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Based on the effective dynamics in the μ̄ scheme of the spherical symmetry reduced model in the reduced
phase space formulation of loop quantum gravity (LQG), we investigate the gravitational collapse of a
homogeneous dust cloud, with Gaussian dust serving as both the reference field and the source of the
gravitational collapse. The effective dynamics from the considered model for a homogeneous dust cloud
reduces precisely to the effective dynamics of loop quantum cosmology (LQC) with extrinsic curvature
based K-quantization, indicating that the LQC effective dynamics lives as a subsector of the model
presented here. In both the marginally bound and the bound cases of the collapse in effective dynamics,
the singularity is resolved and replaced by a bounce. Though quantum geometric modification from
spatial curvature is not directly included in the K-quantization it does affect the qualitative dynamics of
the collapsing dust cloud in the sense that on the one hand for the marginally bound case, the dust cloud
bounces once at fixed maximum energy density and on the other hand for the bound case, the dust
cloud undergoes infinite cycles of contraction and expansion at energy densities dependent on the dust
mass. Finally, the mass threshold for the formation of a trapped surface in each case is found and the
matching conditions between the interior collapsing spacetime and an effective exterior static solution are
discussed.

DOI: 10.1103/PhysRevD.107.044047

I. INTRODUCTION

Nonperturbative quantum gravitational effects in LQG
signal that the classical differential geometry of Einstein’s
gravity is replaced by a discrete quantum geometry at the
Planck scale. The resulting quantum dynamics is expected
to provide an upper bound on spacetime curvature and
result in resolution of singularities. A rigorous demonstra-
tion of this happens in cosmological spacetimes in the
context of loop quantum cosmology (LQC) where the
classical big bang is replaced by a quantum big bounce [1]
and a generic resolution of strong curvature cosmological
singularities occurs [2,3]. In recent years, investigations on
similar lines have been carried out for black hole space-
times (see e.g. [4–27], see also [28] for a review). The goal

of most of these works is to capture the discreteness of
quantum spacetime understood in LQG in an effective
spacetime description which using high performance com-
puting has proved to be reliable tool to understand quantum
evolution using a set of quantum gravity modified dynami-
cal equations [29–31]. As in many above works, our
work will be based on assuming validity of this effective
spacetime description.
Themodels for describing black holes in the framework of

LQG aremostly based on symmetry reducedmodels. Instead
of the full quantum theory of gravity, thesemodels reduce the
degrees of freedom (DOFs) by implementing spherical
symmetry at the classical level and quantize only the reduced
set ofDOFs satisfying this symmetry. Such kindof symmetry
reducedmodels have been successful in the studyof quantum
cosmology, see for instance [32] for a recent review. The
existing models of LQG black holes fall into two categories:
the first category of models aims to quantize Schwarzschild
black hole using isometry with Kantowski-Sachs vacuum
cosmology [4–6,9–11,13–15,17,19,33–35]. These models
quantize only a finite number of DOFs that result from
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requiring spherical symmetry as well as homogeneity.
On the other hand the second category of models e.g.
[7,8,18,22,23,36–39] performs a symmetry reduction with
respect to spherical symmetry only. These models give 1þ1
dimensional field theories, which still contain infinitely
many DOFs. Furthermore, both the black hole interior and
exterior are treated in a unified manner in the second
category. The model presented in this work belongs to
the second category which is then reduced to explore the
effects of quantum geometry on the collapse of a homo-
geneous dust cloud. In particular, our model is developed
from the reduced phase space formulation of LQG. At the
classical level and before the symmetry reduction, the
gravitational field is coupled to Gaussian dust, which serves
as reference fields to deparametrize gravity [40,41] and
obtain the reduced phase space of the gravitational degrees
of freedom in terms of elementary Dirac observables. This
allows us to formulate general relativity (GR) in a mani-
festly gauge invariant manner where the Hamiltonian and
diffeomorphism constraints are solved classically and the
dynamics of these Dirac observables is generated by a so-
called physical Hamiltonian that is nonvanishing in the
physical sector of the theory. The symmetry reduction with
respect to spherically symmetry is then performed at the
level of the reduced phase space and the Gauss constraint is
solved with a gauge fixing leading to the constraint-free
phase space P of spherical symmetric physical DOFs.
The quantization of the model is then applied to the
reduced phase space and the algebra of Dirac observables
directly. Therefore, the model is free of any complication
arising from quantization of constraints. In fact, the
quantum dynamics encoded in the physical Hamiltonian
operator is manifestly unitary when passing to the quantum
theory [39].
In this work, we apply the effective dynamics of the

above physical HamiltonianHΔ to study the gravitational
collapse for a homogeneous dust cloud. With dynamically
coupling Gaussian dust to gravity we have on one hand
the necessary reference fields in the system to construct
the reduced phase space and on the other hand we can
consider nonvacuum solutions such as the gravitational
collapse involving dust as the source. The reduced phase
space is derived in classical GR where for the Gaussian
dust model the Dirac observable corresponding to the
lapse function is unity and the shift vector is zero. A
question that arises when working at the effective level is
how to carry over the form of the classical lapse and shift
to the effective model. The strategy for this discussed
recently in [42] considers criteria that should be satisfied
such that the effective versions for lapse and shift are
consistent with the effective dynamics. In general this
means, that the effective lapse and shift are not just given
by the polymerization of their classical counterparts [42].
However, for the class of matter reference fields, includ-
ing the Gaussian dust model, this is valid and it turns

out that choosing the effective lapse and shift to be
one and zero respectively is a consistent choice in this
model.1

Let us note that every quantization strategy is fraught
with quantization ambiguities, and unlike the case of
isotropic LQC, where mathematical and phenomenological
considerations result in a unique quantization [44,45]—the
so-called μ̄ scheme or the improved dynamics [46] and
ruling out the old μo scheme in LQC. However, different
quantization prescriptions have been put forth for black
hole spacetimes. A priori there is no guarantee which
scheme would be successful unless one probes the resulting
physical implications in detail. Thus, a closer look at any of
these prescriptions is necessary. For the Schwarzschild
black hole this task has been carefully carried out in the
case of the interior spacetime where a recent study
discussed inherent deficiencies of some of the schemes,
including one based on quantizing Schwarzschild interior
with a μ̄ scheme, and proposed a quantization prescription
for Schwarzschild interior [14]. The situation for a gravi-
tational collapse scenarios, which unlike Schwarzschild
case, is a dynamical case as in cosmology is still to be
settled. Results for homogeneous collapse in LQC setting
rule out the μo scheme unless the Barbero-Immrizi param-
eter decreases almost four times [26]. It turns out that inside
the dust cloud, the μ̄ effective dynamics improves the
Oppenheimer-Snyder (OS) model by resolving the singu-
larity with a nonsingular bounce, where the curvature is
Planckian. Although a large part of our discussion treats
k ¼ 0;�1 in general, we indeed focus on the improved
OS models with k ¼ 1 (the bound case) and k ¼ 0 (the
marginally bound case). The results on the marginally
bound case with k ¼ 0 are consistent with those obtained in
[47], which uses a different symmetry reduction scheme.
An important caveat of our analysis is that we only consider
quantum geometric effects via polymerization of the
extrinsic curvature and ignore the same for the intrinsic
curvature. Basically we follow the so-called K-quantiza-
tions (where K denotes extrinsic curvature) [48]. The
bounce obtained here is time-reversal symmetric because
of the simplification of ignoring quantum geometric effects
to intrinsic curvature.
The dust cloud is assumed in our analysis to have a finite

radius. The spacetime geometry outside the cloud is also
needed in order to obtain a full description of the gravi-
tational field. The effective spacetime outside the dust

1The situation changes if one chooses geometric clocks as has
for instance be done in [22,43]. Then it depends whether the gauge
fixing conditions involve variables that are or are not polymerized
at the effective level. A procedure to obtain an effective lapse and
shift consistent with the effective dynamics has been presented in
[42] and the analysis there shows that neither the model in [22] nor
the model in [43] chooses a consistent lapse and shift if we assume
that the gauge fixing conditions are just the polymerizations of
their classical counterparts.
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cloud should be governed by the same set of EOMs from
HΔ, and is matched to the Schwarzschild geometry far
away from the dust cloud in [38]. Note that other matching
conditions such as generalized Vaidya are also possible (see
for e.g. [49]). In this paper we make the same assumption as
in [38] for the exterior to investigate the matching condition
on the dust shell between the effective spacetimes inside
and outside the dust cloud, and we show that the matching
condition is approximately satisfied except for the regime
where quantum geometric effects become significant. The
matching condition is not satisfied in the strong quantum
regime due to quantum corrections to the Lemaitre-
Tolman-Bondi (LTB) conditions, that restrict the spherical
symmetric sector to the LTB solution, in the effective
spacetime outside the dust cloud, while the LTB conditions
are satisfied without correction for the effective spacetime
inside the dust cloud.
There exists former results in the literature on the mass

threshold of forming a horizon in the gravitational collapse
with quantum geometric effects in different settings
[47,50,51]. For a dust shell mass below a certain threshold,
no horizon will form. With the model considered in this
work, we confirm a mass threshold at the order of
Planckian mass for both the marginally bound k ¼ 0 and
the bound case k ¼ 1. In our results, for a dust shell mass
larger than the threshold, as the dust profile falls inward, a
pair of apparent horizon forms before the bounce. There is
no shock wave after the bounce, in contrast to the result in
[51]. For an observer that sits inside or on the dust shell, the
trapped region will be reached first near the Schwarzschild
radius. With the collapse continuing in the trapped region,
an inner apparent horizon will be reached at the Planck
curvature scale before the bounce, where the space-time
region becomes untrapped. After that, matter bounces
outward symmetrically. The observer will enter the anti-
trapped white-hole region and finally moves out after
crossing the white-hole horizon. The result here in the
k ¼ 0 case agrees with the earlier result in [47].
The paper is organized as follows. After the introduction

in Sec. I we review in Sec. II the relational dynamics of the
Gaussian dust model (Sec. II A) as well as its symmetry
reduction to spherical symmetry at the classical level
(Sec. II B). In addition in Sec. II C we briefly review the
effective dynamics in the μ̄-scheme following from the
models in [52,53]. Section III introduces the collapsing dust
model of this work by further imposing two LTB conditions
that restrict the spherical symmetric effective dynamics to
the LTB sector. We start in Sec. III Awith a brief summary
on the LTB dust shell model from [47] for which the
symmetry reduction has been performed at the classical
level along the lines of [54] before effective techniques have
been applied. In Sec. III B we analyse the case of a
homogeneous dust cloud with analytical methods. The
model can be understood as an Oppenheimer-Snyder
dust collapsing model, for the marginally bound case

(k ¼ 0) and bound case with k ¼ 1. Further, we discuss
in subsection III C the effective Hamiltonian as well as the
resulting modified Friedmann-like equations for the k ¼ 0
and k ¼ 1 model and we obtain a qualitatively different
behavior of the two cases. Subsection III D analyses the
formation of trapped surfaces in the model and derives the
resulting value for the threshold mass that agrees for the
k ¼ 0 with one found in [47]. Possible matching conditions
for gluing the interior spacetime to an exterior stationary
spacetime are given in Sec. III E. In Sec. IVwe present some
numerical results for the model.

II. REDUCED PHASE SPACE QUANTIZATION,
SPHERICAL SYMMETRY REDUCTION, AND

EFFECTIVE DYNAMICS

In this section, we give a brief review on the reduced
phase space formulation for gravity coupled to Gaussian
dust and the spherical symmetry reduction. We also review
briefly the μ̄-scheme effective dynamics of spherical
symmetric LQG developed recently in [38].

A. Reduced phase space of the Gaussian dust model

Usage of reference fields in GR in order to access
the physical phase space and after quantization the
physical Hilbert space respectively has been studied earlier
[40,55–61]. In particular, a classification of the existing
scalar field reference models in the context of LQG can be
found in [41]. The individual models differ by the number
and kind of reference fields that one couples dynamically to
GR. In full GR in one type of models one has four
additional reference fields that can be used to reduce the
Hamiltonian as well as the spatial diffeomorphism con-
straint at the classical level. The other kind of models
involve only one reference field that is typically used to
reduce the Hamiltonian constraint, whereas the spatial
diffeomorphism constraint is then solved in the quantum
theory. In this work we will focus on models that allow to
reduce the Hamiltonian as well as the diffeomorphism
constraint and these models have in common that one
obtains a system with second class constraints. In these
models one couples eight or seven additional fields to
gravity and after reduction with respect to the second class
constraints one ends up with a first class systems which has
four additional fields to the geometric degrees of freedom.
In case one takes GR in terms of Ashtekar-Barbero
variables as a starting point as for instance has been done
in [59,62,63] the models involve an additional Gauss
constraint that is solved via Dirac quantization in the
quantum theory by working with gauge invariant spin
network functions. Another alternative is to gauge-fix the
Gauss constraint already at the classical level as it is often
done in symmetry reduced models. The different dust
models available in the literature for full GR and corre-
sponding quantum gravity models [40,41,56,60,62] carry
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different features at the level of full GR such as for instance
a different number of coupled dust fields and a different
form of the resulting physical Hamiltonian. Once sym-
metry reduced to Friedmann–Lemaître–Robertson–Walker
(FLRW) spacetimes most of the distinctive properties are
lost due to the simplicity of the models and in particular
because the spatial diffeomorphism constraint vanish trivi-
ally in these models, see for instance [49] where different
reference matter models have been analyzed in the cos-
mological context involving in addition to dust also Klein-
Gordon scalar fields as reference matter. This is no longer
the case for spherically symmetric models where more
distinguishable properties of the dust models are present. In
the current work we will focus on the Gaussian dust model
that was introduced in the seminal article [40] and see [62]
for the corresponding quantum model using a loop quan-
tization. If we choose dust as reference fields in spherically
symmetric models, we work in the framework of LTB
models. The main motivation for focusing on the Gaussian
dust model here is that its physical Hamiltonian has a
simpler form than in the Brown-Kuchař model.
The Gaussian dust model considers the following total

action

Stot ¼ Sgeo þ SGdust

with the geometric part described by the Einstein-Hilbert
action

Sgeo ¼
1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p
Rð4Þ ð2:1Þ

whereas the dust dynamics is encoded in the following
action

SGdust ¼ −
Z

d3x
ffiffiffiffiffiffi
−g

p �
ρ

2
½gμνT;μT;ν þ 1� þ gμνT;μWjS

j
ν

�
;

ð2:2Þ

here κ ¼ 8πG with G being Newton’s constant and
ρ; T;Wj; Sj with j ¼ 1, 2, 3 denote eight dynamically
coupled scalar fields describing the Gaussian dust model.
After an ADM decomposition, the kinematical phase space
consists of the ADM variables of ðqab; pab; N; PN; Na; PaÞ
in the gravitational sector, where qab denotes the ADM
metric, N the lapse function and Na the shift vector. The
kinematical degrees of freedom in the dust sector are given
by ðρ; Pρ; T; PT;Wj; PWj

; Sj; PjÞ so that in total the model
involves 36 phase space degrees of freedom at the kin-
ematical level. As far as the constraints of the Gaussian dust
model are concerned it is a second class constrained system
and as shown in [40,62] after the reduction of the second
class constraints the independent variables are given by the
set ðqab; pab; T; PT; Sj; PjÞ and this partially reduced

system becomes first class for more details as well as
the explicit form of the constraints compatible with our
notation see [41]. We take this as a starting point for the
work in this article and consider the usual extension
of the gravitational phase space from ADM to Ashtekar-
Barbero variables denotes by ðAj

a; Ea
j Þ which are a SU(2)-

connection and a densitized triad respectively building a
canonical pair with the nonvanishing Poisson brackets

fAj
aðxÞ; Eb

kðyÞg ¼ κβ

2
δjkδ

b
aδ

ð3Þðx; yÞ; κ ¼ 16πG:

Here Aj
a ≔ Γa

j þ βKj
a where Γj

a is the spin connection, β the

Immmirzi parameter and Kj
a is related to the extrinsic

curvature via Kj
a ¼ ebjKab with ejb denoting the usual co-

triads. The remaining first class constraints are the
SU(2) Gauss constraint Gj, the spatial diffeomorphism
constraint ctota and the Hamiltonian constraint ctot. The total
Hamiltonian constraint consisting of the geometric and dust
contributions denoted by c and cdust respectively reads

ctot ¼ cþ cdust

c ¼ 1

2κ

εmn
j Ea

mEb
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jdetðEa
j Þ

q
j
ðFj

ab − ð1þ β2ÞεjklKk
aKm

b Þ

cdust ¼ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ea

mEb
nδ

mnT;aT;b

detðEa
j Þ

s

þ Ea
mEb

nδ
mn

detðEa
j Þ

T;aPjS
j
;bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Ea
mEb

nδ
mnT;aT;b

detðEa
j Þ

r ; ð2:3Þ

where

Fj
ab ¼ ∂aA

j
b − ∂bA

j
a þ ϵjklAk

aAl
b

and Kj
a ¼ 1

β ðAj
a − Γj

aÞ is considered as a function of

ðAj
a; Ea

j Þ. The total spatial diffeomorphism constraint is
given by

ctota ¼ ca þ cdusta with

ca ¼
1

κβ
Fj
abE

a
j cdusta ¼ 1

κβ
ðPT;a þ PjS

j
;aÞ ð2:4Þ

and the total Gauss constraint takes the form

Gj ¼
1

κβ
ð∂aEa

j þ ϵljkAk
aEa

lÞ:

As presented in [40,62] the Hamiltonian as well as the
diffeomorphism constraint can be solved for the dust
momenta P and Pj respectively allowing to work with
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an equivalent set of these constraints being all linear in the
dust momenta. As a consequence, the dust fields T and Sj

are canonically conjugate to the total Hamiltonian and
diffeomorphism constraint respectively and thus provide
good candidates for reference fields for these constraints.
Applying the observable map from [64–66] in the frame-
work of the relational formalism [67–69], as presented
in [62], we can construct Dirac observables corresponding
to the canonical pair ðAj

a; Ea
j Þ. Following the notation from

[41,62] we denote these Dirac observables by ðAJ
j ; E

j
JÞ.

Here j is the index labeling coordinates on the dust
manifold S with coordinates σj being those values the
dust field Sj take under the observable map and J is a su(2)-
index both running from 1 to 3. As shown in [41] the
algebra of the Dirac observables has a standard canonical
form with

fAJ
j ðσ; τÞ; Ek

Kðσ0; τÞg ¼ κβ

2
δkjδ

J
Kδ

ð3Þðσ; σ0Þ;

where τ denotes physical time related to the reference
field T and all remaining Poisson bracket vanish. ðAJ

j ; E
j
JÞ

are the elementary variables of the reduced phase space.
The dynamics of these Dirac observables is generated
by a so-called physical Hamiltonian, that is itself a Dirac
observable and not vanishing on the constraint hypersur-
face. For the Gaussian dust model it has the following
form [41]

HG
phys ¼

Z
S
d3σCðσÞ

where CðσÞ denotes the Dirac observable of cðxÞ given by

C ¼ 1

2κ

εMN
J Ej

ME
k
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j detðEj
JÞ

q
j
ðFJ

jk − ð1þ β2ÞεJKLKK
j K

M
k Þ:

Here FJ
jk is the curvature associated with the connection A

J
j

FJ
jk ¼ ∂jAJ

k − ∂kAJ
j þ ϵJKLAK

j A
L
k

and KJ
j ¼ 1

β ðAJ
j − ΓJ

j Þ is considered as a function of the

elementary Dirac observables ðAJ
j ; E

j
JÞ. To obtain the Dirac

observable C we took advantage of the fact that for the
observable map we have C ¼ cðAJ

j ; E
j
JÞ and likewise for

any other function on the reduced phase space as for
instance ca andGj, a derivation of the detailed properties of
the observable can be found in [65,66,70]. This reduced
phase space as well as the dynamics encoded inHG

phys at the
classical level will be our starting point for considering a
spherically symmetric symmetry reduction in the next
subsection.

B. Spherical symmetry reduction

In this work, we focus only on the sector of spherical
symmetrical degrees of freedom in the reduced phase
space, and restrict the LQG dynamics to the spherical
symmetrical degrees of freedom. Our scheme is similar to
e.g. [4,7,8,36,38,39]. For obtaining the spherically sym-
metric midisuperspace we assume the dust space S ≃
R × S2 and define the spherical coordinate σ ¼ ðx; θ;ϕÞ.
We restrict the reduced phase space to the phase space Γred
of spherical symmetric field configurations. In spherically
symmetric spacetimes, one only considers ðAI

j; E
j
IÞ that are

invariant under rotations up to gauge transformations. The
general forms are given by

AI
jτIdσ

a ¼ A1ðxÞτ1dxþ
1ffiffiffi
2

p ðA2ðxÞτ2 þ A3ðxÞτ3Þdθ

þ 1ffiffiffi
2

p ðA2ðxÞτ3 − A3ðxÞτ2Þ sinðθÞdφ

þ cosðθÞτ1dφ;

Ej
Iτ

I ∂

∂σa
¼ E1ðxÞ sinðθÞτ1∂x

þ 1ffiffiffi
2

p ðE2ðxÞτ2 þ E3ðxÞτ3Þ sinðθÞ∂θ

þ 1ffiffiffi
2

p ðE2τ3 − E3τ2Þ∂φ; ð2:5Þ

where τI ¼ − i
2
σI with σI denoting Pauli matrices. We

denote by Γred the reduced phase space of the spherically
symmetric ðAI

j; E
j
IÞ. The symplectic form Ω on Γred reads

Ωðδ1; δ2Þ ¼ −
2

κβ

Z
d3σδ1AI

jðσÞ ∧ δ2E
j
IðσÞ

¼ −
1

2Gβ

Z
ðδ1A1ðxÞ ∧ δ2E1ðxÞ

þ δ1A2ðxÞ ∧ δ2E2ðxÞ
þ δ1A3ðxÞ ∧ δ2E3ðxÞÞdx; ð2:6Þ

where δ1 and δ2 are differentials onΓred. The Poisson bracket
from Ω implies fAjðxÞ; Ekðx0Þg ¼ 2Gβδðx; x0Þδkj , with j,
k ¼ 1, 2, 3. The symmetry-reduced theory is an (1þ 1)-
dimensional field theory with infinite-dimensional Γred.
We still need to impose the Gauss constraint to Γred.

Equation (2.5) reduce the Gauss constraint to only one
constraint:

G½λ� ¼ 4π

Z
dxλðxÞ½A2ðxÞE3ðxÞ−A3ðxÞE2ðxÞ þ ∂xE1ðxÞ�;

ð2:7Þ

while other two components become trivial. Corres-
pondingly, the SU(2) gauge group is reduced to U(1).
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Under the gauge transformation generated by G½λ�, A1

and E1 transform as a U(1) gauge field and electric field,
while A2 þ iA3 and E2 þ iE3 transform as U(1) scalar
fields:

A1ðxÞ → A1ðxÞ − κβ∂xλ
1ðxÞ; E1ðxÞ → E1ðxÞ; ð2:8Þ

A2ðxÞþ iA3ðxÞ→ eiκβλ
1ðxÞðA2ðxÞþ iA3ðxÞÞ;E2ðxÞþ iE3ðxÞ

→ eiκβλ
1ðxÞðE2ðxÞþ iE3ðxÞÞ: ð2:9Þ

One can always gauge transform ðAI; EIÞ ∈ Γred to make
E3 vanish. Thus we introduce the following gauge fixing
condition

E3ðxÞ ¼ 0: ð2:10Þ

Then we solve the Gauss constraint (2.7) for A3ðxÞ

A3ðxÞ ¼
∂xE1ðxÞ
E2ðxÞ : ð2:11Þ

Equations (2.10) and (2.11) remove ðA3; E3Þ from the
canonical pairs. Following [8,38,39], we introduce the
following variables

KxðxÞ ≔
1

2β
A1ðxÞ; KφðxÞ ≔

1ffiffiffi
2

p
β
A2ðxÞ;

ExðxÞ ¼ E1ðxÞ; EφðxÞ ¼ 1ffiffiffi
2

p E2ðxÞ: ð2:12Þ

The gauge-fixed reduced phase space, denoted byP, consists
of canonical pairs ðKxðxÞ; ExðxÞÞ and ðKφðxÞ; EφðxÞÞ with
the Poisson brackets

fKjðxÞ; Ekðx0Þg ¼ Gδkjδðx; x0Þ; j; k ¼ x;φ: ð2:13Þ

In terms of these variables, the metric is given by

ds2 ¼ −dt2 þ ðEφÞ2
jExj dx2 þ jExjdΩ2; ð2:14Þ

where the angular part dΩ2 ¼ dθ2 þ sin2 θdφ2.
The classical physical Hamiltonian HG

phys reduced to the
(gauge-fixed) spherical symmetrical sector P gives

H0 ¼
Z

dxCðxÞ þ boundary term; ð2:15Þ

CðxÞ ¼ 4π

κ

sgnðEφÞffiffiffiffiffiffiffiffijExjp
�
−
2ExEx0Eφ0

Eφ2 þ 4ExEx00 þ Ex02

2Eφ

− 8ExKxKφ − 2Eφ½K2
φ þ 1�

�
: ð2:16Þ

where Ex0 ¼ ∂xEx. For completeness we also mention the
total diffeomorphism constraint that will be needed for the
later discussion in Sec. III and is given by

Ctotx ðxÞ ¼ PxðxÞ þ CxðxÞ
¼ PxðxÞ þ EφðxÞK0

φðxÞ − KxðxÞEx0ðxÞ ≈ 0 ð2:17Þ

where Px denotes the dust momentum conjugate to the
reference field Sx. Here CxðxÞ for all x are infinitely many
conserved charges satisfying fCxðxÞ;H0g ¼ 0.
A boundary term in terms of Ashtekar-Barbero vari-

ables in the case of asymptotically flat spacetimes has been
discussed in the literature [71–73]. In the following we
briefly discuss how the boundary term for spherically
symmetric spacetimes given in (2.15) can be obtained:
When deriving EOMs from H0, the variation δ

R
dxCðxÞ

and the integration by parts result in the following
boundary terms

8πExδEx0

κ
ffiffiffiffiffiffiffiffijExjp jEφj −

8πExδEφjEφjEx0

κEφ3
ffiffiffiffiffiffiffiffijExjp : ð2:18Þ

These boundary variations should be canceled by the
variation of the boundary term in (2.15) with certain
boundary condition, in order to have the well-defined
variation. We are interested in the following boundary
conditions:

(i) The LTB conditions (see (3.1) and set Px ¼ 0)
restricts the spherical symmetric spacetimes to
LTB spacetimes, and here the boundary condition
involves one of the LTB condition Ex0 ¼ 2fðxÞEφ

for a given function fðxÞ, see Sec. III for details.
Since we are going to study the LTB dust shell
model, we are interested in this LTB boundary
condition. The boundary can be of finite distance
or at infinity. The LTB condition implies
½δEx0 − 2fðxÞδEφ�bdy ¼ 0. In this case, the two
terms in (2.18) cancel each other in any variation
δ
R
dxCðxÞ satisfying the LTB boundary condition.

So we can set the boundary term to be zero in (2.15).
(ii) When we study the dynamics of spherical symmetric

black hole, we consider Ex; Eφ to behave asymp-
totically as the Schwarzschild geometry in the
Lemaître coordinates as x → ∞2:

Ex ∼
�
3

2

ffiffiffiffiffi
Rs

p
x

�
4=3

;

Eφ ∼
ffiffiffiffiffi
Rs

p �
3

2

ffiffiffiffiffi
Rs

p
x

�
1=3

; ð2:19Þ

2The Schwarzschild spacetime in the Lemaître coordinates
ðt; x; θ;φÞ is given by (2.14) with Ex ¼ ð3

2

ffiffiffiffiffi
Rs

p ðx − tÞÞ4=3;
Eφ ¼ ffiffiffiffiffi

Rs
p ð3

2

ffiffiffiffiffi
Rs

p ðx − tÞÞ1=3.
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where Rs is the Schwarzschild radius. The LTB
boundary condition Ex0 ¼ 2Eφ is satisfied asymp-
totically. So we have again zero boundary term in
(2.15) at x → ∞ for the asymptotic Schwarzschild
boundary condition.

(iii) Alternatively, we may consider an infrared cutoff of
the dust space at boundary (bdyÞ ¼ fx ¼ L ≫ 1g
and impose the Dirichlet boundary condition
δExjbdy ¼ 0. In this case,wehave to add the following
boundary term to the physical Hamiltonian

H0 ¼
Z

∞

−∞
dxCðxÞ þHbdy;

Hbdy ¼ −
8π

κ

� ffiffiffiffiffiffi
Ex

p
Ex0

Eφ − 2fðxÞ
ffiffiffiffiffiffi
Ex

p �����
bdy

; ð2:20Þ

for any function fðxÞ. δEφðxÞHbdy cancels the boun-
dary terms from δEφðxÞ

R
∞
−∞ dxCΔðxÞ, while δExðxÞHbdy

cancels the boundary term from δExðxÞ
R
∞
−∞ dxCΔðxÞ

up to a term proportional to δExwhich vanishes by the
Dirichlet boundary condition.

(iv) The Neumann boundary condition Ex0jbdy ¼ 0;
δEx0jbdy ¼ 0 is interesting in the discussion in
[38] as x → −∞ as a part of the Nariai limit. Both
terms in (2.18) vanish by this boundary condition, so
no boundary term is needed.

C. Review of the effective dynamics in the μ̄ scheme

For studying the LQG corrections to the spherical
symmetrical spacetimes, the effective dynamics improved
from the classical dynamics by H0 is developed in [38,39],
where a μ̄-scheme improved HamiltonianHΔ is defined by
implementing the LQG holonomy corrections toH0. In the
following, we briefly discuss a few key points in con-
structing HΔ and readers can refer to [38,39] for details.

(i) Spherical symmetry reduction and gauge fixing
before quantization: The starting point of the con-
struction is the spherical symmetric form (2.5) of
ðAI

j; E
j
IÞ on the dust space. The classical phase space

of the full theory is reduced to a subspace Γred of
spherical symmetrical fields. Γred is further reduced
to P by the gauge fixing E3 ¼ 0 and solving the
Gauss constraint. In particular, Ej

I is diagonal in this
gauge. All the further development, including the
improved Hamiltonian and quantization, are based
on P.

(ii) The U(1) holonomy of A1, and the point holonomy of
A2: The triad variables Ej

I reduces to E1, E2 on P.
We choose A1 and A2 to be their conjugate variables,

and define eiλ
R
e
dxA1 and eiμA2 as the basic variables

in the quantization and the regularization of the
Hamiltonian [39]. The choice of the U(1) holonomy

eiλ
R
e
dxA1 is natural since A1 transforms as the U(1)

gauge field, see (2.8). However, the component of AI
j

perpendicular to x-direction can only give the
holonomy supported at a point in the space of x.
For simplicity, we choose the point holonomy eiμA2

of A2 as the other basic variable.3

(iii) The μ̄-scheme regularization of the Hamiltonian with
holonomies of fixed lengths: When constructingHΔ,
the U(1) holonomy and point holonomies are repre-
sented as belonging to U(1) subgroups in SU(2):

e
R
e
dxλ̄A1τ1 and eμ̄A2τ2 ; eμ̄A2τ3 . Here τ1, τ2, τ3 generate

the U(1) subgroups of SU(2). These SU(2) holono-
mies are used for regularizing the SU(2) curvature:
F ≃ 1

Δ ½hΔð□Þ − 1�. hΔð□Þ is the SU(2) loop holon-
omy around the plaquette□whose area is fixed to be
Δ. We express hΔð□Þ in terms of holonomies along
edges of fixed length

ffiffiffiffi
Δ

p
[38]

h1Δ ¼ e
R
e
dxλ̄A1τ1 ≃ e

ffiffi
Δ

p ffiffiffiffiffi
jEx j

p
jEφ j 2βKxτ1 ;

h2Δ ¼ eμ̄A2τ2 ¼ e

ffiffi
Δ

pffiffiffiffiffi
jEx j

p βKφτ2
; ð2:21Þ

h3Δ ¼ eμ̄A2τ3 ¼ e

ffiffi
Δ

pffiffiffiffiffi
jEx j

p βKφτ3
;

hΔð□jkÞ ¼ hjΔh
k
ΔðhjΔÞ−1ðhkΔÞ−1; j; k ¼ 1; 2; 3:

ð2:22Þ

We can regularize the K-dependent terms in H0 in
terms of these holonomies and construct

HΔ ¼ 2

β2κΔ

Z
d3x

X
j;k

eð□jkÞTr
�
hΔð□jkÞ

½Ej;Ek�ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

�

þ terms independent of K: ð2:23Þ

As the result from the above discussion, we obtain
the following expression of the μ̄-scheme improved
Hamiltonian HΔ defined on P [38]

HΔ ¼
Z

dxCΔðxÞ þ boundary term; ð2:24Þ

3Although we focus on this choice in the present paper, we
would like to mention that the alternative choice may be to use
eiμ½A2þfðEÞ� for a certain nontrivial function fðEÞ of Ej. The
alternative choice may lead to a more complicated expression
of HΔ.
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CΔðxÞ ¼
1

4G
sgnðEφÞffiffiffiffiffiffiffiffijExjp

�
−
2ExEx0Eφ0

Eφ2 þ 4ExEx00 þ Ex02

2Eφ −
4ExEφ

β2Δ
sin

� ffiffiffiffi
Δ

p ffiffiffiffiffiffiffiffijExjp
Eφ 2βKxðxÞ

�
sin

� ffiffiffiffi
Δ

p
ffiffiffiffiffiffiffiffijExjp βKφðxÞ

�

−
2EφjExj
β2Δ

sin2
� ffiffiffiffi

Δ
p
ffiffiffiffiffiffiffiffijExjp βKφðxÞ

�
− 2Eφ

�
: ð2:25Þ

Effectively, HΔ improves the classical spherical symmetric
HamiltonianH0 by implementing the holonomy corrections

KφðxÞ →
ffiffiffiffiffiffiffiffijExjp

β
ffiffiffiffi
Δ

p sin

� ffiffiffiffi
Δ

p
ffiffiffiffiffiffiffiffijExjp βKφðxÞ

�
;

KxðxÞ →
Eφ

2β
ffiffiffiffiffiffiffiffiffiffiffiffi
ΔjExjp sin

� ffiffiffiffiffiffiffiffiffiffiffiffi
ΔjExjp
Eφ 2βKxðxÞ

�
; ð2:26Þ

where the deformation parameter Δ is assumed to be the
same order of magnitude as the minimal area gap in LQG.

Clearly as Δ → 0, (2.26) reduces to Kx; Kφ. It is straight-
forward to check fCxðxÞ;HΔg ¼ 0, thus the conservation
of CxðxÞ carries over to the improved dynamics. Here the
conserved CxðxÞ ¼ EφðxÞK0

φðxÞ − KxðxÞEx0ðxÞ does not
contain any holonomy correction. The discussion of the
boundary term in HΔ is exactly the same as the discussion
for H0, since the boundary terms from δ

R
dxCΔðxÞ is the

same as (2.15).
The effective dynamics of the spherical symmetric

gravity-dust system is given by the Hamiltonian equations
from HΔ [38]:

∂tKx ¼ −
∂xEx

∂xEφ

4
ffiffiffiffiffiffi
Ex

p
Eφ2

−
ð∂xExÞ2

16Ex3=2Eφ
þ ∂

2
xEx

4
ffiffiffiffiffiffi
Ex

p
Eφ

þ Eφ

4Ex3=2 −
Eφ sin

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�
sin

�
2β

ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

Eφ

�

2β2Δ
ffiffiffiffiffiffi
Ex

p

−
Kx sin

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�
cos

�
2β

ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

Eφ

�

β
ffiffiffiffi
Δ

p þ
EφKφ cos

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�
sin

�
2β

ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

Eφ

�

2β
ffiffiffiffi
Δ

p
Ex

−
Eφsin2

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�

4β2Δ
ffiffiffiffiffiffi
Ex

p

þ
EφKφ sin

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�
cos

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�

2β
ffiffiffiffi
Δ

p
Ex

; ð2:27Þ

∂tKφ ¼ ð∂xExÞ2
8

ffiffiffiffiffiffi
Ex

p
Eφ2

−

ffiffiffiffiffiffi
Ex

p
sin

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�
sin

�
2β

ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

Eφ

�

β2Δ

þ
2ExKx sin

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�
cos

�
2β

ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

Eφ

�

β
ffiffiffiffi
Δ

p
Eφ

−

ffiffiffiffiffiffi
Ex

p
sin2

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�

2β2Δ
−

1

2
ffiffiffiffiffiffi
Ex

p ; ð2:28Þ

∂tEx ¼
2Ex sin

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�
cos

�
2β

ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

Eφ

�

β
ffiffiffiffi
Δ

p ; ð2:29Þ

∂tEφ ¼
Eφ cos

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�
sin

�
2β

ffiffiffi
Δ

p ffiffiffiffi
Ex

p
Kx

Eφ

�

β
ffiffiffiffi
Δ

p þ
Eφ sin

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�
cos

�
β
ffiffiffi
Δ

p
Kφffiffiffiffi

Ex
p

�

β
ffiffiffiffi
Δ

p : ð2:30Þ

when Ex; Eφ > 0 are assumed.
The polymer quantization of the phase space P is carried out in [39], where the Hamiltonian HΔ is quantized on

an 1-dimensional lattice along the x-direction. The U(1) holonomy eiλ
R

dxA1 and the point holonomy eiμA2 are among the
basic variables in the quantization. The matrix elements of the time-evolution operator e−

iT
ℏ ĤΔ is expressed as a phase space

path integral:
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hψ1je−iTĤΔ jψ2i ¼
Z

Dμ½Kx; Kφ; Ex; Eφ�ei
ℏSΔ½Kx;Kφ;Ex;Eφ�:

ð2:31Þ

The detailed expressions of the action SΔ½Kx; Kφ; Ex; Eφ�
and the path integral measure Dμ can be found in [39]. The
effective dynamics (2.27)–(2.30) is reproduced at the lead-
ing order in the ℏ-expansion of the path integral formula by
the stationary phase approximation. Here Δ is viewed as
independent from ℏ in the expansion, although Δ ∼Gℏβ.
This indicates that from the path integral point of view, the
validity regime of the effective dynamics is given by scaling
ℏ small and β large while keeping Δ fixed. This regime is
similar to the earlier path integral approach in LQC [74].

III. HOMOGENEOUS REDUCTION OF THE
EFFECTIVE DYNAMICS AND ITS

PHENOMENOLOGICAL IMPLICATIONS

In this section, we discuss the homogeneous reduction of
our loop quantized model for the collapsing LTB spacetime
and conclude that our model can reduce to the well-known
Oppenheimer-Snyder (OS) model with effective dynamics
coinciding with μ̄-LQC for the homogeneous collapsing
dust cloud with a nonvanishing dust energy density [47].
For both the marginally bound case and the bound case, we
analyze in detail the reduction ansatz, the dynamical
equations as well as the formation of the trapped surfaces
at the boundary in the resulting OS model.

A. LTB dust shell model

One approach to quantize LTB models is to start with a
spherically symmetric spacetime, gauge-fix the Gauss
constraint at the classical level and then apply LTB
conditions that specialize the classical spherically sym-
metric spacetime to an LTB form and use this as the
classical model for the quantization. This strategy was for
instance followed in [54,47]. The work in [54] presents a
Schrödinger quantization of model describing the dynamics
of outermost dust shell for a homogeneous dust energy
density and [47] considers such a model for a different kind
of loop quantization at the effective level. Both works
restrict their discussion to the marginally bound case. In
this subsection we want to briefly review the main proper-
ties of the model [47] because in the later part of this work
we want to compare it with the results obtained from the
path integral formalism presented here. We assume that the
Gauss constraint has already been gauge-fixed and consider
the metric in (2.14) as well as the Poisson bracket in (2.13)
as the starting point. The LTB conditions for the marginally
bound case in Ashtekar-Barbero variables read4

I: 2Eφðt; xÞ − j∂xExjðt; xÞ ≈ 0

II: ∂xKφðt; xÞ − 2sgnðExÞKxðt; xÞ ≈ 0: ð3:1Þ

As can be seen from (2.17) the combination of the LTB
conditions in I and II together with the condition Px ¼ 0 in
(2.17) yield a vanishing contribution to the spatial diffeo-
morphism constraint at the classical level. As a conse-
quence, the Brown-Kuchar dust model considered in
[47,54] reduces to the case of nonrotational dust where
as in the case of the Gaussian dust model the lapse is given
by N ¼ 1 and the shift vector vanishes. For this reason it is
reasonable to compare the model in [47] with the results
obtained here using Gaussian dust. Because the LTB
conditions are applied in the classical model in [47] one
is left with one set of canonical variables only, that is
ðKxðt; xÞ; Exðt; xÞÞ. As shown in [54], if one imposes the
assumption that the individual shells decouple at the
classical level, an action for the outermost shell can
be derived. In [47] this shell model was used in connec-
tion variables and following their notation we denote the
densitized triad of the outermost shell by ẼxðtÞ ≔ Exðt; xsÞ,
where xs in the radial coordinate of the shell and the
conjugate connection variable by K̃xðtÞ ≔ Kxðt; xsÞ that
satisfy fK̃x; Ẽxg ¼ G and whose classical dynamics is
described by the following action

S ¼ 1

G

Z
dτLshell ≔ −

1

8G

Z
dτ

ðdẼx

dτ Þ2ffiffiffiffiffiffiffiffi
jẼxj

p with

Hs ¼ −
2

G
K̃2

x

ffiffiffiffiffiffiffiffi
jẼxj

q
¼ −ms; ð3:2Þ

where H denotes the corresponding physical Hamiltonian
and ms stands for the dust mass enclosed by the outermost
dust shell. The work in [47] considers the usual loop
quantization of the shell model based on holonomies and
triads as well as a loop quantization involving in addition
gauge covariant fluxes [76]. As we will not consider gauge
covariant fluxes in our work here in the further discussion
we will briefly summarize the effective model where gauge
covariant fluxes are absent. The effective Hamiltonian
involving holonomy corrections reads [47]

HΔ
s ¼ −

ðẼxÞ3=2
2GΔβ2

sin2
�
2β

ffiffiffiffi
Δ

p
K̃xffiffiffiffiffiffi

Ẽx
p

�
¼ −ms; ð3:3Þ

with Δ ¼ 4
ffiffiffi
3

p
πβl2pl fixed by the minimum nonzero

eigenvalue of area operator in LQG. The corresponding
equations of motion take the form

4Note that compared to [47,75] the Poisson bracket in (2.13)
involves an additional factor of 1

2
and this results in anadditional factor

of 2 in the second LTB condition in the notation used in this work.
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_̃Ex ¼ Ẽx

β
ffiffiffiffi
Δ

p sin

�
4

ffiffiffiffi
Δ

p
βK̃xffiffiffiffiffiffi
Ẽx

p
�
;

_̃Kx ¼
K̃x

2
ffiffiffiffi
Δ

p
β
sin

�
4

ffiffiffiffi
Δ

p
βkxffiffiffiffi
εx

p
�
−
3

ffiffiffiffiffiffi
Ẽx

p

4β2Δ
sin2

�
2

ffiffiffiffi
Δ

p
βK̃xffiffiffiffiffiffi
Ẽx

p
�
:

ð3:4Þ

Taking into account that R̃ ¼
ffiffiffiffiffiffiffiffi
jẼxj

p
one can derive an

effective equation for _̃R=R̃ yielding a modified Friedmann
equation given by

� _̃R

R̃

�2

¼ 8πG
3

ρ

�
1 −

ρ

ρ0max

�
ð3:5Þ

with ρ ¼ 3ms

4πR̃3 and where ρ0max ¼ 3=ð8πGβ2ΔÞ denotes the
maximum energy density enclosed by the outermost dust
shell that is allowed in this model. That (3.5) corresponds to
a quantum gravity modified Friedmann equation with zero
spatial curvature (k ¼ 0) reflects again the fact that the
model corresponds to the marginally bound case. The
effective dynamics for the homogeneous dust collapse
involves a quantum geometric correction term causing
the right-hand side of this equation to vanish when the
density of the dust cloud reaches its maximum ρ0max.
The numerical results in [47] show that for a generic set
of chosen initial conditions the singularity at R̃ ¼ 0 is
replaced by a symmetric bounce. Furthermore, in the
k ¼ 0 case, independent of the initial conditions, there
exists a threshold for the dust mass below which no trapped
surfaces will form in the dust collapse. In case the dust mass
is larger than this threshold mass, then a pair of a dynamical
black and white hole forms symmetrically around the
bounce. Because in the model in [47] the LTB conditions
are implemented at the classical level where these are stable
under the classical evolution [75] and one only considers
the LTB canonical pair ðKx; ExÞ, the LTB sector is
preserved by construction. In contrast to above analysis,
in this work here we consider the effective spherically
symmetric model obtained from the path integral formalism
in [38] and therefore going to the LTB sector requires
corresponding LTB conditions to be implemented. In
general these are not stable under the effective dynamics
and for this reason the strategy followed in [75] is to modify

the LTB conditions by additional functions depending on
the triads chosen such that the stability is ensured and the
geometric part of the spatial diffeomorphism constraint is
vanishing. As shown below, in the homogeneous reduction
the corresponding LTB conditions are stable under the
effective dynamics of the model in this work. More general
will be considered elsewhere [77].

B. A homogeneous reduction to the Oppenheimer-
Snyder dust collapsing model

The Oppenheimer-Snyder (OS) model describes the
gravitational collapse of a homogeneous matter cloud
whose interior spacetime is isometric to the cosmological
spacetimes and correspondingly its metric is given by

ds2 ¼ −dt2 þ aðtÞ2
1 − kx2

dx2 þ x2aðtÞ2dΩ2; ð3:6Þ

where aðtÞ denotes the scale factor and the constant k is
used to describe two distinct cases with k ¼ 0 correspond-
ing to the marginally bound case and k ¼ 1 to the bound
case. Comparing this metric with (2.14), we obtain

Exðt; xÞ ¼ x2aðtÞ2; Eφðt; xÞ ¼ xaðtÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p ; ð3:7Þ

which satisfy the LTB condition [47,75]

Ex0ðt; xÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p
Eφðt; xÞ: ð3:8Þ

Here without loss of generality we assume Ex ≥ 0 and (3.8)
reduces to (3.1) for the marginally bound case. The results
for Ex < 0 can be obtained from the symmetry of the
equations of motion (2.27)–(2.30). Furthermore, Eq. (3.7)
can be regarded as a homogeneous reduction of the
variables Exðt; xÞ and Eφðt; xÞ as their spatial dependence
is clearly spelled out. Therefore, the only dynamical
variable is the scale factor which is a constant at any
comoving radius x at a given time.
A corresponding homogeneous reduction of the con-

jugate momenta Kxðt; xÞ and Kφðt; xÞ can be derived by
requiring the consistency of the equations of motion of
Exðt; xÞ and Eφðt; xÞ. Plugging (3.7) into Eqs. (2.29) and
(2.30), these two equations reduce to

_aðtÞ
aðtÞ ¼

sin
�
β
ffiffiffi
Δ

p
Kφðt;xÞ

xaðtÞ
	
cos

�
2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δð1−kx2Þ

p
Kxðt;xÞ

aðtÞ
	

β
ffiffiffiffi
Δ

p ; ð3:9Þ

_aðtÞ
aðtÞ ¼

cos
�
β
ffiffiffi
Δ

p
Kφðt;xÞ

xaðtÞ
	�

sin
�
2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δð1−kx2Þ

p
Kxðt;xÞ

aðtÞ
	
þ sin

�
β
ffiffiffi
Δ

p
Kφðt;xÞ

xaðtÞ
		

2β
ffiffiffiffi
Δ

p ; ð3:10Þ
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where _aðtÞ ≔ daðtÞ
dt . Since aðtÞ only depends on the time

coordinate, one can impose the following ansatz:

Kφðt; xÞ ¼ xK̃φðtÞ; Kxðt; xÞ ¼
K̃xðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p ; ð3:11Þ

so that the arguments of the trigonometric functions only
depend on t. The consistency between (3.9) and (3.10)
requires

−sin

�
β

ffiffiffiffi
Δ

p ðK̃φðtÞþ2K̃xðtÞÞ
aðtÞ

�

−3sin

�
β

ffiffiffiffi
Δ

p ðK̃φðtÞ−2K̃xðtÞÞ
aðtÞ

�
þsin

�
2β

ffiffiffiffi
Δ

p
K̃φðtÞ

aðtÞ
�
¼0:

ð3:12Þ

One set of the solutions to this constraint is given by

K̃φðtÞ ¼ 2K̃xðtÞ þ 2πnaðtÞ
β

ffiffiffiffi
Δ

p ; n ∈ Z: ð3:13Þ

In order to fix the parameter n, we plug the ansatz (3.11)
into the equations of motion of Kxðt; xÞ and Kφðt; xÞ,
namely (2.27) and (2.28), and find the consistency con-
dition of the resulting equations demands n ¼ 0. As a
result, in the ansatz (3.11), we also require

K̃φðtÞ ¼ 2K̃xðtÞ; ð3:14Þ

which implies the fulfillment of the classical LTB condition
[47,75], i.e.

∂xKφðt; xÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p
Kxðt; xÞ; ð3:15Þ

at the level of the effective dynamics for the collapse of a
homogeneous dust cloud. Based on the above analysis, we
conclude that in the homogeneous reduction with the ansatz
(3.7), (3.11), and (3.14), the collapse of an inhomogeneous
dust cloud whose dynamics is governed by (2.27)–(2.30)
can be reduced to the collapse of a homogeneous dust cloud
with the following reduced equations of motion

_aðtÞ ¼ aðtÞ sin ð2β ffiffiffiffi
Δ

p
bðtÞÞ

2β
ffiffiffiffi
Δ

p ;

_bðtÞ ¼ −
1

2

�
k

aðtÞ2 þ
3sin2ðβ ffiffiffiffi

Δ
p

bðtÞÞ
β2Δ

�
; ð3:16Þ

where we have defined

bðtÞ ≔ 2K̃xðtÞ
aðtÞ ; v ≔ a3ðtÞ: ð3:17Þ

In the next subsection, one can find that the above equations
of motion could be derived from the effective Hamiltonian
density resulting from the homogeneous reduction.
Remark 1.—Note that in general, the action of the

Hamiltonian on the LTB condition (3.8) gives



HΔ; EφðxÞ − ∂xExðxÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p
�

¼ −
1

βðΔþ Δkx2Þ3=2


ΔEφðxÞð1 − kx2Þ3=2

× cos

�
βΔKφðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔExðxÞp

��
sin

�
2βKxðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔExðxÞp

EφðxÞ
�
þ sin

�
βΔKφðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔExðxÞp

��

þ Δð3kx − ð1 − kx2Þ∂xÞ
�
cos

�
2βKxðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔExðxÞp

EφðxÞ
�
ExðxÞ sin

�
βΔKφðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔExðxÞp

���
: ð3:18Þ

This implies that the LTB condition (3.8) is generally not
preserved by the effective dynamics after the system is
polymerized with the μ̄ scheme. However, in the particular
case of the homogeneous reduction, with the ansatz (3.7),
(3.11), and (3.14), the right-hand side of the above equation
identically vanishes, thus LTB condition (3.8) is preserved.
Similar analysis can be carried out with respect to the LTB
condition (3.15) which is found to be preserved as well
during the evolution of the homogeneous dust cloud.
Whereas for the evolution of the inhomogeneous dust
cloud, since the right-hand side of the above Poisson
bracket does not vanish, the classical LTB conditions are
no longer preserved. As a result, one is required to find the

analogues of the classical LTB conditions for the polym-
erized system which was addressed in [75], but this
possible generalization is beyond the scope of the current
study. A more detailed investigation on the LTB conditions
will be considered in future work [77].

C. The Hamiltonian and the evolutionary properties
of the interior of the homogeneous dust collapse

After the homogeneous reduction with the ansatz (3.7),
(3.11), and (3.14), it can be shown in a straightforward
way that the Hamiltonian density CΔðxÞ in (2.25)
reduces to
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CΔðxÞ ¼ −
24πaðtÞ3x2
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p
�
sin2 ðβ ffiffiffiffi

Δ
p

bðtÞÞ
β2Δ

þ k
aðtÞ2

�

¼ −
12πaðtÞ3

κ
∂x

�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p

k
−
sinh−1 ð ffiffiffi

k
p

xÞ
k3=2

�

×

�
sin2 ðβ ffiffiffiffi

Δ
p

bðtÞÞ
β2Δ

þ k
aðtÞ2

�
: ð3:19Þ

The corresponding classical limit of the Hamiltonian
density can be recovered as Δ → 0, leading to

Cclassical ¼ lim
Δ→0

CΔðxÞ ¼ −
24πx2aðtÞðbðtÞ2aðtÞ2 þ kÞ

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p

¼ −
24πx2aðtÞð _aðtÞ2 þ kÞ

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p ; ð3:20Þ

here we have used b ¼ _a=a obtained from the equation of
motion of _a in (3.16) in the classical limit. Cclassical is exactly
the classical Hamiltonian for the gravitational collapse of a
homogeneous dust cloud in the marginally bound case
(k ¼ 0) [75] or the bound case (k ¼ 1) [78]. On the other
hand, with the dust energy density given by

ρ ¼ −
CΔ

4πEφ
ffiffiffiffiffiffi
Ex

p ¼ 6

κ

�
sin2 ðβ ffiffiffiffi

Δ
p

bðtÞÞ
β2Δ

þ k
aðtÞ2

�
; ð3:21Þ

assuming the comoving radius of the outermost dust shell is
denoted by xs, the dust mass ms enclosed within the dust
cloud turns out to be

ms ¼
4πx3saðtÞ3ρ

3
: ð3:22Þ

Clearly, quantities proportional to ϵ ≔ ρaðtÞ3, e.g. the dust
mass ms, are conserved. Using the energy density defined
in (3.21) and the equation of motion of aðtÞ in (3.16), one
can obtain the following effective Friedmann equation

H2 ¼ _aðtÞ2
aðtÞ2 ¼

�
κρ

6
−

k
aðtÞ2

��
1 −

β2Δκρ
6

þ β2Δk
aðtÞ2

�

¼
�
8πGρ
3

−
k

aðtÞ2
��

1 −
β2Δ8πG

3

�
ρ −

3k
8πGaðtÞ2

��
;

ð3:23Þ

which coincides with the modified Friedmann equation for
the K quantization of the spatially flat (k ¼ 0) or closed
(k ¼ 1) FLRW universe with the μ̄ scheme [46,79]. As a
result, a bounce with _aðtbÞ ¼ 0 and äðtbÞ > 0 will take
place at the time tb when bðtbÞ ¼ π

2β
ffiffiffi
Δ

p , which once plugged

into (3.21) leads to

6

κ

�
1

β2Δ
þ k
aðtbÞ2

�
aðtbÞ3 ¼ ϵ: ð3:24Þ

Therefore, the scale factor at the bounce can be solved from
the above equation, yielding a general solution for any k

ab¼aðtbÞ

¼ð3β2Δκϵþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β4Δ2κ2ϵ2þ48β6Δ3k3

p
Þ2=3−2

ffiffiffi
63

p
β2Δk

62=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2Δκϵþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β4Δ2κ2ϵ2þ48β6Δ3k3

p
3

q :

ð3:25Þ

Since the evolution of the dust cloud in the marginally
bound case with k ¼ 0 is qualitatively different from that in
the bound case with k ¼ 1. In the following, we discuss
these two cases separately.
Remark 2.—It is important to note here two assumptions

when dealing with the bound case. Being spatially-compact
not only do quantum geometric effects enter via holono-
mies but also via inverse scale factor effects. Since the latter
are generally negligible in the dynamics of the homo-
geneous and isotropic bounce they have been ignored [80].
Nevertheless their contribution can be significant in singu-
larity resolution, such as in anisotropic cases [81]. The
second assumption is that the K quantization is based on
constructing holonomies using the extrinsic curvature only.
Since we are working the approximation where inverse
scale factor effects are ignored and intrinsic curvature does
not enter the holonomies, above modified Friedmann
equation (3.23) for the bound case ignores quantum geo-
metric modifications to the intrinsic curvature. The follow-
ing analysis for the bound case would be under these setting
and it is an open question how the results change if these
assumptions are relaxed.
Case A: The marginally bound case.—In this case k ¼ 0,

hence the scale factor at the bounce reads ab ¼
ffiffiffiffiffiffiffiffiffiffiffi
4β2Δκϵ3

p
2
ffiffi
33

p ,

which once plugged into (3.21) yields the maximum energy
density at the bounce, namely

ρ0max ¼
6

κβ2Δ
¼ 3

8πGβ2Δ
: ð3:26Þ

For a dust cloud with a fixed mass ms, it collapses
continuously with a decreasing radius and an increasing
energy density. When the energy density attains its maxi-
mum value at ρ0max, the bounce takes place and the dust
cloud starts to reexpand toward spatial infinity. In this
process, during the collapse of the dust cloud, b lies in the
interval b ∈ ð π

2β
ffiffiffi
Δ

p ; π
β
ffiffiffi
Δ

p Þ and is continuously decreasing.

After the quantum bounce when the dust cloud enters into
expanding phase, b monotonically decreases from π

2β
ffiffiffi
Δ

p

toward zero. In the marginally bound case, b cannot reach
zero in any finite coordinate time.
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Case B: The bound case.—In this case k ¼ 1, the
quantum corrections enter into the effective Friedmann
equation (3.23) in the second parenthesis on the right-hand
side. Due to the spatial curvature, there is also a recollapse
which takes place when the energy density satisfies
ρre ¼ 3

8πGa2re
, hereafter the index ‘re’ will be used to denote

quantities at the recollapse point. Combining with the
relation between the energy density and the scale factor
given in (3.22), it is straightforward to obtain the energy
density and the scale factor at the recollapse which turn out
to be

are ¼
2Gms

x3s
; ρre ¼

3x6s
32πG3m2

s
: ð3:27Þ

On the other hand, in this case, the maximum energy
density at the bounce takes the form

ρb ¼ ρ0max þ
3

8πGa2b
; ð3:28Þ

with ab given by (3.25) for k ¼ 1. Therefore, for the
bound case, the dust cloud behaves like a pulsating star
which experiences infinite cycles of the bounces and the
recollapses with the energy density ρ ¼ ρb and ρ ¼ ρre
respectively.

D. The null expansions and the formation of the trapped
surfaces of the homogeneous collapsing dust cloud

In order to investigate the formation of the trapped
surfaces during the gravitational collapse of the dust cloud,
for a generic spherically symmetric spacetime described by
the metric (2.14), one can define two future-directed null
vectors which are normal to the sphere with the constant
radius

ffiffiffiffiffiffiffiffijExjp ¼ const via

∂ξþ ¼ 1ffiffiffi
2

p
�
∂t þ

ffiffiffiffiffiffiffiffijExjp
Eφ ∂x

�
;

∂ξ− ¼ 1ffiffiffi
2

p
�
∂t −

ffiffiffiffiffiffiffiffijExjp
Eφ ∂x

�
: ð3:29Þ

If the radius of the sphere shrinks along the radial null
geodesics ξþ ¼ const and ξ− ¼ const, then a trapped
surface forms at the sphere [82]. In practice, it is convenient
to introduce the expansion parameters θ� which are
defined by

θ� ¼ 2ffiffiffiffiffiffiffiffijExjp ∂�
ffiffiffiffiffiffiffiffi
jExj

p
¼ 1ffiffiffi

2
p jExj

�
∂tjExj �

ffiffiffiffiffiffiffiffi
jExj

p ∂xjExj
Eφ

�
;

ð3:30Þ

where ∂� denotes derivatives with respect to ξ� respec-
tively. When θ� < 0, the light rays emitted from the sphere

converge on both sides of the sphere, then the sphere
becomes a future trapped surface. In the homogeneous
reduction with the ansatz (3.7), the expansion parameters
are simplified to

θ� ¼ 1ffiffiffi
2

p
xa

�
x _a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− kx2

p 	
¼ 1ffiffiffi

2
p

R

�
_R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− kx2

p 	
;

ð3:31Þ

where in the last step we have used the definition of the
radius of the sphere R ≔ xaðtÞ in the homogeneous case.
Consequently, during the collapse of the dust cloud with
_R < 0, a marginally trapped surface with θ− < 0 and
θþ ¼ 0 exists at the comoving radius

xh ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

_a2 þ k
p : ð3:32Þ

Note Rθþ decreases monotonically as the comoving radius
x increases. When the comoving radius of the outermost
dust shell is larger than xh, namely xs > xh, the outermost
dust shell becomes a trapped surface with θ� < 0. As a
result, the criterion for the formation of the (marginally)
trapped surface at the boundary of the dust cloud is

Rs ≥ Rh; ð3:33Þ

where Rs ¼ axs is the physical radius of the outermost dust
shell and Rh ¼ axh denotes the physical radius of the
marginally trapped surface located at x ¼ xh.
The classical description of the collapse of the dust cloud

can be obtained by taking the classical limit of the effective
dynamics, under which the dust mass in (3.22) tends to its
classical value given by

mc
s ¼ msjΔ→0 ¼

x3sa
2G

ð _a2 þ kÞ; ð3:34Þ

hereafter we use superscript “c” to denote the quantities
obtained in the classical limit when the minimal area gap
tends to vanish. As a result, in the classical theory, for both
the marginally bound and the bound case, the physical radii
of the marginally trapped surface and the outermost dust
shell are related via

Rc
h ¼ xchaðtÞ ¼

xsaðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
xsaðtÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
2Gmc

s
p ¼ Rs

ffiffiffiffiffiffiffiffiffiffiffiffi
Rs

2Gmc
s

s
: ð3:35Þ

Now imagine a dust cloud starts to collapse at a very
large volume with Rs ≫ 2Gmc

s, at the early stage of the
collapse, Rc

h ≫ Rs, so its outermost shell is not trapped at
all. As the dust cloud keeps collapsing, the critical moment
happens at Rs ¼ 2Gmc

s when the outermost dust shell
becomes marginally trapped since Rc

h ¼ Rs at this moment.
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Afterwards, the outermost dust shell remains a trapped
surface until the classical singularity at Rs ¼ 0 is reached.
Therefore, in the classical case, the singularity is always
covered by a trapped surface at the boundary of the dust
cloud, namely an apparent horizon, which is consistent
with the cosmic censorship hypothesis.
In contrast, assuming the validity of effective dynamics

in the entire evolution (3.19), a trapped surface at the
boundary may not always form during the collapse of
the dust cloud if the quantum bounce takes place before the
formation of the trapped surface. In particular, as discussed
above, there will be no trapped surface if Rh > Rs, namely,

Rh

Rs
¼ 1

xs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ k

p > 1; ð3:36Þ

holds for all the time before and after the bounce.
Combining Eqs. (3.21) and (3.22) and the equations of
motion in (3.16), it is straightforward to show that

Rh

Rs
¼ a1=3

ð2GmsÞ1=3
�
a2 sin2ðβ ffiffiffiffi

Δ
p

bÞ
β2Δ

þ k

�1=3

×

�
a2 sin2ð2β ffiffiffiffi

Δ
p

bÞ
4β2Δ

þ k

�−1=2
: ð3:37Þ

As a result, the minimum of Rh=Rs is located at
dðRh=RsÞ

dt ¼ 0

which results in

4aðtÞ2 sin3 ðβ
ffiffiffiffi
Δ

p
bðtÞÞ cos ð3β

ffiffiffiffi
Δ

p
bðtÞÞ

þ β2Δk sin ð4β
ffiffiffiffi
Δ

p
bðtÞÞ ¼ 0: ð3:38Þ

For the marginally bound case k ¼ 0, the above equation
yields two solutions for b, namely,

b1 ¼
π

6β
ffiffiffiffi
Δ

p ; b2 ¼
5π

6β
ffiffiffiffi
Δ

p : ð3:39Þ

The first solution b1 corresponds to the expanding phase of
the dust cloud after the occurrence of the quantum bounce
while the second solution b2 to the collapsing phase of the
dust cloud before the quantum bounce. These two solutions
give the same minimum of Rh=Rs as the evolution of the
dust cloud is symmetric with respect to the bounce. Now
plugging the solutions (3.39) into the ratio (3.37), one can
immediately find the minimum of Rh=Rs turns out to be

Rh

Rs

����
min

¼
�

8
ffiffiffiffi
Δ

p
β

3
ffiffiffi
3

p
Gms

�1=3

: ð3:40Þ

Then we can find a threshold mass for the formation of the
trapped surface at the boundary of the dust cloud, which is

M� ¼
8

ffiffiffiffi
Δ

p
β

3
ffiffiffi
3

p
G
: ð3:41Þ

When the dust mass ms is less than M�, Rh=Rs is always
larger than unity during the entire evolution of the dust
cloud which implies no trapped surface (horizon) would
form at any time. Only when ms is taken to be larger than
M�, the horizon can form before the occurrence of the
bounce during the collapse of the dust cloud. More details
on the qualitative features of dynamical evolution of the
dust cloud and the formation of the trapped surface will be
discussed and analyzed via numerical simulations in the
next section.
Remark 3.—It is worthwhile to note that our results on the

marginally bound case with k ¼ 0 are consistent with those
reported in [47]. In particular, the threshold mass M� is
exactly the same as the one derived in [47]. Moreover, the
numerical results presented in Sec. IV will further confirm
this consistency. Although we expect that in more general
models implementing the LTB conditions and quantization
will not commute as in the case of the relationship between
polymerization and the gauge fixing recently discussed
in [42], for the polymerization at the level of the effective
dynamics commutes with the homogeneous reduction at
least for the K quantization with the μ̄ scheme. In particular,
we have shown this explicitly for the marginally bound case
as we have obtained from the homogeneous reduction the
same modified dynamical equations and the threshold mass
for the formation of the trapped surface at the boundary as in
the dust shellmodelwhich relies on a loop quantization of the
classical homogeneous model of the dust collapse [47].

E. The exterior stationary spacetime
and the matching conditions

To explore potential phenomenological signatures of
collapse of the dust cloud, it is necessary to glue the interior
collapsing spacetime with an exterior spacetime which
describes the geometry and thus the matter distributions of
the collapsing dust cloud as observed by an outside spectator
at spatial infinity. As discussed in Sec. III B, the interior
collapsing spacetime is described by the OS model in the
classical regime while for the exterior spacetime we choose
without loss of generality a generic spherically symmetric
spacetime with its metric given in (2.14). The matching is
performed at the boundary x ¼ xs. In particular, for the
interior spacetime, its first and second fundamental forms on
the boundary surface turn out to be

γ−μνdxμdxν ¼ −dt2 þ x2saðtÞ2dΩ2; ð3:42Þ

K−
μνdxμdxν ¼

1

2
∂xEx

ffiffiffiffiffiffiffiffiffiffiffiffi
Ex

ðEφÞ2
s

dΩ2 ¼ xsaðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2s

q
dΩ2;

ð3:43Þ
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where γ−μν is the induced 3-metric on the boundary surface

and K−
μν ¼ −γαμγ

β
ν∇αnβ is the projection of the extrinsic

curvature onto the boundary surface. While for the exterior
solution, assuming the boundary surface Σ is determined
by Fðτ; xÞ ≔ fðτÞ − x ¼ 0, where the normal covector is
given by nμ ¼ ∇μFðτ; xÞ which satisfies nμnμ > 0, then
the induced metric and extrinsic curvature projected
from the exterior spacetime onto the boundary surface take
the form

γþμνdxμdxν ¼ −dt2 þ ExðτðtÞ; xðtÞÞdΩ2; ð3:44Þ

Kþ
μνdxμdxν ¼ Bdt2 þ CdΩ2; ð3:45Þ

with

B ¼ 1

2ExsgnðEφÞðEx − f0ðτÞ2ðEφÞ2Þ3=2
× ðf0ðτÞEφExðf0ðτÞð2f0ðτÞEφ

∂τEφ þ ∂xExÞ þ 2∂τExÞ
− 2ðExÞ2ðf0ðτÞðf0ðτÞ∂xEφ þ 2∂τEφÞ
þ f00ðτÞEφÞ þ f0ðτÞ3ðEφÞ3∂τExÞ; ð3:46Þ

C ¼ f0ðτÞðEφÞ2∂τEx þ Ex
∂xEx

2jEφj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex − f0ðτÞ2ðEφÞ2

p : ð3:47Þ

Requiring the continuation of the induced metric and the
existence of a surface stress-energy tensor on the boundary
surface Σ, the matching conditions of the interior and the
exterior spacetimes are prescribed by

γþμν − γ−μν ¼ 0; ð3:48Þ

ðKþ
μν − γþμνKþÞ − ðK−

μν − γ−μνK−Þ ¼ σμν; ð3:49Þ

where σμν stands for the surface stress-energy tensor on Σ.
Note the exact form of σμν is determined by the specific
exterior spacetime metric used to match with the interior.
Taking the classical Schwarzschild exterior as an example,
we have Ex ¼ R2; Eφ ¼ R0R with

Rðx; τÞ ¼
�
3

2

ffiffiffiffiffiffiffi
2m

p
ðx − τÞ

�2
3 ¼

�
3

2

ffiffiffiffiffiffiffi
2m

p
z

�2
3

: ð3:50Þ

With the classical homogeneous interior solutions given by

aðtÞ ¼
�
3

2

ffiffiffiffiffiffi
2E

p
ðt0 − tÞ

�2
3

for k ¼ 0; ð3:51Þ

the junction condition (3.48) in the classical marginally
bound case can be solved with σab ¼ 0 and

Ex¼x2saðτÞ2; m¼x3sE; xðtÞ¼xs; τðtÞ¼ t−xs: ð3:52Þ

1. The effective stationary exterior solution

To obtain an analog of the Schwarzschild solution (3.50)
in the effective dynamics, we can introduce the following
generator of the Killing vector field

∂K ¼ ∂t þ ∂x; ð3:53Þ

so that the metric functions Ex; Eφ are preserved by ∂K. As
a result, we have the following ansatz

Exðt;xÞ¼ExðzÞ; Eφðt;xÞ¼EφðzÞ;
Kxðt;xÞ¼KxðzÞ; Kφðt;xÞ¼KφðzÞ; z¼x− t: ð3:54Þ

With the null expansion (3.29), one can easily check that,
the vector field ∂K is timelike in the untrapped region, while
spacelike inside the trapped region. Thus ∂K generates the
analog of classical static solution in the effective dynamics.
This solution has been studied in detail in [38]. We will
briefly summarize the results here.
With ansatz (3.54), the EOMs (2.27)–(2.30) reduce to a

set of 1st order ODEs:

d
dz

2
6664
Ex

Eφ

K1

K2

3
7775 ¼ −

2
6664
fxðEx; Eφ; K1; K2Þ
fφðEx; Eφ; K1; K2Þ
f1ðEx; Eφ; K1; K2Þ
f2ðEx; Eφ; K1; K2Þ

3
7775: ð3:55Þ

The classical solution is supposed to be recovered at
z → þ∞ or z → −∞, since it is far away from the classical
singularities z ¼ 0. The Schwarzschild solution (3.50) then
can be given at z ≫ 1 or z ≪ −1 as initial conditions for the
ODEs (3.55).
Note that, using coordinate z, we can rewrite the metric

for black hole exterior (∂K timelike) as

ds2 ¼ −dt2 þ ðEφðzÞÞ2
jExðzÞj ðdzþ dtÞ2 þ jExjdΩ2: ð3:56Þ

By defining a new coordinate τ ¼ t −
R
z
z0
dz0 Eφðz0Þ2

Eφðz0Þ2−Exðz0Þ,
the above metric turns out to be equivalent to

ds2 ¼ −
Ex − ðEφÞ2

Ex ðzÞdτ2 þ ðEφÞ2
Ex − ðEφÞ2 ðzÞdz

2

þ ExðzÞdΩ2; ð3:57Þ

which has coordinate singularities at the horizons located at
Ex ¼ ðEφÞ2. Moreover, in the region where ExðzÞ is
monotonic, using ExðzÞ ¼ R2 it can be further rewritten as

ds2 ¼ −
�
1 −

ðEφÞ2
R2

�
dτ2 þ ðEφÞ2

ðR2 − ðEφÞ2ÞðR0Þ2 dR
2

þ R2dΩ2: ð3:58Þ
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Therefore, the above coordinate transformation has a
coordinate singularity at the bounce point R0 ¼ 0.
Remark 4.—Note that the above static solution may not

be a vacuum solution for given vacuum initial values on the
initial Cauchy slices. The reason is the effective physical
Hamiltonian density HΔðt; xÞ is not a conserved quantity.
The only vacuum solution is the Minkowski solution. As a
result, the vacuum solution for a massive object in the
effective theory can only be achieved at z ¼ x − t ¼ �∞,
which reduces to the classical Schwarzschild solution.
Lacking of nontrivial vacuum solution means the dust
contribution will always appear except for some certain
fixed isolated t’s. Thus the deparametrization is always
well-defined in the system.
Remark 5.—The ODEs (3.55) have a time-reflection

symmetry with the following transformation of the fields:

Exð−zÞ → −ExðzÞ;
Eφð−zÞ → EφðzÞKxð−zÞ → KxðzÞKφð−zÞ

→ −KφðzÞ ð3:59Þ

This symmetry can be used to define the white hole solution
which can be glued asymptotically to the black hole
solution as described in [38].

2. Approximate gluing to an effective static
exterior solution

Since our effective equations of motion (2.27)–(2.30)
hold for the whole spherical symmetric space time, a
consistent exterior solution should solve (2.27)–(2.30) as
well at effective level. Beyond the classical theory we can
still assume x0ðtÞ ¼ 0 and τ0ðtÞ ¼ 1. The reason to chose
this ansatz is that the surface of the star must follow a
timelike geodesic of the exterior metric, where x0ðtÞ ¼ 0 is
a timelike geodesic with metric (2.14). The junction
condition then becomes (assuming σab ¼ 0)

Exðτ; xÞjx¼xs ¼ x2saðtÞ2;

2Eφðτ; xÞjx¼xs ¼
∂xExffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2

p
����
x¼xs

; ð3:60Þ

which is similar to the classical one. This imposes the
boundary condition at x ¼ xs for the PDE system (2.27)–
(2.30). At t ≪ 0, the system approaches the classical
regime, and assuming that it is approximately described
by Einstein field equations in LTB spacetime we can set
the initial value as the LTB vacuum solution. Under this
approximation the boundary-initial value PDE system
which can be solved numerically.
In the case where the exterior solution has the killing

field ∂K given in (3.53), we have

ExðzÞ ¼ x2sa2ðxs − zÞ;

2EφðzÞ ¼ Ex0ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2s

p ¼ fðxsÞEx0ðzÞ; ð3:61Þ

where the condition on the junction surface is transported
to z plane due to the killing field ∂K , and fðxsÞ ≔ 1ffiffiffiffiffiffiffiffiffi

1−kx2s
p .

In this case, the metric (3.57) becomes

ds2 ¼ −
�
1 −

fðxsÞ2Ex0ðzÞ2
4ExðzÞ

�
dτ2 þ 1

4Ex

fðxsÞ2Ex 0ðzÞ2 − 1
dz2

þ ExðzÞdΩ2: ð3:62Þ

Using the Friedmann equation (3.23) we have

R0ðzÞ2 ¼ ðEx0ðzÞÞ2
4jExj

¼
�
2Gmsffiffiffiffiffiffi

Ex
p − kx2s

��
1 −

β2Δ
Ex

�
2Gmsffiffiffiffiffiffi

Ex
p − kx2s

��
:

ð3:63Þ

Thus the metric only depends on R0ðzÞ2. In the region
where ExðzÞ is monotonic, using R ≔ � ffiffiffiffiffiffi

Ex
p

which cor-
responds to the stage before or after the bounce, the above
metric can be further rewritten as

ds2 ¼ −ð1 − fðxsÞ2R0ðzÞ2Þdτ2 þ fðxsÞ2
1 − fðxsÞ2R0ðzÞ2 dR

2

þ R2dΩ2 ð3:64Þ

¼ −AðRÞdτ2 þ fðxsÞ2
AðRÞ dR2 þ R2dΩ2; ð3:65Þ

with A given by

AðRÞ¼1−fðxsÞ2
�
2Gms

jRj −kx2s

��
1−

β2Δ
R2

�
2Gms

jRj −kx2s

��
:

ð3:66Þ

For k ¼ 0, we have fðxsÞ ¼ 1 and

AðRÞ ¼ 1 −
2Gms

jRj
�
1 −

β2Δ
R2

2Gms

jRj
�
: ð3:67Þ

Note that now the metric (3.64) is well-defined for both
before and after the bounce, as well as at the bounce. This
metric has the same form as the one obtained in [83,84].
However, here this metric is only defined locally before
or after the bounce with a minimal value of jRjmin ¼ffiffiffiffiffiffiffiffiffiffiffi
ExðzÞp

z¼zbounce
, there is no extension to the regime

R < Rjmin.
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It is important to note that (3.60) is exactly the first LTB
condition on the junction surface. However, as one can see
from (3.18), the LTB condition is in general violated. More
specifically, it is violated in the static solution given by
(3.55). The violation is shown in Fig. 1. As expected, the
violation is strong in the quantum regime close to the
classical singularity. Thus the junction condition with
static exterior will lead to a nontrivial surface stress-energy
tensor σμνdxμdxν¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exðτ;xÞp ð1− ∂xEx

2Eϕðτ;xÞÞdΩ2jx¼xs, which
increases linearly with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exðτ; xÞp

after the bounce. The
result is consistent with the general analysis given in
[85,86]. Such violation may relate to the fact that the static
solution in effective dynamics contains a nontrivial dust
mass distribution which is not compatible with the homo-
geneous interior.

IV. NUMERICAL RESULTS OF THE EFFECTIVE
HOMOGENEOUS DUST COLLAPSE

In this section we present the numerical results of the
dynamical evolution of the homogeneous dust collapse
described by the effective dynamics for both marginally
bound and the bound case. We have already shown in
Sec. III C that in the effective dynamics the classical
singularity is resolved and replaced by a quantum bounce
in the Planck regime. In our numerical simulations, we
carefully choose the initial conditions in the classical
regime so that the bounce in the marginally bound case
takes place at time tb ¼ 0. For the bound case we ensure
that at least one of the bounces occurs at tb ¼ 0. In general,
the (3.6) with solutions of the effective equations of motion
(3.16) can be uniquely determined by three parameters,
namely, the dust mass (3.22), the spatial curvature and the
choice of the boundary surface. Therefore, in addition to
quantum gravity effects, we will also investigate in some
detail the impacts of these three parameters on the evolution
of the homogeneous dust collapse, in particular, on the
formation of the trapped surface during the contraction and
the reexpansion of the dust cloud. In the numerical results,
we choose β ¼ 0.2375 based on the black hole thermo-
dynamics in LQG.
In the following, we start with the qualitative evolution

of the physical radius R ¼ xsa of the dust cloud and
investigate how it is affected by the dust mass and the
spatial curvature. In Fig. 2, we explicitly show the evolution
of R for the marginally bound and the bound case with the
boundary surface chosen at xs ¼ 0.5. For each case, two
different dust masses are compared. The left panel depicts
the behavior of R over a long time for the bound case with
mass ms ¼ 32 (red dot-dashed curve) and ms ¼ 64 (blue
dotted curve) as well as the marginally bound case with the
same mass, namely ms ¼ 32 (magenta dashed curve) and
ms ¼ 64 (black solid curve) while the right panels illustrate

FIG. 1. The evaluation of the LTB condition of the effective
static exterior solution with mass m ¼ 10 (blue-solid line) and
m ¼ 1000 (orange-dashed line) on the junction surface x ¼ xs
(Units are Planckian). The surface stress-energy tensor is given
by σμνdxμdxν ¼ xsaðtÞð1 − ∂xEx

2Eφ ÞdΩ2. The classical singularity
lies at z ¼ 0.
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FIG. 2. In this plot, we compare the evolution of the physical radius for k ¼ 0 and k ¼ 1 with the mass given by ms ¼ 32 and
ms ¼ 64. The left panel depicts these four cases, with red dot-dashed curve describing the case ðk ¼ 1; ms ¼ 32Þ, blue dotted curve for
ðk ¼ 1; ms ¼ 64Þ, magenta dashed curve for ðk ¼ 1; ms ¼ 32Þ and black solid curve for ðk ¼ 0; ms ¼ 64Þ. On the right is the zoomed-
in plot around the bounce at tb ¼ 0 for the bound case only.
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some details near the bounce at t ¼ 0. Since the physical
radius evolves in a qualitatively same way for both margin-
ally bound and the bound case, in the right panel we only
show the details around the bounce in the bound case. One
can find from the figure the following properties of the
homogeneous dust collapse in the effective dynamics. First,
the classical singularity is generically resolved and replaced
by a bounce for both marginally bound and the bound case.
Secondly, for the marginally bound case, there exists only
one single bounce which connects the collapsing phase
with a reexpanding branch. The physical radius of the dust
cloud reaches the minimal value at the bounce which
increases with the dust mass. For the bound case, due to the
spatial curvature, the dust cloud experiences identical
cycles of contraction and expansion, mimicking the behav-
ior of a pulsating star. The physical radius of the dust cloud
increases at both the recollapse and the bounce point with
the dust mass. Moreover, the period of the cyclic evolution
of the dust cloud also increases with the dust mass. In
particular, the period of cycles doubles when the dust mass
doubles.
In Fig. 3, we plot the change in the energy density for

both cases with the parameters chosen the same as in Fig. 2.
It turns out that the maximum energy density in the
marginally bound case has an intrinsic value determined
only by β2Δ as given in (3.26). It would not be affected at
all by the dust mass or the choice of the boundary surface.
On the other hand, for the bound case, as expected in
(3.28), the maximum energy density also depends on the
minimal physical radius of the dust cloud at the bounce
which in turn is fixed by β, Δ and the dust mass. In
particular, as can be seen from (3.25), when the dust mass
ms ≫ 1, Rb ¼ xsab ∼m1=3

s . Therefore, the maximum
energy density in the bound case decreases with the dust
mass and tends to ρ0max in the marginally bound case. This
feature is qualitatively captured in the left panel of Fig. 3. In
particular, the maximum energy densities of the bound case
as seen from the red dot-dashed and blue dotted curves are

always larger than the maximum energy density of the
marginally bound case represented by the magenta dashed
curve. Meanwhile, due to the effect of intrinsic curvature
the blue dotted curve corresponding toms ¼ 64 has a lesser
maximum energy density than the red dot-dashed curve
which corresponds to the dust mass ms ¼ 32.
In Fig. 4, we show explicitly the dependence of the

maximum energy density on the dust mass in two cases
with a fixed boundary surface xs ¼ 0.5. A different choice
of the boundary surface would not change the value of ρ0max
in the marginally bound case, neither it would change the
way ρ0max depends on the dust mass in the bound case. As
expected, the maximum energy density of the marginally
bound case does not change with the dust mass as shown in
the left panel of the figure while in the bound case the
maximum energy density at the bounce point increases
with a decreasing dust mass. When the dust mass increases,
the shell recollapses at a larger value of the radius therefore
making recollapse density negligible. In this case the
density at the bounce in the marginally bound and bound
cases approximate each other. For very small dust mass as
depicted in the right panel of the figure, the difference
between the maximum and the minimum energy densities
tends to be small as compared with the maximum (mini-
mum) energy density. This is why the blue circles appears
to be overlapping with the red disks at the small dust
masses in the right panel.
In Fig. 5, the qualitative behavior of the momentum b is

compared for the marginally bound and the bound case
where we choose the dust mass ms ¼ 32, 64 and the
boundary surface xs ¼ 0.5 as two examples. We find only
the spatial curvature can affect the qualitative behavior of b.
In particular, for the marginally bound case k ¼ 0, b is
confined within the range b ∈ ð0; π

β
ffiffiffi
Δ

p Þ. The classical limit

can be recovered as b → 0ðb → π
β
ffiffiffi
Δ

p Þ in the collapsing

(reexpanding) branch. A change in the dust mass would not
affect the evolution of b in this case. In contrast, for the
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FIG. 3. In this plot we compare the dust energy density ρ for k ¼ 0 (magenta dashed curve) and k ¼ 1 case, for k ¼ 1 we choose
m ¼ 32 (red dot-dashed curve) and m ¼ 64 (blue dotted curve). In the right panel, we compare the energy density of these three cases
near the bounce at t ¼ 0 which shows the difference of the maximum energy density among them.
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bound case, the value of the momentum b is not constrained
in any finite range as the cyclic evolution of the dust cloud
goes on. Since b evolves monotonically when the matter
content (such as the dust) satisfies the weak energy
condition, it keeps decreasing during the forward evolution
of the dust cloud in time. The classical limits are recovered
near the recollapse points where b takes the values b ¼
nπ=β

ffiffiffiffi
Δ

p
with n being any integers while the bounces take

place at b ¼ lπ=2β
ffiffiffiffi
Δ

p
with l standing for any nonzero

integers. In this way, the evolution of the momentum b
forms a ladder structure in which there appears a plateau
around the recollapse points b ¼ nπ=β

ffiffiffiffi
Δ

p
. We see the

same periods of the cycles in the bound case as in Figs. 2
and 3. Since the dust mass can affect the periods of the
cycles in the bound case, different masses can correspond-
ingly change the duration of the plateau as shown explicitly
in the right panel of the figure.
Now let us discuss the formation of the trapped surfaces

during the nonsingular evolution of the homogeneous dust

cloud in the effective dynamics. As discussed in Sec. III D,
the outermost shell of the dust cloud becomes trapped as a
result of its relative positioning against the apparent horizon
which amounts to a marginally trapped surface. When the
apparent horizon is located inside the outermost shell of the
dust cloud, the latter becomes trapped and the dust cloud
forms a black/white hole. Therefore, it is of key importance
to track the relative position of the outermost shell of the
dust cloud with respect to the apparent horizon as shown
explicitly in Fig. 6. In this representative example, we
choose xs ¼ 0.5,ms ¼ 2 and k ¼ 1. Note we only pick one
cycle with the bounce taking place at tb ¼ 0. Finally, we
numerically compute the minimal value of the ratio
between the apparent horizon and the location of the
physical radius of outermost dust shell. The result is
presented in Fig. 7. As shown in the figure, this ratio only
depends on the mass of the dust cloud. For each case, there
exists a threshold value of the dust mass. When the actual
mass of the dust cloud falls below the threshold value, no
horizon would form during the nonsingular evolution of the

FIG. 4. In this plot we show explicitly how the mass of the dust cloud can affect the maximum energy density in two cases k ¼ 0
(magenta dashed line) and k ¼ 1 (blue dotted line) in the left panel. In the right panel, we show the change in the maximum energy
density (blue circles) and the recollapse energy density (red disks) in the bound case for small dust mass.
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FIG. 5. In the figure, we show the evolution of the momentum b in the marginally bound case in the left panel and also in the bound
case in the right panel. The blue dotted curve corresponds to the case ðk ¼ 1; ms ¼ 64Þ while the red dot-dashed curve to the case
ðk ¼ 1; ms ¼ 32Þ.
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dust cloud. This actually sets up a lowest bound on the mass
of the black hole which is formed by the collapse of the dust
cloud. Besides, we also note that the spatial curvature does
impact the specific value of the threshold mass although its
effect is limited.

V. CONCLUSIONS

In this work, we applied the μ̄-scheme effective dynam-
ics of the spherical symmetry reduced model to study the

gravitational collapse for a homogeneous dust cloud. The
model, having infinitely many physical DOFs, is developed
based on the reduced phase space formulation of gravity
coupled to Gaussian dust. The dust serves as both the
reference field and the source of the gravitational collapse.
Inside the dust cloud, the effective dynamics improves the
classical Oppenheimer-Snyder (OS) model by resolving the
singularity with a nonsingular bounce, where the curvature
is of Planckian order. The effective dynamics from the
model presented here for a homogeneous dust cloud
reduces precisely to the effective dynamics of LQC with
K-quantization based on using holonomies of the extrinsic
curvature, indicating that the LQC effective dynamics for
the spatially flat case lives as a subsector of the model
presented here. Since the model presented in this work
allows to consider the k ¼ 0 and k ¼ 1 case in a unified
framework, we have also compared the properties of the
two cases. Here we restate our assumption that the bound
case only takes into account quantum geometric effects of
extrinsic curvature via holonomies and the intrinsic curva-
ture does not affect holonomies. In a former work by some
of the authors [47] on the one hand only the k ¼ 0 case was
considered and on the other hand the LTB conditions were
applied before quantization. It has been found that the
spatial curvature can affect the qualitative dynamics of the
evolution of the dust cloud. For k ¼ 0, the collapsing dust
cloud bounces at a fixed maximum energy density and then
keeps expanding ever after. In this process, the momentum
b is confined within the range b ∈ ð0; π

β
ffiffiffi
Δ

p Þ and monoton-

ically increases. On the other hand, the evolution of the dust
cloud in the bound case (with k ¼ 1) exhibits a richer

FIG. 7. In this figure, we numerically show the dependence of
the minimum value of Rh=Rs on the mass of the dust cloud in the
cases of k ¼ 0 and k ¼ 1. When this minimal value is greater than
unity, no horizon would form at the outermost dust shell during
the nonsingular evolution of the dust cloud. The threshold mass
turns out to be M� ¼ 0.5879 for k ¼ 0 and M� ¼ 0.4756
for k ¼ 1.

FIG. 6. The plot of the position of apparent horizon and the dust shell in bound case with ms ¼ 2. The blue dashed line indicates the
position of apparent horizon in the effective theory. The red lines indicates the evaluation of the dust shell under effective theory. The
intersection between the apparent horizon and the dust shell separates the trapped and untrapped regions, which can be seen from the
signature of null expansion on the right side (blue thick lines for θþ and orange dashed lines for θ−).
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dynamical properties. First, due to the nonvanishing spatial
curvature, the dust cloud experiences infinite cycles of
contraction and expansion, mimicking the behavior of a
pulsating star. Besides, both the maximum energy density
at the bounce point and the minimum energy density at the
recollapse point decrease with an increasing dust mass. In
particular, for sufficient large values of the dust mass, the
bounce energy density will merge into the same maximum
energy density obtained in the marginally bound case and
the gap between the maximum and the minimum energy
densities also increase as the dust mass increases.
Moreover, we find that the spatial curvature can also

influence the threshold mass for the formation of the
trapped surface at the outermost shell of the dust cloud
during its gravitational collapse. To be specific, in the k ¼ 0
case, the analytical expression of the threshold mass is
obtained and its exact value which is at the order of
Planckian mass agrees with the one found in [47] for
the standard LQC quantization where no covariant fluxes
are involved. In contrast, for the k ¼ 1 case, we can only
obtain the numerical result of the threshold mass which
turns out to be a slightly different value as compared with
the one in the marginally bound case. In both cases, the
bounce at the end of the gravitational collapse is symmetric
in time reversal. Whenever there is a black-hole formed in
the contracting phase of the dust cloud, it is always
accompanied by an anti-trapped white-hole region in the
expanding phase after the bounce which suggests that
the white hole might be the final state of the black hole
and the dust is finally emitted by the white hole. The results
obtained in this work also show that at least for the
considered homegeneous collapse model and the k ¼ 0
case applying the LTB conditions in the classical theory
and then quantizing yields the same threshold mass than if
we first quantize, consider the corresponding effective
model and implement the LTB conditions at the effective
level. Since the k ¼ 1 case was not considered in [47] we
cannot compare the results with the ones obtained here. The
effective Hamiltonian used in this work connects to the
K-quantization in LQC, because of the gauge fixing and
the choice of basic variables discussed in Sec. II C. The
choice of basic variables affects the μ̄-scheme regulariza-
tion in the effective Hamiltonian, and thus it affects the
properties of the effective dynamics such as the conserved
charges. The present choice results in that infinitely many
charges of spatial diffeomorphisms are conserved. As the
future investigation, it may be interesting to take into
account the different choices, which might results in the
dynamics with more conserved charges.
Our results of the gravitational collapse and bounce is in

favor of the black-hole-to-white-hole transition proposed
and explored in e.g. [12,87,88]. The effective dynamics
here has the advantage of treating the black hole interior
and exterior in a unified manner, and is aiming at a

complete description of the nonsingular black hole space-
time from the center to the infinity. The effective spacetime
obtained here shares similarities with the proposal in e.g.
[88]. However our effective description is still not com-
plete, because the matching condition between inside and
outside are not satisfied due to quantum effects. A detailed
analysis of this issue is needed to assess whether this is
because of the breakdown of the matching condition or the
underlying scheme. In future work an investigation will be
carried out to understand the region near the bounce, and
possibly for this we will need a model involving inhomo-
geneous dust. To formulate such a model requires to extend
the analysis on the LTB conditions at the effective level. For
the homogeneous case considered here for the k ¼ 0 as
well as the k ¼ 1 models the LTB conditions are preserved
under the effective dynamics. As discussed in [75] and also
briefly at the end of Sec. III B for an inhomogeneous model
this is no longer given and thus one needs to carry over the
LTB conditions consistently to such an effective model. An
approach where the LTB conditions have been modified by
functions depending on either one triad or extrinsic
curvature variable depending on the chosen polymerization
in the framework of effective techniques can be found in
[75]. In future work we plan to investigate the stability LTB
conditions further in order to see in addition to the work in
[75] how the stability of the LTB conditions can be
implemented in effective models [77]. In addition presum-
ably we might also take further effects from full LQG into
account because of the strong quantum dynamical effects in
the region around the bounce where the effective tech-
niques considered here might not capture all properties of a
given model.
There are proposals to glue the effective metric inside the

dust cloud to the Vaidya solution outside the dust cloud, in
order that the matching conditions are satisfied all the time.
This proposal is used especially in the model where the
effective dynamics inside and outside the dust cloud are
treated separately (see e.g. [47] and the references therein).
The effective metric obtained here can also be glued to the
Vaidya solution, as shown in Appendix. But this may
become inconsistent in our approach, unless one is able to
show that the Vaidya solution also satisfies the effective
equations fromHΔ, because both the inside and the outside
of dust cloud are governed by the same set of effective
equations in the model presented here. It is still interesting
to explore different effective solutions outside the dust
cloud. The solution employed here assumes the timelike
killing vector outside the horizon (so Ex; Eφ are functions
of z ¼ x − t). Relaxing this killing symmetry might result
in new dynamical solutions, which could satisfy the
matching conditions even near the bounce. This will likely
relate to the study of the inhomogeneous dust mentioned
above, since the solution may correlate to nontrivial
dynamics of the dust.
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APPENDIX: JUNCTION CONDITION TO THE
VAIDYA METRIC

For the Vaidya metric

ds2 ¼ −
�
1 −

2GMðτ; xÞ
x

�
dτ2 − 2dτdxþ x2dΩ2; ðA1Þ

Eq. (3.44) on junction surface Σ determined by x−xðτÞ¼0
becomes

γþμν ¼ −A2dτ2 þ xðτÞ2dΩ2; ðA2Þ

Kþ
μν ¼

1

A
ð−ðxðτÞÞ−3Bdτ2 þ CdΩ2Þ: ðA3Þ

The matching condition (3.48) then implies

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2GMðτ; xðτÞÞ
xðτÞ

�
þ 2x0ðτÞ

s
; ðA4Þ

B¼−xðτÞMðτ;xðτÞÞð2Mð0;1Þðτ;xðτÞÞþ3x0ðτÞþ1Þ ðA5Þ

þ xðτÞ2ðð3x0ðτÞ þ 1ÞMð0;1Þðτ; xðτÞÞ þMð1;0Þðτ; xðτÞÞ
− xðτÞx00ðτÞÞ þ 2Mðτ; xðτÞÞ2;

C ¼ 2GMðτ; xðτÞÞ − xðτÞð1þ x0ðτÞÞ: ðA6Þ

Thus we obtain

Aτ0ðtÞ ¼ 1; xðtÞ ¼ xsaðtÞ; B ¼ 0;

C ¼ AxsaðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2s

q
; ðA7Þ

which have the following solution

τ0ðtÞ ¼ xs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kx2s

p
a0ðtÞ þ 1

ð1 − kx2sÞx2sa0ðtÞ2 − 1
;

Mðτ; xÞjΣ ¼ 1

2
x3saðtÞð1 − kx2sÞ3=2a0ðtÞ2; ðA8Þ

xðtÞ ¼ xsaðtÞ;

∂xMðτ; xÞjΣ ¼ 1

2
x2sð1 − kx2sÞða0ðtÞ2 þ 2aðtÞa00ðtÞÞ: ðA9Þ

The above solution gives the matching condition of the
interior effective dynamics to exterior Vaidya spacetime.
In the k ¼ 0 case we obtain the junction condition given
in [47].
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