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We obtain the Arnowitt-Deser-Misner formulation of general relativity in n dimensions (n > 3) from its
either SO(n — 1, 1) [SO(n)] or SO(n — 1) Palatini Hamiltonian formulations and vice versa [we recall that
SO(n — 1, 1) [SO(n)] requires no gauge fixing whereas SO(n — 1) involves the time gauge]. Similarly, the
Hamiltonian formulation of general relativity in terms of Ashtekar-Barbero variables can also be directly
obtained from the Arnowitt-Deser-Misner Hamiltonian formulation and vice versa, which is an alternative
approach to the way followed by Barbero. We give the relevant maps among the phase-space variables and
relate the corresponding symplectic structures and the first-class constraints.
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I. INTRODUCTION

The Hamiltonian analysis of general relativity has been a
fruitful arena of research since the pioneering work of
Arnowitt, Deser, and Misner (ADM) [1]. The usual
approach to get the Hamiltonian formulation of general
relativity—and, in fact, of any other theory—is to begin
with a particular Lagrangian formulation of it [2]. This was
indeed the route followed by ADM. Another way is to
perform a canonical transformation from a given
Hamiltonian formulation, which was the approach followed
by Barbero [3] to get the Hamiltonian formulation of
general relativity that is the starting point of the quantum
theory known as loop quantum gravity [4,5].

Nevertheless, there are other approaches to get a
Hamiltonian formulation of general relativity that do not
follow the usual or standard Dirac approach, among them
we find the seminal work of Ashtekar [6] and also the work
of Thiemann [5], which link, respectively, the ADM
formulation with the Ashtekar and SO(n — 1) formulations
of general relativity. The relevance of these two latter works
is that they both link Hamiltonian formulations of general
relativity that have a different number of phase-space
variables. In this paper, we follow this line of thought
and relate the ADM formulation in n dimensions (n > 3)
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with the SO(n — 1, 1) [SO(n)] Hamiltonian formulation of
general relativity that keeps intact the local SO(n — 1, 1)
[SO(n)] invariance and involves only first-class constraints
[7,8]. The link is made through two approaches: the top-
down, in which we begin with the SO(n — 1, 1) [SO(n)]
Hamiltonian formulation and get the ADM formulation
(Sec. II); and the bottom-up, in which we begin with the
ADM formulation and get the SO(n—1, 1) [SO(n)]
Hamiltonian formulation (Sec. III). As is clear after reading
these two sections, the two approaches can be slightly
modified to relate the ADM formulation in n dimensions
(n > 3) with the SO(n — 1) Hamiltonian formulation that is
obtained when the time gauge is imposed in the SO(n — 1, 1)
[SO(n)] Hamiltonian formulation, which is reported
in Sec. IV. The spacetime of dimension four is particularly
important. As we mentioned, one of the most relevant
Hamiltonian formulations of general relativity in four
dimensions is the one given in terms of Ashtekar-Barbero
variables [3] (see also Refs. [9-13] for alternative ways
of obtaining the Barbero formulation). Therefore, we report
in Sec. V how to obtain directly the Barbero formulation
from the ADM formulation (bottom-up approach) and, for
the sake of completeness, how to obtain also the ADM
formulation from the Barbero one (top-down approach).
Finally, our concluding remarks are contained in Sec. VI.
Our conventions and notation are those of Refs. [8,13].
In particular, we assume that the n-dimensional spacetime
M can be foliated by spacelike leaves diffeomorphic to X
so that M is diffeomorphic to R x %, with X being an

© 2023 American Physical Society
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orientable (n — 1)-dimensional spatial manifold without
boundary. We use local coordinates adapted to the foliation
of spacetime, M =R x X, and so ¢ and x* (a,b,c,...
taking on the values 1,...,n—1) label the points on
R and X, respectively. The indices [,J,K,... that
take on the values 0,1,....n—1 are SO(n—-1, 1)
[SO(n)] valued and are lowered and raised with the n-
dimensional Minkowski (6 = —1) or Euclidean (¢ = 1)
metric (r;;) = diag(o, 1,...,1). Symmetrization or anti-
symetrization symbol in any couple of indices involves a
1/2 factor.

II. FROM SO(rn -1, 1) [SO(n)] PHASE-SPACE
VARIABLES TO ADM VARIABLES

We begin with the Hamiltonian formulation of the n-
dimensional Palatini action reported in Refs. [7,8], which
involves the canonical pair (Q,;, 1) and is given by

S = / dtd="x (204 0,y — 2, G" —2N“D, — N 7).
RxX

(1)

where X is a (n — 1)-dimensional spacelike hypersurface
without boundary and

gll = 2[1el Qaj]’ (2&)

-@a = 2ﬁbla[a Qb]l - Qalabﬁblv (Zb)

1

H = —0TITIY Ry + 201U T1PV1Q 1 Q) + 2001 (2N,
(2¢)

are the Gauss, diffeomorphism, and Hamiltonian first-class
constraints, respectively. Here, R,,'; = 9,/ ; — 0,/ +
kK, =T, 1¢,K, is the curvature of the connection
I, defined by V1% := 91" 4 T?  01¢ — T, I +
r,//,n” =0 wih 1°¢,=r0°, and TI,/,=-T,"
Furthermore, h = det(izab) with 7" =y, TTT1* | and so
h is a tensor density of weight 2(n —2), and A is the
cosmological constant. As usual, the dot ““” stands for the
partial derivative with respect to the coordinate time ¢, 0,,
whereas 9, = d/0ox”.

The canonical formulation (1) was obtained in Ref. [8]
from the n-dimensional Palatini action by using a suitable
parametrization of the vielbein e/ and the SO(n —1, 1)
[SO(n)] connection w!;. Alternatively, the formulation (1)
can also be obtained by explicitly solving the irreducible
second-class constraints of the theory that are equivalent
to the original reducible second-class constraints of the
n-dimensional Palatini theory [7,14].

To perform the symplectic reduction means to go from
the Hamiltonian description in terms of the phase-space
variables (Q,;.T11¢) to the Hamiltonian formulation in

terms of the ADM variables (q,;,, #%?) by fixing the gauge
freedom generated by the Gauss constraint 7z According
to Dirac’s theory of constrained systems, a gauge condition
must be imposed by hand. All of this is what we call the
top-down approach.

A. The geometrical variables involved
in the symplectic reduction

We define the variables (g, 7%”) on X by first defining
the inverse metric ¢g“* on

g = p-1/(n=2) b (3)
Thus, the inverse of g is given by
9ap = hl/(n_z)hab, (4)

. . Zab
where hp, is the inverse of &” and then g,.q¢” = &%

Therefore, g, is defined only in terms of the momentum
variable T1¢/.
We also define

;[ab = ]"éab _ ch]"écdqab (5)
with
kb = g, (6)

Thus, because of (3) and (4), both k%* and 7#%® are functions
of the canonical variables (Q,;, [1*). The explicit form of
7% in terms of the phase-space variables is given by

g = /o (BRI, — BT Q,). (7)

Equations (4) and (7) define a projection map
(Qar TT) — (g, 7). Tt will be shown some lines below
that (g, 7%") are indeed the ADM phase-space variables of
general relativity. Equivalently, we can say that (g, 7%°)
label the gauge orbits on the constrained surface generated
by the Gauss constraint of the Hamiltonian formulation of
the Palatini action in n dimensions given by (1).

Due to the fact that (7) can be thought as n(n—1)/2
equations for n(n — 1) unknowns Q,;, we can solve for Q,;
and obtain

. | ~
Qur = "D H o TP 74 + EgabeJ(mK +onn)IVK,

(8)

where IT" = —IT’! are n(n — 1) /2 independent variables of
weight 1, n; is the internal vector defined in (9) of Ref. [§]
(nn' = o and n,;I1% = 0), and
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1 2
Habcd = E <Qacgbd + Qadélbc - m habécd) . (9)

The relation (8) is a map from the variables

(7P, li[”) —> (Q,). The inverse map (Q,)+—
(7%, 111 is given by (7) and
v =2me'g,7. (10)

Therefore, T has the same mathematical expression as
@' given in (2a). Thus, the parametrization for Q,; given
by (8) allows us to naturally handle the Gauss constraint.
Note that we can rephrase the previous deduction of the
variables involved: ¢,,, 7%, and I1'/. This alternative
viewpoint is also illustrative and might be preferred by
some readers. The new perspective is as follows: We could
have started the analysis by defining the variables IT"
through the relation (10), keeping in mind that the
symplectic reduction needs to take into account the
Gauss constraint at some point of the analysis. Again,
the relation (10) can be thought as n(n — 1)/2 equations for
n(n —1) unknowns Q,, and its solution is precisely (8)
where the variables 7%’ now play the role of the indepen-
dent free variables. Due to the fact the map is invertible,
then we compute the inverse map and get (7). So, the
interpretation changes, but the formulas are the same.

B. Symplectic reduction

If we substitute the new parametrization for Q,; given
by (8), then the symplectic structure of the Hamiltonian
action (1) becomes

L. o 2 B
MY Q= 7 qap — mat(ﬂabqah)

— hapT1? (1 + onn )Xo, 014, (11)

On the other hand, the first-class constraints given in (1)
acquire the form

G =11V, (12a)
7 pe 1 = L AT T
Do =—quDc:7" - EFaIJH - quabn 9V 1y,
(12b)
H = —6gR — Q pea®P 74 + 20gA
- %ﬁ“ (T1;; + 20nm* M), (12¢)
where
1 2
Qabed =5 <qac61bd + 9ad9re =5 Qachd)’ (13)

q = det(qup), R = q*q"*Rqq is the scalar curvature of
the Levi-Civita connection I'%;,. defined by the metric ¢,
on X, D, is the covariant derivative with respect to %,
and so

Daﬁ'hc = aaﬁ.bc + Fbadﬁ.dc + Fcadﬁ.bd _ I“‘dadﬁ.bc" (14)

whereas V I17 =9, 11" —T? ,, TTV +T /(11K 4T,/ ( TT'K.
In order to obtain (12a), (12b), and (12c¢), we used
habﬁalﬁbj =Ny —oniny and ﬁalﬁbJRab[J = qR, where

the latter expression is easily derived by computing
v[avb]ﬁd =0 and using the standard definition for the
scalar curvature R. In this way, the remaining task is to
handle the terms involving the Gauss constraint in the
constraints (12b) and (12c).

Factoring out the Gauss constraint, which requires to
integrate by parts the last term of (12b) and to neglect the
resulting boundary term, the action (1) becomes after
redefining the Lagrange multiplier of the Gauss constraint
and neglecting the boundary term of (11)

S = / drd"™ ' x(7 G, — 2N“C, — NG — A, @Y,
RxX
(15)

where N :=,/gN, G is given by (12a) and the diffeo-
morphism and Hamiltonian constraints are given by

C o= ~quDc A", (16a)

~ 1
C = —G\/aR - 7Qabcdﬁ'abﬁ'6d + ZUﬁA (16b)
q

Therefore, on the hypersurface where the Gauss constraint
is satisfied, 4" =0, we automatically get the ADM
formulation of general relativity described by the canonical
phase-space variables (g, #*”). However, from Dirac’s
approach to constrained systems [2], we must impose in
(15) the gauge condition that fixes the gauge freedom
generated by the Gauss constraint. Therefore, we consider
the variable 1" as momentum variable and define Y,;, =
—Y,; as its corresponding configuration variable. This
means that we must add the term ITVY,, and also to
impose the constraint Y;; ~# 0. Hence, the action (15)
becomes

S = / dtd"'x(#%§,, + T1MY,; —2N“€, — N€
RxX
- A9 = pry ), (17)

where p/ = —p’! is the Lagrange multiplier that imposes
the constraint Y;; ~ 0. Clearly 4/ ~0 and Y;; ~0 are
second-class constraints (with a possible modification of
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%, and € involving the second-class constraints). Making
them strongly equal to zero, we get the ADM formulation
of general relativity in n dimensions given by the
Hamiltonian action principle [5] (see, of course, the
original work of Arnowitt, Desser, and Misner in four
dimensions [1])

S = / dtd" ' x(#%§,, — 2N“€, — N€), (18)
RxX

where the phase space is described by the canonical pair
(qap, #**) and the constraints are given by (16a) and (16b).

III. FROM ADM TO SOn -1, 1)
[SO(n)] PHASE-SPACE VARIABLES

Now, we start from the Hamiltonian formulation of
general relativity in terms of the ADM variables
(qup» #*), given by the action [5]

S — / dtd-x (700G, — NG, — N7, (19)
RxX

with the first-class constraints

C o= ~quDc A", (20a)

y 1
€ = —0\/qR — 7 Qupea®®®#? +206,/qA,  (20b)
q

where ¢ = det(q,;), R is the scalar curvature of the (n — 1)-
dimensional hypersurface X, A is the cosmological con-
stant, and Q.4 1s defined in (13). Also, D, is the covariant
derivative compatible spatial metric g, i.e.,

Dach = aaqbc - Fdaquc - qucqbd =0. (21)

Next, the idea is to perform a “lifting” of the ADM
Hamiltonian formulation to the Hamiltonian formulation
(1) where the local SO(n—1, 1) [SO(n)] symmetry is
manifest. This is relevant because we can directly get such a
formulation without starting from the n-dimensional
Palatini action, as it is made in Refs. [7,8,14].

This bottom-up approach might also be useful, for
instance, for researchers familiar with Hamiltonian for-
mulations of metric theories—alternative to Einstein’s
general relativity—that desire to see how they look in
the first-order formalism without redoing the computations
from the corresponding first-order Lagrangians of the
metric formulations.

To begin with, we introduce the densitized vector I,
where the internal indices /, J, K, ... that take on the values
0,1,...,n — 1 are lowered or raised with the n-dimensional
Minkowski (6 = —1) or Euclidean (o6 =1) metric
(n;7) = diag(o, 1, ...,1). We now parametrize the inverse

of the spatial metric ¢,, as a function of the variables
I as

qab — h—l/(n—Q)n”ﬁalﬁb]’ (22)

where & := det(n,,[1“T1%’) is a tensor density of weight
2(n —2). By hypothesis, ¢ = det(q,;) > 0, and because of
g = det(q,,) = h'/"2), then h > 0.

Similarly, we introduce the variable Q,;, and parametrize
the ADM momentum as

Fab — h—l/(n—Z)(H—l)“h"dlgdcl:[de)[, (23)

where

~ac¥bd ~ad%bc

1 :a :c
(H—l)abcdzzi(h B+ R = 2h hhd) (24)

is a tensor density of weight 4 and £, is the densitized

metric inverse of #*” == T/T1® ;- Note that the definition of
7% is exactly the same expression given in (7). Moreover,
notice that (H~")%*“? and H ,,.,, defined in (9), fulfill the
relation H . (H™")/°d = (1/2)(8568 4 5455).

Thus, the relations (22) and (23) are invariant under SO
(n—1, 1) [SO(n)] transformations % > A/,I1* when
c=-1[c=1].

In this way, the initial ADM variables (q,,, #%?) of the
Hamiltonian formulation (19) have been parametrized in
terms of the variables (Q,;, [1/). The variables (Q,;,1¢)
are not independent and we must impose the Gauss
constraint

Gl = 2111 0,7 = 0 (25)

among them, which also generates their local SO(n —1,1)
[SO(n)] transformations.

Using (22) and (23), the symplectic structure in (19)
acquires the form

G = =20 001 + hapT1” 157K (5 + onyng )0, 11!

= 2ﬁalQal - Zal(ﬁalQal)
+ hao11?; (1 + onng)4’ o, 1. (26)

Therefore, (Q,;, [1*') are indeed canonical variables up to
the Gauss constraint (25). The remaining task is to rewrite
the first-class constraints (20a) and (20b) in terms of
(Qar, T1%7). To do that, we introduce the covariant derivative
V, compatible with I1 as

vaﬁhl = aaﬁhl + Fbacﬁcl _ Fcacﬁhl + raljﬁhf =0,
(27)
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with I, =T1°,, and I'y;; = —T',;;. Therefore, using (22),
(23), and the identities @abf[“,l:[hj = —onn; and

T R,,;; = qR, the constraints (20a) and (20b) become

- . . 1 ~
Co= 2Hbla[aQb]1 — Q0,117 + Eraljg”

1

+ = hgy IV G, (28a)

NS}

€ = h~ T | —oT1TIY Ry + 201U TTPVIQ 1 0y

1~y - 1
=3P (G1y 4 2005 G 1) | + 26hT A, (28b)

where we used V, %" = 09,9 —1?, 9" + TG +
r,’ K??' K. Therefore, adding the Gauss constraint (25) to
the action (19) and collecting all the terms proportional to
this constraint, the action (19) acquires the form

S = / dtd="x (204 0,y — 2, %" —2N“D, — N 7).
RxX

(29)

o . .
with N =h 22N and the first-class constraints are

given by
gt = oMl ), (30a)
D 1= 270,041 = Qur0p 11", (30b)

X

i= —oTITI? Ry + 201UTTPMIQ O, 4 2001/ (=2 A,
(30c)

where we neglected the boundary term in (26) and the term
that comes out from the integration by parts of V,;?’ /. and
also A;; = —4y;.

Note that the formulation encompassed by the action (29)
with the constraints (30a)—(30c) is precisely the Hamiltonian
formulation of the n-dimensional Palatini action (1).

Let us make a remark. In a spacetime of dimension four,
we can also perform the bottom-up approach of Sec. III to
go from the ADM formulation to the SO(3,1) [SO(4) if
o = 1] Hamiltonian formulation of the Holst action [9],
featuring only first-class constraints, given in Refs. [11,13].
This is achieved by using (23) and the relationship between
the configuration variable Q,; and the configuration var-
iables C,; or K,; described in Refs. [11,13]. Similarly, the
top-down approach to go from the SO(3,1) [SO(4)]
Hamiltonian formulation [11,13] of the Holst action to
the ADM formulation can also be made following the

approach of Sec. II but involving the configuration vari-
ables C,; or K.

IV. FROM SO(rn-1) TO ADM VARIABLES
AND VICE VERSA

Imposing the time gauge in the formulation given by the
action (1) results in [8]

S = / dtd""x(211Q,; — 2,;9" — 2N, — N ),
RxX

(31)
with the first-class constraints given by
G =211l 7, (32a)
Dy = 2M"0,0); = Q,i0,M1"", (32b)
H = —oTITIIR ;5 + 20T 0,0,
+ 20| det(I14)|/ ("=2) A, (32¢)

The indices i, j, k, ... taking on the values 1,2, ...,n — 1 are
SO(n — 1) valued, which are raised or lowered with the
(n — 1)-dimensional Euclidean metric §;;. Here, Q,; and
1% are canonical variables that transform as SO(n — 1)
vectors under local SO(n — 1) rotations. Geometrically,
Q, is related to the extrinsic curvature and IT%
is the densitized triad defined on Z. Also, det(I1%) is a
tensor density of weight n —2. On the other hand, the
Gauss constraint ¢/ generates the local SO(n — 1) rota-

tions whereas the diffeomorphism @a and scalar A
constraints are still responsible of generating the spacetime
diffeomorphisms.

In the next two subsections we show how to go from this
Hamiltonian formulation to the ADM one (top-down
approach) and vice versa (bottom-up approach).

A. From SO(n-1) to ADM variables

The path we follow is analogous to the one described in
Sec. II; hence, we begin with the formulation given by the
action (31) and the first-class constraints (32a)—-(32c).
First, let II,; be the inverse of %, so II,[1% = §/ and

I1,,IT°" = 5%. Then, we define the spatial metric g, and its

inverse g%’ as

Gap 3= | det(TT) [ =211, 10, (33a)

g0 = | det(I14) |72/ (=241, (33b)
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Using these expressions, we define the quantities

(qacqbd + qadth _ zqachd) , (3421)

1
—1\abcd . _
(07t = 3

1 2
Qubed = 5 (%J]hd + Gaa9pc — —Qathd)v (34b)

n—2
which satisfy Qp.r(Q™") ! = (1/2)(858¢ + 5455).

On the other hand, in the ADM formulation, the
canonical variables are the spatial metric ¢g,, and its
conjugated momentum 7#%’. So, the remaining task is to
define the ADM momentum 7% in terms of the SO(n — 1)
variables:

ﬁ_gb = |det(ﬁai)|2/(n_2)(Q_l)adeH(CiQd)[- (35)

Hence, to reach the ADM formulation we use (35) and
solve for Q,;. We recall that Q,; are (n— 1) variables.
Thus, in order to solve (35), which has n(n—1)/2
equations, we must introduce (n —1)(n —2)/2 indepen-
dent variables [TV = —I1/%. Therefore, the solution of (35) is

L - 1 gy
Qai = | det(Hal)|_2/<n_2>QabcdHhiﬁCd + El:lajn]i' (36)

By using (36), we rewrite the symplectic structure given
in (31) and we get

. 2 . . .
A1 Qi =74 ——Zat(ff”bqub) +10,/TL;0,11%, - (37)
P
and we also rewrite the first-class constraints given in (31)
and we obtain

G =117, (38a)

~ 1 S B
‘@a = _qachﬁ'bc - Eraijnl] - EI:[ale]vhH"

L]

(38b)

> 1 ~..~
% = —JqR - Qabcdﬁ'abﬁ'Cd + ZGQA + ZHUHU’ (380)

where ¢ = det(q,p), R = q*q"'R .4 is the scalar curva-
ture of the Levi-Civita connection I'“., and D, is the
covariant derivative with respect to the Levi-Civita
connection [see Eq. (14)]. We also used the identity
ﬁaiﬁbjRabij = qR

By substituting (37), (38a), (38b), and (38c) into the
action (31) and factoring out all the terms proportional to
the Gauss constraint leads us to the action

S— / dtd" x(7% G, —2N“C y = NG — N %"7),  (39)
RxX

where N = ,/gN, G s given by (38a), and the diffeo-
morphism and Hamiltonian constraints are given by

C o= ~quDc 7", (40a)

g 1
€ = —0\/qR — 7 Qupea®®®® 7 + 20,/gN.  (40D)
q

Thus, just as in Sec. II, we obtain the ADM formulation in
the hypersurface where the Gauss constraint G =0 is
satisfied. Using Dirac’s approach to constrained systems [2],
we introduce the variable Y;; = —Y; as the configuration
variable conjugated to ITY. Therefore, we add the term
I17Y;; and the constraint ¥;; ~ 0. Hence, the action (39)
becomes

S = / dtd"" x(7%§,, + 11V ,;; = 2N, — NC
RxX
— NG =Py ), (41)

where p"/ = —p/! is the Lagrange multiplier that imposes the
constraint Y;; ~ 0. Since 4"/ ~0 and Y;; ~ 0 are second-

class constraints (with a possible modification of ¢, and ¢
involving the second-class constraints), we can make them
strongly equal to zero, which results in the ADM formu-
lation of general relativity given by the Hamiltonian action
principle [5]

5 / did"\ x(70 5, — IND, — NT), (42)
RxX

where (g, #%?) are the canonical variables and the con-

straints are given by (40a) and (40b).

B. From ADM to SO(r —1) variables

Similarly to what is made in Sec. III, we can make a
“lifting” from the ADM formulation given in (42) to the
SO(n — 1) formulation of (31). To do so, we have to
enlarge the phase space to account for the additional gauge
freedom. Thus, we must replace the initial ADM variables
(Gap» #°) with the variables (Q,;, 1), where the indices
i,j,k, ... take on the values 1,...,n — 1 and are raised or
lowered with the (n — 1)-dimensional Euclidean metric §;;.
The enlargement of the phase space requires us to impose
an additional constraint among the variables (Q,;, [1%)
because they are not independent among themselves.
Hence, we must add the Gauss constraint

G = 2014 g ) ~ 0, (43)

which generates the local SO(n — 1) rotations.
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Thus, to perform the “lifting” from the ADM variables
we use (33a) and (35), where for Q*°? in (35) we use
(33b). Then, the symplectic structure of (42) becomes

ﬁabéab = 2ﬁaiQai - 2at(ﬁaiQai) - l:Iajgijatflai' (44)
Therefore, (Q,;, T1%) are indeed canonical variables up to

the Gauss constraint (43). On the other hand, using (33a)
and (35), the constraints (40a) and (40b) become

ijs

~ o o1 S R
€ o= 201701, Q)i — Q0,11 t5Ta " +§Ualnb]vhg“

(45a)
% — | det(Fier) |/ (—aﬁ“’ﬁ”fRabij
Sffaliflbl] L iz
+ Q.iQpj — I ij
+ 20| det(I147) |/ ("=2) A, (45b)

Here I,/ i is the connection compatible with e,
V1% =0 017 + 1, Q1 =T, 1P + T,/ 117 =0, (46)

and R, ; = 0,1 — 0T, 4+ Thp ;= Tk,
curvature of I';.

Adding the Gauss constraint (43) to the action (42) and
factoring out all the terms proportional to this constraint,
the action acquires the form

is the

S = / dtd x(201 Qi — 1,9 = 2N D, = N ),
RxX
(47)

with N = | det(I1%)|~/(*=2) N and the first-class constraints
are given by

@i = f1alig ), (48a)
D = 21170,0y); = Q011" (48b)
% = —GﬁaiﬁbjRab,'j + 2ﬁa[iﬁ|b|j] Qainj

+ 20| det(I1%) [/ (-2 A, (48¢c)

and 1;; = —4;;. Note that we neglected the boundary term
in (44) and also the boundary term that comes out from the
integration by parts of V, 4.

The formulation encompassed by the action (47) with
the constraints (48a)—(48c) is precisely the Hamiltonian
formulation corresponding to the SO(n — 1) formulation
derived from the n-dimensional Palatini action (31) [8].

V. FROM ADM TO ASHTEKAR-BARBERO
VARIABLES AND VICE VERSA

We can directly obtain the Barbero formulation [3] of
general relativity from the ADM formulation [1]. This new
approach avoids the canonical transformation from the
SO(3) phase-space variables as was done by Barbero
himself and is also an alternative to other Hamiltonian
methods that get such a formulation from the Holst
action [9-13]. As the reader can guess, this (bottom-up)
approach is analogous to the one presented in Sec. IV B,
and thus the starting point is precisely the ADM formu-
lation (18) in a spacetime of dimension four, which is given
by the action

S = / dtd®x (i gy, — 2N“C, — N€).  (49)
RxX

Similarly, it is possible to perform the top-down
approach, i.e., to start from the Barbero formulation and
to get the ADM one following the same ideas developed in
Sec. IVA. All of this is done in what follows.

A. From ADM to Ashtekar-Barbero variables

We begin by introducing the densitized triad 1% that is
related to the inverse of the spatial metric ¢, through

R RIS
| det(f1)]

g’ , (50)

where det(I1%) is a tensor density of weight 2 and the
SO(3) indices i, j, k, ... take on the values 1, 2, 3 and are
lowered (raised) with the three-dimensional Euclidean

metric ;; (§"). Let I1,,; be the inverse of [1*, i.e., I, 11 =

8/ and II,,IT" = &%, so the spatial metric is given by
Qab = |det(ﬁai)|5ijnailjbj- (51)

Next, we introduce the covariant derivative V, compat-
ible with the densitized triad 1%, i.e.,

vaﬁbi = auﬁbi + Fbacﬁci _ l'*cacﬁbi + eijkrujﬁbk — 0’
(52)

where %, = I'“ ;. The previous relations allow us to get
both "¢, and I',; in terms of 1% and their derivatives. Note
that I'“,.. is the connection constructed with ¢,, and I'y; is
related to the SO(3) connection I','; used in Sec. IV by
[, =—(1/2)e;4T 7%, where €;; is the totally antisym-
metric SO(3) invariant tensor, with €53 = 1.

Now, we introduce the Ashtekar-Barbero connection A;
into the formalism through the relation
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zab :MLI:[M)'

v (Q_1>adeH(ci(Ad)i - Fd)i)7 (53)

where y is the Barbero-Immirzi parameter and

(Q—l)abcd = l

5 (qacqbd + qadqbc _ anchd>’ (54)

with ¢“® given by (50)." Therefore, the ADM variables (51)
and (53) have been parametrized in terms of the Ashtekar-
Barbero variables (A,;, [14).

To go from the phase space described by the ADM
variables (g, #*?) to the Ashtekar-Barbero variables

(Auis I:I”i), we need to introduce the Gauss constraint
~ 1 . . o
G == (0,11 + ¢ A JTI%) % 0, (55)
Y

Continuing with the analysis, we substitute (51) and (53)
in the symplectic structure of (49), and we get
- Fai)ﬁai]

2. 2
7 = ;HmAai + e, 11,/9 0,1 — ;at[(Aai

1 ..
+ - aa(eijknalnbjarnbk>' (56)
4

Thus, modulo the Gauss constraint (55), the variable A,; is
canonically conjugated to I1%. On the other hand, using
(51) and (53), the diffeomorphism and Hamiltonian con-
straints that appear in (49) become

~ | Ry L ~.
Cga = (2Hbla[aAb]i - Aaiabnbl) + Faigl

~

1 SR
3 €iijale/ngk» (57a)

1

¢ = Weijkﬁmﬁbj [Fup* 4 (o7* = 1)R "]
+ 20| det(I1)|'/2A +

1 2. -
.~ 17/~ _Halvagi
| det(I1*)['/2 (V

(57b)
where we used €;;[1“TI*R,,* = —gR and the identity
"~ 1 L
201V, 9; = - ;eijknmnh’] [Fap* = Rap*
- eklm(Aal - Fal)(Abm - Fbm)]? (58)

that relates the curvatures

lNOtiCC that (Q—l)abcd = |det(ﬁ”i)|_1/2Gade’ where Gabcd is
the inverse of the so-called supermetric G,p.4 [15].

Fop' = 0,Ap = 0A, + € yAJAK,  (59)

Rabi = aarbi - abrai + €ijkrajrbk, (Sgb)
of A," and T,', respectively.

Therefore, by substituting (56), (57a), (57b) into the
action (49), adding the Gauss constraint (55) and after
factoring out all the terms proportional to the Gauss
constraint, the action (49) acquires the form

2. .. ~. ~ >
S= / dtd’x (H‘”Aa,- -9 —2N“D, — ]}]%) ., (60)
RxZ 4

where we redefined N := | det(f1)|~'/2N and the first-
class constraints are given by

- 1 g . o~

7 —— (aaHal + €1jkAajHak)’ (613)
14

~ 1, -, ~ bi

5y = L @19,y — A0y an
14

= 1 e

IO = y—zeiij“’Hbf [Fabk + (57/2 - 1)Rabk]
+ 26| det(T1%)|A. (61c)

This is precisely the Barbero formulation [3] of general
relativity in four dimensions, which is the starting point in
the loop quantum gravity approach [4,5]. As far as we
understand, the current approach is the easiest way of
getting the Hamiltonian formulation of general relativity in
terms of the Ashtekar-Barbero variables A,; and I1%. Note
that our result (60) matches the conventions of Ref. [5].

B. From Ashtekar-Barbero to ADM variables

For the sake of completeness, we now analyze the top-
down approach, in which we go from the Barbero to the
ADM formulation. Therefore, the starting point is the
formulation given by the action [3] (see also [9-13])

2. . -~ - =
S:/ dtd3x<H“’Aai—lig’—ZN“@a—N«%ﬂ) (62)
RxZ 14

where the first-class constraints are given by

~. 1 ~ . ] .~
7 — (aa ai 4 eljkAajHak)’ (633)
14
~ 1 . ~ .
5 =L 00,0, a0y (63)
4
S 1 o
% = —2€iijmej [Fabk + (5}/2 - I)Rabk]
4
+ 20| det(f1%)|A. (63c)
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Here, F,;; and R ,;,; are the curvatures of the corresponding
connections A,; and [',;.

In the Barbero formulation, the phase-space variables are
the SO(3) connection A,; and the densitized triad T%. To
get the ADM formulation from the Barbero one, we need to
define the ADM variables in terms of the Ashtekar-Barbero
variables

9ab = |det(ﬁai>|nainh[’ (643)

- 1 Srai —1\abc i
7 = | det (1) (@) T (A = Ti). - (64b)

where Tl, is the inverse of II% so g% =

| det(T1%) |~ 'TI*T1%; is the inverse of q,,. Here, (Q~')eb<d
is given by (54).

Note that the expression (64b) can be thought as six
linear equations for nine unknowns A,;. With this in mind,
we can solve for A,; and obtain

Lo 4 .
Agi =T g +y|det(I1)] lQabcdei”‘d+§€iija1Hkv (65)
with

Qabcd = (Qacqbd + 9ad9pc — qachd)’ (66)

N[ =

where Q. (@714 = (1/2)(858{ + 545;). Thus, the
variables T’ that appear in the right-hand side of (65)
are three independent variables to account for the difference
in the number of independent variables between A,;
and 7.

Therefore, using (65) the symplectic structure of (62) can
be written as

2. .. . ~ - . 2 - .
;HmAai = #q,, — ;11 /110,11 + ;at[(Aai - T,)I%]

1 Lo
= —0, (€TI0, IT°F). (67)
4

On the other hand, the first-class constraints (63a), (63b),
and (63c) become

G =T, (68a)

. 1 o~ -
D = —qupD 7 =T, 1T + zeiijalejvak’ (68b)

=z 2. . . 1...
A = —6qR — Qupea®® 7 + 26g A — ;H‘”VQH,» +5 1T,

(68c¢)

where ¢ = det(q,,), R = q“°q""R,p.q is the scalar
curvature of the Levi-Civita connection I'“;., and D, is
the covariant derivative with respect to such a connection
[see Eq. (14)]. We also used the identities (58) and
€ijkﬁaiﬁbjRuhk = —qR

By substituting (67), (68a), (68b), and (68c) into the
action (62), and after factoring out all the terms propor-
tional to the Gauss constraint, which implies replacing the
Lagrange multiplier 4; with A;, and neglecting the boun-
dary terms in (67), the action (62) acquires the form

S = / dtd®x(7#§,y, — 2N“C, — NC — NG, (69)
RxX

where N = ,/gN, &' is given by (68a) and the diffeo-
morphism and Hamiltonian constraints are

C o= —quD A", (70a)

1
ﬁ Qabc

Therefore, just as in Secs. II and IVA, the ADM formu-
lation lies in the hypersurface where the Gauss constraint is
satisfied ' = 0. To provide a rigorous Hamiltonian for-
mulation [2], we must introduce the variable Y; as the
configuration variable conjugated to IT'. Then, we add the
term [T’ f/i and the corresponding constraint Y; =~ 0. Thus,
the theory is described by the action

€ = —0\/qR — 7 + 26, /g, (70D)

S = / did®x(7# gy, + I'Y; — 2N“C, — NG
RxX
- NG =Y, (71)

where p' is the Lagrange multiplier that imposes the
constraint ¥; ~ 0. Since &' ~0and Y; = 0 are second-class
constraints (with a possible modification of (ga and ¢
involving the second-class constraints), we make them
strongly equal to zero and obtain the ADM formulation
of general relativity given by the Hamiltonian action
principle [1]

S = / dtd3x(7#§,, — 2N“G, — NC).  (72)
RxX

where (q,;,,#%") are the canonical variables and the
constraints are given by (70a) and (70b).

VI. CONCLUDING REMARKS

We conclude the paper by making some remarks. Many
researchers are familiar with the ADM formulation of
general relativity [1] (see also [S5])—for instance, those
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working in numerical relativity—but not with the
Hamiltonian formulations of general relativity that come
from Lagrangian actions that depend functionally on the
vielbein and the connection, such as the Palatini or Holst
actions [9]. Such readers can now use the approach of the
Sec. V of this paper to go immediately to the Hamiltonian
formulation of general relativity in terms of Ashtekar-
Barbero variables [3] as an alternative approach to the
several ways of getting such a formulation [3,9-13].
Similarly, using the approach of Secs. III and IV, readers
can reach directly the SO(n — 1, 1) [SO(n)] and SO(n — 1)
Hamiltonian formulations of general relativity described by
the Palatini action [7,8,14] starting only from the ADM
formulation. These facts are relevant and can be used, for
instance, to express any previous result based on ADM
variables—such as conserved quantities—in terms of the
phase-space variables involved in the other Hamiltonian

formulations. We think all these results fill out a gap present
in the literature on the canonical analysis of general
relativity. Furthermore, the reduction process reported in
Secs. I, IV, and V of this paper from any of the first-order
Hamiltonian formulations of general relativity to the ADM
formulation can also be viewed in this way, namely, as a
fast track that circumvents the subtleties and technical
details of the canonical analysis and allows us to reach the
standard ADM formulation.
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