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We obtain the Arnowitt-Deser-Misner formulation of general relativity in n dimensions (n ≥ 3) from its
either SO(n − 1, 1) [SOðnÞ] or SOðn − 1Þ Palatini Hamiltonian formulations and vice versa [we recall that
SO(n − 1, 1) [SOðnÞ] requires no gauge fixing whereas SOðn − 1Þ involves the time gauge]. Similarly, the
Hamiltonian formulation of general relativity in terms of Ashtekar-Barbero variables can also be directly
obtained from the Arnowitt-Deser-Misner Hamiltonian formulation and vice versa, which is an alternative
approach to the way followed by Barbero. We give the relevant maps among the phase-space variables and
relate the corresponding symplectic structures and the first-class constraints.
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I. INTRODUCTION

The Hamiltonian analysis of general relativity has been a
fruitful arena of research since the pioneering work of
Arnowitt, Deser, and Misner (ADM) [1]. The usual
approach to get the Hamiltonian formulation of general
relativity—and, in fact, of any other theory—is to begin
with a particular Lagrangian formulation of it [2]. This was
indeed the route followed by ADM. Another way is to
perform a canonical transformation from a given
Hamiltonian formulation, which was the approach followed
by Barbero [3] to get the Hamiltonian formulation of
general relativity that is the starting point of the quantum
theory known as loop quantum gravity [4,5].
Nevertheless, there are other approaches to get a

Hamiltonian formulation of general relativity that do not
follow the usual or standard Dirac approach, among them
we find the seminal work of Ashtekar [6] and also the work
of Thiemann [5], which link, respectively, the ADM
formulation with the Ashtekar and SOðn − 1Þ formulations
of general relativity. The relevance of these two latter works
is that they both link Hamiltonian formulations of general
relativity that have a different number of phase-space
variables. In this paper, we follow this line of thought
and relate the ADM formulation in n dimensions (n ≥ 3)

with the SO(n − 1, 1) [SOðnÞ] Hamiltonian formulation of
general relativity that keeps intact the local SO(n − 1, 1)
[SOðnÞ] invariance and involves only first-class constraints
[7,8]. The link is made through two approaches: the top-
down, in which we begin with the SO(n − 1, 1) [SOðnÞ]
Hamiltonian formulation and get the ADM formulation
(Sec. II); and the bottom-up, in which we begin with the
ADM formulation and get the SO(n − 1, 1) [SOðnÞ]
Hamiltonian formulation (Sec. III). As is clear after reading
these two sections, the two approaches can be slightly
modified to relate the ADM formulation in n dimensions
(n ≥ 3) with the SOðn − 1Þ Hamiltonian formulation that is
obtainedwhen the time gauge is imposed in the SO(n − 1, 1)
[SOðnÞ] Hamiltonian formulation, which is reported
in Sec. IV. The spacetime of dimension four is particularly
important. As we mentioned, one of the most relevant
Hamiltonian formulations of general relativity in four
dimensions is the one given in terms of Ashtekar-Barbero
variables [3] (see also Refs. [9–13] for alternative ways
of obtaining the Barbero formulation). Therefore, we report
in Sec. V how to obtain directly the Barbero formulation
from the ADM formulation (bottom-up approach) and, for
the sake of completeness, how to obtain also the ADM
formulation from the Barbero one (top-down approach).
Finally, our concluding remarks are contained in Sec. VI.
Our conventions and notation are those of Refs. [8,13].

In particular, we assume that the n-dimensional spacetime
M can be foliated by spacelike leaves diffeomorphic to Σ
so that M is diffeomorphic to R × Σ, with Σ being an
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orientable (n − 1)-dimensional spatial manifold without
boundary. We use local coordinates adapted to the foliation
of spacetime, M ¼ R × Σ, and so t and xa (a; b; c;…
taking on the values 1;…; n − 1) label the points on
R and Σ, respectively. The indices I; J; K;… that
take on the values 0; 1;…; n − 1 are SO(n − 1, 1)
[SOðnÞ] valued and are lowered and raised with the n-
dimensional Minkowski (σ ¼ −1) or Euclidean (σ ¼ 1)
metric ðηIJÞ ¼ diagðσ; 1;…; 1Þ. Symmetrization or anti-
symetrization symbol in any couple of indices involves a
1=2 factor.

II. FROM SO(n− 1, 1) [SOðnÞ] PHASE-SPACE
VARIABLES TO ADM VARIABLES

We begin with the Hamiltonian formulation of the n-
dimensional Palatini action reported in Refs. [7,8], which
involves the canonical pair ðQaI; Π̃aIÞ and is given by

S ¼
Z
R×Σ

dtdn−1xð2Π̃aI _QaI − λIJG̃
IJ − 2NaD̃a − N

˜

˜̃H Þ;

ð1Þ
where Σ is a (n − 1)-dimensional spacelike hypersurface
without boundary and

G̃ IJ ≔ 2Π̃a½IQa
J�; ð2aÞ

D̃a ≔ 2Π̃bI
∂½aQb�I −QaI∂bΠ̃bI; ð2bÞ

˜̃H ≔−σΠ̃aIΠ̃bJRabIJþ2Π̃a½IΠ̃jbjJ�QaIQbJþ2σh1=ðn−2ÞΛ;

ð2cÞ

are the Gauss, diffeomorphism, and Hamiltonian first-class
constraints, respectively. Here, Rab

I
J ¼ ∂aΓb

I
J − ∂bΓa

I
J þ

Γa
I
KΓb

K
J − Γb

I
KΓa

K
J is the curvature of the connection

Γa
I
J defined by ∇aΠ̃bI ≔ ∂aΠ̃bI þ Γb

acΠ̃cI − Γc
acΠ̃bI þ

Γa
I
JΠ̃bJ ¼ 0 with Γc

ab ¼ Γc
ba and Γa

I
J ¼ −ΓaJ

I .

Furthermore, h ¼ detð ˜̃habÞ with ˜̃h
ab ≔ ηIJΠ̃aIΠ̃bJ, and so

h is a tensor density of weight 2ðn − 2Þ, and Λ is the
cosmological constant. As usual, the dot “·” stands for the
partial derivative with respect to the coordinate time t, ∂t,
whereas ∂a ¼ ∂=∂xa.
The canonical formulation (1) was obtained in Ref. [8]

from the n-dimensional Palatini action by using a suitable
parametrization of the vielbein eI and the SO(n − 1, 1)
[SOðnÞ] connection ωI

J. Alternatively, the formulation (1)
can also be obtained by explicitly solving the irreducible
second-class constraints of the theory that are equivalent
to the original reducible second-class constraints of the
n-dimensional Palatini theory [7,14].
To perform the symplectic reduction means to go from

the Hamiltonian description in terms of the phase-space
variables ðQaI; Π̃aIÞ to the Hamiltonian formulation in

terms of the ADM variables ðqab; π̃abÞ by fixing the gauge
freedom generated by the Gauss constraint G̃ IJ. According
to Dirac’s theory of constrained systems, a gauge condition
must be imposed by hand. All of this is what we call the
top-down approach.

A. The geometrical variables involved
in the symplectic reduction

We define the variables ðqab; π̃abÞ on Σ by first defining
the inverse metric qab on Σ

qab ≔ h−1=ðn−2Þ ˜̃hab: ð3Þ

Thus, the inverse of qab is given by

qab ¼ h1=ðn−2Þh
≈ab

; ð4Þ

where h
≈ab

is the inverse of ˜̃h
ab

and then qacqcb ¼ δba.

Therefore, qab is defined only in terms of the momentum
variable Π̃aI.
We also define

π̃ab ≔ k̃ab − qcdk̃
cdqab ð5Þ

with

k̃ab ≔ qcðaΠ̃bÞIQcI: ð6Þ

Thus, because of (3) and (4), both k̃ab and π̃ab are functions
of the canonical variables ðQaI; Π̃aIÞ. The explicit form of
π̃ab in terms of the phase-space variables is given by

π̃ab ¼ h−1=ðn−2Þð ˜̃hcðaΠ̃bÞIQcI −
˜̃h
abΠ̃cIQcIÞ: ð7Þ

Equations (4) and (7) define a projection map
ðQaI; Π̃aIÞ⟼ ðqab; π̃abÞ. It will be shown some lines below
that ðqab; π̃abÞ are indeed the ADMphase-space variables of
general relativity. Equivalently, we can say that ðqab; π̃abÞ
label the gauge orbits on the constrained surface generated
by the Gauss constraint of the Hamiltonian formulation of
the Palatini action in n dimensions given by (1).
Due to the fact that (7) can be thought as nðn − 1Þ=2

equations for nðn − 1Þ unknownsQaI , we can solve forQaI
and obtain

QaI ¼ h1=ðn−2ÞHabcdΠ̃b
I π̃

cd þ 1

2
h
≈ab

Π̃b
JðηIK þ σnInKÞΠ̃JK;

ð8Þ
where Π̃IJ ¼ −Π̃JI are nðn − 1Þ=2 independent variables of
weight 1, nI is the internal vector defined in (9) of Ref. [8]
(nInI ¼ σ and nIΠ̃aI ¼ 0), and
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Habcd ≔
1

2

�
h
≈ac

h
≈bd

þ h
≈ad

h
≈bc

−
2

n − 2
h
≈ab

h
≈cd

�
: ð9Þ

The relation (8) is a map from the variables
ðπ̃ab; Π̃IJÞ⟼ ðQaIÞ. The inverse map ðQaIÞ⟼
ðπ̃ab; Π̃IJÞ is given by (7) and

Π̃IJ ¼ 2Π̃a½IQa
J�: ð10Þ

Therefore, Π̃IJ has the same mathematical expression as
G̃ IJ given in (2a). Thus, the parametrization for QaI given
by (8) allows us to naturally handle the Gauss constraint.
Note that we can rephrase the previous deduction of the

variables involved: qab, π̃ab, and Π̃IJ. This alternative
viewpoint is also illustrative and might be preferred by
some readers. The new perspective is as follows: We could
have started the analysis by defining the variables Π̃IJ

through the relation (10), keeping in mind that the
symplectic reduction needs to take into account the
Gauss constraint at some point of the analysis. Again,
the relation (10) can be thought as nðn − 1Þ=2 equations for
nðn − 1Þ unknowns QaI , and its solution is precisely (8)
where the variables π̃ab now play the role of the indepen-
dent free variables. Due to the fact the map is invertible,
then we compute the inverse map and get (7). So, the
interpretation changes, but the formulas are the same.

B. Symplectic reduction

If we substitute the new parametrization for QaI given
by (8), then the symplectic structure of the Hamiltonian
action (1) becomes

2Π̃aI _QaI ¼ π̃ab _qab −
2

n − 2
∂tðπ̃abqabÞ

− h
≈ab

Π̃b
JðηIK þ σnInKÞΠ̃JK

∂tΠ̃aI: ð11Þ

On the other hand, the first-class constraints given in (1)
acquire the form

G̃ IJ ¼ Π̃IJ; ð12aÞ

D̃a ¼ −qabDcπ̃
bc −

1

2
ΓaIJΠ̃IJ −

1

2q
qabΠ̃bIΠ̃cJ∇cΠ̃IJ;

ð12bÞ
˜̃H ¼ −σqR −Qabcdπ̃

abπ̃cd þ 2σqΛ

þ 1

4
Π̃IJðΠ̃IJ þ 2σnInKΠ̃JKÞ; ð12cÞ

where

Qabcd ≔
1

2

�
qacqbd þ qadqbc −

2

n − 2
qabqcd

�
; ð13Þ

q ¼ detðqabÞ, R ≔ qacqbdRabcd is the scalar curvature of
the Levi-Civita connection Γa

bc defined by the metric qab
on Σ, Da is the covariant derivative with respect to Γa

bc,
and so

Daπ̃
bc ≔ ∂aπ̃

bc þ Γb
adπ̃

dc þ Γc
adπ̃

bd − Γd
adπ̃

bc; ð14Þ

whereas ∇aΠ̃IJ¼∂aΠ̃IJ−Γb
abΠ̃IJþΓa

I
KΠ̃KJþΓa

J
KΠ̃IK .

In order to obtain (12a), (12b), and (12c), we used
h
≈ab

Π̃a
IΠ̃b

J ¼ ηIJ − σnInJ and Π̃aIΠ̃bJRabIJ ¼ qR, where

the latter expression is easily derived by computing
∇½a∇b�Π̃cI ¼ 0 and using the standard definition for the
scalar curvature R. In this way, the remaining task is to
handle the terms involving the Gauss constraint in the
constraints (12b) and (12c).
Factoring out the Gauss constraint, which requires to

integrate by parts the last term of (12b) and to neglect the
resulting boundary term, the action (1) becomes after
redefining the Lagrange multiplier of the Gauss constraint
and neglecting the boundary term of (11)

S ¼
Z
R×Σ

dtdn−1xðπ̃ab _qab − 2NaC̃ a − NC̃ − ΛIJG̃
IJÞ;

ð15Þ

where N ≔ ffiffiffi
q

p
N
˜
, G̃ IJ is given by (12a) and the diffeo-

morphism and Hamiltonian constraints are given by

C̃ a ≔ −qabDcπ̃
bc; ð16aÞ

C̃ ≔ −σ
ffiffiffi
q

p
R −

1ffiffiffi
q

p Qabcdπ̃
abπ̃cd þ 2σ

ffiffiffi
q

p
Λ: ð16bÞ

Therefore, on the hypersurface where the Gauss constraint
is satisfied, G̃ IJ ¼ 0, we automatically get the ADM
formulation of general relativity described by the canonical
phase-space variables ðqab; π̃abÞ. However, from Dirac’s
approach to constrained systems [2], we must impose in
(15) the gauge condition that fixes the gauge freedom
generated by the Gauss constraint. Therefore, we consider
the variable Π̃IJ as momentum variable and define YIJ ¼
−YJI as its corresponding configuration variable. This
means that we must add the term Π̃IJ _YIJ and also to
impose the constraint YIJ ≈ 0. Hence, the action (15)
becomes

S ¼
Z
R×Σ

dtdn−1xðπ̃ab _qab þ Π̃IJ _YIJ − 2NaC̃ a − NC̃

− ΛIJG̃
IJ − ρ̃IJYIJÞ; ð17Þ

where ρ̃IJ ¼ −ρ̃JI is the Lagrange multiplier that imposes
the constraint YIJ ≈ 0. Clearly G̃ IJ ≈ 0 and YIJ ≈ 0 are
second-class constraints (with a possible modification of
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C̃ a and C̃ involving the second-class constraints). Making
them strongly equal to zero, we get the ADM formulation
of general relativity in n dimensions given by the
Hamiltonian action principle [5] (see, of course, the
original work of Arnowitt, Desser, and Misner in four
dimensions [1])

S ¼
Z
R×Σ

dtdn−1xðπ̃ab _qab − 2NaC̃ a − NC̃ Þ; ð18Þ

where the phase space is described by the canonical pair
ðqab; π̃abÞ and the constraints are given by (16a) and (16b).

III. FROM ADM TO SO(n− 1, 1)
[SOðnÞ] PHASE-SPACE VARIABLES

Now, we start from the Hamiltonian formulation of
general relativity in terms of the ADM variables
ðqab; π̃abÞ, given by the action [5]

S ¼
Z
R×Σ

dtdn−1xðπ̃ab _qab − 2NaC̃ a − NC̃ Þ; ð19Þ

with the first-class constraints

C̃ a ≔ −qabDcπ̃
bc; ð20aÞ

C̃ ≔ −σ
ffiffiffi
q

p
R −

1ffiffiffi
q

p Qabcdπ̃
abπ̃cd þ 2σ

ffiffiffi
q

p
Λ; ð20bÞ

where q ¼ detðqabÞ, R is the scalar curvature of the (n − 1)-
dimensional hypersurface Σ, Λ is the cosmological con-
stant, andQabcd is defined in (13). Also,Da is the covariant
derivative compatible spatial metric qab, i.e.,

Daqbc ≔ ∂aqbc − Γd
abqdc − Γd

acqbd ¼ 0: ð21Þ

Next, the idea is to perform a “lifting” of the ADM
Hamiltonian formulation to the Hamiltonian formulation
(1) where the local SO(n − 1, 1) [SOðnÞ] symmetry is
manifest. This is relevant because we can directly get such a
formulation without starting from the n-dimensional
Palatini action, as it is made in Refs. [7,8,14].
This bottom-up approach might also be useful, for

instance, for researchers familiar with Hamiltonian for-
mulations of metric theories—alternative to Einstein’s
general relativity—that desire to see how they look in
the first-order formalism without redoing the computations
from the corresponding first-order Lagrangians of the
metric formulations.
To begin with, we introduce the densitized vector Π̃aI,

where the internal indices I; J; K;… that take on the values
0; 1;…; n − 1 are lowered or raised with the n-dimensional
Minkowski (σ ¼ −1) or Euclidean (σ ¼ 1) metric
ðηIJÞ ≔ diagðσ; 1;…; 1Þ. We now parametrize the inverse

of the spatial metric qab as a function of the variables
Π̃aI as

qab ¼ h−1=ðn−2ÞηIJΠ̃aIΠ̃bJ; ð22Þ

where h ≔ detðηIJΠ̃aIΠ̃bJÞ is a tensor density of weight
2ðn − 2Þ. By hypothesis, q ¼ detðqabÞ > 0, and because of
q ¼ detðqabÞ ¼ h1=ðn−2Þ, then h > 0.
Similarly, we introduce the variableQaI, and parametrize

the ADM momentum as

π̃ab ¼ h−1=ðn−2ÞðH−1Þabcdh
≈eðcΠ̃

eIQdÞI; ð23Þ

where

ðH−1Þabcd ≔ 1

2
ð ˜̃hac ˜̃hbd þ ˜̃h

ad ˜̃h
bc − 2 ˜̃h

ab ˜̃h
cdÞ ð24Þ

is a tensor density of weight 4 and h
≈ab

is the densitized

metric inverse of ˜̃h
ab ≔ Π̃aIΠ̃b

I . Note that the definition of
π̃ab is exactly the same expression given in (7). Moreover,
notice that ðH−1Þabcd and Habcd, defined in (9), fulfill the
relation HabefðH−1Þefcd ¼ ð1=2Þðδcaδdb þ δdaδ

c
bÞ.

Thus, the relations (22) and (23) are invariant under SO
(n − 1, 1) [SOðnÞ] transformations Π̃aI ↦ ΛI

JΠ̃aJ when
σ ¼ −1 [σ ¼ 1].
In this way, the initial ADM variables ðqab; π̃abÞ of the

Hamiltonian formulation (19) have been parametrized in
terms of the variables ðQaI; Π̃aIÞ. The variables ðQaI; Π̃aIÞ
are not independent and we must impose the Gauss
constraint

G̃ IJ ≔ 2Π̃a½IQa
J� ≈ 0 ð25Þ

among them, which also generates their local SOðn − 1; 1Þ
[SOðnÞ] transformations.
Using (22) and (23), the symplectic structure in (19)

acquires the form

π̃ab _qab ¼ −2QaI∂tΠ̃aI þ h
≈ab

Π̃b
JG̃

JKðηIK þ σnInKÞ∂tΠ̃aI

¼ 2Π̃aI _QaI − 2∂tðΠ̃aIQaIÞ
þ h

≈ab
Π̃b

JðηIK þ σnInKÞG̃ JK
∂tΠ̃aI: ð26Þ

Therefore, ðQaI; Π̃aIÞ are indeed canonical variables up to
the Gauss constraint (25). The remaining task is to rewrite
the first-class constraints (20a) and (20b) in terms of
ðQaI; Π̃aIÞ. To do that, we introduce the covariant derivative
∇a compatible with Π̃aI as

∇aΠ̃bI ≔ ∂aΠ̃bI þ Γb
acΠ̃cI − Γc

acΠ̃bI þ Γa
I
JΠ̃bJ ¼ 0;

ð27Þ
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with Γc
ab ¼ Γc

ba and ΓaIJ ¼ −ΓaJI . Therefore, using (22),
(23), and the identities h

≈ab
Π̃a

IΠ̃b
J ¼ ηIJ − σnInJ and

Π̃aIΠ̃bJRabIJ ¼ qR, the constraints (20a) and (20b) become

C̃ a ¼ 2Π̃bI
∂½aQb�I −QaI∂bΠ̃bI þ 1

2
ΓaIJG̃

IJ

þ 1

2
h
≈
abΠ̃bIΠ̃cJ∇cG̃ IJ; ð28aÞ

C̃ ¼ h−
1

2ðn−2Þ

�
−σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�QaIQbJ

−
1

4
G̃ IJðG̃ IJ þ 2σnInKG̃ JKÞ

�
þ 2σh

1
2ðn−2ÞΛ; ð28bÞ

where we used ∇aG̃
IJ ¼ ∂aG̃

IJ − Γb
abG̃

IJ þ Γa
I
KG̃

KJþ
Γa

J
KG̃

IK . Therefore, adding the Gauss constraint (25) to
the action (19) and collecting all the terms proportional to
this constraint, the action (19) acquires the form

S ¼
Z
R×Σ

dtdn−1xð2Π̃aI _QaI − λIJG̃
IJ − 2NaD̃a − N

˜

˜̃H Þ;

ð29Þ

with N
˜
¼ h−

1
2ðn−2ÞN and the first-class constraints are

given by

G̃ IJ ¼ 2Π̃a½IQa
J�; ð30aÞ

D̃a ≔ 2Π̃bI
∂½aQb�I −QaI∂bΠ̃bI; ð30bÞ

˜̃H ≔−σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�QaIQbJ þ 2σh1=ðn−2ÞΛ;

ð30cÞ

where we neglected the boundary term in (26) and the term
that comes out from the integration by parts of ∇aG̃

IJ, and
also λIJ ¼ −λJI.
Note that the formulation encompassed by the action (29)

with the constraints (30a)–(30c) is precisely the Hamiltonian
formulation of the n-dimensional Palatini action (1).
Let us make a remark. In a spacetime of dimension four,

we can also perform the bottom-up approach of Sec. III to
go from the ADM formulation to the SOð3; 1Þ [SOð4Þ if
σ ¼ 1] Hamiltonian formulation of the Holst action [9],
featuring only first-class constraints, given in Refs. [11,13].
This is achieved by using (23) and the relationship between
the configuration variable QaI and the configuration var-
iables CaI or KaI described in Refs. [11,13]. Similarly, the
top-down approach to go from the SOð3; 1Þ [SOð4Þ]
Hamiltonian formulation [11,13] of the Holst action to
the ADM formulation can also be made following the

approach of Sec. II but involving the configuration vari-
ables CaI or KaI.

IV. FROM SOðn− 1Þ TO ADM VARIABLES
AND VICE VERSA

Imposing the time gauge in the formulation given by the
action (1) results in [8]

S ¼
Z
R×Σ

dtdn−1xð2Π̃ai _Qai − λijG̃
ij − 2NaD̃a − N

˜

˜̃H Þ;

ð31Þ

with the first-class constraints given by

G̃ ij ¼ 2Π̃a½iQa
j�; ð32aÞ

D̃a ¼ 2Π̃bi
∂½aQb�i −Qai∂bΠ̃bi; ð32bÞ

˜̃H ¼ −σΠ̃aiΠ̃bjRabij þ 2Π̃a½iΠ̃jbjj�QaiQbj

þ 2σj detðΠ̃aiÞj2=ðn−2ÞΛ: ð32cÞ

The indices i; j; k;… taking on the values 1; 2;…; n − 1 are
SOðn − 1Þ valued, which are raised or lowered with the
(n − 1)-dimensional Euclidean metric δij. Here, Qai and
Π̃ai are canonical variables that transform as SOðn − 1Þ
vectors under local SOðn − 1Þ rotations. Geometrically,
Qai is related to the extrinsic curvature and Π̃ai

is the densitized triad defined on Σ. Also, detðΠ̃aiÞ is a
tensor density of weight n − 2. On the other hand, the
Gauss constraint G̃ ij generates the local SOðn − 1Þ rota-

tions whereas the diffeomorphism D̃a and scalar ˜̃H
constraints are still responsible of generating the spacetime
diffeomorphisms.
In the next two subsections we show how to go from this

Hamiltonian formulation to the ADM one (top-down
approach) and vice versa (bottom-up approach).

A. From SOðn− 1Þ to ADM variables

The path we follow is analogous to the one described in
Sec. II; hence, we begin with the formulation given by the
action (31) and the first-class constraints (32a)–(32c).
First, let Π̃ai be the inverse of Π̃ai, so Π̃aiΠ̃aj ¼ δji and
Π̃aiΠ̃bi ¼ δba. Then, we define the spatial metric qab and its

inverse qab as

qab ≔ j detðΠ̃aiÞj2=ðn−2ÞΠ̃aiΠ̃b
i; ð33aÞ

qab ¼ j detðΠ̃aiÞj−2=ðn−2ÞΠ̃aiΠ̃b
i: ð33bÞ
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Using these expressions, we define the quantities

ðQ−1Þabcd ≔ 1

2
ðqacqbd þ qadqbc − 2qabqcdÞ; ð34aÞ

Qabcd ¼
1

2

�
qacqbd þ qadqbc −

2

n − 2
qabqcd

�
; ð34bÞ

which satisfy QabefðQ−1Þefcd ¼ ð1=2Þðδcaδdb þ δdaδ
c
bÞ.

On the other hand, in the ADM formulation, the
canonical variables are the spatial metric qab and its
conjugated momentum π̃ab. So, the remaining task is to
define the ADM momentum π̃ab in terms of the SOðn − 1Þ
variables:

π̃ab ≔ j detðΠ̃aiÞj2=ðn−2ÞðQ−1ÞabcdΠ̃ðciQdÞi: ð35Þ

Hence, to reach the ADM formulation we use (35) and
solve for Qai. We recall that Qai are ðn − 1Þ2 variables.
Thus, in order to solve (35), which has nðn − 1Þ=2
equations, we must introduce ðn − 1Þðn − 2Þ=2 indepen-
dent variables Π̃ij ¼ −Π̃ji. Therefore, the solution of (35) is

Qai ¼ j detðΠ̃aiÞj−2=ðn−2ÞQabcdΠ̃b
iπ̃

cd þ 1

2
Π̃ajΠ̃j

i: ð36Þ

By using (36), we rewrite the symplectic structure given
in (31) and we get

2Π̃ai _Qai¼ π̃ab _qab−
2

n−2
∂tðπ̃abqabÞþ Π̃a

jΠ̃ij∂tΠ̃ai; ð37Þ

and we also rewrite the first-class constraints given in (31)
and we obtain

G̃ ij ¼ Π̃ij; ð38aÞ

D̃a ¼ −qabDcπ̃
bc −

1

2
ΓaijΠ̃ij −

1

2
Π̃a

iΠ̃bj∇bΠ̃ij; ð38bÞ

˜̃H ¼ −σqR −Qabcdπ̃
abπ̃cd þ 2σqΛþ 1

4
Π̃ijΠ̃ij; ð38cÞ

where q ¼ detðqabÞ, R ≔ qacqbdRabcd is the scalar curva-
ture of the Levi-Civita connection Γa

bc, and Da is the
covariant derivative with respect to the Levi-Civita
connection [see Eq. (14)]. We also used the identity
Π̃aiΠ̃bjRabij ¼ qR.
By substituting (37), (38a), (38b), and (38c) into the

action (31) and factoring out all the terms proportional to
the Gauss constraint leads us to the action

S¼
Z
R×Σ

dtdn−1xðπ̃ab _qab−2NaC̃ a−NC̃ −ΛijG̃
ijÞ; ð39Þ

where N ¼ ffiffiffi
q

p
N
˜
, G̃ ij is given by (38a), and the diffeo-

morphism and Hamiltonian constraints are given by

C̃ a ≔ −qabDcπ̃
bc; ð40aÞ

C̃ ≔ −σ
ffiffiffi
q

p
R −

1ffiffiffi
q

p Qabcdπ̃
abπ̃cd þ 2σ

ffiffiffi
q

p
Λ: ð40bÞ

Thus, just as in Sec. II, we obtain the ADM formulation in
the hypersurface where the Gauss constraint G̃ ij ¼ 0 is
satisfied. UsingDirac’s approach to constrained systems [2],
we introduce the variable Yij ¼ −Yji as the configuration
variable conjugated to Π̃ij. Therefore, we add the term
Π̃ij _Yij and the constraint Yij ≈ 0. Hence, the action (39)
becomes

S ¼
Z
R×Σ

dtdn−1xðπ̃ab _qab þ Π̃ij _Yij − 2NaC̃ a − NC̃

− ΛijG̃
ij − ρ̃ijYijÞ; ð41Þ

where ρ̃ij ¼ −ρ̃ji is the Lagrangemultiplier that imposes the
constraint Yij ≈ 0. Since G̃ ij ≈ 0 and Yij ≈ 0 are second-
class constraints (with a possible modification of C̃ a and C̃
involving the second-class constraints), we can make them
strongly equal to zero, which results in the ADM formu-
lation of general relativity given by the Hamiltonian action
principle [5]

S ¼
Z
R×Σ

dtdn−1xðπ̃ab _qab − 2NaC̃ a − NC̃ Þ; ð42Þ

where ðqab; π̃abÞ are the canonical variables and the con-
straints are given by (40a) and (40b).

B. From ADM to SOðn− 1Þ variables
Similarly to what is made in Sec. III, we can make a

“lifting” from the ADM formulation given in (42) to the
SOðn − 1Þ formulation of (31). To do so, we have to
enlarge the phase space to account for the additional gauge
freedom. Thus, we must replace the initial ADM variables
ðqab; π̃abÞ with the variables ðQai; Π̃aiÞ, where the indices
i; j; k;… take on the values 1;…; n − 1 and are raised or
lowered with the (n − 1)-dimensional Euclidean metric δij.
The enlargement of the phase space requires us to impose
an additional constraint among the variables ðQai; Π̃aiÞ
because they are not independent among themselves.
Hence, we must add the Gauss constraint

G̃ ij ≔ 2Π̃a½iQa
j� ≈ 0; ð43Þ

which generates the local SOðn − 1Þ rotations.
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Thus, to perform the “lifting” from the ADM variables
we use (33a) and (35), where for Qabcd in (35) we use
(33b). Then, the symplectic structure of (42) becomes

π̃ab _qab ¼ 2Π̃ai _Qai − 2∂tðΠ̃aiQaiÞ − Π̃a
jG̃ ij∂tΠ̃ai: ð44Þ

Therefore, ðQai; Π̃aiÞ are indeed canonical variables up to
the Gauss constraint (43). On the other hand, using (33a)
and (35), the constraints (40a) and (40b) become

C̃ a ¼ 2Π̃bi
∂½aQb�i−Qai∂bΠ̃biþ1

2
ΓaijG̃

ijþ1

2
Π̃a

iΠ̃bj∇bG̃ ij;

ð45aÞ

C̃ ¼ j detðΠ̃aiÞj−1=ðn−2Þ
�
−σΠ̃aiΠ̃bjRabij

þ 2Π̃a½iΠ̃jbjj�QaiQbj −
1

4
G̃ ijG̃ ij

�

þ 2σj detðΠ̃aiÞj1=ðn−2ÞΛ: ð45bÞ

Here Γa
i
j is the connection compatible with Π̃ai,

∇aΠ̃bi ≔ ∂aΠ̃bi þΓb
acΠ̃ci − Γc

acΠ̃bi þ Γa
i
jΠ̃bj ¼ 0; ð46Þ

and Rab
i
j ¼ ∂aΓb

i
j − ∂bΓa

i
j þ Γa

i
kΓb

k
j − Γb

i
kΓa

k
j is the

curvature of Γa
i
j.

Adding the Gauss constraint (43) to the action (42) and
factoring out all the terms proportional to this constraint,
the action acquires the form

S ¼
Z
R×Σ

dtdn−1xð2Π̃ai _Qai − λijG̃
ij − 2NaD̃a − N

˜

˜̃H Þ;

ð47Þ

withN
˜
¼ j detðΠ̃aiÞj−1=ðn−2ÞN and the first-class constraints

are given by

G̃ ij ¼ 2Π̃a½iQa
j�; ð48aÞ

D̃a ≔ 2Π̃bi
∂½aQb�i −Qai∂bΠ̃bi; ð48bÞ

˜̃H ≔ −σΠ̃aiΠ̃bjRabij þ 2Π̃a½iΠ̃jbjj�QaiQbj

þ 2σj detðΠ̃aiÞj2=ðn−2ÞΛ; ð48cÞ

and λij ¼ −λji. Note that we neglected the boundary term
in (44) and also the boundary term that comes out from the
integration by parts of ∇aG̃

ij.
The formulation encompassed by the action (47) with

the constraints (48a)–(48c) is precisely the Hamiltonian
formulation corresponding to the SOðn − 1Þ formulation
derived from the n-dimensional Palatini action (31) [8].

V. FROM ADM TO ASHTEKAR-BARBERO
VARIABLES AND VICE VERSA

We can directly obtain the Barbero formulation [3] of
general relativity from the ADM formulation [1]. This new
approach avoids the canonical transformation from the
SOð3Þ phase-space variables as was done by Barbero
himself and is also an alternative to other Hamiltonian
methods that get such a formulation from the Holst
action [9–13]. As the reader can guess, this (bottom-up)
approach is analogous to the one presented in Sec. IV B,
and thus the starting point is precisely the ADM formu-
lation (18) in a spacetime of dimension four, which is given
by the action

S ¼
Z
R×Σ

dtd3xðπ̃ab _qab − 2NaC̃ a − NC̃ Þ: ð49Þ

Similarly, it is possible to perform the top-down
approach, i.e., to start from the Barbero formulation and
to get the ADM one following the same ideas developed in
Sec. IVA. All of this is done in what follows.

A. From ADM to Ashtekar-Barbero variables

We begin by introducing the densitized triad Π̃ai that is
related to the inverse of the spatial metric qab through

qab ¼ δijΠ̃aiΠ̃bj

j detðΠ̃aiÞj ; ð50Þ

where detðΠ̃aiÞ is a tensor density of weight 2 and the
SOð3Þ indices i; j; k;… take on the values 1, 2, 3 and are
lowered (raised) with the three-dimensional Euclidean
metric δij (δij). Let Π̃ai be the inverse of Π̃ai, i.e., Π̃aiΠ̃aj ¼
δji and Π̃aiΠ̃bi ¼ δba, so the spatial metric is given by

qab ¼ j detðΠ̃aiÞjδijΠ̃aiΠ̃bj: ð51Þ

Next, we introduce the covariant derivative ∇a compat-
ible with the densitized triad Π̃ai, i.e.,

∇aΠ̃bi ≔ ∂aΠ̃bi þ Γb
acΠ̃ci − Γc

acΠ̃bi þ ϵijkΓa
jΠ̃bk ¼ 0;

ð52Þ

where Γa
bc ¼ Γa

cb. The previous relations allow us to get
both Γa

bc and Γai in terms of Π̃ai and their derivatives. Note
that Γa

bc is the connection constructed with qab and Γai is
related to the SOð3Þ connection Γa

i
j used in Sec. IV by

Γai ≔ −ð1=2ÞϵijkΓa
jk, where ϵijk is the totally antisym-

metric SOð3Þ invariant tensor, with ϵ123 ¼ 1.
Now, we introduce the Ashtekar-Barbero connection Aai

into the formalism through the relation
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π̃ab ¼ j detðΠ̃aiÞj
γ

ðQ−1ÞabcdΠ̃ðciðAdÞi − ΓdÞiÞ; ð53Þ

where γ is the Barbero-Immirzi parameter and

ðQ−1Þabcd ≔ 1

2
ðqacqbd þ qadqbc − 2qabqcdÞ; ð54Þ

with qab given by (50).1 Therefore, the ADM variables (51)
and (53) have been parametrized in terms of the Ashtekar-
Barbero variables ðAai; Π̃aiÞ.
To go from the phase space described by the ADM

variables ðqab; π̃abÞ to the Ashtekar-Barbero variables
ðAai; Π̃aiÞ, we need to introduce the Gauss constraint

G̃ i ≔
1

γ
ð∂aΠ̃ai þ ϵijkAa

jΠ̃akÞ ≈ 0: ð55Þ

Continuing with the analysis, we substitute (51) and (53)
in the symplectic structure of (49), and we get

π̃ab _qab ¼
2

γ
Π̃ai _Aai þ ϵijkΠ̃a

jG̃ k
∂tΠ̃ai −

2

γ
∂t½ðAai − ΓaiÞΠ̃ai�

þ 1

γ
∂aðϵijkΠ̃aiΠ̃b

j
∂tΠ̃bkÞ: ð56Þ

Thus, modulo the Gauss constraint (55), the variable Aai is
canonically conjugated to Π̃ai. On the other hand, using
(51) and (53), the diffeomorphism and Hamiltonian con-
straints that appear in (49) become

C̃ a ¼
1

γ
ð2Π̃bi

∂½aAb�i − Aai∂bΠ̃biÞ þ ΓaiG̃
i

−
1

2
ϵijkΠ̃a

iΠ̃bj∇bG̃
k; ð57aÞ

C̃ ¼ 1

γ2j detðΠ̃aiÞj1=2 ϵijkΠ̃
aiΠ̃bj½Fab

k þ ðσγ2 − 1ÞRab
k�

þ 2σj detðΠ̃aiÞj1=2Λþ 1

j detðΠ̃aiÞj1=2
�
2

γ
Π̃ai∇aG̃ i

−
1

2
G̃ iG̃ i

�
; ð57bÞ

where we used ϵijkΠ̃aiΠ̃bjRab
k ¼ −qR and the identity

2Π̃ai∇aG̃ i ¼ −
1

γ
ϵijkΠ̃aiΠ̃bj½Fab

k − Rab
k

− ϵklmðAa
l − Γa

lÞðAb
m − Γb

mÞ�; ð58Þ

that relates the curvatures

Fab
i ≔ ∂aAb

i − ∂bAa
i þ ϵijkAa

jAb
k; ð59aÞ

Rab
i ≔ ∂aΓb

i − ∂bΓa
i þ ϵijkΓa

jΓb
k; ð59bÞ

of Aa
i and Γa

i, respectively.
Therefore, by substituting (56), (57a), (57b) into the

action (49), adding the Gauss constraint (55) and after
factoring out all the terms proportional to the Gauss
constraint, the action (49) acquires the form

S¼
Z
R×Σ

dtd3x

�
2

γ
Π̃ai _Aai−λiG̃

i−2NaD̃a−N
˜

˜̃H

�
; ð60Þ

where we redefined N
˜
≔ j detðΠ̃aiÞj−1=2N and the first-

class constraints are given by

G̃ i ¼ 1

γ
ð∂aΠ̃ai þ ϵijkAa

jΠ̃akÞ; ð61aÞ

D̃a ≔
1

γ
ð2Π̃bi

∂½aAb�i − Aai∂bΠ̃biÞ; ð61bÞ

˜̃H ≔
1

γ2
ϵijkΠ̃aiΠ̃bj½Fab

k þ ðσγ2 − 1ÞRab
k�

þ 2σj detðΠ̃aiÞjΛ: ð61cÞ

This is precisely the Barbero formulation [3] of general
relativity in four dimensions, which is the starting point in
the loop quantum gravity approach [4,5]. As far as we
understand, the current approach is the easiest way of
getting the Hamiltonian formulation of general relativity in
terms of the Ashtekar-Barbero variables Aai and Π̃ai. Note
that our result (60) matches the conventions of Ref. [5].

B. From Ashtekar-Barbero to ADM variables

For the sake of completeness, we now analyze the top-
down approach, in which we go from the Barbero to the
ADM formulation. Therefore, the starting point is the
formulation given by the action [3] (see also [9–13])

S¼
Z
R×Σ

dtd3x

�
2

γ
Π̃ai _Aai−λiG̃

i−2NaD̃a−N
˜

˜̃H

�
; ð62Þ

where the first-class constraints are given by

G̃ i ¼ 1

γ
ð∂aΠ̃ai þ ϵijkAa

jΠ̃akÞ; ð63aÞ

D̃a ≔
1

γ
ð2Π̃bi

∂½aAb�i − Aai∂bΠ̃biÞ; ð63bÞ

˜̃H ≔
1

γ2
ϵijkΠ̃aiΠ̃bj½Fab

k þ ðσγ2 − 1ÞRab
k�

þ 2σj detðΠ̃aiÞjΛ: ð63cÞ
1Notice that ðQ−1Þabcd ¼ j detðΠ̃aiÞj−1=2Gabcd, where Gabcd is

the inverse of the so-called supermetric Gabcd [15].
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Here, Fabi and Rabi are the curvatures of the corresponding
connections Aai and Γai.
In the Barbero formulation, the phase-space variables are

the SOð3Þ connection Aai and the densitized triad Π̃ai. To
get the ADM formulation from the Barbero one, we need to
define the ADM variables in terms of the Ashtekar-Barbero
variables

qab ≔ j detðΠ̃aiÞjΠ̃aiΠ̃b
i; ð64aÞ

π̃ab ≔
1

γ
j detðΠ̃aiÞjðQ−1ÞabcdΠ̃ðciðAdÞi − ΓdÞiÞ; ð64bÞ

where Π̃ai is the inverse of Π̃ai, so qab ¼
j detðΠ̃aiÞj−1Π̃aiΠ̃b

i is the inverse of qab. Here, ðQ−1Þabcd
is given by (54).
Note that the expression (64b) can be thought as six

linear equations for nine unknowns Aai. With this in mind,
we can solve for Aai and obtain

Aai¼ΓaiþγjdetðΠ̃aiÞj−1QabcdΠ̃b
iπ̃

cdþ γ

2
ϵijkΠ̃a

jΠ̃k; ð65Þ

with

Qabcd ≔
1

2
ðqacqbd þ qadqbc − qabqcdÞ; ð66Þ

where QabefðQ−1Þefcd ¼ ð1=2Þðδcaδdb þ δdaδ
c
bÞ. Thus, the

variables Π̃i that appear in the right-hand side of (65)
are three independent variables to account for the difference
in the number of independent variables between Aai

and π̃ab.
Therefore, using (65) the symplectic structure of (62) can

be written as

2

γ
Π̃ai _Aai ¼ π̃ab _qab − ϵijkΠ̃a

jΠ̃k
∂tΠ̃ai þ 2

γ
∂t½ðAai − ΓaiÞΠ̃ai�

−
1

γ
∂aðϵijkΠ̃aiΠ̃b

j
∂tΠ̃bkÞ: ð67Þ

On the other hand, the first-class constraints (63a), (63b),
and (63c) become

G̃ i ¼ Π̃i; ð68aÞ

D̃a ¼ −qabDcπ̃
bc − ΓaiΠ̃i þ 1

2
ϵijkΠ̃a

iΠ̃bj∇bΠ̃k; ð68bÞ

˜̃H ¼ −σqR−Qabcdπ̃
abπ̃cd þ 2σqΛ−

2

γ
Π̃ai∇aΠ̃i þ

1

2
Π̃iΠ̃i;

ð68cÞ

where q ¼ detðqabÞ, R ≔ qacqbdRabcd is the scalar
curvature of the Levi-Civita connection Γa

bc, and Da is
the covariant derivative with respect to such a connection
[see Eq. (14)]. We also used the identities (58) and
ϵijkΠ̃aiΠ̃bjRab

k ¼ −qR.
By substituting (67), (68a), (68b), and (68c) into the

action (62), and after factoring out all the terms propor-
tional to the Gauss constraint, which implies replacing the
Lagrange multiplier λi with Λi, and neglecting the boun-
dary terms in (67), the action (62) acquires the form

S ¼
Z
R×Σ

dtd3xðπ̃ab _qab − 2NaC̃ a − NC̃ − ΛiG̃
iÞ; ð69Þ

where N ¼ ffiffiffi
q

p
N
˜
, G̃ i is given by (68a) and the diffeo-

morphism and Hamiltonian constraints are

C̃ a ≔ −qabDcπ̃
bc; ð70aÞ

C̃ ≔ −σ
ffiffiffi
q

p
R −

1ffiffiffi
q

p Qabcdπ̃
abπ̃cd þ 2σ

ffiffiffi
q

p
Λ: ð70bÞ

Therefore, just as in Secs. II and IVA, the ADM formu-
lation lies in the hypersurface where the Gauss constraint is
satisfied G̃ i ¼ 0. To provide a rigorous Hamiltonian for-
mulation [2], we must introduce the variable Yi as the
configuration variable conjugated to Π̃i. Then, we add the
term Π̃i _Yi and the corresponding constraint Yi ≈ 0. Thus,
the theory is described by the action

S ¼
Z
R×Σ

dtd3xðπ̃ab _qab þ Π̃i _Yi − 2NaC̃ a − NC̃

− ΛiG̃
i − ρ̃iYiÞ; ð71Þ

where ρ̃i is the Lagrange multiplier that imposes the
constraint Yi ≈ 0. Since G̃ i ≈ 0 and Yi ≈ 0 are second-class
constraints (with a possible modification of C̃ a and C̃
involving the second-class constraints), we make them
strongly equal to zero and obtain the ADM formulation
of general relativity given by the Hamiltonian action
principle [1]

S ¼
Z
R×Σ

dtd3xðπ̃ab _qab − 2NaC̃ a − NC̃ Þ; ð72Þ

where ðqab; π̃abÞ are the canonical variables and the
constraints are given by (70a) and (70b).

VI. CONCLUDING REMARKS

We conclude the paper by making some remarks. Many
researchers are familiar with the ADM formulation of
general relativity [1] (see also [5])—for instance, those
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working in numerical relativity—but not with the
Hamiltonian formulations of general relativity that come
from Lagrangian actions that depend functionally on the
vielbein and the connection, such as the Palatini or Holst
actions [9]. Such readers can now use the approach of the
Sec. V of this paper to go immediately to the Hamiltonian
formulation of general relativity in terms of Ashtekar-
Barbero variables [3] as an alternative approach to the
several ways of getting such a formulation [3,9–13].
Similarly, using the approach of Secs. III and IV, readers
can reach directly the SOðn − 1; 1Þ [SOðnÞ] and SOðn − 1Þ
Hamiltonian formulations of general relativity described by
the Palatini action [7,8,14] starting only from the ADM
formulation. These facts are relevant and can be used, for
instance, to express any previous result based on ADM
variables—such as conserved quantities—in terms of the
phase-space variables involved in the other Hamiltonian

formulations. We think all these results fill out a gap present
in the literature on the canonical analysis of general
relativity. Furthermore, the reduction process reported in
Secs. II, IV, and Vof this paper from any of the first-order
Hamiltonian formulations of general relativity to the ADM
formulation can also be viewed in this way, namely, as a
fast track that circumvents the subtleties and technical
details of the canonical analysis and allows us to reach the
standard ADM formulation.
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