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The direct discovery of gravitational waves (GWs) from the coalescence of compact binary components
by the LIGO/Virgo/KAGRA Collaboration provides an unprecedented opportunity for exploring the
underlying theory of gravity that drives the coalescence process in the strong and highly dynamical field
regime of gravity. In this paper, we consider the observational effects of spatial covariant gravities on the
propagation of GWs in the cosmological background and obtain the observational constraints on coupling
coefficients in the action of spatial covariant gravities from GWobservations. We first decompose the GWs
into the left- and right-hand circular polarization modes and derive the effects of the spatial covariant
gravities on the propagation equation of GWs. We find that these effects can be divided into three classes:
1) frequency-independent effects on GW speed and friction, 2) a parity-violating amplitude and velocity
birefringences, and 3) a Lorentz-violating damping rate and dispersion of GWs. With these effects, we
calculate the corresponding modified waveform of GWs generated by the coalescence of compact binaries.
By comparing these new effects with the publicly available posterior samples or results from various tests
of gravities with LIGO/Virgo/KAGRA data in the literature, we derive the observational constraints on
coupling coefficients of the spatial covariant gravities. These results represent the most comprehensive
constraints on the spatial covariant gravities in the literature.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) by the
LIGO/Virgo Collaboration has ushered in an entirely
new era of gravitational-wave astronomy [1–7]. To data,
the LIGO/Virgo/KAGRA Collaboration has announced the
detection of more than 90 confident GW events in the
Gravitational-Wave Transient Catalog (GWTC) [5–7].
These signals are produced by the coalescence of compact
binaries, including binary black holes (BBHs), binary
neutron stars, and black hole–neutron star binaries. The
GWs of these events, carrying valuable information about
local spacetime properties of the compact binaries, allow us
to explore the extreme gravity regime of spacetime,
where the fields are strong, nonlinear, and highly dynami-
cal. This has enabled a lot of model-independent tests of

general relativity (GR) by the LIGO/Virgo/KAGRA
Collaboration [8–13]. All of the tests to date have con-
firmed that GW data is consistent with the predictions
of GR.
With these substantial successes of GR, the increasing

number of detected GW events from the LIGO/Virgo/
KAGRA Collaboration also provides a valuable window
to explore, distinguish, or constrain any modified theories
that exhibit deviations from GR. This has stimulated a lot of
works on constraining different modified theories of
gravity with GW data. In this paper, we consider a specific
type of modified theory of gravity, the spatial covariant
gravities [14–17], and test them with the current population
of GW events.
The spatial covariant gravities represent a series of

alternative modified theories of GR, which break time
diffeomorphism invariance but preserve the spatial
one [14,17]. This is very similar to the case of the
Hořava-Lifshitz (HL) theory of quantum gravity [18–25],
in which the symmetry of the theory is broken from the
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general covariance down to the foliation-preserving
diffeomorphisms. Such spatial covariance allows one to
construct the action of the theory only in terms of spatial
diffeomorphism invariants and study the effects of different
terms. These new terms, which are absent in the Einstein-
Hilbert action of GR, provide an efficient way to
parametrize unknown high-energy physics effects on the
low-energy scale. On the other hand, the spatial covariant
gravities can also represent a very general framework for
describing a lot of scalar-tensor theories in unitary gauge
[14,15,26,27]. To our knowledge, a lot of scalar-tensor
theories can be mapped to the spatial covariant framework
by imposing the unitary gauge, including Horndeski theory,
Chern-Simons modified gravity, Weyl gravity, ghost-free
parity-violating gravities, D → 4 Gauss-Bonnet gravity,
Hořava-Lifshitz gravities, etc. (see details in Ref. [28]).
One natural question now is whether the new terms

beyond GR introduced in the spatial covariant gravities can
lead to any observational effects in the current and/or
forthcoming experiments and observations, so the spatial
covariant gravities can be tested or constrained directly by
observations. Such considerations have attracted a great
deal of attention lately and several phenomenological
implications of the spatial covariant gravities have already
been investigated [28–34]. The phenomenological impli-
cations for other theories that can also be described in
the spatial covariant framework under certain conditions
have also been extensively studied; see, for example,
Refs. [27,35–40] and reference therein. In particular, the
effects of the spatial covariant gravities on the propagation
of GWs in the cosmological background was preciously
explored in Ref. [28]. In addition, the imprints of the spatial
covariant gravities on the primordial GWs was also
calculated in detail recently in Ref. [29]. It was shown
that the parity-violating terms in the gravitational action of
the spatial covariant gravities can induce a nonzero circular
polarization in the primordial GWs. The possible signatures
of these parity-violating effects on the cosmic microwave
background and the statistics of galaxy surveys were also
briefly explored in Ref. [29].
In this paper, we focus on the imprints of spatial

covariant gravities on the propagation of GWs, produced
by the coalescence of compact binaries, and their
observational constraints with observational data of GW
events from the LIGO/Virgo/KAGRA Collaboration.
Decomposing the GWs into the left- and right-hand circular
polarization modes, we find that the equations of motion of
GWs in spatial covariant gravities can be exactly mapped
to the parametrized propagation equation proposed in
Refs. [41,42]. Depending on different terms in the gravi-
tational action of spatial covariant gravities, the new effects
beyond GR can be fully characterized by four parameters:
ν̄, μ̄, νA, and μA. The parameters νA and μA label the effects
of the parity-violating terms in the spatial covariant
gravities, and ν̄ and μ̄ describe the effects of other possible

modifications that are not relevant to parity violation. The
correspondences between different terms in the spatial
covariant gravities and the four parameters are summarized
in Table II. In addition, we present the expressions for
these four parameters for a number of specific theories in
Table III.
Different parameters correspond to different effects on

the propagation of GWs. These effects can be divided into
three classes: 1) the frequency-independent effects which
include the modification to the speed of GWs and GW
friction, 2) the parity-violating effects which include the
amplitude and velocity birefringences of GWs, and 3) the
Lorentz-violating effects which include the modified damp-
ing rate and dispersion relation of GWs. We compare these
new effects with existing observational samples or results
of various tests of gravities with LIGO/Virgo/KAGRA data
in the literature and derive the observational constraints on
different terms in the spatial covariant gravities. Using
these constraints, we also derive the corresponding bounds
on the coupling coefficients of a number of specific theories
in the Appendix. Our results are summarized in Table V.
With the future ground- and space-based detector network,
more and more GW events in a wider frequency range will
be detected in the future, and we expect that the constraints
on the spatial covariant gravities will be improved dra-
matically and a deeper understanding of the nature of
gravity will be achieved.
This paper is organized as follows. In the next section we

present a brief review of the spatial covariant gravities, and
in Sec. III we discuss the associated propagation of GWs in
a homogeneous and isotropic cosmological background. In
that section we also map the different new effects on the
propagation of GWs arising from the spatial covariant
gravities into four parameters. In Sec. IV we calculate the
effects of the spatial covariant gravities on the speed,
frictions, and waveform of GWs produced by the coales-
cence of compact binaries, and derive their observational
constraints with observational data of GW events from the
LIGO/Virgo/KAGRA Collaboration. A brief summary of
our main results and some discussions are presented in
Sec. V. We also present the detailed correspondences
between the coupling constants in a number of specific
theories and the coefficients in the spatial covariant
gravities and derive the corresponding observational
bounds on these specific theories in the Appendix.
Throughout this paper, the metric convention is chosen

as ð−;þ;þ;þÞ, and greek indices ðμ; ν; · · ·Þ run over
0,1,2,3 and latin indices ði; j; kÞ run over 1,2,3. We set
the units to c ¼ ℏ ¼ 1.

II. SPATIAL COVARIANT GRAVITIES

In this section we present a brief introduction of the
construction of the spatial covariant gravities. Most of
the expressions and results used here can be found in
Refs. [14,17,28,29] and references therein.
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The spatial covariant gravity is only invariant under the
three-dimensional spatial diffeomorphism, which breaks
the time diffeomorphism. Therefore, the gravitational
action of this type of theories can be constructed only in
terms of spatial diffeomorphism invariants. In order to write
down the gravitational action, it is convenient to write the
metric of the spacetime in the Arnowitt-Deser-Misner
(ADM) form [43],

ds2 ¼ −N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; ð2:1Þ

where N is the lapse function, gij is the three-dimensional
spatial metric, and Ni is the shift vector. With these ADM
variables, the general action of the spatial covariant
gravities can be written in the form

S ¼
Z

dtd3xN
ffiffiffi
g

p
LðN; gij; Kij; Rij;∇i; εijkÞ; ð2:2Þ

where Kij is the extrinsic curvature of t ¼ const hyper-
surfaces,

Kij ¼
1

2N
ð∂tgij −∇iNj −∇jNiÞ; ð2:3Þ

Rij is the intrinsic curvature tensor, ∇i is the spatial
covariant derivative with respect to gij, and εijk ¼ ffiffiffi

g
p

ϵijk
is the spatial Levi-Civita tensor with ϵijk being the total
antisymmetric tensor.
Normally, with the breaking of the time diffeomor-

phism, extra degrees of freedom are often added on top
of the two tensorial degrees of freedom in GR. In
particular, the spatial covariant gravity which has three
dynamical degrees of freedom has been explored exten-
sively [17]. It was also shown that under two necessary
and sufficient conditions, the spatial covariant gravities
can have just two tensorial degrees of freedom and no
propagating scalar mode [44]. One condition is the
degenerate condition, which requires that the lapse-
extrinsic curvature sector of the Dirac matrix must be
degenerate. Another condition is the consistence condi-
tion, which requires that the dimension of the phase
space at each spacetime point must be even. In
Refs. [16,25] the above action has also been extended
by introducing _N in the Lagrangian through 1

N ð _N − Ni∇iNÞ.
This term can only contribute to the scalar-type modes of
GWs which are expected to be small, compared to the
observed tensorial modes. For this reason, we will not
consider it in this paper.
In order to construct a concrete gravitational action with

spatial covariance, one first needs to specify the building
blocks which are invariant under the spatial diffeomor-
phisms. These building blocks consist of linear combina-
tions of the extrinsic curvature Kij, intrinsic curvature Rij,
and their spatial derivatives and derivatives of the spatial

metric itself. Up to fourth order in derivatives of spatial
metric variables gij, we have the building blocks as shown
in Table I which are all scalars under the spatial diffeo-
morphisms. Then, the general action of the gravitational
part of the spatial covariant gravities is given by [28]

Sg ¼
Z

dtd3x
ffiffiffi
g

p
NðLð0Þ þ Lð1Þ þ Lð2Þ þ Lð3Þ þ Lð4Þ

þ L̃ð3Þ þ L̃ð4ÞÞ; ð2:4Þ

whereLð0Þ;Lð1Þ;Lð2Þ;Lð3Þ, andLð4Þ are theparity-preserving
terms, which are given by

Lð0Þ ¼ cð0;0Þ1 ; ð2:5Þ

Lð1Þ ¼ cð1;0Þ1 K; ð2:6Þ

Lð2Þ ¼ cð2;0Þ1 KijKij þ cð2;0Þ2 K2 þ cð0;2Þ1 R; ð2:7Þ

Lð3Þ ¼ cð3;0Þ1 KijKjkKi
k þ cð3;0Þ2 KijKijK þ cð3;0Þ3 K3

þ cð1;2Þ1 ∇i∇jKij þ cð1;2Þ2 ∇2K þ cð1;2Þ3 RijKij

þ cð1;2Þ4 RK; ð2:8Þ

TABLE I. Building blocks of spatial covariant gravities up to
fourth order in derivatives of hij, where dt and ds are the numbers
of time and spatial derivatives, respectively, and d ¼ dt þ ds
denotes the total number of time and spatial derivatives. Here
ω3ðΓÞ denotes the spatial gravitational Chern-Simons term, and
ω3ðΓÞ ¼ εijkðΓm

jl∂jΓl
km þ 2

3
Γn
ilΓl

jmΓm
knÞ with Γk

ij ¼ 1
2
gkmð∂jgmj þ

∂jgij − ∂mgijÞ are the spatial Christoffel symbols. The terms in
this table are the same as those in Table I of Ref. [28], except for
the two new terms ω3ðΓÞ and ω3ðΓÞK.

d ðdt; dsÞ Operators

0 (0, 0) 1
1 (1, 0) K

(0, 1) ...
2 (2, 0) Kij, K2

(1, 1) ...
(0, 2) R

3 (3, 0) KijKjkKi
k, KijKijK, K3

(2, 1) εijkKi
l∇jKkl

(1, 2) ∇i∇jKij, ∇2K, RijKij, RK
(0, 3) ω3ðΓÞ

4 (4, 0) KijKjkKi
kK, ðKijKijÞ2, KijKijK2, K4

(3, 1) εijk∇mKi
nKjmKkn; εijk∇iKj

mKk
nKmn; εijk∇iKj

lK
klK

(2, 2) ∇kKij∇kKij, ∇iKjk∇kKij, ∇iKij∇kKk
j , ∇iKij∇jK,

∇iK∇iK, RijKi
kK

jk, RKijKij, RijKijK, RK2

(1, 3) εijkRil∇jKk
l ; εijk∇iRj

lK
kl, ω3ðΓÞK

(0, 4) ∇i∇jRij;∇2R; RijRij; R2
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Lð4Þ ¼cð4;0Þ1 KijKjkKi
kKþcð4;0Þ2 ðKijKijÞ2þcð4;0Þ3 KijKijK2þcð4;0Þ4 K4þcð2;2Þ1 ∇kKij∇kKijþcð2;2Þ2 ∇iKjk∇kKij

þcð2;2Þ3 ∇iKij∇kKk
jþcð2;2Þ4 ∇iKij∇jKþcð2;2Þ5 ∇iK∇iKþcð2;2Þ6 RijKi

kK
jkþcð2;2Þ7 RKijKijþcð2;2Þ8 RijKijKþcð2;2Þ9 RK2

þcð0;4Þ1 ∇i∇jRijþcð0;4Þ2 ∇2Rþcð0;4Þ3 RijRijþcð0;4Þ4 R2; ð2:9Þ

and L̃ð3Þ and L̃ð4Þ are parity-violating terms, which are given by

L̃ð3Þ ¼ cð2;1Þ1 εijkKi
l∇jKkl þ cð0;3Þ1 ω3ðΓÞ; ð2:10Þ

L̃ð4Þ ¼ cð3;1Þ1 εijk∇mKi
nKjmKkn þ cð3;1Þ2 εijk∇iKj

mKk
nKmn þ cð3;1Þ3 εijk∇iKj

lK
klK

þ cð1;3Þ1 εijkRil∇jKk
l þ cð1;3Þ2 εijk∇iRj

lK
kl þ cð1;3Þ3 ω3ðΓÞK: ð2:11Þ

All of the coefficients like cðdt;dsÞi are functions of t and N.
Note that in Table I and Eqs. (2.10)–(2.11) we add the
spatial Chern-Simons term ω3ðΓÞ and its coupling to K,
which are absent in the original action in Ref. [28]. It is
interesting to note that the above action reduces to GR if
one imposes

cð2;0Þ1 ¼ cð0;2Þ1 ¼ −cð2;0Þ2 ¼ M2
Pl

2
; ð2:12Þ

where all other coefficients cðdt;dsÞi areset to zero andMPl is
the reduced Planck mass.

III. GWs IN SPATIAL COVARIANT GRAVITIES

In this section we consider the propagation of GWs of
spatial covariant gravities in a homogeneous and isotropic
background. The spatial covariant gravities can have three
degrees of freedom propagating in the theory, of which two

are tensorial and one is of the scalar type. The extra scalar
mode, which is absent in GR, is in general expected to be
small compared to the two observed tensorial modes. For
this reason, hereafter we only consider the two tensorial
modes of GWs (the transverse and traceless modes). In the
flat Friedmann-Robertson-Walker spacetime, GW is
described by the tensor perturbations of the metric, i.e.,

ds2 ¼ a2ðτÞ½−dτ2 þ ðδij þ hijÞdxidxj�; ð3:1Þ

where aðτÞ is the scale factor of the expanding Universe
and hereafter we set a0 ¼ 1 as its present value. τ denotes
the conformal time, which is related to the cosmic time t by
dt ¼ adτ. hij denotes the GWs, which we take to be
transverse and traceless, ∂ihij ¼ 0 ¼ hii. Then, the action of
GWs up to the quadratic action can be written in the
form [28]

Sð2Þ ¼
Z

dtd3x
a3

2

�
G0ðtÞ _hij _hij þ G1ðtÞϵijk _hli

1

a
∂j
_hlk − G2ðtÞ _hij

Δ
a2

_hij þW0ðtÞhij
Δ
a2

hij

þW1ðtÞϵijkhli
1

a
Δ
a2

∂jhlk −W2ðtÞhij
Δ2

a4
hij

�
; ð3:2Þ

where Gn and Wn are given by [28]1

G0 ¼
1

2

�
cð2;0Þ1 þ 3ðcð3;0Þ1 þ cð3;0Þ2 ÞH þ 3ð3cð4;0Þ1 þ 2cð4;0Þ2 þ 3cð4;0Þ3 ÞH2

�
; ð3:3Þ

G1 ¼
1

2

�
cð2;1Þ1 − ðcð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 ÞH

�
; ð3:4Þ

G2 ¼
1

2
cð2;2Þ1 ; ð3:5Þ

1In W1 we add the contributions from the two new terms ω3ðΓÞ and ω3ðΓÞK.
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W0 ¼
1

2

�
cð0;2Þ1 þ 1

2
_cð1;2Þ3 þ 1

2
ð3cð1;2Þ3 þ 6cð1;2Þ4 þ 2_cð2;2Þ6 þ 3_cð2;2Þ8 ÞH

þ 1

2
ð4cð2;2Þ6 þ 6cð2;2Þ7 þ 9cð2;2Þ8 þ 18cð2;2Þ9 ÞH2 þ 1

2
ð2cð2;2Þ6 þ 3cð2;2Þ8 Þ _H

�
; ð3:6Þ

W1 ¼
1

4
ð_cð1;3Þ1 þ _cð1;3Þ2 Þ þ cð0;3Þ1 − 3cð1;3Þ3 H; ð3:7Þ

W2 ¼ −
1

2
cð0;4Þ3 : ð3:8Þ

Here a dot denotes a derivative with respect to the cosmic
time t, H ¼ _a=a is the Hubble parameter, and Δ≡ δij∂i∂j
with δij being the Kronecker delta. We consider the GWs
propagating in the homogeneous and isotropic background,
and ignore the source term. With the above action, one can
obtain the equation of motion for hij as�
G0 −G2

∂
2

a2

�
h00ij þ

�
2HG0 þG0

0 −G0
2

∂
2

a2

�
h0ij

−
�
W0 −W2

∂
2

a2

�
∂
2hij

þ ϵilk
∂
l

a
½G1∂

2
τ þ ð2HG1 þG0

1Þ∂τ −W1∂
2�hkj ¼ 0; ð3:9Þ

where H≡ a0=a and a prime denotes a derivative with
respect to the conformal time τ.
In order to study the propagation of GWs in the

spatial covariant gravities, it is convenient to decompose
the GWs into the circular polarization modes. To study the
evolution of hij, we expand it over spatial Fourier harmonics,

hijðτ; xiÞ ¼
X
A¼R;L

Z
d3k
ð2πÞ3 hAðτ; k

iÞeikixieAijðkiÞ; ð3:10Þ

where eAij denotes the circular polarization tensors and
satisfies the relation

ϵijknieAkl ¼ iρAe
jA
l ; ð3:11Þ

with ρR ¼ 1 and ρL ¼ −1. We find that the propagation
equations of these two modes are decoupled, which can be
cast in the form [28]

h00A þ ð2þ ΓAÞHh0A þ ω2
AhA ¼ 0; ð3:12Þ

where

HΓA ¼
�
ln

�
G0 þ ρAG1

k
a
þ G2

k2

a2

��0
; ð3:13Þ

ω2
A

k2
¼ W0 þ ρAW1

k
a þW2

k2

a2

G0 þ ρAG1
k
a þ G2

k2

a2
: ð3:14Þ

The properties of the propagation of GWs with nonzero ΓA

and a modified dispersion relation ω2
k were discussed in

Ref. [28]. Several specific forms of the spatial covariant
gravities in which the GWs propagate at the speed of light
were also explored [28]. The derivations of the spatial
covariant gravities from GR are fully characterized by the
quantitiesΓA andω2

A. The former represents the corrections
to the damping rate which modifies the amplitude damping
rate of the GWs during their propagation in the cosmo-
logical background, and the latter is the modified
dispersion relation of GWs which leads to a phase shifting
of GWs from distant sources.
We expect that the derivations from GR are small, such

that

ΓA ≪ 1;

����ω2
A

k2
− 1

���� ≪ 1: ð3:15Þ

Thus, we can consider all of the new effects on GWs
beyond GR as small corrections to the standard GR result.
In this way, we are able to expand HΓA and ωA as

HΓA ≃ ðlnG0Þ0 þ
ρA
G0

�
G1

k
a

�0
þ 1

G0

�
G2

k2

a2

�0
; ð3:16Þ

ω2
A

k2
≃

W0

G0

þ ρA
W1 − G1

G0

k
a
þW2 − G2

G0

k2

a2
: ð3:17Þ

Note that in the above expansion we only consider the first-
order terms of each coefficient, i.e., 1 −W0=G0, W1, G1,
W2, and G2.
With these considerations, the equation of motion (3.12)

can be further simplified into the standard parametrized
form [41]

h00A þ ð2þ ν̄þ νAÞHh0A þ ð1þ μ̄þ μAÞk2hA ¼ 0; ð3:18Þ

with

Hν̄ ¼ ðlnG0Þ0 þ
1

G0

�
G2

k2

a2

�0
; ð3:19Þ

HνA ¼ ρA
G0

�
G1

k
a

�0
; ð3:20Þ

μ̄ ¼ W0

G0

− 1þW2 − G2

G0

k2

a2
; ð3:21Þ
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μA ¼ ρA
W1 − G1

G0

k
a
: ð3:22Þ

In such a parametrization, the new effects arising from
theories beyond GR are characterized by four parameters:
ν̄, μ̄, νA, and μA. The parameters νA and μA label the effects
of the parity-violating terms in the spatial covariant
gravities, and ν̄ and μ̄ describe the effects of other possible
modifications that are not relevant to parity violation.
Among these four parameters, μA and μ̄ determine the
speed of GWs, while νA and ν̄ determine the damping rate
of GWs during their propagation.
The coefficients 1 −W0=G0,W1, G1,W2, and G2 arising

from different terms in the spatial covariant gravity induce
distinct effects on GW propagation. In order to study the
effects of the spatial covariant gravity on GW propagation,
we separately consider each term in Eqs. (3.16) and (3.17)
by setting the others to zero. In this way, the four
parameters ν̄, μ̄, νA, and μA can be further parametrized
in the following form [41]:

Hν̄ ¼
h
αν̄ðτÞðk=aMLVÞβν̄

i0
; ð3:23Þ

μ̄ ¼ αμ̄ðτÞðk=aMLVÞβμ̄ ; ð3:24Þ

HνA ¼
h
ρAανðτÞðk=aMPVÞβν

i0
; ð3:25Þ

μA ¼ ρAαμðτÞðk=aMPVÞβμ ; ð3:26Þ

where βν̄ and βμ̄ are arbitrary even numbers and βν and βμ
are arbitrary odd numbers. αν̄, αμ̄, αν, and αμ are arbitrary
functions of time. To write this form, we separately
consider each term in Eqs. (3.16) and (3.17) and set
the others to zero. The different terms in Eqs. (3.16)
and (3.17) correspond to different values of the above
parameters. The corresponding values of the parameters
ðαν̄; βν̄; αμ̄; βμ̄; αν; βν; αμ; βμÞ for the different terms defined
in Eqs. (3.16) and (3.17) are listed in Table II. In Table III
we present the corresponding values of the parameters
ðαν̄; βν̄; αμ̄; βμ̄; αν; βν; αμ; βμÞ for several specific scalar-
tensor theories that can be related to spatial covariant
gravities in the unitary gauge.

TABLE II. Corresponding values of the parameters ðαν̄; βν̄; αμ̄; βμ̄; αν; βν; αμ; βμÞ for the different terms defined in Eqs. (3.16)
and (3.17).

Hν̄ μ̄ HνA μA

αν̄ βν̄ αμ̄ βμ̄ αν βν αμ βμ Related coefficients

G0 lnG0 0 −1þW0=G0 0 ... ... ... ... cð2;0Þ1 ; cð3;0Þ1 ; cð3;0Þ2 ; cð4;0Þ1 ; cð4;0Þ2 ; cð4;0Þ3

G1 ... ... ... ... G1MPV=G0 1 −G1MPV=G0 1 cð2;1Þ1 ; cð3;1Þ1 ; cð3;1Þ2 ; cð3;1Þ3

G2 G2M2
LV=G0 2 −G2M2

LV=G0 2 ... ... ... ... cð2;2Þ1

W0 ... ... −1þW0=G0 0 ... ... ... ... cð0;2Þ1 ; cð1;2Þ3 ; cð1;2Þ4 ; cð2;2Þ6 ; cð2;2Þ7 ; cð2;2Þ8 ; cð2;2Þ9

W1 ... ... ... ... ... ... W1MPV=G0 1 cð0;3Þ1 ; cð1;3Þ1 ; cð1;3Þ2 ; cð1;3Þ3

W2 ... ... G2M2
LV=G0 2 ... ... ... ... cð0;4Þ3

TABLE III. Corresponding values of the parameters ðαν̄; βν̄; αμ̄; βμ̄; αν; βν; αμ; βμÞ for several specific scalar-tensor theories that can be
related to spatial covariant gravities in the unitary gauge.

Hν̄ μ̄ HνA μA

αν̄ βν̄ αμ̄ βμ̄ αν βν αμ βμ

Horndeski ln b0−3c0H
2

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1− _a1

b0−3c0H

q
− 1 0 ... ... ... ...

Scalar-Gauss-Bonnet ln 1þ8_ξH
M2

Pl

0 8
̈ξHþ_ξ _H
M2

PlH
0 ... ... ... ...

Chern-Simons ... ... ... ... − _ϑMPV 1 ... ...
Lorentz-violating Weyl ... ... 4γM2

LV 2 ... ... ... ...
Chiral scalar-tensor ... ... ... ... MPVð− _ϑþ 2ða3 þ 2a1Þ

_ϕ2H − 2b1 _ϕ
3

þ2ðb4 þ b5 − b3Þ _ϕ4HÞ

1 MPVð2a2∂t½ð2a1 þ a3Þ__ϕ2a−2�
−2b1 _ϕ3 þ 2ðb4 þ b5

−b3Þ _ϕ4HÞ

1
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IV. EFFECTS OF THE SPATIAL COVARIANT
GRAVITIES ON GWs AND THEIR CONSTRAINTS

A. Frequency-independent effects from G0 and W0

The coefficients G0 and W0 induce two distinct and
frequency-independent effects on the propagation of GWs.
One is the modification of the speed of the GWs if
G0 ≠ W0, and another is the modified fraction term of
the GWs if ðlnG0Þ0 is nonzero. In the following subsub-
sections, we discuss these individually.

1. Modification of speed of GWs

When W0 ≠ G0, the speed of the GWs is modified in a
frequency-independent manner,

cgw ¼
ffiffiffiffiffiffiffi
W0

G0

s
: ð4:1Þ

For a GW event with an electromagnetic counterpart, cgw
can be constrained by comparison with the arrival time
of the photons. For the binary neutron star merger
GW170817 and its associated electromagnetic counterpart
GRB170817A, the almost coincident observation of both
the electromagnetic wave and GW places an exquisite
bound on the GW speed [45,46],

−3 × 10−15 ≤ cgw − 1 ≤ 7 × 10−16: ð4:2Þ

Note that here we set the speed of light c ¼ 1. This bound
then leads to a constraint on W0=G0 as

−3 × 10−15 ≤

ffiffiffiffiffiffiffi
W0

G0

s
− 1 ≤ 7 × 10−16: ð4:3Þ

From this constraint, one has

− 3 × 10−15 ≤
1

M2
Pl

�
δcð0;2Þ1 − δcð2;0Þ1 þ 1

2
_cð1;2Þ3 − 3ðcð3;0Þ1 þ cð3;0Þ2 ÞH þ

�
3

2
cð1;2Þ3 þ 3cð1;2Þ4 þ _cð2;2Þ6 þ 3

2
_cð2;2Þ8

�
H

þ
�
2cð2;2Þ6 þ 3cð2;2Þ7 þ 9

2
cð2;2Þ8 þ 9cð2;2Þ9

�
H2 − ð9cð4;0Þ1 þ 6cð4;0Þ2 þ 9cð4;0Þ3 ÞH2 þ

�
cð2;2Þ6 þ 3

2
cð2;2Þ8

�
_H

�
≤ 7 × 10−16: ð4:4Þ

Here δcð0;2Þ1 ≡ cð0;2Þ1 − 1
2
M2

Pl and δcð2;0Þ1 ≡ cð2;0Þ1 − 1
2
M2

Pl. In
deriving the above bound, we have expanded all of the

coefficients cðdt;dsÞi beyond GR in the modified speed of
GWs to first order.

2. Modified GW friction from lnG0

The term ðlnG0Þ0 in Eq. (3.19) also induces an additional
friction term in the propagation equation ofGWs. InGR,G0 is
related to the Planck massM2

Pl through G0 ¼ M2
Pl=4 and thus

ðlnG0Þ0 ¼ 0. In the spatial covariant gravities, G0 is time
dependent and one can introduce an effective and time-
dependent Planck mass M�ðtÞ by writing G0 ¼ M2�ðtÞ=4.
Then, the modified friction term ðlnG0Þ0 can be written in
terms of the running of the effective Planck mass in the form

ðlnG0Þ0 ¼ H
d lnM2�
ln a

: ð4:5Þ

Such an additional friction term also changes the damping
rate of GWs during propagation. This leads to a GW
luminosity distance dgwL which is related to the standard
luminosity distance of electromagnetic signals demL as [47,48]

dgwL ðzÞ ¼ demL ðzÞ exp
�
1

2

Z
z

0

dz0

1þ z0
ðlnG0Þ0

H

	

¼ demL ðzÞ exp
�
1

2

Z
dðlnG0Þ

	
: ð4:6Þ

Thus, it is possible to probe GW friction ðlnG0Þ0 using the
multimessenger measurements of dgwL and demL .
However, such a probe relies sensitively on the time

evolution of ðlnG0Þ0, which is in general unknown. In order
to probe GW friction, there are two approaches to para-
metrize the time evolution of ðlnG0Þ0. One is cM para-
metrization [49], which is based on the evolution of the
dark energy in the Universe, and another is Ξ parametriza-
tion [47], which is a theory-based parametrization that can
fit a lot of modified gravities.
For cM parametrization, the GW friction is written

as [49]

ðlnG0Þ0
H

¼ cM
ΩΛðzÞ
ΩΛð0Þ

; ð4:7Þ

where z is the redshift of the GW source and ΩΛ is the
fractional dark energy density. If one considers the dark
energy density as a constant, then one has [50]

ΩΛðzÞ ¼
ΩΛð0Þ

ΩΛð0Þ þ ð1þ zÞ3Ωmð0Þ
; ð4:8Þ

whereΩmð0Þ is the value of the fractional energy density of
matter. Several constraints on cM have been derived using
information on both dgwL and demL from GW events or
populations [50–52]. Here we adopt a constraint from
Ref. [50] from an jointed parameter estimation of the
mass distribution, redshift evolution, and GW friction with
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GWTC-3 for different BBH population models, which
gives

cM ¼ −0.6þ2.2
−1.2 : ð4:9Þ

This corresponds to

ðlnG0Þ0
H

����
z¼0

¼ −0.6þ2.2
−1.2 : ð4:10Þ

For Ξ parametrization, the full redshift dependence of
GW friction is described by two parameters ðΞ0; nÞ, with
which the ratio between the GW and electromagnetic
luminosity distances can be written as [47]

dgwL ðzÞ
demL ðzÞ≡ ΞðzÞ ¼ Ξ0 þ

1 − Ξ0

ð1þ zÞn : ð4:11Þ

Such a parametrization corresponds to

ðlnG0Þ0
H

¼ 2nð1 − Ξ0Þ
1 − Ξ0 þ Ξ0ð1þ zÞn : ð4:12Þ

The relation between the Ξ parametrization and cM para-
metrization was explored in Ref. [53]. Several constraints
on ðΞ; nÞ were obtained using GW events with redshift
information inferred from the corresponding electromag-
netic counterparts [51] or host galaxies [52], or the binary
black hole mass function [53]. A recent constraint on
ðΞ0; nÞ was derived from an analysis of GW data in
GWTC-3 with a BBH mass function, which gives [53]

Ξ0 ¼ 1.0þ0.6
−0.5 ; n ¼ 2.5þ1.7

−1.1 ð4:13Þ

with a prior uniform in lnΞ0. This bound leads to a
constraint on ðlnGÞ0 in the form

−3.0 <
ðlnG0Þ0

H

����
z¼0

< 2.5: ð4:14Þ

This leads to

− 3.0 <
1

H
∂t ln

�
cð2;0Þ1 þ 3ðcð3;0Þ1 þ cð3;0Þ2 ÞH

þ 3ð3cð4;0Þ1 þ 2cð4;0Þ2 þ 3cð4;0Þ3 ÞH2

�
< 2.5: ð4:15Þ

B. Parity-violating effects from W1 and G1

Adding the parity-violating terms introduced in
Eqs. (2.10) and (2.11) to the action of the spatial covariant
gravities leads to nonzero coefficients W1 and G1. Due to
the parity violation, these two coefficients induce two

distinct birefringent effects on the propagation of GWs:
the amplitude birefringences and velocity birefringences.

1. Amplitude birefringences of GWs from ðG1k=aÞ0
The effects of the coefficient ðG1k=aÞ0 are fully charac-

terized by the parameter νA, which leads to different
damping rates for the left- and right-hand circular polar-
izations of GWs, so the amplitude of the left-hand circular
polarization of GWs will increase (or decrease) during the
propagation, while the amplitude of the right-hand modes
will decrease (or increase). This effect induces modifica-
tions in the amplitude of the GWwaveform in the form [41]

hA ¼ hGRA exp

�
−
1

2

Z
τ0

τe

HνA

�
dτ ¼ hGRA eρAδh1 ; ð4:16Þ

with

δh1 ¼ −
1

2

�
aν

�
k

aMPV

�
βν
�����a0

ae

¼ −
1

2

G1k
G0a

����a0
ae

; ð4:17Þ

where hGR denotes the waveform of GWs in GR,
a0 ¼ aðt0Þ with t0 denoting the arrival time of GWs,
and ae ¼ aðteÞ with te being the emitted time. We can
convert the left- and right-hand GW polarization modes
into the plus and cross modes which are used more often in
GW detections. Using the relation

hþ ¼ hL þ hRffiffiffi
2

p ; h× ¼ hL − hRffiffiffi
2

p
i

; ð4:18Þ

we obtain

hþðfÞ ¼ hGRþ coshðδh1Þ − ihGR× sinhðδh1Þ; ð4:19Þ

h×ðfÞ ¼ hGR× coshðδh1Þ þ ihGRþ sinhðδh1Þ: ð4:20Þ

With the above modified waveform, one is able to test
the amplitude birefringent effect induced by ðG1k=aÞ0=G0

by comparing the modified waveform with the GW strain
data from the GW detectors. By performing a Bayesian
parameter estimation on the 12 LIGO-Virgo O1/O2 events
with the above modified waveform, the amplitude bire-
fringent effect including parity violation has been con-
strained, which leads to a combined lower bound on the
corresponding energy scale MPV of [54,55]

MPV ≳ 10−22 GeV; ð4:21Þ

which is a rather loose result. This is because GW detection
is less sensitive to amplitude modification than phase.
Here we would like to derive the constraint on the

coefficient G1 by directly using the posterior samples
obtained in Ref. [54] to test the amplitude birefringent
effect with 12 LIGO-Virgo O1/O2 events. The data for all
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12 GW events are available in Ref. [56]. In Ref. [54], the
amplitude birefringent effect due to parity violation was
described by a parameter Aν, which can be related to G1 in
the spatial covariant gravity via

δh1 ¼ −Aνπf ¼ −
1

2

G1k
G0a

����a0
ae

: ð4:22Þ

Thus, one has

Aν ¼
G1

G0

����
z¼0

−
G1ðzÞ
G0ðzÞ

ð1þ zÞ: ð4:23Þ

Here z is the redshift of the GW source. In principle, the
coefficient G1 is an arbitrary function of time which can
only be determined given a specific model of spatial
covariant gravity. Considering that the redshifts of all
12 GW sources are not large, we can approximately treat
G1 as constant, i.e., ignore its time dependence. Then, one
can relate Aν to G1 by

G1

G0

¼ −
Aν

z
: ð4:24Þ

Then, from the posterior distributions of Aν and the redshift
z obtained in Ref. [54] for each GWevent, one can calculate
the posterior distribution of G1 for each GW event. We plot
the posterior probability distributions of jG1j in Fig. 1.
From this figure, we find that the posterior probability
distributions of G1 with 90% confidence intervals are
consistent with the GR value G1 ¼ 0 for all 12 GW events.
In the above analysis, we have treated the quantity G1 as

a constant. In this sense, this quantity is also a universal
quantity for all GW events. Thus, one can combine all 12
individual posteriors of G1 to get the overall constraint. This
can be done by multiplying the posterior distributions of the

12 GWevents in LOGO-Virgo O1/O2 and then we find that
the coefficient G1 can be constrained to be

jG1=G0j < 2065 km ð4:25Þ

at the 90% confidence level. This constraint can be
converted into the constraint on the combination of

coefficients cð2;1Þ1 , cð3;1Þ1 , cð3;1Þ2 , and cð3;1Þ3 as

jcð2;1Þ1 − ðcð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 ÞHj
M2

Pl

< 1033 km: ð4:26Þ

The above results are obtained from the Bayesian
parameter estimation in Ref. [54] by comparing the
modified waveform with the GW strain data of th e12
GW events in LIGO-Virgo O1/O2 catalog. Here we would
like to mention that the amplitude birefringence also affects
the statistical distribution of cos ι over the population of
binary black hole mergers [57] with ι being the inclination
angle of the binary black hole system. One can consider
that the Universe is homogeneous and isotropic on cos-
mological scales, and that gravitational physics does not
have any preferred direction. This implies that the under-
lying distribution for cos ι is flat, meaning that its distri-
bution is symmetric about zero when the amplitude
birefringence is absent. When the amplitude birefringence
induced by G1 is included, the distribution of cos ι will
preferentially have cos ι > 0ð< 0Þ if G1 < 0ð> 0Þ [57].
By checking posterior distributions of cos ι for GW events
in the GWTC-2 catalog, we can impose a constraint
on G1 [57], i.e.,

jG1=G0j ≲ 1000 km: ð4:27Þ

This bound corresponds to

M−2
Pl jcð2;1Þ1 − ðcð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 ÞHj < 500 km:

ð4:28Þ

Note that this constraint improves on that in Eq. (4.26) by a
factor of 2.
It is worth mentioning here that in some specific models,

the coefficient G1 could oscillate periodically. One example
is the axion-Chern-Simons theory studied in Refs. [58–60].
In this scenario, the axion oscillation can induce para-
metric resonance in GWs at a certain frequency, which
can produce resonance peaks in GW signals. Searching for
these peaks in GW signals can thus place stringent
constraints on both the axion-gravity coupling and axion
mass, which can in principle place a more stringent
constraint on G1, depending sensitively on the specific
coupling form of G1.

FIG. 1. Posterior distributions for jG1j from 12 LIGO-Virgo O1/
O2 GW events. The vertical dashed line denotes the 90% upper
limits of jG1j from the combined result.
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2. Velocity birefringence of GWs from W1 −G1

When W1 ≠ G1, the coefficient W1 − G1 induces a
nonzero parameter μA ¼ ρAðW1 − G1Þk=ðG0aÞ, which
determines the speed of the GWs. In particular, due
to parity violation, the parameter μA [or, equivalently,
ρAðW1 − G1Þ=G0] has opposite signs for left- and right-
hand circular polarizations of GWs. This leads to different
velocities for left- and right-hand circular polarizations of
GWs, and therefore the arrival times of the two circular
polarization modes could be different. This phenomenon is
known as velocity birefringence.
As shown in Ref. [41], with velocity birefringence, the

different circular polarization modes will have different
phase velocities

vA ≃ 1 −
1

2
ρAαμðτÞ

�
k

aMPV

�

¼ 1 −
1

2
ρA

W1 − G1

G0

k
a
: ð4:29Þ

Consider GWs emitted at two different times te and t0e, with
wave numbers k and k0, and received at corresponding
arrival times t0 and t00; then, the different velocities of
different circular polarization modes lead to a difference in
their arrival times,

Δt0 ¼ ð1þ zÞΔte þ
ρA
2

�
kβμ

M
βμ
PV

−
k0βμ

M
βμ
PV

�Z
t0

te

αμ
aβμþ1

dt

¼ ð1þ zÞΔte þ
ρAðk − k0Þ

2

Z
t0

te

W1 − G1

G0a2
dt: ð4:30Þ

Here Δte ¼ te − t0e. This velocity difference induces a
modification of the phase of the GW signal emitted from
a binary compact star system. The modified GW waveform
in the Fourier domain reads

hAðfÞ ¼ hGRA eiρAδΨ1 ; ð4:31Þ

where the phase correction ΔΨ1 induced by the velocity
difference is expressed as

δΨ1 ¼ AμðπfÞ2; ð4:32Þ

with

Aμ ¼
Z

t0

te

W1 − G1

G0a2
dt

¼ 1

H0

Z
z

0

ðW1 − G1Þð1þ z0Þdz0
G0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þΩΛ

p : ð4:33Þ

Here we adopt H0 ¼ 67.8 km=s=Mpc, Ωm ¼ 0.308,
and ΩΛ ¼ 0.692.
There are several different ways to test the velocity

birefringence induced by ðW1 − G1Þ=G0 in spatial

covariant gravity. In Ref. [61], the velocity birefringence
was constrained by comparing the arrival times of
GW170817 and GRB170817a, which gives

jðW1 − G1Þ=G0j≲ 10−11 km: ð4:34Þ

With the arrival time difference of left- and right-hand GWs
induced by velocity birefringence, Ref. [62] proposed a
new method for constraining velocity birefringence in a
model-independent way by measuring the difference in
arrival times of two GW polarizations. With this method, it
is expect to constrain jðW1 − G1Þ=G0j to be ≲10−14 km.
This constraint is better than Eq. (4.34) by 3 orders of
magnitude. The velocity birefringence could also slightly
widen or split the peak of the GW waveform [55]. By
checking for waveform peak splitting in the first ever
detected GW event, GW150914, Ref. [63] placed the first
constraint on velocity birefringence, which corresponds to
jðW1 − G1Þ=G0j ≲ 10−11 km. Recently, the constraints
from considering the width of the peak at the maximal
amplitude of GW events have been improved significantly
with an analysis of 50 GW events in GWTC-1 [64] and
GWTC-2 [65].
Similar to the case of amplitude birefringence, the

velocity birefringence due to parity violation can also be
tested by comparing the modified waveform (4.31) with the
GW strain data from the GW detectors; see Ref. [66] for a
review. Based one this, the tests of velocity birefringence
have been carried out through full Bayesian parameter
estimations on the GWevents observed by the LIGO/Virgo/
KAGRA detectors in a series of papers [30,54,67–72]. Here
we would like to derive the constraint on the coefficient
ðW1 − G1Þ=G0 by directly using the posterior samples
obtained in Ref. [68] for testing the velocity birefringent
effect with 94 GW events reported in the 4th-Open
Gravitational-wave Catalog (4-OGC) [73]. The data for
these posterior samples were downloaded from Ref. [74].
With these data, one can derive the posterior distributions
of ðW1 − G1Þ=G0 from the posterior distributions of the
sampled parameter M−1

PV for each GW event. In Fig. 2 we
show the posterior distributions of jðW1 − G1Þ=G0j for the
92 analyzed GW events.2 Note that here we treat the
coefficientW1 − G1 as a constant as well. From this figure,
we find that the posterior distributions of jðW1 − G1Þ=G0j
with 90% confidence intervals are consistent with the GR
value W1 − G1 ¼ 0 for all 92 GW events. By considering
jðW1 − G1Þ=G0j as a universal parameter, we also present
its upper bound from the combined posterior probability
distributions in Fig. 2 (the vertical dashed line), from which
one is able to place a constraint on jðW1 − G1Þ=G0j as

2Here we exclude the two events GW190521 and GW191109,
since their posterior samples show intriguing nonzero results for
velocity birefringence. Some possible reasons which produce
such signature were also explored in Ref. [68].
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jðW1 − G1Þ=G0j < 4.4 × 10−18 km ð4:35Þ

at the 90% confidence level. This bound corresponds to

M−2
Pl

���� 14 ð_cð1;3Þ1 þ _cð1;3Þ2 Þ þ cð0;3Þ1 − 3cð1;3Þ3 H

−
1

2
½cð2;1Þ1 − ðcð3;1Þ1 − 2cð3;1Þ2 − 3cð3;1Þ3 ÞH�

����
< 1.1 × 10−18 km: ð4:36Þ

It is worth mentioning here that a slightly stronger bound
on the velocity birefringence parameter was derived in
Ref. [69] by performing a full Bayesian analysis on GW
events in the LIGO-Virgo catalog GWTC-3.

C. Lorentz-violating effects from W2 and G2

The Lorentz-violating high-derivative terms introduced
in Eq. (2.9) into the action of the spatial covariant gravities
lead to nonzero coefficientsW2 and G2. The coefficientW2

arises from a term with four spatial derivatives, and thus it
modifies the usual dispersion relation of GWs in GR. The
coefficient G2, which arises from a term contained two time
derivatives and two spatial derivatives, not only modifies
the dispersion relation but also leads to a modified damping
rate of GWs during propagation.3 In the following we

discuss the effects of Lorentz-violating high derivatives in
the action of spatial covariant gravity on the damping rate
and dispersion of GWs, respectively.

1. Lorentz-violating damping rate

The coefficient G2 induces a frequency-dependent friction
term in the propagation equation of GWs. In the para-
metrization of Eq. (3.18), this friction term leads to a nonzero
parameter ν̄, which provides a frequency-dependent damp-
ing of the GWamplitude during propagation. This implies
that at different frequencies, GWs can experience different
damping rates. This effect provides an amplitude modu-
lation to the gravitational waveform [41],

hA ¼ hGRA exp

�
−
1

2

Z
t0

te

Hν̄

�
¼ hGRA eδh2 ; ð4:37Þ

with

δh2 ¼ −
1

2

�
aν̄

�
k

aMLV

�
βν̄
�����a0

ae

¼ −
1

2

G2k2

G0a2

����a0
ae

; ð4:38Þ

where hGR denotes the waveform of GWs in GR. We can
convert the left- and right-hand GW polarization modes
into the plus and cross modes, i.e.,

hþðfÞ ¼ hGRþ eδh2 ; ð4:39Þ

h×ðfÞ ¼ hGR× eδh2 : ð4:40Þ

With this modified waveform, it is possible to derive the
constraint on G2=G0 by comparing the modified waveform
with the GW strain data from the GW detectors. However,
no test of the frequency-dependent damping effects has not
been carried out yet in the literature, and we expect to
consider this in our future works.

2. Lorentz-violating dispersion relation

Lorentz violation in gravity in general modifies the
conventional linear dispersion relation to a nonlinear
one. Due to the existence of the coefficients W2 and G2

in spatial covariant gravity, the dispersion of GWs becomes

ω2
k ¼ k2ð1þ μ̄Þ; ð4:41Þ

with

μ̄ ¼ W2 − G2

G0

k2

a2
: ð4:42Þ

With this modified dispersion relation, the phase velocity of
GWs reads

FIG. 2. Posterior distributions for jW1 − G1j from 92 GW
events in the 4-OGC. The legend indicates the events that give the
tightest constraints. The vertical dashed line denotes the 90%
upper limits from the combined result.

3Note that in some Lorentz-violating theories, vector modes
can appear and propagate in the spacetime. These kinds of vector
modes are generated, for example, in Einstein-aether theory by a
time-like aether field introduced in the theory. Such a time-like
aether field provides a preferred time direction and thus breaks
the Lorentz symmetry. This property is different from the spatial
covariant gravities we consider here, in which only an extra scalar
mode could be generated due to the breaking of the time
diffeomorphism and no new fundamental fields are introduced
in the theory.
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v ≃ 1 −
1

2
αμ̄

�
k

aMLV

�
βμ̄

¼ 1 −
1

2

W2 − G2

G0

k2

a2
: ð4:43Þ

Consider GWs emitted at two different times te and t0e, with
wave numbers k and k0, and received at corresponding
arrival times t0 and t00; then, the different velocities of
modes lead to a difference in their arrival times [41,75],

Δt0 ¼ ð1þ zÞΔte þ
1

2

�
kβμ̄

M
βμ̄
LV

−
k0βμ̄

M
βμ̄
LV

�Z
t0

te

αμ̄
aβμ̄þ1

dt

¼ ð1þ zÞΔte þ
k2 − k02

2

Z
t0

te

W2 − G2

G0a3
dt: ð4:44Þ

Here Δte ¼ te − t0e. This velocity difference induces a
modification of the phase of the GW signal emitted from
a binary compact star system. The modified GW waveform
in the Fourier domain reads [41,75]

hAðfÞ ¼ hGRA eiδΨ2 ; ð4:45Þ

where the phase correction δΨ2 induced by the velocity
difference is expressed as

δΨ2 ¼ AμðπfÞ3; ð4:46Þ

with

Aμ̄ ¼
4

3

Z
t0

te

W2 − G2

G0a3
dt

¼ 4

3H0

Z
z

0

ðW2 − G2Þð1þ z0Þ2dz0
G0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þΩΛ

p : ð4:47Þ

We analyze the GW constraints on the Lorentz-violating
dispersion relation by comparing the modified wave-
form (4.45) with the GW strain data in GWTC-1 [11],
GWTC-2 [12], and GWTC-3 [13]. The gravitational
constraint on ðW2 − G2Þ=G0 can be obtained from the
posterior samples of the Lorentz-violating parameter A4 in
Refs. [11–13]. In Refs. [11–13], the Lorentz-violating
parameter A4 was sampled separately for A4 > 0 and A4 <
0 in Refs. [11–13]. Here we consider positive and negative
A4 separately as well and derive the corresponding bounds
on ðW2 − G2Þ=G0, which are presented in Table IV. From
this table, we see that the most stringent constraint is
from the combined posterior of GW events in GWTC-3,
which gives

jðW2 − G2Þ=G0j < 1.2 × 10−10 m2 ð4:48Þ

at 90% C.L. This bound corresponds to

M−2
Pl jcð0;4Þ3 þ cð2;2Þ1 j < 6 × 10−11 m2: ð4:49Þ

V. SUMMARY AND DISCUSSIONS

The spatial covariant gravity is only invariant under the
three-dimensional spatial diffeomorphism, which breaks
the time diffeomorphism. Therefore, the gravitational
action of this type of theories can only be constructed in
terms of spatial diffeomorphism invariants. A lot of scalar-
tensor theories can be mapped to the spatial covariant
framework by imposing the unitary gauge on the coupling
scalar field. This provides us with a general framework for
exploring the effects of unknown high-energy physics on
the propagation of GWs.
In this paper, we studied the effects of the spatial

covariant gravities on the propagation of GWs, produced
by the coalescence of compact binaries, and their obser-
vational constraints with GW events from the LIGO/Virgo/
KAGRACollaboration. For this purpose, we calculated the
effects of the spatial covariant gravities on the friction,
speed, amplitude, and velocity birefringences of GWs, as
well as the modified dispersion relation during GW
propagation in the cosmological background. These effects
can be described by the universal parametrization proposed
in Refs. [41,42]. Different effects correspond to different
parameters, as discussed in detail in Sec. III and summa-
rized in Table II. These effects can be divided into three
classes: 1) frequency-independent effects which include
modifications to GW speed and friction; 2) parity-violating
effects which include the amplitude and velocity birefrin-
gences of GWs; and 3) Lorentz-violating effects which
include the modified damping rate and dispersion rela-
tion of GWs. Among these effects, the parity-violating
and Lorentz-violating effects are frequency dependent.
Depending on different coefficients in the spatial covariant
gravities, these frequency-dependent effects can produce
amplitude modulation and phase corrections in the wave-
form of GWs produced by the coalescence of compact
binaries. The calculation of these modified GW waveforms
was presented in Sec. III. These modified waveforms
provide important tools for constraining parity-violating

TABLE IV. 90% confidence level upper bounds on jðW2 −
G2Þ=G0j for positive and negative W2 − G2 obtained using
Bayesian inference by analyzing GW events in the LIGO/
Virgo/KAGRA catalogs GWTC-1 [11], GWTC-2 [12], and
GWTC-3 [13]. Note that the bounds on jðW2 − G2Þ=G0j are in
units of 10−10 m2.

Catalogs
Sampled with negative

W2 − G2

Sampled with positive
W2 − G2

GWTC-1 9.0 5.5
GWTC-2 3.4 2.5
GWTC-3 2.9 1.2
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or Lorentz-violating effects in the spatial covariant gravities
with current available GW events or future GW detections.
We compared these new effects with the publicly

available posterior samples or results from various tests
of gravities using LIGO/Virgo/KAGRA data to obtain
constraints on coupling coefficients in the action of
spatial covariant gravities. Different effects can be tested
with different phenomena in GW observations. For the
frequency-independent effects, GW speed is constrained
by the multimessenger observation of GW170817/
GRB170817A, while GW friction is constrained by dark
sirens in GWTC-1 with BBH population models. For the
parity-violating effects, we constrained the amplitude and
velocity birefringent parameters using full Bayesian param-
eter estimations of the GW events observed by the LIGO/
Virgo/KAGRA detectors. We also reported the constraint
on the amplitude birefringent parameter from statistic
analysis of the posterior distributions of cos ι for GW
events in GWTC-2. For the Lorentz-violating effects, we
reported the constraint on the parameter in the modified
dispersion relation from a Bayesian analysis of GW events
in GWTC-3. Our results are summarized in Table V.
Using these constraints, we also derived the corresponding
bounds on the coupling coefficients of a number of specific
theories in the Appendix.
It is remarkable that the constraints on the effects

which modify the speeds of GWs (including the effects
of frequency independent modification to GW speed,
amplitude birefringence, and Lorentz-violating modified
dispersion) are more stringent than those that affect the
amplitude of GWs. For example, for parity-violating
effects, the parameter jG1j (with W1 ¼ 0) can be con-
strained from tests of amplitude or velocity birefringence. It
is evident from Table V that the constraint on jG1j from the
tests of velocity birefringence is stronger than that from
tests of amplitude birefringence by 20 orders of magnitude.
This is because ground-based detectors are more sensitive

to phase corrections than amplitude modulations for tests
involving GW signals from the coalescence of compact
binaries.
Here we would like to mention that the study performed

in this paper can be extended in a few directions in future
works. First, in order to derive the bounds on the coupling
coefficients, we considered the different effects of spatial
covariant gravities on the propagation of GWs separately.
Thus, it would be interesting to consider all of the new
effects that arise from the different coefficients together. To
do this, one would need to simulate the modified waveform
with GW data by sampling all of the relevant coefficients.
Second, it would be interesting to see if future GW
detectors such as the third-generation ground-based detec-
tors, space-based detectors, and pulsar-timing arrays can
improve the bounds obtained in this paper. For the spatial
covariant gravities, most of the effects on the propagation
of GWs are very sensitive to the higher frequency of GWs.
This is because the amplitude and phase corrections to the
waveform are proportional to fβν̄;νA and f1þβμ̄;μA , respec-
tively. For this reason, it is not likely that future space-based
detectors or pulsar-timing arrays will be able to improve the
bounds given in this paper, since the sensitive frequency of
these detectors is much lower than those of the ground-
based detectors. For the velocity birefringence effect, it
was shown [54] that third-generation gravitational-wave
detectors are able to improve the constraint on the energy
scale of parity violation to Oð102Þ GeV. This implies
that the bound on jðW2 − G2Þ=G0j can be improved
by about 3 orders of magnitude, i.e., improved to be
jðW2 − G2Þ=G0j ≲Oð10−21Þ km. Similarly, it is expected
that third-generation gravitational-wave detectors could be
able to significantly improve the constraints on the other
effects, such as the amplitude birefringence, Lorentz-
violating damping rate, and modified dispersion relations.
We expect to come back to these issues soon in a future
work.

TABLE V. Summary of estimations for bounds of the coupling coefficients in spatial covariant gravities. Note that all of the
coefficients are estimated approximately at present time, i.e., z ¼ 0. Here ½amin; bmax� represent constraints with amin and bmax being the
lower and upper bounds, respectively.

Coefficients Bounds Related coefficients Data sets usedffiffiffiffiffi
W0

G0

q
− 1 ½−30; 7� × 10−16 cð2;0Þ1 ; cð3;0Þ1 ; cð3;0Þ2 ; cð4;0Þ1 ; cð4;0Þ2 ; cð4;0Þ3 ,

cð0;2Þ1 ; cð1;2Þ3 ; cð1;2Þ4 ; cð2;2Þ6 ; cð2;2Þ7 ; cð2;2Þ8 ; cð2;2Þ9

Multimessenger observations of
GW170817 [45,46]

ðlnG0Þ0
H

½−3.0; 2.5� cð2;0Þ1 ; cð3;0Þ1 ; cð3;0Þ2 ; cð4;0Þ1 ; cð4;0Þ2 ; cð4;0Þ3
Dark sirens in GWTC-3 with BBH

mass distributions [53]
jG1=G0j ≲2065 km cð2;1Þ1 ; cð3;1Þ1 ; cð3;1Þ2 ; cð3;1Þ3

Tests of amplitude birefringence with
LIGO-Virgo O1/O2 [54]

≲1000 km From statistic distribution of cos ι in
GWTC-2 [57]

jW1−G1

G0
j ≲4.4 × 10−18 km cð0;3Þ1 ; cð1;3Þ1 ; cð1;3Þ2 ; cð1;3Þ3 , cð2;1Þ1 ; cð3;1Þ1 ; cð3;1Þ2 ; cð3;1Þ3

Tests of velocity birefringence with
4-OGC [68]

jW2−G2

G0
j ≲1.2 × 10−10 m2

cð2;2Þ1 ; cð0;4Þ3
Tests of Lorentz-violating dispersion with

GWTC-3 [13]
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APPENDIX: SEVERAL SPECIFIC SPATIAL
COVARIANT GRAVITIES

The spatial covariant gravities provide a unifying frame-
work for describing scalar-tensor theories in the unitary
gauge. In this appendix, we present several specific scalar-
tensor theories in the unitary gauge and Lorentz-violating
gravity by writing their gravitational actions in the form of
Eq. (2.4). We also provide relations between the coupling
coefficients in each theory and the corresponding coeffi-
cients in the spatial covariant gravities. In addition, the
observational constraints on these theories are derived from
the constraints presented in Table V.

1. Horndeski theory

The Horndeski theory is a general scalar-tensor theory
constructed from the metric tensor gμν and a scalar field ϕ
and can have a second-order field equation [76]. The
Lagrangian of the Horndeski theory in the unitary gauge
with ϕ ¼ ϕðtÞ can be found in Refs. [28,77,78] and is
written as [28]

Lunitary
H ¼ a0K − 2a1

�
Rij −

1

2
Rgij

�
Kij þ b0ðKijKij − K2Þ

þ c0ðK3 − 3KKijKij þ 2Ki
jK

i
kK

k
i Þ þ d0 þ d1R;

ðA1Þ

where the six coefficients a0, a1, b0, c0, d0, d1 are functions
of t and N, which can be related to the coefficients of the
Horndeski theory through Eqs. (8)–(13) in Ref. [28].
Comparing the above Lagrangian with Eq. (2.4), one finds

cð0;0Þ1 ¼ d0; cð1;0Þ1 ¼ a0; cð0;2Þ1 ¼ d1; cð2;0Þ1 ¼ b0;

cð2;0Þ2 ¼−b0; cð3;0Þ1 ¼ 2c0; cð3;0Þ2 ¼−3c0; cð3;0Þ3 ¼ c0;

cð1;2Þ3 ¼−2a1; cð1;2Þ4 ¼ a1; ðA2Þ

with all other coefficients cðt;sÞi ¼ 0. The corresponding
coefficients G0, G1, G2 and W0, W1, W2 in the GW
propagation equation (3.12) are

G0 ¼
1

2
b0 −

3

2
c0H; G1 ¼ 0 ¼ G2; ðA3Þ

W0 ¼
1

2
d1 −

1

2
_a1; W1 ¼ 0 ¼ G2: ðA4Þ

Then, using the constraints in Table V, it is easy to infer that

−3 × 10−15 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 − _a1

b0 − 3c0H

s
− 1 < 7 × 10−16 ðA5Þ

from the multimessenger observations of GW170817/
GRB170817A [45,46], and

−3 <
_b0 − 3_c0H − 3c0 _H
b0H − 3c0H2

< 2.5 ðA6Þ

using the dark sirens in GWTC-3 with BBH mass dis-
tributions [53].

2. Scalar-Gauss-Bonnet gravity

It is also interesting to note that scalar-Gauss-Bonnet
gravity with the Lagrangian LGB ¼ ξðϕÞR2

GB can be
recast in the form of the Horndeski theory [79], where
R2
GB ≡ 1

4
εμναβε

λτ
ρσ

4Rαβ
λτ
4Rμνρσ. Here εμνρσ is the Levi-Civita

tensor and 4Rρσαβ is the Riemann tensor defined in four-
dimensional spacetime. In the unitary gauge, the propaga-
tion equation of GWs in scalar-Gauss-Bonnet gravity
corresponds to [28]

G0 ¼
1

4
M2

Pl þ 2_ξH; G1 ¼ 0 ¼ G2; ðA7Þ

W0 ¼
1

4
M2

Pl þ 2 ̈ξ; W1 ¼ 0 ¼ G2: ðA8Þ

Using the constraints in Table V, one obtains

−3 × 10−15 ≲ 8
̈ξ − _ξH
M2

Pl

≲ 7 × 10−16 ðA9Þ

from the multimessenger observations of GW170817/
GRB170817A [45,46], and

−3≲ 8
̈ξH þ _ξ _H
M2

PlH
≲ 2.5 ðA10Þ

using the dark sirens in GWTC-3 with BBH mass
distributions [53].
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3. Chern-Simons gravity

Chern-Simons gravity is an effective extension of GR
that includes a coupling between a scalar field ϕ and the
Chern-Pontryagin term [80–82]. The Lagrangian of the
new term beyond GR is

LCS ¼
M2

Pl

2

1

8
ϑðϕÞεμνρσ4Rρσαβ

4Rαβ
μν : ðA11Þ

In the unitary gauge, one can find that [28]

Lðu:g:Þ
CS ¼ M2

Pl

2
εijkϑ

�
KilKlm∇jKkm þ Kl

iK
m
j ∇mKkl

− KKl
i∇jKkl − 2Rl

i∇jKkl −
1

N

_ϑ

ϑ
Kl

i∇jKkl

−
2

N
Kl

iKjlKkm∇mN −
2

N
∇iKjl∇k∇lN

�
: ðA12Þ

Ignoring the terms containing spatial derivatives of N and

comparing Lðu:g:Þ
CS with Eq. (2.4), one has

cð2;0Þ1 ¼ cð0;2Þ1 ¼ −cð2;0Þ2 ¼ M2
Pl

2
;

cð3;1Þ2 ¼ −cð3;1Þ1 ¼ −cð3;1Þ3 ¼ −
1

2
cð1;3Þ1 ¼ M2

Pl

2
ϑ;

cð2;1Þ1 ¼ −
M2

Pl

2

_ϑ

N
: ðA13Þ

Then, the coefficients in the propagation equation (3.12)
read

G0 ¼
1

4
M2

Pl; G1 ¼ −
M2

Pl

2

_ϑ

2
; G2 ¼ 0; ðA14Þ

W0 ¼
1

4
M2

Pl; W1 ¼ −
M2

Pl

2

_ϑ

2
; G2 ¼ 0: ðA15Þ

The nonzero coefficient G1 induces amplitude birefringence
in the propagation of GWs. Using the constraints in
Table V, one gets

j _ϑj≲ 2065 km ðA16Þ

from tests of amplitude birefringence with LIGO-Virgo
O1/O2 events [54] and

j _ϑj≲ 1000 km ðA17Þ

from the analysis of posterior distribution of cos ι in
GWTC-2 [57].

4. Lorentz-violating Weyl gravity

Weyl gravity modifies GR by adding a Weyl-squared
term to the gravitational Lagrangian [83],

LWeyl ¼ −
M2

Pl

2

γ

2
4Cμνρλ

4Cμνρλ; ðA18Þ

where 4Cμνρλ is the Weyl tensor in four-dimensional
spacetime. In the unitary gauge, the Lagrangian LWeyl

becomes [28,83]

Lðu:g:Þ
DSSY ¼ M2

Plγð−∇iK∇iK −∇iKik∇jK
j
k þ 2∇iK∇jK

j
i

− 2∇kKij∇jKik þ 2∇kKij∇kKijÞ: ðA19Þ

Comparing this with Eq. (2.4), we have

cð2;0Þ1 ¼ cð0;2Þ1 ¼ −cð2;0Þ2 ¼ M2
Pl

2
;

cð2;2Þ1 ¼ −cð2;2Þ2 ¼ cð2;2Þ4 ¼ −
1

2
cð2;2Þ3 ¼ −

1

2
cð2;2Þ5 ¼ 2M2

Plγ:

ðA20Þ

Then, the coefficients in the propagation equation (3.12)
read

G0 ¼
1

4
M2

Pl; G1 ¼ 0; G2 ¼ M2
Plγ; ðA21Þ

W0 ¼
1

4
M2

Pl; W1 ¼ 0; G2 ¼ 0: ðA22Þ

Using the constraints in Table V, one gets

j4γj ≲ 1.2 × 10−10 m2 ðA23Þ

from tests of Lorentz-violating dispersion with
GWTC-3 [13].

5. Chiral scalar-tensor theory

Chern-Simons gravity can be extended to include parity-
violating curvature terms with couplings between the
Riemann curvature and derivatives of the scalar field.
One theory of this type is the chiral scalar-tensor theory
considered in Ref. [84], which includes couplings between
the Riemann curvature and the first and second derivatives
of the scalar field.
The coupling of the first derivatives of the scalar

field contains four terms with coupling coefficients
ða1; a2; a3; a4Þ in the Lagrangian [84], which can be written
in the unitary gauge as
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Lu:g:1
chiral ¼ M2

Pl

_ϕ2

N2
½ð4a1 þ a3ÞεijkKliKmj∇mKk

l

− ð4a1 þ 2a3ÞεijkRli∇kKj
l

þ a3εijkðKi
mKlm − KKliÞ∇kKj

l �: ðA24Þ

In the above, we have used the condition 4a1 þ 2a2þ
a3 þ 8a4 ¼ 0 which makes the theory healthy in the
unitary gauge.
For the coupling between the Riemann curvature and the

second derivatives of the scalar field, there are seven terms
with coupling coefficients ðb1; b2; b3; b4; b5; b6; b7Þ in
the Lagrangian [84], which can be written in the unitary
gauge as

Lu:g:2
chiral ¼M2

Pl

_ϕ3

N3
b1εijkKli∇kKj

l

þM2
Pl

_ϕ4

N4
ðb4þb5−b3ÞεijkKliKmj∇mKk

l : ðA25Þ

In the above we dropped all of the terms containing spatial
derivatives of the lapse function, since they do not
contribute to the propagation of the tensorial GWs, and

we used the conditions b7 ¼ 0, b6 ¼ 2ðb4 þ b5Þ, and b2 ¼
− _ϕ2

2N2 ðb3 − b4Þ to make the theory healthy when the unitary
gauge is imposed [84].
Now the parity-violating Lagrangian of the chiral scalar-

tensor theory reads Lu:g:
chiral ¼ Lu:g:

CS þ Lu:g:1
chiral þ Lu:g:2

chiral.
Considering it with Eq. (2.4), one obtains

cð2;0Þ1 ¼ cð0;2Þ1 ¼ −cð2;0Þ2 ¼ M2
Pl

2
;

cð3;1Þ1 ¼ M2
Pl

2

�
−ϑ −

2 _ϕ2

N2
ð4a1 þ a3Þ −

2 _ϕ4

N4
ðb4 þ b5 − b3Þ

�
;

cð1;3Þ1 ¼ M2
Pl

2

�
−2ϑþ 2 _ϕ2

N2
ð4a1 þ 2a3Þ

�
;

cð2;1Þ1 ¼ M2
Pl

2

�
− −

_ϑ

N
−
2 _ϕ3

N3
b1

�
;

cð3;1Þ2 ¼ M2
Pl

2

�
−ϑ −

2 _ϕ2

N2
a3

�
;

cð3;1Þ3 ¼ M2
Pl

2

�
−ϑþ 2 _ϕ2

N2
a3

�
: ðA26Þ

Then, the coefficients in the propagation equation (3.12)
read

G0 ¼
1

4
M2

Pl; G2¼ 0;

G1 ¼
M2

Pl

2

�
−
_ϑ

2
−b1 _ϕ

3þ2ða3þ2a1Þ _ϕ2H

þðb4þb5−b3Þ _ϕ4H

�
;

W0 ¼
1

4
M2

Pl; G2¼ 0;

W1 ¼
M2

Pl

2

�
−
_ϑ

2
þð4a1þ2a3Þ _ϕϕ̈þð2_a1þ _a3Þ _ϕ2

�
: ðA27Þ

The nonzero coefficient G1 induces amplitude birefringence
in the propagation of GWs and the nonzero G1 −W1 leads
to velocity birefringence. For jG1=G0j, using the constraints
in Table V, one gets

j − _ϑ − 2b1 _ϕ
3 þ 4ða3 þ 2a1Þ _ϕ2H

þ 2ðb4 þ b5 − b3Þ _ϕ4Hj ≲ 2065 km ðA28Þ

from tests of amplitude birefringence with LIGO-Virgo
O1/O2 events [54] and

j − _ϑ − 2b1 _ϕ
3 þ 4ða3 þ 2a1Þ _ϕ2H

þ 2ðb4 þ b5 − b3Þ _ϕ4Hj ≲ 1000 km ðA29Þ

from the analysis of the posterior distributions of cos ι in
GWTC-2 [57]. For ðW1 − G1Þ=G0, one has

jða3 þ 2a1Þ _ϕ2H − ð4a1 þ 2a3Þ _ϕ ϕ̈−ð2_a1 þ _a3Þ _ϕ2

− b1 _ϕ
3 þ ðb4 þ b5 − b3Þ _ϕ4Hj≲ 2.2 × 10−18 km ðA30Þ

from the tests of velocity birefringence with 4-OGC
in Ref. [68].
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