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We describe a shielding mechanism for a charged black hole immersed in a background involving
charged matter fields, solely arising from the Einstein-Maxwell field equations. In particular, we consider a
charged generalization of the Einstein cluster, that is a charged black hole surrounded by an effective fluid
model for a partially charged dust cloud. We show that the shielding mechanism, arising thereof, is generic
and appears in a different parametrization of the problem as well. In this process, we provide the most
general electrovacuum solution in a spacetime region devoid of charges, but in the presence of a static and
spherically symmetric charge distribution elsewhere. Side by side, we also introduce a convenient
parametrization, providing the global solution of the Einstein-Maxwell’s field equations in the presence of a
charged black hole within the environment of charged fluid. We also comment on the nature of the photon
sphere, shadow radius and the eikonal quasinormal modes in the Einstein-Maxwell cluster.
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I. INTRODUCTION

Black holes (BHs) are among the most fascinating
objects in modern physics, connecting the classical and
quantum domains of gravity [1–3]. Though these are the
simplest solutions of the gravitational field equations, they
hide singularities, where the classical laws of Physics break
down [4–7]. The most remarkable property is that classical
BHs inherit a special surface, known as the event horizon,
acting as a one-way membrane. Experimental verification
of the existence of such an event horizon would also
provide conclusive evidence for BHs in nature [8–11] (for
alternatives to the BH paradigm, see [12–22]).
Recent years have seen significant progress in these

directions. The event horizon telescope has already probed
the location of the photon sphere, also known as the
unstable circular photon orbits, through the BH shadow
measurements of the central supermassive compact objects
in the galaxies M87 and our own Milky Way [23,24].
The gravitational wave detectors as well have probed the
photon sphere [25], through the lowest lying quasinormal
modes [26] of the perturbed BH, arising from the merger of
binary BHs [27,28]. It is expected that future gravitational
wave detectors will be able to probe various features of
these perturbations, including nonlinearities and other
multipoles to reveal finer details, thus settling the question

of whether these compact objects are indeed BHs or
not [10,11,29–34].
The simplicity of BHs is due to the fact that these objects

in general relativity are described by three parameters
alone—the mass, the angular momentum, and the electric
charge. In theories beyond general relativity, there can be
additional parameters and searching for these additional
hairs is one of the prime aims of any astrophysical tests of
gravity, including the gravitational wave observations
[30,35–39]. However, within the purview of general
relativity one always works with the Kerr metric for
describing any astrophysical BHs, i.e., astrophysical BHs
are assumed to have only mass and angular momentum,
but zero electric charge. Even though pair-production or
Hawking radiation are able to discharge BHs to a good
extent [40], there does not seem to be any appropriate
mechanism, which can make the use of electric charge
completely irrelevant in astrophysical contexts from first
principles, i.e., starting from the Einstein-Maxwell field
equations.1 This is the gap we wish to fill in this work.
For that purpose, we start with a charged BH surrounded

by an anisotropic charged fluid, in a static and spherically
symmetric configuration. This is typical of any galactic
system, where a central massive BH would be surrounded
by a plasma, having some distinct mass profiles [45,46]. If
the central BH is charged, the plasma is expected to exhibit
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1Perhaps it is worth mentioning here some recent work on
mergers of charged black holes [41–44], which may provide one
possible mechanism.
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overdensities for at least one species of charged particle,
and hence acquire an overall charge. This is also expected
from the fact that the conductivity of the plasma is
supposed to mitigate the electric field from the central
BH. The effect of the matter distributions surrounding
Schwarzschild and charged BHs has already been studied
in [47–49], where an exact solution of the Einstein
equations describing the surrounding matter (an
“Einstein cluster”), as well as the central BH, have been
obtained. In this article, we provide a generalization of the
solution considered in [48] for the case of a charged BH,
but also demonstrate the screening mechanism at work, i.e.,
why isolated charged BHs are not relevant in astrophysical
contexts. In particular, we will show that a charged BH
surrounded by a spherically symmetric charged cloud
generically results in a Schwarzschild BH, seen from a
large distance.
The paper is organized as follows: In Sec. II, we first

present the general structure of the gravitational and
electromagnetic field equations describing a charged BH
surrounded by charged anisotropic matter distribution and
then specialize to the case of a static and spherically
symmetric situation in Sec. II B. Subsequently, we present
the screening mechanism for a given profile of the number
density of the distribution of charged matter in Sec. III
where the screening of the BH charge can be seen
explicitly. Then, we propose a parametrization for the
charged BH surrounded by the charged matter distribution
in Sec. IV, which also shows a screening behavior, as
described in Sec. V. Then we finish with our conclusion and
some physical properties of the solution derived above.
Notation and Conventions: We use units where the funda-
mental constants G and c have been set to unity, i.e.,
G ¼ 1 ¼ c. We also use geometrized units in the electro-
magnetic sector, e.g., we choose the magnetic permeability
in vacuum to be μ0 ¼ 4π and then the electric permittivity
in vacuum becomes ϵ0 ¼ ð1=4πÞ.

II. BASIC EQUATIONS FOR MATTER
SURROUNDING A CHARGED BLACK HOLE

A. General model

Following the Einstein cluster construction [47,48], we
begin by considering a single species anisotropic charged
fluid in spherical symmetry with vanishing radial pressure,
which one might imagine to be an effective fluid descrip-
tion of a cloud of charged particles, each traveling on a
circular orbit, such that the averaged distribution is spheri-
cally symmetric. The energy-momentum tensor is assumed
to have the form Tμ

ν ¼ diagð−ρ; 0; P̄; P̄Þ, where P̄ is the
tangential pressure of the fluid. The effective energy-
momentum tensor may be rewritten in terms of the metric
and appropriate vector fields as:

Tμν ¼ ðρþ P̄Þuμuν þ P̄ðgμν − r̂μr̂νÞ; ð1Þ

where uμ is the four-velocity of the fluid, which is assumed
to align with a timelike Killing vector field and satisfies the
normalization condition uμuν ¼ −1. The quantity r̂μ is a
unit vector in the radial direction, which is assumed to be
orthogonal to the Killing vectors in the static and spheri-
cally symmetric spacetime, within which we will work and
is normalized as r̂μr̂μ ¼ 1.
Since the fluid is charged, we need to find out the

associated field equations governing the charge distribution
as well. For this purpose, we may use Maxwell’s equations,
having the following form (where we define the field
strength tensor as Fμν ≔ 2∇½μAν�):

∇νFμν ¼ 4πJμ; ð2Þ

where Jμ ≔ qnuμ, with q being the particle charge, and n is
an effective number density, defined so that qn is the charge
density as viewed by observers coincident with uμ. Note
that we do not assume, ρ ¼ nm, i.e., the density of charged
particles need not coincide with the density of the particles
constituting the cloud, all of which carry a mass m. Since ρ
and n are assumed to be independent, one might regard n
as a quantity describing effective charge overdensities
for some underlying multispecies fluid description of the
plasma.
The final ingredient is the Einstein’s field equations,

determining the nature of the gravitational field,

Gμν ¼ 8πTμν þ
1

2
ð4Fμ

σFνσ − gμνFστFστÞ: ð3Þ

From the contracted Bianchi identity ∇μG
μ
ν ¼ 0, one can

show that the fluid must satisfy the following equation:

∇νTμν ¼ FμνJν; ð4Þ

where Eq. (2) and the identity ∇½σFμν� ¼ 0 have been
employed. In addition, we also have the condition that,
∇μJμ ¼ 0. The system of equations (2)–(4) can be closed
by specifying an equation of state relating n to the other
variables in the system, which we do not yet impose for the
sake of convenience and generality.

B. Static and spherically symmetric spacetime

We have spelled out the basic equations involving a
charged cloud around a BH, in a general form, in the above
section. Here we specialize to a static and spherically
symmetric spacetime, whose line element takes the follow-
ing form:

ds2 ¼ −fðrÞdt2 þ dr2

1 − 2mðrÞ=rþ r2dΩ2; ð5Þ

where dΩ2 ≔ dθ2 þ sin2 θdφ2. Since the above spacetime
admits the existence of a timelike Killing vector ð∂=∂tÞμ
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and an angular Killing vector ð∂=∂φÞμ, one can identify
the four-velocity uμ and the radial unit vector r̂μ with the
following ones:

uμ ¼ 1ffiffiffiffiffiffiffiffiffi
fðrÞp δt

μ; r̂μ ¼ δr
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2mðrÞ
r

r
: ð6Þ

For the vector potential, we assume:

Aμ ¼ δμ
tϕðrÞ: ð7Þ

where the scalar potential ϕ depends on the radial coor-
dinate alone, due to spherical symmetry of the background
spacetime. The spherical symmetry of the system also
results in the following equation∇μJμ ¼ 0 to be identically
satisfied. The Einstein’s equations, in particular the (0,0),
ðr; rÞ and ðθ; θÞ equations, yield

Y 0ðrÞ ¼ 8πr2ρðrÞ
r − 2mðrÞ ; ð8Þ

2m0ðrÞ ¼ 8πr2½ρðrÞ þ ψðrÞ�; ð9Þ

and, finally,

P̄ðrÞ ¼
h
ρðrÞf0ðrÞ − 2q

ffiffiffiffiffiffiffiffiffi
fðrÞp

nðrÞϕ0ðrÞ
i
r

4fðrÞ : ð10Þ

The ðφ;φÞ component of the Einstein’s equations will yield
an identical expression for the tangential pressure P̄ðrÞ and
hence adds nothing new to the above discussion. The
quantities ψðrÞ and YðrÞ are defined for convenience,
having the following form:

ψðrÞ ≔ ϕ0ðrÞ2
8πfðrÞ

�
1 −

2mðrÞ
r

�
; ð11Þ

and the quantity YðrÞ is defined by the expression:

YðrÞ − Y∞ ¼ ln

�
rfðrÞ

r − 2mðrÞ
�
; ð12Þ

where Y∞ corresponds to the value of the function YðrÞ at
infinity and it ensures that, at large distances, the metric
function fðrÞ has the same functional form (up to a
constant factor) as the metric function grr and the appro-
priate flat limit for both of these metric functions can be
obtained.
Moreover, the surface r ¼ 2mðrÞ represents a null sur-

face, since its normal vector is lμ ¼ ð1 − 2m0Þδrμ, such that,
lμlμ ¼ ð1 − 2m0Þ2grr, which identically vanishes on the
r ¼ 2mðrÞ surface. Also, the energy density ρ must vanish
on this surface so that Y 0ðrÞ remains finite on the same. This
in turn implies from Eq. (12) that fðrÞ and r − 2mðrÞ must

have coinciding zeros. Therefore, on the surface
r ¼ 2mðrÞ, the metric function fðrÞ ¼ ð∂=∂tÞμð∂=∂tÞμ
must vanish as well. Therefore, the largest root of this
equation r ¼ 2mðrÞ, denoted by rþ, corresponds to an
event horizon for this spacetime. Further, for r > rþ, the
equation for YðrÞ presented in Eq. (8) shows that Y 0ðrÞ > 0,
owing to the weak energy condition, ensuring ρðrÞ > 0. As
a consequence the function YðrÞ has a monotonic behavior
beyond the surface r ¼ rþ. This fact will be of impor-
tance later.
Also note that ψðrÞ represents the energy density in

the electromagnetic field of the charged cloud and YðrÞ
quantifies the difference between the gtt and the grr

components of the metric tensor. Further, Eq. (10) is also
equivalent to the conservation relation in Eq. (4); thus, we
need not consider the conservation equation once again.
The only remaining equation corresponds to the Maxwell’s
equation in the context of static and spherically symmetric
background spacetime, which reads

ϕ00ðrÞ ¼ 1

2rðr − 2mðrÞÞ
h
8πqr2nðrÞ

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
þ ϕ0ðrÞð8πr3ρðrÞ þ 8mðrÞ − 4rÞ

i
: ð13Þ

We now have all the equations that gravity and electro-
magnetism have to offer. However, the system of equations
is not closed, since the Eqs. (8)–(13) constitute a system
of four independent equations for the six variables YðrÞ,
mðrÞ, P̄ðrÞ, ρðrÞ, nðrÞ, and ϕðrÞ. Thus we need additional
supplementary conditions, which we discuss in the next
sections.
Before proceeding further, it is perhaps appropriate

to briefly consider in this framework the emergence of
the Reissner-Nordström geometry, and for that purpose
it will be interesting to study electrovacuum solution from
the above equations. Consider a region of spacetime
(rþ < r < R) with no matter field, but with an electro-
magnetic field being present due to the BH being charged.
Since there is no matter distribution, it is apt to set ρ ¼ 0 in
this region and hence from Eq. (8), it follows that YðrÞ ¼
Y0 is a constant in that region. However, let there be some
spherically symmetric matter distribution away from this
region (r > R); Y 0ðrÞ will be nonzero there, and from the
monotonic behavior for YðrÞ, it follows that Y∞ > Y0.
Thus it follows from Eq. (12) that the ð−gttÞ component of
the metric function reads

fEVðrÞ ¼ eΔY0

�
1 −

2mðrÞ
r

�

¼ eΔY0

�
1 −

2MBH

r

�
þQ2

BH

r2
; ð14Þ

where we have defined ΔY0 ≔ Y0 − Y∞, which is a
negative quantity. In order to determine the mass function,
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we use the result that the electrostatic potential reads in the
vacuum region outside the event horizon, as ϕðrÞ ¼
ðQBH=rÞ, and hence the electrostatic energy yields
ψðrÞ ¼ ðQ2

BH=8πr
4Þe−ΔY0 , from Eq. (11). Therefore, sub-

sequent integration of Eq. (9) provides the mass function
mðrÞ, which reads mðrÞ ¼ MBH − ðQ2

BH=2rÞe−ΔY0 , whose
substitution provides the final expression in Eq. (14). Note
that the extremal limit corresponds to MBH ¼ e−ΔY0QBH.
However, if the spacetime has no matter density outside
the event horizon, then Y0 and Y∞ will coincide and hence
ΔY0 will vanish. In which case, the Reissner-Nordström
expression will be obtained. To recover the standard
Reissner-Nordström or Schwarzschild expression at large
r, we henceforth choose Y∞ ¼ 0, so that ΔY0 ¼ Y0. In
what follows, we will adopt this strategy to parametrize a
charged BH surrounded by a shell of charged matter with
compact support in the radial direction.

III. DEBYE MODEL

In this section, we will solve Eq. (13) and show that the
screening mechanism arises naturally in a limit for a rather
large class of physically motivated charge density profiles.
As mentioned in the preceding section, one has a system of
four equations for six variables—two supplementary equa-
tions are required. Here, we supply these conditions by
choosing Y 0ðrÞ and a relation between the charge density
qnðrÞ and the electrostatic potential ϕðrÞ, motivated by the
Debye shielding model in plasma physics.
In the Debye shielding model [50,51], one assumes that

the number densities for each particle species satisfies a
Maxwell-Boltzmann distribution in the particle energies,
and upon integrating out the particle momenta, one finds
that the distribution is a function of the electrostatic
potential. In the high-temperature limit, one recovers a
charge density proportional to the electrostatic potential. In
curved spacetime, one should note that since the charge
density is defined with respect to the fluid four-velocity, the
electrostatic potential in the comoving frame has the form
Aμuμ ¼ ϕ=

ffiffiffi
f

p
(the rhs being the expression in spherical

symmetry). If we also require that the charge density is a
fraction of the matter density ρðrÞ, one arrives at the
expression:

qnðrÞ ≈ ν0
ϕðrÞρðrÞffiffiffiffiffiffiffiffiffi

fðrÞp ; ð15Þ

which one may regard as the leading order term in the high
kT expansion of the general expression:

qnðrÞ ¼ ν0kT
q̄

ρðrÞffiffiffiffiffiffiffiffiffi
fðrÞp Hðq̄ϕðrÞ=kTÞ; ð16Þ

where Hð·Þ is a suitably chosen distribution function of the
energies of the individual charged particles and q̄ is some

arbitrary test charge. One might, following the Debye
shielding model, construct Hð·Þ from the Maxwell-
Boltzmann distribution, so that HðxÞ ¼ expðxÞ − 1, but
Eq. (16) should apply for any distribution function that
reduces to a homogeneous linear function in the high
temperature limit for an appropriate rescaling of ν0. With
Eqs. (16) and (8), Eq. (13) has the general form:

ϕ00ðrÞ þ 2ϕ0ðrÞ
r

¼ 1

2
Y 0ðrÞ

�
ν0kTqHðq̄ϕðrÞ=kTÞ

q̄r
þ ϕ0ðrÞ

�
;

ð17Þ

so that, for a choice of distribution function Hð·Þ, one can
solve for ϕðrÞ, given a function YðrÞ.
One can motivate choices for YðrÞ from Eqs. (8) and

(12), and the condition that outside the event horizon,
YðrÞ is a monotonic function. As a consequence, the most
general spherically symmetric solution to the Einstein-
Maxwell system in the absence of local charge and energy
density is given by Eq. (14). Now the system we consider is
a charged BH surrounded by charged matter fields with
compact support; if we assume a (electro)vacuum near the
horizon and at large r, then the function YðrÞ is a constant
near the horizon and at large r, but these constant values
Y0 and Y∞ ¼ 0 will be different, with Y0 < Y∞ ¼ 0.
Therefore, it follows that ΔY0 ¼ Y0 < 0 near the horizon.
These considerations suggest that YðrÞ has a step function
profile:

YðrÞ ¼ Y0σ

�
r − r0
λ0

�
; ð18Þ

where, σðxÞ ¼ 0 for x ≫ 1 and σðxÞ ¼ −1 for x ≪ −1.
A particularly simple choice, which we employ in our
numerical solutions, is the following:

σðxÞ ¼ 1

2

�
xffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p − 1

�
: ð19Þ

We obtain numerical solutions for (17) with HðxÞ ¼ x
[to recover Eq. (15) in appropriate limit], with the choice
of Y in Eqs. (18) and (19), and for some choice of the
constant Y0. We integrate Eq. (17) inward from an initial
point rmax ≫ rþ, with initial data ϕðrmaxÞ ¼ ϕ0 ≠ 0,
ϕ0ðrmaxÞ ¼ 0. As illustrated in Figs. 1 and 4, the result
is consistent with what one might expect; for r ≪ r0, the
potential has the form ϕðrÞ ¼ ϕ0 þQBH=r, and for r ≫ r0
ϕðrÞ ¼ ϕ0. The BH charge QBH is obtained by fitting the
portion of the solution near the horizon to ϕ0ðrÞ ¼
−QBH=r2. The BH mass, on the other hand, is not fixed
by the solution, but one can specify the mass to charge ratio
by way of the dimensionless parameter mR:

MBH

QBH
¼ mRe−Y0=2; ð20Þ
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where, we require mR ≥ 1, with equality corresponding to
the extremal limit, also see Eq. (14). Given this form for
YðrÞ and the potential ϕðrÞ solved from Eq. (17), both the
mass function mðrÞ and the metric component fðrÞ can be
derived. First of all, one solves the following equation using
the solution for ϕðrÞ:

2m0ðrÞ ¼ ½r − 2mðrÞ�Y 0ðrÞ þ r2e−YðrÞϕ0ðrÞ2; ð21Þ

and then using the solution for the mass function from the
above equation, to solve

f0ðrÞ
fðrÞ ¼ 2mðrÞ − 2rm0ðrÞ

r2 − 2rmðrÞ þ Y 0ðrÞ: ð22Þ

Wewould like to emphasize that both Eqs. (21) and (22) are
a straightforward rewriting of Eqs. (9) and (8), respectively.
The solutions of the above differential equations are

illustrated in Figs. 2 and 5. The corresponding energy
density, charge density, and tangential pressure for an
exaggerated parameter choice is displayed in Fig. 3. We
choose the parameters so that the energy density vanishes
roughly below the Innermost Stable Circular Orbit (ISCO)
for uncharged particles surrounding a slightly charged BH.

IV. BLACK HOLE PARAMETRIZATION

One difficulty with the approach in the preceding section
is that in assuming a relationship between the density nðrÞ
and the potential ϕðrÞ, the charge density nðrÞ is formally
sensitive to shifts in the potential ϕðrÞ, though as we have
argued, one can in principle absorb such shifts into the
parameter ν0 for a Maxwell-Boltzmann-like distribution.
In this section, we consider an alternative approach which
does not assume a particular relationship between the
density nðrÞ and the potential ϕðrÞ. Instead we perform
a physically motivated reparametrization and choose

FIG. 1. Numerical solutions of Eq. (17) forHðxÞ ¼ x, YðrÞ given by Eq. (18) and (19), with boundary data ϕðrmaxÞ ¼ 1, ϕ0ðrmaxÞ ¼ 0.
Here, we use exaggerated parameter choices: ν0 ¼ 1=10, Y0 ¼ −0.5122, r0 ¼ 7, λ0 ¼ 1=8, andmR ¼ 2.450. The parameters have been
adjusted so that the resulting BHmass parameter isMBH ¼ 1. The charge parameter isQBH ¼ 0.3159 and the ADMmass isMADM ¼ 2.
The plot on the left is the electric potential ϕðrÞ, and the plot on the right is the electric field ϕ0ðrÞ, and the unshielded electric field
profile −QBH=r2.

FIG. 2. Numerical solutions of Eqs. (21) and (22) corresponding to the electric potential solution of Fig. 1, with BH charge parameter
QBH ¼ 0.3159, mass parameter MBH ¼ 1, and the ADM mass MADM ¼ 6. On the left is mðrÞ, plotted against the value of mð∞Þ and
unshielded mass function ðMBH −Q2

BHe
−Y0=2rÞ. On the right is the metric component fðrÞ, plotted against the Schwarzschild value

1 − 2mð∞Þ=r and the unshielded Reissner-Nordström metric component given by Eq. (14).
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FIG. 4. Numerical solutions of Eq. (17) forHðxÞ ¼ x, YðrÞ given by Eq. (18) and (19), with boundary data ϕðrmaxÞ ¼ 1, ϕ0ðrmaxÞ ¼ 0.
Here, we use realistic parameter choices: ν0 ¼ 1=50, Y0 ¼ −0.1276, r0 ¼ 7, λ0 ¼ 0.125, and mR ¼ 108.2. The parameters have been
adjusted so that the resulting BH mass parameter is MBH ¼ 1. The BH charge parameter is QBH ¼ 8.667 × 10−3 and the ADM mass is
MADM ¼ 1.3. The plot on the left is the electric potential ϕðrÞ, and the plot on the right is the electric field ϕ0ðrÞ (in yellow), and the
unshielded electric field profile −QBH=r2 (in blue).

FIG. 3. Density and tangential stress profiles corresponding to the solutions in Figs. 1 and 2. On the left are the energy density profile
ρðrÞ and the charge density profile nðrÞ, which are nearly identical up to a scaling factor. On the right is the tangential stress profile P̄;
the solution satisfies the dominant energy condition. Qualitatively similar plots can be obtained for other parameter choices.

FIG. 5. Numerical solutions of Eqs. (21) and (22) corresponding to the electric potential solution of Fig. 4, with BH charge parameter
QBH ¼ 8.667 × 10−3, mass parameter MBH ¼ 1, and the ADM mass MADM ¼ 1.3. On the left is mðrÞ (in green), plotted against the
value of mð∞Þ (in blue) and unshielded mass function ðMBH −Q2

BHe
−Y0=2rÞ (in yellow). On the right is the metric component fðrÞ (in

green), plotted against the Schwarzschild value 1 − 2mð∞Þ=r (in blue) and the unshielded Reissner-Nordström metric component given
by Eq. (14) (in yellow).
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explicit forms for a pair of functions—such an approach
provides a direct phenomenological model for a
shielded BH.
We begin by reparametrizing the geometry, in order to

bring out the physics of these solutions. First of all, we
choose the mass function mðrÞ, as follows:

mðrÞ ¼ MBH −
Q2

BH

2r
e−Y0 þ ½MðrÞ þQðrÞ�e−2Y0f2EV;

ð23Þ

and the energy density of the fluid as

ρðrÞ ¼ 2

8πr2
d
dr

½e−2Y0MðrÞf2EV�

¼ 2fEV
e2Y08πr2

�
M0ðrÞfEV þ 4MðrÞ

�
MBHeY0

r2
−
Q2

BH

r3

��
;

ð24Þ

where we have introduced the radial function fEV from
Eq. (14). Thus, we impose that the external mass distri-
bution is such that the geometry contains a central charged
Reissner-Nordström-like BH, with mass MBH and charge
�QBHe−Y0=2. In vacuum, QðrÞ ¼ MðrÞ ¼ 0 and one
recovers identically the geometry of Reissner-Nordström
BH, since in that case Y0 vanishes as well.
Therefore, the grr component of the metric reads

grr ¼ fEV
eY0

�
1 −

2MðrÞ þ 2QðrÞ
eY0r

fEV

�
: ð25Þ

Finally, from Eq. (12), it follows that the function fðrÞ, i.e.,
the gtt component of the metric, becomes

fðrÞ ¼ fEVeYðrÞ

eY0

�
1 −

2MðrÞ þ 2QðrÞ
eY0r

fEV

�
; ð26Þ

where the function YðrÞ satisfies the following first order
differential equation:

dY
dr

¼ 8πrρðrÞ
grr

¼ 2 d
dr ½MðrÞf2EV�

fEV
h
eY0r − f2MðrÞ þ 2QðrÞgfEV

i
¼ 2r3fEVM0ðrÞ − 8MðrÞðQ2

BH − eY0rMBHÞ
eY0r4 − 2ðMðrÞ þQðrÞÞr3fEV

: ð27Þ

Note that ðdY=drÞ and hence YðrÞ are both finite in the
limit, r → r�, where r� are the solutions of the algebraic
equation, fRN ¼ 0. In particular, note that the surfaces
r ¼ r� are null, since grr vanishes there and so does
ð∂=∂tÞμð∂=∂tÞμ. Therefore, the spacetime has an event

horizon at r ¼ rþ ¼ MBH þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

BH −Q2
BHe

−Y0

p
and a

Cauchy horizon at r ¼ r− ¼ MBH −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

BH −Q2
BHe

−Y0

p
.

These are precisely where the horizons of the Reissner-
Nordström BHs are located, in this “areal” coordinate.
Moreover, as is evident from Eq. (24), on the event horizon
the energy density ρ identically vanishes, which is also a
desirable property. Therefore, we have traded the mass
function mðrÞ and the energy density ρðrÞ of the charged
cloud in terms of the functions MðrÞ and QðrÞ. Note
that, YðrÞ gets determined in terms of these two functions
and hence the metric element gtt. Therefore, the three
unknowns fYðrÞ; mðrÞ; ρðrÞg reduce to the following two
unknowns fMðrÞ;QðrÞg.
On a different note, notice that YðrÞ satisfies a first order

differential equation whose integration needs to be done
with the boundary condition that Yðr → ∞Þ ¼ Y∞, which
can be chosen to be zero. However, due to the monotonicity
of Y 0ðrÞ, it follows that YðrþÞ < Y∞ and hence fðrÞ ≠ grr

on the horizon, but will differ by an overall factor ∼eYþ−Y∞.
Let us now concentrate on the equations governing the

electric potential. First of all, the field equation presented in
Eq. (9) needs to be consistent with Eq. (23) and Eq. (24),
which fixes the function ψðrÞ to be

ψðrÞ ¼ 2m0 − 8πr2ρ
8πr2

¼ Q2
BH

8πeY0r4
þ 2

8πe2Y0r2
d
dr

½QðrÞf2EV�: ð28Þ

Using Eq. (11), we can express the electric potential as

ϕ0ðrÞ2 ¼ eYðrÞ

e2Y0

�
Q2

BHe
Y0

r4
þ 2

r2
d
dr

½QðrÞf2EV�
�
: ð29Þ

We should point out that, as expected, the electric potential
depends on the charge of the BH, QBH, and the energy
density from the electric field energy of the charged cloud,
denoted by QðrÞ. In absence of both the electric potential
would vanish, as expected.
Finally, from Eq. (13) the differential equation for the

electric potential ϕðrÞ reads

ϕ00 þ 2ϕ0

r
¼ ϕ0

re2Y0grr
d
dr

½MðrÞf2EV� þ
4πq

ffiffiffi
f

p
nðrÞ

grr

¼ ϕ0

re2Y0grr
d
dr

½MðrÞf2EV� þ
4πqnðrÞffiffiffiffiffiffi

grr
p eYðrÞ=2:

ð30Þ

Using Eq. (27), we can rewrite the above equation as

ϕ00 þ 2ϕ0

r
¼ ϕ0Y 0

2
þ 4πqnðrÞffiffiffiffiffiffi

grr
p eYðrÞ=2: ð31Þ

With the reparametrization in hand, one can solve the
system of equations by specifying the mass distribution
MðrÞ and the charge distribution QðrÞ, based on their
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expected forms in regions where the density ρðrÞ vanishes.
Here, one assumes that the density profile ρðrÞ is centered
at a radius r0 > rþ, and has a width of σ0 [so that ρðrÞ
vanishes for jr − r0j > σ0]. Near the horizon, one requires

Mðr → rþÞ ¼ 0;

Qðr → rþÞ ¼ 0: ð32Þ

At radii r ≫ r0 þ σ0 one has Mðr ≫ r0 þ σ0Þ ≈MLðrÞ,
where

MLðrÞ ≔
r4ðMADM −MBH −Q∞Þ�
rðr − 2MBHÞ þ Q̃2

BH

�
2
; ð33Þ

which can be obtained by solving Eq. (37) when YðrÞ ¼
Y 0ðrÞ ¼ 0; we define an effective charge Q̃2

BH ≔ Q2
BHe

−Y0 ,
and the quantity Q∞ is an integration constant which
coincides with the value of QðrÞ at large r. The latter can
be inferred by solving Eq. (29) for QðrÞ [assuming
ϕ0ðr ≫ r0 þ σ0Þ ¼ 0] and solving Eq. (36) for MðrÞ.
One may then write:

MðrÞ ¼ σM

�
r� − r�0
σ�0

�
MLðrÞ; ð34Þ

where σMðxÞ is a sigmoidal function, with the property that
σMð−∞Þ ¼ 0 and σMðþ∞Þ ¼ 1. Here r� is a tortoise
coordinate defined with respect to the horizon radius of
fEV, such that r�ðrÞ¼ rþ rH lnðr=rH−1Þ and r�0 ¼ r�ðr0Þ.
We define σ�0 ≔ σ0r0�ðr0Þ, assuming σ0 ≪ r0. Given a
solution to Eq. (29) for r ≫ r0 þ σ0, one can assume a
similar expression for QðrÞ, but it is perhaps more
appropriate to specify the derivative of QðrÞ in the
following manner:

e−2Y0
d
dr

½QðrÞf2EV� ¼ −σQ
�
r� − r�0 − δr�0

σ�0

�
Q̃2

BH

2r2
; ð35Þ

so that, upon comparison with Eq. (29) and setting
δr�0 ¼ 0, one has jϕ0ðr < r0 − σ0Þj ≈ jQBHj=r2 and
ϕ0ðr > r0 þ σ0Þ ≈ 0. The adjustable parameter δr�0 has
been introduced so that one has control over the position of
the charge distribution.
Given the mass distribution MðrÞ and the charge

distribution QðrÞ, one can then solve for YðrÞ from
Eq. (27), then ϕ0ðrÞ from Eq. (29), the number density
nðrÞ from Eq. (31) and finally the tangential pressure P̄
from Eq. (10). Plots for ϕ0ðrÞ and the metric functionsmðrÞ
and fðrÞ are provided in the respective Figs. 6 and 7, and
the density profile comparisons are provided in Fig. 8.
To compare the results obtained with the present para-

metrization with that obtained by the method in Sec. III, we
note that the following equations hold true:

½MðrÞ þQðrÞ� f
2
EV

e2Y0
¼ mðrÞ þ Q2

BH

2eY0r
−MBH; ð36Þ

d
dr

½e−2Y0f2EVMðrÞ� ¼ r
2
fðrÞeYðrÞY 0ðrÞ; ð37Þ

which one may solve forMðrÞ andQðrÞ, givenmðrÞ, fðrÞ,
and YðrÞ. Specifically, one solves Eq. (37) for the mass
parameter MðrÞ and then Eq. (36) provides the charge
function QðrÞ. Alternatively, if one has ϕðrÞ and YðrÞ in
hand, one can first solve Eq. (29) to obtain QðrÞ, then
Eq. (36) provides the mass function MðrÞ. We illustrate in
Fig. 9 profiles forMðrÞ andQðrÞ obtained from the Debye
model solution of Fig. 1.

FIG. 6. Electric field solution obtained with the BH parametrization for exaggerated parameter choices. Here, we choose
Q̃BH ¼ 0.4081, MBH ¼ 1, MADM ¼ 2, r0 ¼ 7, λ0 ¼ 1=8, and δr�0 ¼ −0.1. The parameters have been chosen so that MBH, QBH
and MADM match that of the Debye model solution in Fig. 1. The parameter δr�0 has been set so that the charge density is closer to the
BH, as one might expect. The solution for the electric field is on the left, and a comparison with the Debye model solution is provided on
the right.
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FIG. 8. Comparison of density profiles between the Debye model and BH parametrization solutions for exaggerated parameter choices
in Figs. 1 and 6. The energy density ρðrÞ is on the left, and the charge density nðrÞ is on the right. We recall the choice δr�0 ¼ −0.1,
which shifts the peak of the charge density profile nðrÞ to a slightly lower radius; we do this because if δr�0 is chosen to vanish, the BH
parametrization tends to shift the peak of nðrÞ to larger values of r compared to the Debye model. The comparison plot for the tangential
pressure profile is qualitatively similar to that of nðrÞ, so we omit it here.

FIG. 7. Comparison of geometries between the Debye model and BH parametrization solutions for exaggerated parameter choices in
Figs. 1 and 6. The mass function mðrÞ is on the left, and the metric function fðrÞ is on the right. The differences in the metric function
fðrÞ for r < r0 ¼ 7 can be attributed to the fact that the value for Y0 ¼ YðrHÞ ¼ −0.5112 here differs slightly from the value of Y0 for
the Debye model solution.

FIG. 9. Plots of the functionsMðrÞ andQðrÞ obtained from the Debye model solutions in Figs. 1 and 2. The profile forMðrÞ is the on
the left, and the profile for QðrÞ is on the right. The corresponding profiles for the BH parametrization are not shown here, as they are
nearly indistinguishable from the plots shown, and are qualitatively similar near r ¼ r0.
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V. PHYSICAL PROPERTIES OF
THE SPACETIME

Having derived the metric elements of a charged BH in a
charged cloud distribution, within a static and spherically
symmetric context, in a closed form, let us note down a few
of its interesting physical properties. These will include the
location of the photon sphere [52], the location of the
innermost stable circular orbits, the angular frequency and
the Lyapunov exponents associated with the photon sphere.
As we have already noted there will be an event horizon,
located at rþ ¼ MBH þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

BH −Q2
BHe

−Y0

p
, on which the

energy density ρ identically vanishes, while the tangential
pressure P̄ remains finite.
The photon sphere, or, the unstable circular photon orbits

are given by the condition, rf0 ¼ 2f, which from Eq. (8)
and Eq. (12) yield

8πr2ρ
r − 2mðrÞ ¼

rf0 þ f
rf

−
1 − 2mðrÞ0
r − 2mðrÞ

¼ 3

r
−
1 − 2mðrÞ0
r − 2mðrÞ : ð38Þ

Using Eq. (9), we can express the above equation as

8πr2ρ
r − 2mðrÞ ¼

2

r

�
r − 3mðrÞ
r − 2mðrÞ

�
þ 8πr2ρþ 8πr2ψ

r − 2m
; ð39Þ

yielding the following expression satisfied by the radius of
the photon sphere:

r ¼ 3mðrÞ − 8πr3ψ
2

¼ 3MBH −
2Q2

BH

eY0r
þ 3

f2EV
e2Y0

½MðrÞ þQðrÞ�

−
r

e2Y0

d
dr

½QðrÞf2EV�: ð40Þ

Note that, in the case of a Schwarzschild BH (in a pure
vacuum) one recovers the well known radius of the photon
sphere rph ¼ 3MBH. However, presence of a charged matter
distribution and charge on the BH itself shifts the photon
circular orbit to a different value. In the case where
MðrÞ ¼ QðrÞ ¼ 0, one has a photon sphere radius:

rph;EV ¼ 1

2

�
3MBH þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2

BH − 8e−Y0Q2
BH

q �
; ð41Þ

which differs from the usual Reissner-Nordström result due
to the presence of the factor e−Y0. Also the critical impact
parameter bcrit ≡ ðLcrit=EcritÞ, related to the capturing of
null geodesics by the BH with the charged cloud system,

would correspond to Ecrit ¼ Vmax, where Vmax corresponds
to the maximum of the effective potential. For photons, the
maxima corresponds to the photon sphere, and, hence,

bcrit ¼
rphffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ

p ¼ r3=2phffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rph − 2mðrphÞ

p e−YðrphÞ=2; ð42Þ

where rph corresponds to the location of the photon sphere,
which is a solution to Eq. (40). The angular frequency and
the Lyapunov exponent associated with the photon sphere
reads

Ωph ¼
1

bcrit
; ð43Þ

λph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2mðrphÞ
rph

��
2fðrphÞ − r2phf

00ðrphÞ
2r2ph

�s
: ð44Þ

These provide the basic properties of the photon sphere. In
particular, the angular frequency Ωph and Lyapunov expo-
nent λph are respectively related to the real and imaginary
parts of the quasinormal mode frequencies in the eikonal
limit (n and l being nonnegative integers):

ωps ¼ lΩph − iðnþ 1=2Þjλphj; l ≫ 1: ð45Þ

Therefore, the above expressions enable us to compute the
quasinormal modes of the charged cloud surrounding a
charged BH system, in the large angular momentum limit.
So far, all the results we have derived are analytic in nature.
However, for obtaining a solution to the electrostatic
potential, as well as to the tangential pressure and the
metric elements, we need solutions for the differential
equations presented in the previous section. This in turn
will enable us to derive the location of the photon sphere
from Eq. (40) and hence its related properties.
Values for the photon sphere radii rph and values for the

quantities characterizing null geodesics near rph for the
numerical solutions described in the preceding sections are
given in Table I. We note that since the energy density
becomes sparse in the vicinity of the photon sphere (as we
have chosen the energy density to vanish below the ISCO),
the photon sphere mode frequencies for quasinormal modes
in the Eikonal limit are equivalent to those of an electro-
vacuum Reissner-Nordström BH with a rescaled time
coordinate. However, since eY0 ≠ 1 below the cloud, the
quasinormal mode frequencies as seen by an observer at
infinity will differ between that of a “naked” charged BH,
and one that is “clothed” by a plasma.
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VI. CONCLUSIONS

The exact mechanism shielding a charged BH has
remained elusive to date. In this work we present a
comprehensive understanding of the screening mechanism
of spherically symmetric charged BH surrounded by a
spherically symmetric charged matter distribution. Since
there is no radial outflow, as consistent with the galactic
matter distribution, we also consider an anisotropic matter
distribution surrounding the BH having only energy density
and tangential stress, all functions of the radial coordinate
alone. The resulting system has—(a) two metric degrees of
freedom, the gtt and grr components, (b) the energy density
and tangential pressure of the matter distribution, (c) the
electrostatic potential and (d) the charge density—in total
six functions of the radial coordinate alone. Since the
energy and charge densities are independent, our model
can may be regarded as a rather general effective descrip-
tion for charge overdensities in plasmas surrounding
charged BHs. However, the Einstein equations along with
the Maxwell equations provide four equations among these
six variables—this is not particularly surprising, as our
model might be regarded as an effective description for a
multispecies fluid, in which case one must supply equations
of state for each fluid species. Thus in order to close this
system of equations, we need two more relations among
these variables. For that we make two possible choices—(a)
we provide a relation between the number density of the
charged particles with the electrostatics potential along
with a suitable choice for the ratio of the gtt and grr

components of the metric, alternatively, (b) we fix the mass
function MðrÞ and the charge function QðrÞ in the para-
metrized form of the geometry, describing the charged
matter, surrounding the charged BH. Both of these

approaches results in an electric field decaying sufficiently
rapidly; see, e.g., Fig. 6. In particular, fixing the relation
between the number density of charged particles with the
electrostatic potential to be linear, results in a much faster
exponential decay, than a steep power law decay in the
parametrized case. Nonetheless, for generic choices of
parameters, the screening effect of the electric field
remains, such that after moving a small distance into the
charged cloud, the electric field almost diminishes to zero
and hence it appears that overall the system is uncharged,
though there is a charged BH inside.
This mechanism is intuitive, but has never been derived

in an explicit manner. Here, we directly solve the full
nonlinear Einstein-Maxwell system, by two independent
methods as prescribed above; in doing so, we obtain a
description that accounts for the nonlinearities of general
relativity. In both of these cases, such a screening mecha-
nism appears generically, providing a direct proof that
indeed the electric field of a charged BH almost vanishes
immediately after the internal surface of the charged cloud
is crossed. Since, in most of the astrophysical scenario the
BHs are surrounded by charged plasma, it follows that
astrophysically, i.e., from a large distance from the central
BH, it will always appear to be neutral. This is why
astrophysical BHs appears to be uncharged, due to the
screening mechanism derived here.
The matter distributions we have considered in this

analysis are assumed to vanish for radii below the innermost
stable circular orbit for uncharged particles. Consequently,
the physical properties of null geodesics near the photon
sphere are essentially those of a charged BH in electro-
vacuum, but we have found that the presence of the plasma
cloud changes the redshift factor, so that the eikonal limit
quasinormal modes seen by a faraway observer will differ
from an “unclothed” charged BH. Still, we have presented
general formulas for the angular frequency and Lyapunov
exponent in case one wishes to extend the analysis to
charged Einstein cluster models incorporating unstable
circular orbits near the photon sphere.
There are several future applications of the results dis-

cussed above. The most immediate one would be generali-
zation to Kerr-Newman BHs and show that the screening
mechanism continues to hold in the presence of rotation as
well. This is important, since all the astrophysical BHs are
supposed to have nonzero rotation. It would be interesting to
observe effects of the BH charge on the gravitational waves
emanating from perturbation of the same as it propagates
through the surrounding charged matter. In particular,
whether the screening effect will also affect the gravitational
wave needs to be explored. It would also be worthwhile to
explore if similar results hold true for charges induced by
gravitational interactions as well, e.g., what happens to scalar
hairs, or hairs inherited from higher spacetime dimensions.
These issues will be addressed elsewhere.

TABLE I. The row termed “Realistic values” corresponds to the
parameter choices of the Debye model solution in Fig. 4. The row
termed “Exaggerated values” corresponds to the parameter
choices of the Debye model solution in Fig. 1. The rows termed
“Realistic RN” and ‘Exaggerated RN” correspond to the same
parameter choices for MBH and QBH as the respective rows
“Realistic values” and “Exaggerated values”, except with the
Reissner-Nordström value for the factor eY0 ¼ 1. Regardless of
the model, the results are the same (up to precision errors) near
the photon sphere radius rph, as the energy density for the cases
considered becomes sparse at the photon radius; essentially, rph is
the photon radius obtained from fEV.

Properties of null geodesics near photon sphere

rph bcrit Ωph λph

Realistic values 2.99994 5.53852 0.180554 0.180552
Exaggerated values 2.88411 6.51911 0.153395 0.150292

Realistic RN 2.99995 5.19608 0.192453 0.192451
Exaggerated RN 2.93153 5.10730 0.195798 0.193511
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