. The boosted black hole
perceives both a magnetic field B0 and an electric field
E0 ¼ βB0 due to the Lorentz transformation of the ambient
magnetic field γ−1B0. Nearby charges will respond to the
boosted black hole, resulting in a charged, boosted black
hole, as we show.
The gravitoelectrodynamics are far more complicated for

a boosted black hole than a spinning black hole. The boost
breaks axial symmetry so a constant of geodesic motion is
lost, namely, the angular momentum. The Carter constant is
also lost [6,8,9]. The only generic constants of motion
retained for particles around the black hole are the energy
and the timelike constraint on the four-velocity. With the
loss of constants of motion, dynamics in phase space are no
longer tightly constrained and the window to chaotic
dynamics is opened. We therefore anticipate, and observe,
extremely intricate orbits, reflecting the underlying chaos.
The complicated dynamics also highlight another gen-

eral conclusion: dynamics upstage screening. By screening,
we mean the condition that the electric potential difference
between the horizon and infinity is zero in the vacuum case.
By this we mean that, while charges may be inclined to
distribute themselves so as to screen an electric field, the
actual dynamics may not comply with this inclination.
Consequently, the charge acquired depends sensitively on
the initial data and distribution of the test charges, as we
show. Some distributions lead to a charged black hole and
others do not. Qualitatively, the magnitude of the black hole
charge will be set by the boost β, the ambient magnetic field
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B0, and the mass of the black hole M. Based on units, this
would indicate, again only qualitatively, Q ∝ βB0M2.
Because of the extreme sensitivity to initial conditions of
chaotic dynamics, there is no simple quantitative formula
to quote for the anticipated magnitude of the charge.
Completely spatially symmetric distributions lead to an
average of zero black hole charge, although test charges
continue to flux along the field lines. (Note that by
“symmetric” here we simply mean spatially symmetric
distribution of charged particles about the axis of the
boost.) Spatially asymmetric distributions of ambient
charges will lead to charged, boosted black holes.
Although an assessment of realistic luminosities is

beyond the scope of this work, it is important to note that
a boosted charge creates its own magnetic field, which in
turn leads to its own electromagnetic signatures [10].
Ultimately, a charged, boosted black hole could have
observable implications for supermassive black holes like
M87* or Sagittarius A* as well as black hole/neutron star
mergers detectable by the LIGO-Virgo-KAGRA network
of gravitational wave observatories [11–13].
Below we consider bare black holes, so black holes in

vacuum except for the test charges. We are not imagining
black holes immersed in a magnetosphere, which would
lead to the force-free condition E ·B ¼ 0, as in [14]. We
review the Wald argument for spinning black holes in order
to show that dynamics upstage screening. (An alternative
motto might be “initial conditions matter.”) In brief,
accounting for gravitational effects turns the Wald charge
into a band of stable charges, as Q must be sufficiently
above or below the Wald charge for the electrical repulsion
to overcome the gravitational attraction. We then dive into
the dynamics around boosted black holes to demonstrate
charge acquisition as well as chaos.

A. Spinning black holes and screened electric fields

In a classic paper from 1974, Wald argued that, to screen
the electric field generated by the spin a of a black hole in a
uniform magnetic field, black holes would acquire a charge
QW ¼ 2aMB0, hereafter called the Wald charge [5]. A
spinning black hole of charge QW will be screened in the
sense that charges will not experience a drop in the
electromagnetic potential between infinity and the event
horizon. Wald’s argument was formulated on the spin axis.
In a recent article, we showed that the argument could be
extended off axis, although charges will still flux and
radiate around the black hole [6].
The gravitoelectrodynamics can lead to charge acquis-

ition that deviates from the value anticipated from screening
arguments QW . For this purpose, it is sufficient to consider
particles along the spin axis. We take the spin of the black
hole and the magnetic fields to be aligned with the z axis.
In the spacetime described above, the electromagnetic

energy per unit mass of a particle with charge per unit
mass q̄ is

q̄At ¼ −χQðgtt þ 1Þ: ð1:1Þ

The final term in the potential is a gauge term we have
subtracted to ensure that the electrostatic potential is zero at
infinity, as in [7], and we have defined

χQ ¼ q̄

�
Q
2M

− aB0

�
ð1:2Þ

as in [7]. On the z axis,

gtt ¼ −
1

grr
¼ −

Δ
Σ
; ð1:3Þ

with

Δ ¼ z2 − 2Mzþ a2;

Σ ¼ z2 þ a2: ð1:4Þ

Thus, the conserved energy per unit mass for the particle is
given by

e ¼ −
1

m
πμη

μ ¼ −ðut þ q̄AtÞ; ð1:5Þ

where πμ ¼ muμ þ qAμ is the canonical momentum and ημ

is the timelike Killing vector. The change in the electro-
magnetic potential for a particle falling from infinity to
cross the black hole event horizon at rþ is then

Δϵ ¼ −q̄Atjz¼rþ þ q̄Atjz¼∞ ¼ χQ; ð1:6Þ

which vanishes at the Wald charge QW ¼ 2aMB0.
Consequently, the electric field is screened at the Wald
charge [4,5,15,16].
However, the dynamics can override the desire to

screen the electric field. If we seed particles initially at
rest along the z axis stretching from the event horizon out to
infinity, the value of the charge that precipitates onto the
black hole depends on the initial data, which we will
now show.
On the positive z axis, θ ¼ 0, and the equations of

motion simplify greatly with only two coordinates, ðt; zÞ.
We can use an effective potential formulation since there
exist enough constants of motion, e and u · u, to reduce the
ordinary differential equations to first order equations.
From e, we have

_t ¼ Σ
Δ
ðe − χQÞ þ χQ: ð1:7Þ

Now we leverage u · u ¼ −1, using (1.7) to eliminate _t to
write

1

2
_z2 þ VeffðzÞ ¼

e2 − 1

2
; ð1:8Þ
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with

VeffðzÞ ¼
2Mz
Σ

χQ

�
e − χQ

�
Mz
Σ

��
−
Mz
Σ

: ð1:9Þ

As z → ∞, Veff → 0, and therefore for _z0 ¼ 0, we have
e ¼ 1 in this limit. Notice for this value that _t0 ¼ 1.
Letting Σ0 andΔ0 denote the values of Σ andΔ at z ¼ z0,

we set _z0 ¼ 0 so that the particles are initially at rest,

finding _t0 ¼
ffiffiffiffi
Σ0

Δ0

q
, which constrains

e ¼ Δ0

Σ0

� ffiffiffiffiffiffi
Σ0

Δ0

s
− χQ

�
þ χQ: ð1:10Þ

As required, e approaches 1 as z0 → ∞. We can use this
value for e in VeffðzÞ as shown in Fig. 1.
As the potential diagrams show, the dynamics can favor

one sign of charge over another even away from χQ ¼ 0.
Since the slope of the effective potential at z0 determines
whether the particle moves toward or away from the black
hole originally, we solve for χ�Q, the value at which
V 0
effðz0Þ ¼ 0,

χ�Q ≡ 1

2

ffiffiffiffiffiffi
Σ0

Δ0

s
: ð1:11Þ

We find V 0
effðz0Þ > 0 for χQ < χ�Q and V 0

effðz0Þ < 0

for χQ > χ�Q.
It turns out that the sign of V 0

effðz0Þ is sufficient for
determining the subsequent behavior of the particles, which
can be seen by finding the zeros of V 0

effðzÞ. Ignoring the
roots at z ¼ �a, we find that, for χQ > χ�Q, one of the other

two roots is less than rþ and the other is less than z0, so
V 0
effðzÞ < 0 for z ≥ z0, and thus the particles will go out to

infinity. For 0 < χQ < χ�Q, either the two roots are complex,
or one is less than rþ and the other is now greater than z0.
Thus, V 0

effðzÞ > 0 for rþ ≤ z ≤ z0, so the particles will fall
into the black hole.
We see that χ�Q goes to 1=2 as z0 → ∞. In other words,

above the Wald charge, positive charges are still favored,
and below the Wald charge, negative charges are still
favored in a band defined by

QW −
M
jq̄j < Q < QW þ M

jq̄j : ð1:12Þ

To examine this behavior, we simulated the trajectories
of a series of particles. We seeded positive and negative
particles at z0 and let them evolve. If both particles escaped
or both fell into the black hole, the simulation ended. If one
fell in and one escaped, the charge of the black hole was
increased or decreased and the point was seeded again,
repeating until the charge of the black hole stabilized. For
the first set of simulations, we took the initial charge to

obey Q0 > QW þ M
jq̄j

ffiffiffiffi
Σ0

Δ0

q
, and took Q0 < QW − M

jq̄j
ffiffiffiffi
Σ0

Δ0

q
for

the second set. Figure 2 shows the final charge in units of
QW as a function of z0 in units of M.
Figure 2 can best be understood by thinking of the

blue (dark gray) curves as the boundaries of regions in the
z0 −Q0 plane that determine the behavior of the charged
particles. Above the upper blue curve, positive charges
seeded at rest at z0 move away from the black hole, and
below the upper blue curve they fall in. Below the lower
blue curve, negative particles move away from the black
hole, and above the lower blue curve they fall in. Thus, in

FIG. 1. Sample effective potentials with a ¼ 0.5M with varying z0 and Q. Solid lines correspond to effective potential and dashed
lines to the energy of a charged particle starting at rest at the listed z0. The blue (dark gray) plots have χQ > 0 and the orange (light gray)
have χQ < 0. For fixed z0 and χQ > 0, the effective potential increases for large z for small χQ and decreases for larger χQ. For
z0 ¼ 2.5M, the transition between the two behaviors occurs at χQ ≈ 1.4 and for z0 ¼ 5M at χQ ≈ 0.64.
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the region between the curves, particles of both charge fall
in, so the charge of the black hole is stable. Essentially,
accounting for gravitational effects turns the Wald charge
into a band of stable charges, as Q must be sufficiently
above or belowQW for the electrical repulsion to overcome
the gravitational attraction. This idea of overlapping
regions in the z0 −Q0 plane that define the behavior of
the particles will be useful in Sec. III.
The nearer you are to the black hole, the larger the

deviation, as shown in Fig. 2. This result is in no way
generalizable. Some parameter values will lead to oscil-
latory orbits and significant deviations from the figure. We
stress that we are pressing the point that the specific initial
seeding of charges and the gravitoelectrodynamics can
favor accretion of charges of a particular sign, even if this
does not lead to the full screening effect that Wald
originally described. Even more, we have quantified the
stable band around the charged black hole analytically.
We take that lesson with us as we leave spinning black

holes behind and turn our attention to boosted black holes.

II. MAXWELL EQUATIONS AROUND
A BOOSTED BLACK HOLE

We take the black hole to be immersed in an external
magnetic field that is asymptotically uniform in the positive
z direction. We also take the black hole to be moving with
constant speed β in the negative y direction. In the frame of
the black hole, the magnitude of the asymptotic field is B0

and there is an asymptotic electric field in the negative x
direction, E0 ¼ β ×B0. In Appendix A, we find the value
of the electromagnetic fields everywhere.
The Schwarzschild metric is given by

ds2 ¼ −N2c2dt2 þ N−2dr2 þ r2dΩ2; ð2:1Þ

with N2 ¼ 1 − 2M
r . The Maxwell equations in vacuum are

∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0; ∂νð

ffiffiffiffiffiffi
−g

p ð⋆FÞμνÞ ¼ 0; ð2:2Þ

where Fμν ¼ ∂μAν − ∂νAμ and ð⋆FÞμν ¼ 1
2

ffiffiffiffiffiffi−gp
ϵμνρσFρσ.

We neglect the contribution of the electromagnetic
fields to the geometry of the spacetime. Allowing for
charge on the black hole, we solve the Maxwell equations,
finding

At ¼ −
Q
r
− E0

�
1 −

2M
r

�
r sin θ cosϕ; ð2:3Þ

Aϕ ¼ 1

2
B0r2 sin2 θ; ð2:4Þ

as did the authors of [17] previously.
For reference, we also report the invariant,

E · B ¼ 1

4
Fμνð⋆FÞμν

¼ QB0

r2
cos θ − E0B0

2M
r

cos θ sin θ cosϕ: ð2:5Þ

Derivations of (2.5) and (2.4) can be found in Appendix A.
Contour plots of E ·B in the y − z plane for various
values of Q are shown in Fig. 3. We note that this
vanishes in the equatorial plane. Even with a force-free
magnetosphere, the best charges can do in attempts to
screen the electric field is to achieve E ·B ¼ 0. In our
vacuum scenario, there is no value of Q that leads to the
force-free condition E ·B ¼ 0 everywhere. In the recent
Ref. [10], the authors considered the electromagnetic
field structure to motivate charged, boosted black holes
from asymmetric distributions.

FIG. 2. Left: Q=QW vs z0=M. The blue (dark gray) curves are QW � M
jq̄j

ffiffiffiffi
Σ0

Δ0

q
in units of QW . The straight orange (light gray) lines are

the asymptotic valuesQW � M
jq̄j. The red (gray) dots are the results of the simulations. The initial charge of the black hole was taken to be

above the blue (dark gray) curve for the simulations yielding dots above the band, and vice versa for the dots below the band. The
parameters are q̄B0 ¼ 10 M−1 and a ¼ 0.5M, soQW ¼ 0.1M. Right: the same plot, but this time with each region color-coded based on
the behavior of test particles. Blue (black) corresponds to only negative particles falling, red (dark gray) to only positive falling, and light
blue (light gray) to both particles falling in.
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A. Screening of the electric field

Although we expect charge acquisition to deviate sub-
stantially from a prediction based on screening of the
electric field, it is worth considering the effect of Q on the
electric potential, in analogy with Sec. I A for a spinning
black hole.
We consider a test particle of charge per unit mass q̄

moved from r ¼ r0 to the horizon. As before, the conserved
energy per mass of the particle is

e ¼ −ðuμ þ q̄AμÞημ: ð2:6Þ
Following Wald, we see that the change in electrostatic
energy per unit mass is

Δϵ ¼ −q̄Aμη
μjr¼2M þ q̄Aμη

μjr¼r0 ð2:7Þ

or

Δϵ ¼ q̄Q
2M

−
q̄Q
r0

− q̄E0Nðr0Þ2r0 sin θ cosϕ: ð2:8Þ

We can rewrite this as

Δϵ ¼ q̄
2M

ðQ −QTðθ;ϕÞÞ
�
1 −

2M
r0

�
; ð2:9Þ

with the threshold charge

QTðθ;ϕÞ ¼ 2ME0r0 sin θ cosϕ: ð2:10Þ

Notice that QT averages to zero. Clearly, and not surpris-
ingly, there is no value ofQ that screens the electric field in
the frame of the black hole.
The electric field does disappear in the frame of test

charges that are at rest with respect to γ−1B0 (for an

uncharged black hole). However, as the black hole whizzes
by, these charges will automatically begin to move and
thereby will begin to feel an electric field. The gravitoelec-
trodynamics then determine the acquisition of charge on the
black hole and not the aspiration to screen the electric field.

III. THE DYNAMICS OF CHARGING
UP A BOOSTED BLACK HOLE

For concreteness, we set particles at rest with respect to
each other until the black hole flies by. In the frame of the
black hole, the charges have initial velocity v0 ¼ βŷ. More
precisely, this is the velocity measured by a local observer
at the initial location of the particle. In Appendix B, we
define a proper orthonormal basis to explicitly set the initial
data with relativistic effects included.
Intuitively, we expect that test particles extremely close

to the event horizon will indiscriminately fall in, unless
charges are absurdly high. Similarly, far enough away
from the black hole, the dynamics of test charges will be
dominated by electromagnetic forces. In the intermediate
region within tens of Schwarzschild radii, the gravitoelec-
trodynamics are quite complicated. In fact, the dynamics
are most assuredly chaotic as we have lost two constants
of motion, both the angular momentum and the Carter
constant.
The magnetic field selects a preferred equatorial plane

around the black hole. Only trajectories in the equatorial
plane remain two dimensional. To explore the dynamics of
charged particles and the influence on charge acquisition,
we will pay particular attention to these equatorial orbits.
Furthermore, the electric field picks out the x axis as
special. We begin by exploring orbits that are seeded on the
x axis with the initial dataset as described above. We then
consider orbits seeded anywhere in the equatorial plane.

FIG. 3. Plots of E ·B in the y − z plane in units of M−2 for q̄B0 ¼ 0.5 M−1, β ¼ 0.5, and varying Q.
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A. Orbits seeded on the x axis

We plant charges on the positive x axis at varying x ¼ r0
and observe four different kinds of behavior with ascending
radius as summarized in the chart above. The exact values
of the radii at which we transition between the four
behaviors depends on the parameters β and q̄B0.
For radii r0 < rI , both charges fall in and the black hole

remains uncharged. For radii rI < r0 < rII , the black hole
acquires negative charge. Although positive charges are
pulled to the left by the electric field, they overshoot
the black hole and so do not contribute to the charge.
Consequently, positive charges tend to escape, while negative
charges fall in. As each particle falls in, we update the charge
of the black hole,which becomes increasingly negative until a
positive charge falls in. This is shown in Fig. 4.
As we move to larger radii, rII < r0 < rIII , the behavior

changes. Initially, positive charges still escape and negative
charges fall in. But now the charge stabilizes when a
negative charge is repelled, not when a positive charge is
pulled in. In addition, the negative charges undergo many
tight spirals at the beginning of their trajectories. This
behavior is shown in Fig. 5. Finally, at radii r0 > rIII, both
charges escape and the black hole remains uncharged.

1. Basin boundaries in the x0 −Q0 plane

To better understand the behaviors in these intervals, we
perform the same procedure that led to Fig. 2, this time in

the x0 −Q0 plane, leading to Fig. 6. We simulated the
trajectories for a positive and a negative particle for cells
throughout the plane, color coding them as follows:

(i) Black is used for cells within the black hole. For
higher jQ0j, the event horizon shrinks, which leads
to the tapering at the ends.

(ii) Light red is used if both particles escape, which we
see at large jx0j.

(iii) Light blue is used if both particles fall in, which we
see at low jx0j.

(iv) Blue is used if only the negative particle falls in.
(v) Red is used if only the positive particle falls in.
As opposed to the plots in Figs. 4 and 5, here the black

hole charge is not updated as the particles fall in. We instead
simply color the cell based on the end result for the test
particles in the presence of a black hole with specific Q0.
It is helpful to emphasize the connection between Figs. 2

and 6. Again, each charged particle has two regions. Taking
one region to be the union of the blue and light blue cells,
we see that, in this region, negative particles fall in, and
outside this region, they escape. Taking the other region to
be the union of the red and light blue cells, we see that,
within this union, positive particles fall in, and outside, they
escape. Just as in Fig. 2, in the light blue cells (the overlap
of these two regions), Q0 is unchanged, because both
particles fall in. Unlike in the Wald case, there are points
(the light red cells) where both particles escape. A major
difference from the Wald case is that the boundaries of

FIG. 4. Plot of charged particle trajectories for q̄B0 ¼ 0.1 M−1, β ¼ 0.05, and r0 ¼ 9M. The top plots have positive charges and the
bottom plots have negative charges. Each column is at a fixed Q, with Q decreasing from left to right by 0.1M until the final column
where both the positive and negative test charge fall in, stabilizing the black hole charge at Q ¼ −0.3M. The x and y coordinates are in
units of M.
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these regions are fractals instead of simple curves, as can be
seen by the dusty mixing of colors. This is to be expected,
as the dynamics are chaotic, unlike the one-dimensional
dynamics of the Wald case. Another major difference is that
the boundaries of these two regions intersect, which
explains the behavior seen1 in Figs. 4 and 5 and summa-
rized in Table I.

2. Triangles

We have seen above that the different behaviors of the
charges in the four intervals summarized in Table I ulti-
mately arise from the regions shown in Fig. 6. In our
physically motivated simulation, where Q0 ¼ 0 and Q is

FIG. 5. Plot of charged particle trajectories for q̄B0 ¼ 0.1 M−1, β ¼ 0.05, and r0 ¼ 14M. The top plots have positive charges and the
bottom plots have negative charges. Each column is at a fixed Q, with Q decreasing from left to right by 0.1M until the final column
where both the positive and negative test charge escape, stabilizing the black hole charge at Q ¼ −0.2M. x and y are in units of M.

FIG. 6. Plot of the x0 −Q0 plane of initial data. q̄B0 ¼ 0.01 M−1 and β ¼ 0.05 corresponding to the upper right plot in the grid in
Fig. 7. The x axis has x0=M from −72 to 72 with Δx0=M ¼ 0.4. The y axis has Q0=M from −1 to 1 with ΔQ0=M ¼ 0.025.

TABLE I. Summary of behavior of charges in each interval.

r0 < rI Both charges fall in.
rI < r0 < rII Negative charges fall in until a positive charge

falls in.
rII < r0 < rIII Negative charges fall in until they are repelled.

Positive charges always escape.
rIII < r0 Both charges escape.

1The first column in each figure corresponds to a point on the
x0 axis in Fig. 6 where the positive particle escapes and the
negative particle falls in, i.e., a blue cell. As the black hole charge
is decremented from zero, eventually either the positive particle
falls in (Fig. 4) or the negative particle escapes (Fig. 5). The
former corresponds to moving downward into the light blue
region, and the latter corresponds to moving downward into the
light red region.
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incremented as the particles fall in, only one portion of the
x0 −Q0 plane is probed, yielding the four intervals.
Having explained the origin of these behaviors, we now

study the effect of changing the speed of the black hole and
the strength of the magnetic field. We consider the
following set up: We seed positive and negative charges
at a distance r0 on the positive x axis. All the charges have
an initial velocity of β in the positive y direction, with initial
conditions set as described above. We then increment or
decrement the charge of the black hole if either the positive
or negative particle (but not both) falls in and then we seed
two more charges at the same spot. We repeat this process
until the charge of the black hole stabilizes. We then
increment the starting position and repeat the process. This
generates a plot of the final charge of the black hole Q as a
function of the starting position r0. We assume the mass of
the black hole is effectively unperturbed for particles with a
large charge and small mass.
Consistent with Fig. 6, we see triangular structures as

shown in Fig. 7, wherein the charge acquisition as a
function of radius shows the behavior described above
across the four intervals. We show nine such triangles for
different values of β and q̄B0. The specific values of rI , rII ,
and rIII depend on these parameters but the qualitative
behavior is the same across Fig. 7. The trajectories shown
in Figs. 4 and 5 correspond to red and orange points
highlighted in the upper right plot of Fig. 7. The behaviors
shown in these figures are consistent along each leg of the
triangle. As explained above, these triangles arise from the
boundaries between the regions in Fig. 6.
If instead we were to seed particles on the negative x

axis, the triangle would flip vertically around the Q ¼ 0

axis. If the distribution of charge is symmetric about y, then
the net charge is zero, although charges will continue to
flux around the black hole since E · B ≠ 0.
The boundaries rI , rII, rIII appear to be zero dimensional

on the x axis for most of the triangles in Fig. 7. However,
the top left triangle is broken up in a complex way. We
probe three details of the broken triangle shown at higher
resolution in Fig. 8. The three results indicated by a (red)
circle, (blue) square, and (green) triangle are all very near
each other in the space of initial conditions with values of
r0 within 0.3M of each other, yet with greatly disparate
outcomes. The specific trajectories corresponding to these
outcomes are shown in Fig. 9. In each panel, we are seeing
in-falling trajectories of negative charges transition to

FIG. 7. Plots of Q=M vs r0=M for particles seeded on the x axis with varying q̄B0 and β. The red circled point and the orange boxed
point in the upper right plot correspond to the trajectories in Figs. 4 and 5, respectively.

FIG. 8. The triangle from the upper left of Fig. 7 with higher
resolution. The (red) circle, (blue) square, and (green) triangle
correspond to the trajectories in Fig. 9.
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escape trajectories at the corresponding value of Q high-
lighted in Fig. 8. The extreme delicacy of the outcome is
typical of chaotic systems.
As we move into the rest of the equatorial plane, one

might expect the boundaries to be one dimensional, that is,
lines that define the basin boundaries between the types of
dynamical behavior. However, given that we anticipate
chaotic behavior, we should rather expect these boundaries
to be fractal [18–24], reflecting the extreme sensitivity to
initial conditions and the mixing and folding of trajectories
that characterize chaos. The first triangle of Fig. 7, blown
up in Fig. 8, is already demonstrating such behavior.
Below we show that this is pervasive in the equatorial
plane: the boundaries between zero charge and charge are
fractal.

B. The equatorial plane and fractal
basin boundaries

Extending our analysis to the entire equatorial plane, the
triangles are represented in the basin boundaries of Fig. 10.
The simulation proceeds much as in the previous section.
We divide the region −20M ≤ x; y ≤ 20M into cells of size
0.1M, seed positive and negative particles at the top left
corner of each cell, and color the cell based on the behavior
of the charges. As before, if one particle falls in and the
other escapes, the black hole’s charge is increased or
decreased and the cell is seeded again, repeating until
the charge has stabilized. The cell is then colored to
represent the final charge of the black hole as shown in
the legend. Extracting the data from the positive x axis
alone would give Fig. 7. Reversing the signs of x0, q̄, andQ
reflects the force about the y axis, leading to the anti-
symmetry about y in the figures. Again, charge distribu-
tions that are symmetric about the y axis yield Q ¼ 0,

asymmetric distributions yield Q ≠ 0, and in both cases,
charged particles continue to flux since E ·B ≠ 0.
As anticipated, the boundaries show evidence of chaotic

behavior. For a dynamical system with N coordinates and
N canonical momenta, the motion in phase space will be
restricted to tori if there are N constants of motion. The
argument is simply that a set of coordinates can always be
found such that each canonical momentum is set equal
to a constant, creating a set of constant frequencies. The
corresponding coordinates are then the angular variables on
the N-dimensional torus. All integrable systems, that is,
nonchaotic systems, have this feature.
As constants of motion are lost, the system becomes

nonintegrable with no closed-form analytic solution as a
function of initial conditions. The system is still determin-
istic, however, the loss of constants of motion allows orbits
to exist off of torii in phase space. The orbits show extreme
sensitivity to initial conditions and a mixing and folding of
trajectories, as expected with chaotic systems.
A spinning black hole has four constants of motion:

energy, angular momentum about the spin axis, u · u, and
the Carter constant. Therefore, the orbits are integrable. In
boosting the black hole through the magnetic field, we
have lost constants of motion. We expect the most general
orbits to be nonintegrable and chaotic. A nice demonstra-
tion of chaotic behavior is the presence of fractal basin
boundaries [18–24], which we happened to be scanning in
our generalization to the equatorial plane of the triangles
seen in one dimension.
The substructure is already apparent in Fig. 10. To see

that the fractal structure persists, we enlarge the region
shown in the box in the upper right plot in Fig. 10. The
results are shown in Fig. 11, where we continue to enlarge
smaller regions. The repetition of structure on smaller and

FIG. 9. Trajectories corresponding to the (red) circle, (blue) square, and (green) triangle in Fig. 8, respectively. All have
q̄B0 ¼ 0.01 M−1 and β ¼ 0.05 and have r0 ¼ 31.92M, 32.08M, and 32.22M, respectively. All trajectories are for negative particles,
and the two trajectories in the same plot correspond to slightly different values of Q, separated by increments of ΔQ ¼ 0.005M. The
blue (dark gray) trajectory has the greater (less negative)Q, and the red (light gray) trajectory’s escape is what stabilizes the charge at its
final value. In the first plot, the negative particles orbited the black hole many times in a figure-eight trajectory until falling in or, for
sufficiently negative Q, escaping. This stabilized the charge at Q ¼ −0.285M, far above the points lying on the triangle. In the second
plot, the two trajectories overlap until the charges approach the black hole, wherein one falls in and one escapes, stabilizing the charge at
Q ¼ −0.420M, still above the other points on the triangle but forming a new line in the plot. In the third plot, the usual behavior is
observed, wherein the charges undergo many spirals before falling in or escaping, as in Fig. 5. The final charge here wasQ ¼ −0.650M,
along the leg of the triangle.
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smaller scales is the definition of a fractal. The mixing and
folding of trajectories is evident in the mixed colors at the
boundary. And the sensitivity to initial conditions is evident
as we enlarge and still see that a minuscule deviation in the
initial data leads to very different orbits.
To close this section, we show a pair of nearby non-

equatorial trajectories in Fig. 12. As is evident, the small
difference in initial conditions yields very different behav-
ior, as one particle escapes and one ends in the black hole.
This demonstrates that the chaotic behavior exists outside
the equatorial plane as well, and we expect fractal basin
boundaries to appear throughout space, though investigat-
ing the entire dynamics is beyond the scope of this paper.

IV. SUMMARY

As anticipated, a black hole boosted through an ambient
magnetic field can preferentially acquire charge. The
charge acquired depends on the details of the initial data
and the distribution of particles around the black hole.
Spatially symmetric distributions lead to Q ¼ 0; spatially
asymmetric distributions to black hole charge. Regardless,
charged particles continue to flux around the black hole.
Our analysis is not in any way intended to be a model of a
realistic astrophysical set up. We simply intend to dem-
onstrate the general principle: All motion through magnetic
fields will contribute to the charge of a black hole in

FIG. 10. Plots of Q in the x − y plane for varying jq̄jB0 and β. All plots have −20M ≤ x; y ≤ 20M. If both positive and negative
particles seeded at the x and y for that cell fall into the black hole, then the cell is colored light blue. If both particles escape, the cell is
colored light red. If one falls in and one escapes, the charge of the black hole is increased or decreased until it stabilizes. The spectrum
from dark blue to dark red represents the final charge in units of M. The range of the triangles on the x axis are visible in most of these
panels, although the restricted standardized range of these figures does not cover the same ranges as those in Fig. 7. The box in the corner
of the upper right plot corresponds to the region examined in the first plot of Fig. 11.
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different ways. Another general conclusion is that the
gravitoelectrodynamics determine the actual outcome of
charge accretion, not the screening of the electric field. In
our case, the gravitoelectrodynamics are chaotic, as evi-
denced by the fractal basin boundaries between outcomes.
Once charged, the black hole can support its own

electromagnetic field leading to its own intrinsic luminos-
ity. Possible astrophysical settings for boosted black holes
include supermassive black holes that are boosted relative
to the central galactic magnetic field, black holes with
magnetized and offset accretion disks, and black holes
orbiting through the magnetosphere of a companion neu-
tron star. The observability of these effects could be
assessed using something like the Larmor frequency.
However, given the chaotic dynamics and the consequent

extreme sensitivity on initial data, there are no general
conclusions to draw from that frequency for any specific
orbit. A power estimate such as the circuit paradigm of [1]
for a related charged system suggests detection will be
challenging but not impossible. Still, we are excited about
the prospects for observing charged bare black holes during
this prolific black hole century through surveys, the Event
Horizon Telescope project, and the multimessenger net-
works around LIGO-Virgo-KAGRA.
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APPENDIX A: SOLVING THE
MAXWELL EQUATIONS

The Maxwell equations are given in (2.2), but we repeat
them here,

∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0; ∂νð

ffiffiffiffiffiffi
−g

p ð⋆FÞμνÞ ¼ 0: ðA1Þ

Following [17], we take the nonvanishing components of
the vector potential to be Atðr; θ0Þ and Aϕðr; θÞ, where θ0 is
the “polar” angle down from the positive x axis. We have
chosen this unusual angle because we have an electric field
aligned with the negative x axis at infinity. With this
assumption, the dual Maxwell equations are automatically
satisfied.
Taking μ ¼ t and μ ¼ ϕ in the first equation yields

N2
∂

∂r

�
r2
∂At

∂r

�
þ 1

sin θ0
∂

∂θ0

�
sin θ0

∂At

∂θ0

�
¼ 0; ðA2Þ

FIG. 11. Basin boundaries at various scales. All have q̄B0 ¼ 0.1 M−1 and β ¼ 0.05. The first plot has 10M ≤ x ≤ 20M,
−20M ≤ y ≤ −10M, and a spacing of 0.1M. The second has 14.84M ≤ x ≤ 15.54M, −15.10M ≤ y ≤ −14.40M, and a spacing of
0.01M. The third has 14.96M ≤ x ≤ 15.06M, −15.10M ≤ y ≤ −15.00M, and a spacing of 0.001M.

FIG. 12. A pair of nonequatorial trajectories. Both particles are
negative and have x0 ¼ 14.6M and y0 ¼ −15M. The red (light
gray) trajectory has z0¼2.8M, and the blue (dark gray) trajectory
has z0 ¼ 2.9M. The system parameters are q̄B0 ¼ 0.1 M−1,
β ¼ 0.1, and Q ¼ 0.
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r2
∂

∂r

�
N2

∂Aϕ

∂r

�
þ sin θ

∂

∂θ

�
1

sin θ

∂Aϕ

∂θ

�
¼ 0; ðA3Þ

where, as before,N2 ¼ 1 − 2M
r . The electric field is uniform

and in the negative x direction at infinity. In spherical
coordinates, this becomes the boundary condition that, for
large r,

ðEr; Eθ; EϕÞ → −E0

�
sin θ cosϕ;

1

r
cos θ cosϕ;−

1

r
sinϕ
sin θ

�
:

ðA4Þ

Note that cos θ0 ¼ sin θ cosϕ. This gives the boundary
condition for large r,

At → −E0r cos θ0: ðA5Þ

We shall also impose that At vanish at the horizon. Since we
also have a uniform magnetic field in the z direction at
infinity, we also have the boundary condition

ðBr; Bθ; BϕÞ → B0

�
cos θ cosϕ;−

1

r
sin θ; 0

�
: ðA6Þ

This implies

Aϕ →
1

2
B0r2 sin2 θ: ðA7Þ

We also impose that Aϕ vanish at the origin.
There is one additional boundary condition that we

impose, that of regularity of the observed energy density
ρobs ¼ Tμνuμuν at the horizon, where

uμ ¼
��

1 −
2M
r

�
−1
;−

ffiffiffiffiffiffiffi
2M
r

r
; 0; 0

�μ

ðA8Þ

is the four-velocity of a freely falling observer. It can be
shown that this forces At to vanish at the horizon at least
linearly, while Aϕ simply cannot diverge at the horizon.
We now take At ¼ fðrÞPðθ0Þ in the first equation and

separate variables, yielding�
1 −

2M
r

�
ð2rf0ðrÞ þ r2f00ðrÞÞ − lðlþ 1ÞfðrÞ ¼ 0;

ðA9Þ

1

sin θ0
d
dθ0

�
sin θ0

dPðθ0Þ
dθ0

�
þ lðlþ 1ÞPðθ0Þ ¼ 0: ðA10Þ

We have written the separation constant as lðlþ 1Þ for
later convenience. We shall take l to be real, as complex l
yields nonregular solutions. The angular equation is
Legendre’s differential equation, solved by the Legendre

functions of the first and second kind, i.e., Plðcos θ0Þ and
Qlðcos θ0Þ. The Legendre functions of the second kind are
singular at θ ¼ 0 and π, as are the Legendre functions of the
first kind for noninteger l, so we take PðθÞ ¼ Plðcos θ0Þ
and restrict to integer l. We note that the separation
constant has the same value for l ¼ −n and l ¼ n − 1
for non-negative n, so we can take l ≥ 0 as well.
We can rewrite the radial equation as

xðx − 1Þf00ðxÞ þ 2ðx − 1Þf0ðxÞ − lðlþ 1ÞfðxÞ ¼ 0;

ðA11Þ

where x ¼ r=2M. This is a hypergeometric differential
equation with parameters a ¼ −l, b ¼ lþ 1, and c ¼ 2,
so one solution is

fð1Þl ðxÞ ¼ 2F1ð−l;lþ 1; 2; xÞ: ðA12Þ

We note that this is a polynomial of degree l since l is a
non-negative integer. It also vanishes at x ¼ 1. The second
solution, which can be found using the method of
Frobenius, has a logarithmic contribution that diverges at
the horizon for l > 0, so it can be ignored. We shall
separately handle the l ¼ 0 case, where the solutions are 1
and 1=x. We thus have

Atðr; θ0Þ ¼ C0 þD0

2M
r

þ
X∞
l¼1

Clf
ð1Þ
l ðr=2MÞPmðcos θ0Þ

ðA13Þ

with arbitrary constants C0, D0, and Cl. To make At vanish
at the horizon, we impose the condition C0 þD0 ¼ 0.
Matching with −E0r cos θ at infinity yields C1 ¼ 2ME0

and Cl ¼ 0 for l > 1. Thus, our solution becomes

Atðr;θ0Þ ¼C0

�
1−

2M
r

�
−E0

�
1−

2M
r

�
rcosθ0: ðA14Þ

It turns out that the coefficient of the 1=r piece will
contribute to the charge of the black hole. Since this black
hole is uncharged, we set C0 ¼ 0, so we have

Atðr; θ0Þ ¼ −E0N2r cos θ0; At ¼ E0r cos θ0: ðA15Þ

Moving on to the Aϕ equation, we take Aϕ ¼ gðrÞQðθÞ and
separate variables, finding�
1 −

2M
r

�
r2g00ðrÞ þ 2Mg0ðrÞ − lðlþ 1ÞgðrÞ ¼ 0;

ðA16Þ

sin θ
d
dθ

�
1

sin θ
dQðθÞ
dθ

�
þ lðlþ 1ÞQðθÞ ¼ 0: ðA17Þ
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We can rewrite the radial equation as

xðx − 1Þg00ðxÞ þ g0ðxÞ − lðlþ 1ÞgðxÞ ¼ 0; ðA18Þ

where again x ¼ r=2M. This can be transformed into
another hypergeometric by taking gðxÞ ¼ x2hðxÞ. The first
solution is

gð1Þl ðxÞ ¼ x22F1ðlþ 2; 1 − l; 3; xÞ: ðA19Þ

This only has integers powers of x in its Taylor series if l is
an integer. Since this must eventually be matched to r2 for
large r, we thus take l to be an integer, in which case

gð1Þl ðxÞ goes as xlþ1 for large x. Again, we can take l ≥ 0.
Finally, for l ¼ 0, the first solution has a lnð1 − xÞ
contribution that diverges at the horizon, so we can ignore
it. The second solution, as before, involves a logarithmic
contribution for l ≠ 0 that diverges at the horizon and can
thus be ignored. For l ¼ 0, the second solution is a
constant and must be included.
The angular equation can be rewritten in terms of

u ¼ cos θ,

ð1 − u2ÞQ00ðuÞ þ lðlþ 1ÞQðuÞ ¼ 0: ðA20Þ

This can also be transformed into a hypergeometric
equation by taking z ¼ u2. The two solutions are

Qð1Þ
l ðuÞ ¼ 2F1

�
l
2
;−

lþ 1

2
;
1

2
; u2

�
and

Qð2Þ
l ðuÞ ¼ u2F1

�
lþ 1

2
;−

l
2
;
3

2
; u2

�
: ðA21Þ

The second solution is not smooth at θ ¼ 0 or π for l > 0,
so we can ignore it for those values of l. For l ¼ 0, the
second solution is simply u. We thus have

Aϕðr;θÞ ¼ G0 þG0
0 cosθþ

X∞
l¼1

Flg
ð1Þ
l ðr=2MÞQð1Þ

l ðcos2 θÞ;

ðA22Þ

with arbitrary constants G0, G0
0, and Fl. Clearly

gð1Þl ð0Þ ¼ 0, so we requireG0 ¼ G0
0 ¼ 0 to make Aϕ vanish

at the origin. Since gð1Þl ðrÞ goes as rlþ1 for large r, the
boundary condition at infinity sets F1 ¼ 2M2B0 and
Fl ¼ 0 for l > 1. Thus, we have

Aϕ ¼ 1

2
B0r2 sin2 θ; Aϕ ¼ 1

2
B0: ðA23Þ

Since the Maxwell equations are linear, we can incor-
porate a charged black hole by simply adding the potential
for a point charge, finding

Atðr; θ0Þ ¼ −
Q
r
− E0

�
1 −

2M
r

�
r sin θ cosϕ;

Aϕðr; θÞ ¼
1

2
r2B0 sin2 θ:

We now compute the electric and magnetic fields of this
solution. Recalling that

Ei ¼ F0i; Bi ¼ ð⋆FÞi0 ¼ −
1

2
ϵ̃0ijkFjk; ðA24Þ

where ϵ̃0ijk ¼
ffiffiffiffiffijgjp

ϵ0ijk, we find

Er ¼ Q
r2

− E0 sin θ cosϕ; Br ¼ B0 cos θ;

Eθ ¼ −
1

r
E0 cos θ cosϕ; Bθ ¼ −

1

r
B0 sin θ;

Eϕ ¼ E0

sinϕ
r sin θ

; Bϕ ¼ 0: ðA25Þ

We see that the θ and ϕ components are not affected by the
black hole, and at first glance it appears that the r components
are not either. However, the coordinate basis vector er ¼ ∂r
in Schwarzschild spacetime only becomes the standard
spherical unit vector in the r → ∞ limit. This can be made
more clear by normalizing the basis vector. We find

êr ¼ Ner; ðA26Þ

so for the electric field

Erer ¼
�
Q
r2

− E0 sin θ cosϕ

�
N−1êr: ðA27Þ

This yields the expected electric field in flat space only in the
r → ∞ limit. The same is true for the magnetic field.
We can compute the charge using Gauss’s law. In the

language of differential forms, we have

4πQG ¼
Z
V
⋆J ¼

Z
V
dð⋆FÞ ¼

I
∂V

⋆F: ðA28Þ

Taking V to be a sphere of radius R, we find

4πQG ¼
I
r¼R

ð⋆FÞθϕdθ ∧ dϕ

¼
Z
S2
R2 sin θ∂rAtjr¼Rdθdϕ

¼
Z
S2
R2 sin θ

�
Q
R2

− E0 sin θ cosϕ

�
dθdϕ

¼ Q
Z
S2
sin θdθdϕ − E0R2

Z
S2
sin2 θ cosϕdθdϕ

¼ 4πQ; ðA29Þ
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as we should. We also compute the invariant

E ·B ¼ 1

4
Fμνð⋆FÞμν

¼ QB0

r2
cos θ − E0B0

2M
r

cos θ sin θ cosϕ: ðA30Þ

APPENDIX B: INITIAL CONDITIONS

Wewant to set the initial conditions in such a way that an
observer at rest at a given point measures the velocity of the
test charge at that point to be v ¼ βŷ. To this end, we build
an orthonormal basis for the observer. If eμa ¼ ð∂aÞμ denotes
the μth component of basis vector a, an orthonormal basis
for such an observer is

êμt ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r0

q eμt ; êμr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r0

s
eμr ;

êμθ ¼
1

r0
eμθ; êμϕ ¼ 1

r0 sin θ0
eμϕ; ðB1Þ

which obeys gμνê
μ
aê

μ
b ¼ ηab. The components of the four-

velocity of the particle in the orthonormal basis should be
γð1; vÞ with v ¼ βŷ. Thus, the initial conditions are

uμê
μ
t ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ; uμê
μ
r ¼ β sin θ0 sinϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p ;

uμê
μ
θ ¼

β cos θ0 sinϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ; uμê
μ
ϕ ¼ β cosϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p ;

which we can write as

_tð0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− β2Þð1− 2M

r0
Þ

q ;

_rð0Þ ¼ β sin θ0 sinϕ0ffiffiffiffiffiffiffiffiffiffiffiffi
1− β2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
r0

s
;

_θð0Þ ¼ β cos θ0 sinϕ0

r0
ffiffiffiffiffiffiffiffiffiffiffiffi
1− β2

p ; _ϕð0Þ ¼ β cosϕ0

r0 sin θ0
ffiffiffiffiffiffiffiffiffiffiffiffi
1− β2

p : ðB2Þ

These are the initial conditions used in all the simula-
tions above.
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