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In this paper, a new family of Hawking-Page transitions, i.e., Hawking-Page transitions with reentrance
and a triple point, is introduced for the first time by investigating the Hawking-Page transition of hyperbolic
AdS black holes in the extended thermodynamics in Gauss-Bonnet gravity. The reentrant Hawking-Page
transition is composed of two Hawking-Page transitions with a high and a low Hawking-Page temperature,
and the triple point corresponds to small black hole, massless black hole, and large black hole phases all
coexisting. We discuss the temperatures of two branches of Hawking-Page transitions, which both depend
on the pressure (i.e., the cosmological constant) and the Gauss-Bonnet constant. The pressure and the
Gauss-Bonnet constant both increase the high Hawking-Page temperature and diminish the low Hawking-
Page temperature. We also show the coexistence lines in the P — T phase diagrams. The triple point and
critical point in the phase diagrams of the Gauss-Bonnet AdS black hole systems are given, together with
some interesting universal relations that only depend on the dimensions of spacetime. The reentrant
Hawking-Page transition and triple point may correspond to the phase transition and triple point in the
QCD phase diagram, following the spirit of the AdS/CFT correspondence. These results may improve the
comprehension of the black hole thermodynamics in the quantum gravity framework and shed some light

on the AdS/CFT correspondence beyond the classical gravity limit.
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I. INTRODUCTION

Black hole thermodynamics has attracted much atten-
tion in gravitational theory, as it is widely believed that
black hole thermodynamics could provide further insight
into the understanding of quantum gravity. In particular,
the famous Hawking-Page transition [1] marked the
beginning of an exciting period of exploring the holo-
graphic and quantum understanding of critical phenomena
and phase transitions in the general AdS spacetime.
Emparan et al. introduced a first-order phase transition of
the RN-AdS (Reissner-Nordstrom-AdS) black hole [2,3]
similar to the liquid-vapor phase transition of the van der
Waals fluid. After treating the cosmological constant as
thermodynamic pressure [4—10], a small black hole—large
black hole phase transition of the RN-AdS black hole was
established [11], which is precisely analogous to the
liquid-vapor phase transition of the van der Waals fluid
(see also [12,13] for reviews). Other interesting families
of phase transitions have also been studied in black
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hole thermodynamics, including the reentrant phase tran-
sition [14,15] and the superfluid phase transition [16].

The Hawking-Page transition characterizes a first-order
phase transition occurring between a large AdS black hole
and a thermal AdS vacuum [1]. Since the AdS black hole
phase dominates the partition function at a high temper-
ature limit while the thermal AdS vacuum dominates at a
low temperature limit, the thermal AdS gas will collapse to
a stable, large black hole when the temperature increases.
In particular, the Hawking-Page transition could be
explained as the confinement-deconfinement phase tran-
sition of the gauge field [17], inspired by the AdS/CFT
correspondence [18-20]. Very recently, there have been
many studies about the Hawking-Page transition in differ-
ent backgrounds [21-31], particularly regarding the
Hawking-Page transition in the microcosmic [32-34] and
holographic frameworks [35-37]. Thus, it is important to
investigate the Hawking-Page transition since it should
improve our understanding of the quantum and holographic
properties of gravity in the spirit of the AdS/CFT
correspondence.

Studies of the Hawking-Page transition also induce
many applications about the mutual study on the particle
physics, especially in the QCD phase diagram. Beyond
the confinement-deconfinement phase transition, we also

© 2023 American Physical Society
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speculate the crossover that, in the holographic dictionary,
corresponds to the Hawking-Page crossover of the
Schwarzschild AdS black hole [38] in noncommutative
spacetime, which is thought to be an effective description of
quantum gravitational spacetime. This crossover is the
critical endpoint of the deconfinement phase transition [39],
which is a continuous phase transition in the QCD phase
diagram. However, the QCD phase diagram has a compli-
cated phase structure. For example, after considering the
quarkyonic matter [40—46], a phase transition composed of
the deconfinement phase transition and the quarkyonic
transition, as well as a triple point for the hadronic matter,
the quarkyonic matter, and the quark-gluon plasma, were
introduced. There is also evidence from lattice QCD
simulations [45]. Many recent studies presented the exist-
ence of this phase transition and triple point [40,46-60].
Then, it is natural to ask, how can this kind of phase
transition and triple point be explained on the gravity side in
the AdS/CFT correspondence?

This type of phase transition in the QCD phase diagram
is the reentrant phase transition, which is composed
of at least two phase transitions. The reentrant phase
transition has previously been observed in a nicotine-water
mixture [61], granular superconductors, liquid crystals,
binary gases, ferroelectrics, and gels (see Ref. [62] and
the references therein). In black hole thermodynamics, the
reentrant phase transition is also presented in [14,15],
appearing simultaneously with the triple point in the
phase diagrams. In order to explain the reentrant phase
transition and triple point of the QCD phase diagram on the
gravity side, we focus on a new family of Hawking-Page
transitions, i.e., the Hawking-Page transition with the
reentrance and triple point, which can be found in
Gauss-Bonnet gravity, as shown in this paper.

Gauss-Bonnet gravity is the quadratic order of higher-
curvature gravities, and it has the following action:

S=— [ dx/=g(R = 2A
16z | 4v=dl

+ aGB (R;wpo'lepa - 4RﬂbR/w + Rz))’ (1)
where agp is the Gauss-Bonnet coupling constant and A is
the cosmological constant. Gauss-Bonnet gravity has
recently attracted considerable interest since the Gauss-
Bonnet term appears naturally in the low-energy effective
theories obtained from string theory, as the next-to-leading
term; its presence can lead to qualitative changes in black
hole physics. Gauss-Bonnet gravity preserves the property
that the equations of motion involve only second deriva-
tives of the metric; thus, it is possible to find explicit
solutions. The black hole solutions of Gauss-Bonnet
gravity have been found [63-66], and they exhibit notable
effects on the spacetime by the Gauss-Bonnet correction
in the action. The thermodynamics of these solutions are
further studied in [67,68]. Especially in black hole

chemistry, the reentrant phase transition is also found in
Gauss-Bonnet gravity [69]. This is why we expect that the
reentrant Hawking-Page transition exists in Gauss-Bonnet
gravity. In this paper, the reentrant Hawking-Page transition
is found for the first time by investigating the Hawking-
Page transition of the hyperbolic Gauss-Bonnet AdS black
hole in extended thermodynamics, which is composed of
two Hawking-Page transitions. Many typical features of the
reentrant Hawking-Page transition are given.

The paper is organized as follows: We revisit the
extended thermodynamics of hyperbolic AdS black holes
in Gauss-Bonnet gravity in the next section. In Secs. III
and IV, we study the Hawking-Page transition with the
reentrance and triple point in four and d > 5 dimensions,
respectively. Finally, some concluding remarks are given.

II. EXTENDED THERMODYNAMICS
OF HYPERBOLIC AdS BLACK HOLE
IN GAUSS-BONNET GRAVITY

In this section, we revisit the extended thermodynamics
of hyperbolic AdS black holes in d-dimensional Gauss-
Bonnet gravity. This black hole solution is well known to
take the form [63—-66]

1
ds? = —f(r)dr* + mdﬂ +r7dQ3_, . (2)

r? 64naM 64naP
=2 (1 - \/(d_z)rd—l “@-@-n"

where inI—Z . 1s the line element of a (d — 2)-dimensional,
maximally symmetric Einstein manifold with curvature
k = —1 corresponding to the hyperbolic topology of the
black hole horizon. Note that M is the mass of the black
hole, and @ = (d — 3)(d — 4)agg is a renormalized Gauss-
Bonnet coupling constant. In this paper, we consider only
the case a > 0, i.e., agg > 0, since agp can be identified
with the inverse string tension with a positive value if
the theory is incorporated in string theory [63]. We take the
spacetime dimension d >4 since in d =4 dimensions,
though the Gauss-Bonnet term is a topological invariant
and does not contribute to the spacetime, it has a notable
effect on black hole thermodynamics resulting from a
nontrivial black hole entropy. In the black hole chemistry

framework, P — — A — (@=D(d=2)

= Ten? is the thermodynamic
pressure associated with the cosmological constant
A [4-10], with Z being the d-dimensional AdS radius.
In higher derivative gravity, there are always two branches
of black holes. In this paper, we only consider the case
in Eq. (3), while another branch cannot reach the
Schwarzschild limit and is unstable. Finally, one should

note that in order to have a well-defined vacuum solution
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with M = 0 in d > 5 dimensions, the renormalized Gauss-
Bonnet coupling constant « and pressure P have to satisfy
the following constraint:

d—na-psh 4z (4)

We list the thermodynamical quantities, including the
black hole mass, temperature, and entropy [67,68],

=5 (a(d = 1)(d = 2) = (d = 1)(d = 2)r% + 16zPrY)

M= T6m(d—1) :
(5)
_a(d=2)(d=5) - (d—2)(d—-3)r2 + 162Pr"
r= 4n(d —2)r(r} = 2a) - (6
1L 2ad-2)
1o =) S

where r, is the event horizon radius of the black hole. The
Gauss-Bonnet correction in the action leads to modification
in the formula for the entropy of the black hole solution; the
entropy is no longer proportional to the area of the black
hole’s event horizon but instead is given by a relationship
depending on the Gauss-Bonnet term. The modified
entropy from the Gauss-Bonnet term has a possible effect
on the Hawking-Page transition, which is presented in the
Appendix.

For the Gibbs free energy, by calculating the Euclidean
action Z of gravity and subtracting from it the Euclidean
action of the thermal Gauss-Bonnet AdS vacuum [70-73],
one can obtain

G = pT. (8)

This is consistent with the solution obtained similarly from
the thermodynamic equation G = H — TS [67,74,75]. In
black hole chemistry, the Gibbs free energy of the Gauss-
Bonnet AdS black hole is [67]

G=H-TS=M-TS
-l (d* - 5d — 96zaP + 4)r®!
)

~162(r% - 2a (d—4)(d-1)
a(d—8)ri 16zPre! 20%(d = 2)rd=3
 (d-4) (d-2)(d-1) d—4 >
9)

which characterizes the canonical ensemble. Here the black
hole mass M should be identified with the enthalpy H
rather than the internal energy of the gravitational
system [4]. The zero Gibbs free energy marks the
Hawking-Page phase transition. Starting with the Gibbs

free energy, the entropy and other thermodynamic
quantities could also be calculated in turn by the
Euclidean approach [70-73], which is consistent with
the one from the other thermodynamic quantities using
the first law of thermodynamics [67] and the Noether
charge approach [68].

In what follows, we focus on the famous Hawking-Page
transition, for which a thermodynamically stable state is given
by the global minimum of G of the black hole and the
background spacetime (with zero Gibbs free energy). To
observe the phase transition, it is most useful to plot G — T
diagrams, fixing the other parameters. This means that the
case with a negative G should be regarded as the Gauss-
Bonnet black hole phase being thermodynamically favored
over the background spacetime; the case with vanishing G just
corresponds to the Hawking-Page transition point, which
characterizes the phase transition between the Gauss-Bonnet
black hole phase and the background spacetime phase.
Especially in this case, the background spacetime is the
massless AdS black hole (MBH) with a cosmological
constant modified by the Gauss-Bonnet constant. When
the Gauss-Bonnet constant a is vanishing, the spacetime
reduces to the hyperbolic Schwarzschild AdS black hole,
which does not contain the Hawking-Page transition.

III. REENTRANT HAWKING-PAGE TRANSITION
AND TRIPLE POINT IN FOUR DIMENSIONS

In four dimensions, since the Gauss-Bonnet term is a
topological invariant that does not contribute to the space-
time, the spacetime becomes the hyperbolic Schwarzschild
AdS black hole, i.e.,

1
ds? = —f(r)dr* + mdrz + r2dQ3 _,,
2M 8
f(r):—T—'-gﬂPrQ_l, (10)

which makes the discussion about the Hawking-Page
transition more clear than the cases in higher dimensions.
The thermodynamical quantities, mass and temperature of
the system, reduce to

4nr’ 1
M= 3+P—§r+, (11)
T =2P ! (12)
= r, —
Y dary’

which is exactly the same with the Schwarzschild AdS
black hole, while the black hole entropy breaks the area law
and takes the form [10,76]

S = z(rk —4a). (13)

Thanks to this nontrivial black hole entropy, the
Gauss-Bonnet term has a notable effect on black hole
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Gibbs free energy vs temperature with different pressures (and @ = 1) in four dimensions. The globally stable states of the

system are denoted by the thick lines. When P > Py, black holes undergo the reentrant Hawking-Page transition.

thermodynamics even in four dimensions. For example, the
Gibbs free energy becomes

a

ry

2 1
G= —gﬂPr3++r+(8n'aP—Z) (14)

To consider the Hawking-Page transition, we explore the
global stability of Gibbs free energy. This can be seen in
the G — T diagrams as shown in Fig. 1. One can see that the
existence of the Hawking-Page transition depends on the
maximum of the Gibbs free energy. There is a critical
pressure P, (we denote it as P, since it just corresponds to
the triple point in the phase diagram as shown later); for a
black hole with P = Pr,, the maximum of the Gibbs free
energy becomes zero, and hence G < 0, while for black
holes with P < Py, the Gibbs free energy is always
negative. This indicates that, when P < Pr,, the hyperbolic
AdS black hole phase is globally preferred over the back-
ground spacetime phase, and the Hawking-Page transition
will not occur here. For black holes with P > Py, see the
right panel of Fig. 1. The maximum of the Gibbs free energy
of black holes always divides the black holes into two
branches. It is easy to check that the temperature is a
monotonically increasing function of mass; thus, we can
denote the two branches of black holes as follows: a small
black hole with smaller mass and a large black hole with
larger mass. It is obvious that the situation becomes
interesting since there exist two zero free energy points.
The globally stable states of the system are denoted by the
thick lines. Here it is shown that the two zero free energy
points both correspond to the Hawking-Page transitions,
with a high Hawking-Page temperature and a low Hawking-
Page temperature. If the temperature is lower than the low
Hawking-Page temperature, the background spacetime, i.e.,
a massless black hole, should collapse into a small black
hole, while a massless black hole should collapse into a large
black hole when the temperature is larger than the large
Hawking-Page temperature because, for these cases, the free
energy of the black holes is lower than that of the back-
ground spacetime. When the temperature stays in the
intermediate region between the high and low Hawking-
Page temperature, the system favors a massless black
hole phase. Therefore, black holes undergo a small black

hole-massless black hole—large black hole Hawking-Page
transition in this pressure region. This behavior is known as
the reentrant Hawking-Page transition, which is composed
of two first-order phase transitions (Hawking-Page transi-
tion) in our case.

Now we calculate the Hawking-Page temperature. After
choosing a zero Gibbs free energy, we obtain the black hole
radius of the Hawking-Page transition,

1 \/
ragp = ———1/96zaP + 1/ (3 — 96zaP)? — 384zaP — 3.
HP 4\/7? \/( )

(15)

From Eq. (12), we can obtain the Hawking-Page
temperature

THP = T|r+:er' (16)

Since ryp should be positive, we find that the (reentrant)
Hawking-Page transition requires an additional condition

96xaP + \/(3 - 967aP) — 384maP ~3 20, (17)

which could be simplified as

3
P>—. 18
=30z (18)
The general behavior of the two branches of Hawking-Page
temperature is illustrated in Fig. 2. It is clear that the
(reentrant) Hawking-Page transition only arises when

a> ﬁ. Ezpecially for the Gauss-Bonnet AdS black holes

with o < w,p the Hawking-Page transition does not occur,
which is consistent with the discussion about the hyperbolic
AdS black hole in Einstein gravity (i.e., @ = 0). The Gauss-
Bonnet constant a increases the high Hawking-Page temper-
ature and diminishes the low Hawking-Page temperature.
Finally, we show that the coexistence line gives a whole
picture of the reentrant Hawking-Page transition. This is
plotted in the P — T phase diagram as shown in Fig. 3.
When the temperature of the system is fixed, there always
exists a single Hawking-Page transition: a small black
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FIG. 2. Two branches of Hawking-Page temperature vs Gauss-
Bonnet constant with P =1 in four dimensions. The Gauss-
Bonnet constant « increases the high Hawking-Page temperature
and diminishes the low Hawking-Page temperature.

Phase diagram of P-T plane
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FIG. 3. Coexistence line: P — T phase diagram (with @ = 1) in
four dimensions. The triple point is highlighted. SBHs, LBHs,
and MBHs correspond to the small black holes, large black holes,
and massless black holes, respectively.

hole-massless black hole Hawking-Page transition at low
temperature or a large black hole-massless black hole
Hawking-Page transition at high temperature. When the
pressure of the system is fixed, the reentrant Hawking-Page
transition arises since the system undergoes two Hawking-
Page transitions: a small black hole-massless black hole
Hawking-Page transition at low temperature and a large
black hole-massless black hole Hawking-Page transition at
high temperature. The regimes observed in the P — T phase
diagram and described above can be understood as arising
from a triple point where a small black hole, a massless
black hole, and a large black hole all coexist. This triple
point is located where the pressure of the Hawking-Page
transition reaches its limiting value. Hence, it is easy to
derive the triple point by making the two rgp in Eq. (15)
coincide, i.e.,

(3 = 96maP)* — 384rnaP = 0. (19)

The pressure and temperature of the triple point are

3 1
Pr=——, Top=Tulpp =T| _ pp =—,
Tr 3ra T HP|P P, |r4r rre, P=Pr; 471_\/&

(20)

with the black hole radius rr, = ryp|p_p, = 2+/a, while
another triple point has a negative, thus unphysical, black
hole radius. Note that only when P > Pr, is there a
reentrant Hawking-Page transition, while the Hawking-
Page transition is vanishing when P < Pr,, which is
consistent with the discussion about the G — 7' diagrams.
Namely, the triple point exactly corresponds to the black
hole phase whose maximum of Gibbs free energy is zero.
Moreover, it is interesting to introduce a universal relation-
ship for the triple point,
P e/ Tr 3

_— 21
T 4 (1)

IV. REENTRANT HAWKING-PAGE TRANSITION
AND TRIPLE POINT IN d > 5 DIMENSIONS

The Hawking-Page transition in higher dimensions
exhibits some differences from the case in four dimensions.
One can only see the reentrant Hawking-Page transition
behavior of Gauss-Bonnet AdS black holes for a range of
pressure P € (Pr, P..). In this section, we first present the
reentrant Hawking-Page transition in five and six dimen-
sions; in other dimensions d > 5, the behavior is similar.
Then, we derive the triple point and some universal relations
from the Hawking-Page transition in n dimensions.

A. Reentrant Hawking-Page transition
in five and six dimensions

In d = 5 dimensions, the Gibbs free energy and temper-
ature of Gauss-Bonnet AdS black holes reduce to
182 + 9ar? + (3 — T2zaP)rt + 4zPrS

487 (rk — 2a) '
T r.(8zPri —3)
67(r2 — 2a)

G:

(22)

In d = 6 dimensions, the corresponding thermodynamical
quantities become

r(20a* + Sar’ + (5 — 48zaP)rt + 4xPrS)

G=-
807(r2. — 2a)

’

_a—3rh +4nPr

47rr+(ri —2a) (23)

The general behavior of the Gibbs free energy is illustrated
in Fig. 4, which has been plotted for different pressures in
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FIG. 4. Gibbs free energy vs temperature with different pressures (and @ = 1) in five and six dimensions. The top (bottom) three
panels correspond to the cases in five (six) dimensions. The globally stable states of the systems are denoted by the thick lines. When
Pr, < P < P_, black holes undergo the reentrant Hawking-Page transition, while there is only a single Hawking-Page transition when

P>P.

G — T diagrams. The globally stable states of the systems
are denoted by the thick lines. When the pressure is small
(P < Pq,), the Gauss-Bonnet AdS black hole phase always
has a smaller Gibbs free energy than the background
spacetime phase, which indicates no Hawking-Page tran-
sition. When the pressure increases (Pt < P < P,.), the
reentrant Hawking-Page transition, composed of two
Hawking-Page transitions, emerges, as shown in the middle
diagram of Fig. 4. From the right diagram of Fig. 4, one can
easily observe that there is a single Hawking-Page tran-
sition when the pressure increases (P > P_.) since the
temperature of another Hawking-Page transition diverges
or becomes negative. (Note that these ranges will be
discussed later.)

Phase diagram of P-T plane

Looking at the coexistence lines in the P — 7 phase
diagrams for the Hawking-Page transition in five and six
dimensions in Fig. 5, the phase structure become more
clear. There are two branches of Hawking-Page transitions.
When a black hole crosses the solid line from left to right
or bottom to top in the left branch, it undergoes a
Hawking-Page transition from a small black hole to a
massless black hole; when a black hole crosses the solid
line from right to left or bottom to top in the right branch, it
undergoes a Hawking-Page transition from a large black
hole to a massless black hole. The reentrant Hawking-Page
transitions are denoted by the thick lines, which can be
bounded by the pressure of a triple point and an critical
point. Namely, the reentrant Hawking-Page transition

Phase diagram of P-T plane
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Coexistence line: P — T phase diagrams (with @ = 1) in five and six dimensions are plotted in the left and right panels,

respectively. The reentrant Hawking-Page transitions are denoted by the thick lines. The triple points and critical points are highlighted.
SBHs, LBHs, and MBHs correspond to the small black holes, large black holes, and massless black holes, respectively.
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Curve of HP temperature vs GB constant
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FIG. 6. Two branches of the Hawking-Page temperature vs the Gauss-Bonnet constant with P = 1 in five and six dimensions, shown
in the left and right figures, respectively. The Gauss-Bonnet constant a increases the high Hawking-Page temperature and diminishes the

low Hawking-Page temperature.

behavior of Gauss-Bonnet AdS black holes only exists for a
range of pressure P € (Pr, P.). In particular, (P, T;)
denote the pressure and temperature of the triple point,
where a small black hole, a massless black hole, and a large
black hole all coexist. Therefore, we can derive the triple
point using the property that it exactly corresponds to the
black hole phase whose maximum of the Gibbs free energy
is zero, which will be shown in the next subsection.
Moreover, from Fig. 5, one can also see that for Gauss-
Bonnet AdS black holes with fixed Gauss-Bonnet constant
a, the pressure P increases the large Hawking-Page temper-
ature and diminishes the small Hawking-Page temperature.

We denote the pressure and temperature of the critical
point as (P.,T.). If the pressure approaches the critical
value P, the left branch of the Hawking-Page temperature
will diverge and not become zero, which is shown in the
right diagram of Fig. 4. When the pressure is beyond the
pressure of the critical point, the small black hole has a
negative temperature, which is physically unacceptable. As
a result, the left branch of the Hawking-Page transition
is vanishing, and only the right branch is left. Then, one
cannot observe the reentrant Hawking-Page transition. We
derive the critical point in the next subsection following the
property that the critical point corresponds to the two-phase
coexistence state having zero Gibbs free energy, and its
pressure P, coincides with the pressure of another two-
phase coexistence state with a diverging Hawking-Page
temperature.

The two branches of Hawking-Page temperature can be
obtained from the zero Gibbs free energy as well, which
leads to

(d—2)(d - 5d — 96maP +4) ,

R+ 167(d—4)P
ald=8)(d=2)(d=1)  a*(d-2)*d-1)
B 167(d — 4)P R+ 8(d —4)P =0,
(24)

where r, = VR is inserted. This is a classical cubic
equation whose roots can be analytically obtained. Since
the roots have a complicated form, we do not present them
or the corresponding Hawking-Page temperature here. We
plot the two branches of the Hawking-Page temperature vs
the Gauss-Bonnet constant in five and six dimensions in
Fig. 6. The Hawking-Page temperature follows a similar
property, as the Gauss-Bonnet constant a increases the
large Hawking-Page temperature and diminishes the low
Hawking-Page temperature. One should note that the
Hawking-Page transition with a high temperature only
happens in Gauss-Bonnet AdS spacetime with a > oy,
while the branch of the Hawking-Page transition with a low
temperature only happens in Gauss-Bonnet AdS spacetime
with ar, < a < a.. We calculate their values in the next
subsection.

B. Triple points in d > 5 dimensions

The triple point [with thermodynamic quantities
(P, Try, r1r)] corresponds to the black hole phase whose
maximum of the Gibbs free energy is zero, which can be
calculated by

G

OF 4 | PPy T=Tr, =rr,

G|P:PTr,T:TT,,r:rTr_ ) =0. (25)

The former leads to Eq. (24), while the latter can be
simplified as

162PR? + R*((d - 2)(d — 3) — 967aP)
—a(d=2)(d=9)R +2a*(d-2)(d-5). (26)

Combining these two equations and Eq. (5), we obtain the
triple point
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b _dd-N@=4 1
™ 64(d - 2)na " 22n /a(;l_f)’
2a(d -2
e = % (27)

In order to derive the critical point with thermodynamic
quantities (P, T, r.), we first need to find the two-phase
coexistence state [with (P., Ty, 7giv)] With a diverging
Hawking-Page temperature, which requires the conditions

G|P:Pl.,T:Tdiv,r+:rdiv =0, T|P:P6.r+:rdiv =oco. (28)
From the latter, one can directly find rg;, = v/2a. Inserting
this into the former, i.e., Eq. (24), we obtain the pressure of
the critical point,

(d-1)(d-2)

P p—
¢ 64ra

(29)

Inserting P. again into Egs. (24) and (5), we obtain

=P+ (Vd*—6d+17+12)d—Vd* —6d+17-23
8\@:\/05((1—4)(\/512 —6d+17+3)

c

(30)
2a(VE —6d + 17 +3)
re = \/ F . (31)

Considering the constraint of parameters in Eq. (4), or
equivalently P < %, one finds that the pressure of
the critical point for the reentrant Hawking-Page transition
is just the upper bound of the physical pressure of the

Gauss-Bonnet AdS black hole. Therefore, in d > 5

dimensions, the single Hawking-Page transition is
Plr
041
)
0l ® d=5
. ® d=6
® d=7
0.2} d=8
o ® d=9
01} ® d=10
[ ]
°
0.0 n n n Il Tll’
0.06 0.07 0.08 0.09 0.10

forbidden, as the corresponding pressures of Gauss-

Bonnet AdS black holes are P> P, = %). In
conclusion, the hyperbolic Gauss-Bonnet AdS black hole
always exhibits a reentrant Hawking-Page transition.
We show the triple points and critical points of diverse
dimensions in Figs. 7 and 8. When the dimension d
increases, the temperature of the triple point increases,
while that of the critical point always decreases.
We also plot the P — T phase diagrams of diverse dimen-
sions in Fig. 9; one can see the reentrant Hawking-Page
transition behavior of Gauss-Bonnet AdS black holes for a
range of pressures P € (Pr, P..) in arbitrary dimensions.

On the other hand, from the range % <P<
% for the reentrant Hawking-Page transition, i.e.,
% <aP < %, one can easily conclude that

if the pressure P is fixed, the reentrant Hawking-Page

transition will only happen in Gauss-Bonnet AdS space-

d(d—4)(d-1) d-2)
P

: : _ (d=1)(
time with ary = m <o< T GanP

c*

C. Some universal relations

In this subsection, we demonstrate some universal
relations and constants associated with the Hawking-
Page phase transition since we expect that they will provide
a foundation for understanding black hole thermodynamics
and other special properties of (other) black holes in AdS
spacetime in the quantum and holographic frameworks.
Universal relations and constants have important applica-
tions in understanding a physical theory.

In particular, from the critical phenomenon and phase
transition of thermodynamical systems, some universal rela-
tions and constants emerge. For classical thermodynamical
systems, we take the van der Waals fluid with the equation of
state (P + 5)(v — b) = kT as an example. From the inves-
tigation of the critical point and liquid-vapor phase transition,
it is easy to introduce the famous universal relation

Tirvsd

0.08 +

0.07

0.06 -

0.051

6 8 10 12 14

FIG. 7. Triple points (with @ = 1) in diverse dimensions.
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FIG. 8.
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0.0 0.1 0.2 0.3 0.4
— d=5 — d=6 — d=7 — d=8

”””” @ triple point

@ up critical point

FIG. 9. The P —T phase diagrams (with @ = 1) in diverse
dimensions. The reentrant Hawking-Page transitions are denoted
by the solid lines, while the forbidden single Hawking-Page
transitions are denoted by the dashed lines.

P.v., 3

PV, TR

(32)

As for quantum thermodynamical systems, for instance, black
holes, a similar universal relation,

T. 4d-38

P, 2d-5

. (33)

was also found from the investigation of the critical point
of a small black hole-large black hole phase transition
of charged AdS black holes in the extended thermo-

Tevsd

Te
0.40 -
0.35+
0.30+
025+

1 1 1 L 1 ] d
4 5 6 7 8 9 10

Critical points (with & = 1) in diverse dimensions.

Now we explore the wuniversal relations from
the Hawking-Page transition. Since in the extended thermo-
dynamics of AdS black holes the specific volume v is
always identified with the horizon radius r,, rather than

the thermodynamic volume V, we study pgp = B '};rp“" at
the Hawking-Page transition point with the thermodynam-
ical quantities (Pyp, ryp, Typ). We first consider the
d-dimensional Schwarzschild-AdS black hole. There exists

a Hawking-Page transition with the thermodynamical

d—1)(d—2 4(d-2)P
( 16)7(110 . (d—l))ﬂ' Then

we obtain a universal relation

and THP =

quantities rgp =

P :PHPrHP:(d_l)
HP Top g

(34)

For the case in our paper, the situation becomes subtle.

We can simplify this as pgp = P“T"—P;*"’ = 5——. Although
4xPr2
HP

rgp has a complicated form, we can insert the four-
dimensional case in Eq. (15) as an example and find a
nonuniversal ratio pyp dependent on the Gauss-Bonnet
constant a. When we generalize the discussion to the
reentrant Hawking-Page transition, we find the universal
ratios for the triple point and critical point,

dynamics [11,14]. These ratios are all universal pr :P Tl :L(d— 1)d. (35)
numbers independent of the parameters of the systems, ! Ty 16
e.g., a, b for the van der Waals fluid and ¢ for charged
AdS black holes.
|
- D =-6d+17
P.r. (d=2)(d-1)(Vd*—6d+ 17+ 3) (36)

Pe = = - .
T, 4d® - (Vd*—6d+ 17+ 12)d + Vd* — 6d + 17 + 23)
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FIG. 10. Some universal ratios vs dimensions.

All the above ratios are illustrated in Fig. 10, which are
universal and independent of the parameters of the systems.

On the other hand, since the temperature and pressure of
the triple points and critical points share similar depend-
ence on the Gauss-Bonnet constant a, T ~ \/L- P ~1 with

. . . a a

different d-dependent coefficients, we introduce some other
universal relations,

Tn 4(d — 4y VST

T, & —d*—6d+17(d—1)—12d +23’
P d(d-4)

= s 37
P, (d-2) (37)

which both only depend on the dimensions d.

V. CONCLUSION

In this paper, we investigate the Hawking-Page transition
of hyperbolic Gauss-Bonnet AdS black holes in extended
thermodynamics. When d > 4, a new family of Hawking-
Page transitions, i.e., the reentrant Hawking-Page transi-
tion, is found for the first time, which is composed of two
Hawking-Page transitions with a high and a low Hawking-
Page temperature. We also find the triple point where a
small black hole, massless black hole, and large black hole
all coexist. We calculate the temperature of two branches of
Hawking-Page transitions, which both depend on the
pressure (i.e., the cosmological constant and the Gauss-
Bonnet constant). It is shown that pressure P and the
Gauss-Bonnet constant a both increase the high Hawking-
Page temperature and diminish the low Hawking-Page
temperature. We present the P — T phase diagrams of the
Gauss-Bonnet AdS black hole. We find that the reentrant
Hawking-Page transition always exists in four dimensions,
while in d > 4 dimensions, it can only be seen for a range
of pressure P € (P, P.), which is just the pressure
of the triple point and an critical point. Above
the pressure (temperature) of the critical points, the

d > 4-dimensional Gauss-Bonnet AdS black hole systems
undergo a single Hawking-Page transition. The triple points
and the critical points for arbitrary dimensional Gauss-
Bonnet AdS black hole systems are given, together with
some interesting universal relations that only depend on the
dimensions d and are independent of the parameters of the
systems.

It is well known that the Hawking-Page transition could
be explained as the confinement-deconfinement phase
transition of the gauge field [17], inspired by the
AdS/CFT correspondence [18-20]. The deconfinement
phase transition reduces to a crossover [39], which implies
a critical endpoint at a certain chemical potential u. It is
speculated that, in the holographic dictionary, this cross-
over corresponds to the Hawking-Page crossover of the
Schwarzschild-AdS black hole [38] in noncommutative
spacetime, which is thought to be an effective description of
quantum gravitational spacetime. Following a similar spirit,
we conjecture that the reentrant Hawking-Page transition
and the triple point may be explained as the reentrant phase
transition and the triple point in the QCD phase diagram.
However, something more rigorously quantitative is very
difficult here since string loops cannot be calculated yet in
any of the backgrounds thought to be dual to gauge theory.
The duality between the first-order phase transitions
is present on spherically compactified spaces, while the
reentrant Hawking-Page transition is given for the Gauss-
Bonnet AdS black hole with the horizon typology being
hyperbolic. Thus, it is important to explore the reentrant
Hawking-Page transition for the spherical AdS black
holes, which is left as a future task. It is also interesting
to study the reentrant Hawking-Page transitions in different
backgrounds and to generalize the study to the micro-
cosmic and holographic frameworks. For example,
one can consider the effect of the general higher-derivative
terms on the Hawking-Page transition of the AdS
black holes [77-88] and non-Schwarzschild AdS black
holes [89-94], as well as the charged and rotating AdS
black holes.
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APPENDIX: NEGATIVE ENTROPY AND
HAWKING-PAGE TRANSITION

From the entropy of the hyperbolic Gauss-Bonnet AdS
black hole, i.e., Eq. (7), one can find negative entropy,
which seems to restrict some values of the parameters and
thus provides an additional effect on the Hawking-Page
transition. However, the constraint from negative black hole
entropy does not make sense. Actually, as discussed
in [66,68], there is an additive ambiguity in the definition
of the entropy which can be appropriately chosen to avoid
the problem of negative black hole entropy, in both the
Euclidean approach and the Noether charge approach. They
argue instead that the occurrence of negative entropy
reflects a deficiency in the methods used to calculate the
entropy; one can add an arbitrary constant to the entropy of
all the black hole solutions in some family of solutions
without affecting the first law. By changing the choice of
this constant, one can clearly arrange for all black hole
solutions to have positive entropy. Then, the ambiguous
place of negative entropy becomes the point at which one
has to decide which classical black hole solution we assign
zero entropy to; if one make this choice appropriately, all
black hole solutions will have positive entropy. Thus, in
black hole thermodynamics, the negative entropy can be
removed by an appropriate choice of zero entropy.

In a classical thermodynamic system, the zero entropy is
chosen by the Nernst heat theorem, which states that the
entropy at absolute zero should be a constant, i.e., zero
without loss of generality, since there is no thermal motion
at absolute zero. In a quantum thermodynamic system, the
question is subtle. Considering the Fermi gas at absolute
zero, the nonzero number of microscopic states leads to a
nonzero entropy of the system, which is actually a relative
zero entropy since it does not contribute to thermodynamic
quantities or laws in the thermodynamical limit. When
generalizing to quantum information theory, the discussion
is more open; the entropies can be negative when

G vs T with P>Pr,
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FIG. 11.

considering quantum entangled systems, which reflects a
fact related to quantum nonseparability [95,96]. The
negative entropy of Gauss-Bonnet black holes has no
physical significance in the thermodynamical limit and
will not affect the Hawking-Page transition.

On the other hand, on the classical gravity side, the black
hole characterizes some features of a classical thermody-
namic system, i.e., the liquid-vapor-like phase transition
[11]. For a physical system in classical thermodynamics, it
should contain degrees of freedom in statistical physics,
which means that it should take positive entropy. In this
sense, one can try to consider the influence of negative
entropy on the Hawking-Page transition, which could be a
reference study for the property of gravity. From Eq. (7),
the positive entropy provides a constraint for the size of the
black hole, i.e.,

2a(d —2)
rp>rg= W

In d =4 dimensions, the constraint reduces to r, >
2,/agg (or equivalently, T >T, =4P,/oagg — m),

which contributes to the phase structure of the Hawking-
Page transition. From the G — T diagram in the left panel of
Fig. 11, we find that the small black hole branch and the
small massless black hole become physically unacceptable.
After highlighting the globally stable states of the system
by the thick lines, we find that the Hawking-Page transition
occurring at the low temperature disappears, which is
physically unacceptable. The reentrant Hawking-Page
transition is vanishing, and there is a single Hawking-
Page transition occurring at the high temperature between a
massless black hole and a large black hole. This can also be
seen from the right panel of Fig. 11. The left blue line
denotes the lower bound of temperature 7. In the low
temperature region 7' < Ty, there is no black hole phase.

(A1)

Phase diagram of P—T plane

0.0 0.1 0.2 0.3 0.4 O.ST

The G — T diagram and the P — T phase diagram (with a = 1) in four dimensions after considering the negative entropy. The

reentrant Hawking-Page transition is vanishing under the positive entropy constraint, and there is a single Hawking-Page transition
between a massless black hole and a large black hole. BHs, LBHs, and MBHs correspond to the black holes, large black holes, and

massless black holes, respectively.
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Phase diagram of P-T plane

Phase diagram of P—T plane
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FIG. 12. The P — T phase diagrams under the positive entropy constraint (with & = 1) in five (left) and six (right) dimensions. There is
a single Hawking-Page transition between a massless black hole and a large black hole as well. BHs, LBHs, and MBHs correspond to
the black holes, large black holes, and massless black holes, respectively.

Obviously, there is only a single Hawking-Page transition
in the P — T phase diagram.

In higher dimensions, the entropy constraint in Eq. (A1)
leads to a lower bound of the black hole temperature,

4(d — 2_d-
rop _Hd=2aP_(#-d-8)
(d—=4)r, 1677,

(A2)

It is easy to check that this curve in the P — T diagram
goes through the triple points (7, Pr;). Then, the phase

structure of higher dimensional black holes is similar to the
four-dimensional case. We plot the P — T phase diagrams
under the positive entropy constraint (i.e., the lower bound
of temperature 7'; shown as blue lines) in five (left) and six
(right) dimensions in Fig. 12. There is always a single
Hawking-Page transition between a massless black hole
and a large black hole, and the reentrant Hawking-Page
transition disappears because of the positive entropy
constraint.
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