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We present a systematic exploration of the loss of predictivity in Einstein-scalar-Gauss-Bonnet (ESGB)
gravity in spherical symmetry. We first formulate a gauge covariant method of characterizing the
breakdown of the hyperbolicity of the equations of motion in the theory. With this formalism, we show that
strong geodesic focusing leads to the breakdown of hyperbolicity, and the latter is unrelated to the violation
of the null convergence condition. We then numerically study the hyperbolicity of the equations during
gravitational collapse for two specific ESGB gravity theories: “shift symmetric Gauss-Bonnet gravity” and
a version of the theory that admits “spontaneously scalarized” black holes. We devise a “phase space”
model to describe the end states for a given class of initial data. Using our phase space picture, we
demonstrate that the two theories we consider remain predictive (hyperbolic) for a range of GB couplings.
The range of couplings, however, is small, and thus, the presence of spontaneously scalarized solutions
requires fine-tuning of initial data. Our results, therefore, cast doubt as to whether scalarized black hole
solutions can be realistically realized in nature even if ESGB gravity happened to be the correct
gravitational description.

DOI: 10.1103/PhysRevD.107.044044

I. INTRODUCTION

The detection of gravitational waves by the LIGO/
Virgo Collaboration has allowed for new tests of
general relativity (GR) in the dynamical and strong field
regime [1–10]. Performing model-dependent tests of GR,
however, requires accurate template waveforms computed
within specific theories of gravity beyond Einstein’s
[2,11–14]. If the compact objects in a binary system
are widely separated, then one can use the post-Newtonian
(PN) approximation to build accurate waveforms.
Waveforms built from the PN approximation already exist
both in [15–18] and outside GR [19–22]. Near the merger,
however, the PN approximation is not enough and full
numerical relativity simulations are needed, again both
in and outside GR. Although such simulations are now
routinely possible within GR [23–25], simulations outside
of GR are only in their infancy [26–39].
One class of theories that has received much attention

is Einstein-scalar-Gauss-Bonnet (ESGB) gravity. This
theory consists of a scalar field ϕ that nonminimally
couples to the Gauss-Bonnet curvature invariant through a
scalar potential fðϕÞ and a coupling constant l. The scalar
Gauss-Bonnet coupling appears in the low-energy limit
of heterotic string theory [40–42], and, more generally,
in effective field theories that include a real scalar field
[43,44]. For either case, ESGB theory parametrizes a
leading order gradient correction to the Einstein equations

that involves a scalar field.1 Solutions to ESGB gravity
have received much recent attention because, for some
couplings fðϕÞ, the theory admits scalar hairy black hole
(BH) (for example [45–54]; see [55] for a general review).
Binaries composed of scalar hairy BHs radiate scalar
radiation, which impacts the rate of inspiral, and more
generally themorphology of the radiated gravitational waves
[10,19,21]. Because of this, ESGB gravity is an interesting
theory to study in the context of binary BHmergers and tests
of GR with gravitational waves [2,11–14].
All numerical relativity studies of BH mergers in ESGB

gravity have relied on one of the following approaches:
(i) a perturbative approach to solve the field equations;
(ii) a recently constructed, strongly hyperbolic formulation
of the field equations [44,56]; or (iii) a “fixing” approach to
study the dynamics [57]. In the perturbative approach, one
solves the ESGB field equations order-by-order in l2. This
method robustly captures the scalar field dynamics about
BHs [30–32,58,59], with fairly general results obtained
recently for the growth of monopole and dipole scalar
hair [58,60]. Higher-order perturbative solutions can in

1If one were to write down all possible sets of terms in
the action that contain up to four derivatives, one can have
additional terms, such as αðϕÞð∇ϕÞ4 [43,44], which can impact
the dynamics of scalar hairy BHs [37]. For simplicity, here we
set α ¼ 0.
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principle capture nonlinear gravitational effects, such as the
dephasing of BH binaries due to the emission of scalar
radiation [29,61]. But the perturbative approach is self-
consistent only when the relative corrections to the Einstein
equations remain “small,” and this is not the case at higher
order due to secular growth of uncontrolled remainders
[61–63]. The latter may be cured, at least in principle,
through techniques from multiple scale analysis and
dynamical renormalization [64], but this has yet to be
applied to gravitational waveform modeling.
In the strongly hyperbolic approach, the equations of

motion are solved without approximation (beyond that
induced by the error of the numerical discretization of
the partial differential equations, and the truncation/
compactification of the computed spacetime). This
approach, however, is only “feasible” (i.e., admits a well-
posed set of evolution hyperbolic equations) for weakly
coupled solutions, where the curvature scales in the theory
are large compared to the length scale set by the Gauss-
Bonnet curvature [33,34,37,38,44,56]. This approach avoids
the secular growth of uncontrolled remainders, and can
straightforwardly capture important nonlinear effects, such
as the dephasing of BH binaries due to the emission of scalar
radiation [33,34,37,63]. The approach, however, breaks
down generically for strongly coupled solutions, which
can be interpreted as signaling the importance of (unac-
counted-for) higher-order gradients in the action that would
arise, for example, from the low-energy limit of a string
theory [41,42].
In this work, we present a simple, covariant explanation

for why ESGB breaks down in the strongly hyperbolic
approach for strongly coupled solutions in spherically
symmetric spacetimes. Our approach also provides diag-
nostics that can be used to understand if the corrections to
Einstein’s equations remain “small” in the perturbative
approach. We build on previous numerical work in ESGB
gravity and spherical symmetry, which showed that the
field equations can change character from hyperbolic to
elliptic during evolution [34,38,65–70]. If the equations
change character outside an event horizon, then the region
where this breakdown occurs will be called a naked elliptic
region (NER), in analogy to the concept of a naked
singularity in pure general relativity. We extend the
previous studies by deriving a gauge-covariant expression
for the principal symbol of ESGB gravity for spherically
symmetric spacetimes, and we show that the emergence of
NERs is gauge covariant.2

We then go beyond previous work by studying the
mathematical and physical reasons for the emergence
of NERs. The presence of scalar hair in ESGB gravity
leads to the violation of the null convergence condition

(NCC) [65–68], and this has been thought to be correlated
with the appearance of NERs. We show that NERs actually
appear in regions where the NCC condition is not violated.
Instead, we find that NERs appear when there is a strong
focusing of null geodesics. More precisely, our results
indicate that the breakdown of hyperbolicity is a non-
perturbative effect entering at Oðl−8Þ due to strong
focusing. We provide geometric quantities that can be used
to diagnose the appearance of NERs in the decoupling limit
and in the case of full nonlinear evolution.
We make the above generic statements concrete

by studying the dynamics of two specific types of
ESGB theories, classified by the choice of coupling
function fðϕÞ: “shift-symmetric ESGB gravity” (sGB
gravity) fðϕÞ ¼ ϕ [46] and a “Gaussian” coupling function
fðϕÞ ¼ ð1 − exp ð−3ϕ2ÞÞ=6 [54]. In the terminology of
[32], the shift symmetric theory represents a Type-I theory
[f0ðϕ ¼ 0Þ ≠ 0] and the Gaussian theory represents a
Type-II theory [f0ðϕ ¼ 0Þ ¼ 0]. Compact objects in
Type-I theories are always scalarized, while compact objects
in Type-II theories can admit both GR solutions and
scalarized solutions [52,54], depending on the compactness
of the object and the type of initial data considered.
To understand the breakdown of ESGB gravity for

these two choices of coupling functions, we consider three
dynamical situations in spherical symmetry, each of which
provides a toy model to understand the complicated
dynamics of full 3þ 1 evolution:
(1) Gravitational collapse of the Gauss-Bonnet scalar

field in an otherwise Minkowski spacetime.
(2) Infalling Gauss-Bonnet scalar field into a stable

boson star in its ground state.
(3) Infalling Gauss-Bonnet scalar field into a Schwarzs-

child BH.
Figure 1 is a cartoon that depicts these different scenarios,
which is discussed in more detail in Table I and Sec. III A.
We organize the possible late-time end states for these

three kinds of initial data using a “phase-space” diagram.
For both the shift-symmetric and Gaussian theory, all three
classes of initial data give qualitatively similar end states.
For sufficiently weak initial data with initial gradients much
less than 1=l, the theory does not break down. If the initial
data are sufficiently strong [in the sense that the Arnowitt-
Deser-Misner (ADM) mass of the initial data is large] and
does not contain large gradients (the smallest curvature
scale is still large compared to 1=l), then the evolution is
also stable and ends in the formation of a stable and large
BH. In between these two end states, there exists a “gap” in
the phase space inside which the evolution breaks down
due to the formation of a NER. As we discuss in Sec. III,
the presence of this gap essentially precludes the study of
critical collapse in ESGB gravity. Such a result is consistent
with the expectation that the theory breaks down when
curvatures are large, as would be the case when small BHs
form near the threshold between collapse and dispersal.

2Some properties of the principal symbol and characteristic
polynomial for ESGB gravity—and other theories that have
second order equations of motion—are derived in [71].
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We also map out the size of the smallest possible BHs in
the theory that form without the emergence of NERs, for
our choices of initial data. For the Gaussian theory, we find
that the smallest possible BHs always lie above the allowed
range of masses that can exhibit spontaneous scalarization.
This implies that the phase space available for some
phenomena, such as spontaneous scalarization and desca-
larization [31,32], may be very narrow and might require
fine-tuning of initial data. This result was hinted at in
previous work [34], and we provide conclusive evidence by
using our phase-space picture.
The rest of the paper explains all of the above results in

detail and is organized as follows. Section II describes the
field equations and provides the gauge invariant approach
to study the character of ESGB gravity in spherical
symmetry. The details of our numerical setup and our
numerical results for the phase space of ESGB gravity are
presented in Sec. III. Our conclusions and directions for
future work are presented in Sec. V. Henceforth, we use
the following conventions: the signature of our metric is
ð−;þ;þ;þÞ, and we use geometric units G ¼ 1 ¼ c. We
also introduce a fiducial length scale M⋆, which will be
used to scale physical quantities with dimensions of length.
So, unless otherwise stated, physical quantities with the
dimension of ðlengthÞp will be assumed to be scaled
with M−p⋆ .

II. FIELD EQUATIONS AND
CHARACTERISTICS

In this section, we begin by describing the field
equations and the equations of motion for ESGB in
Sec. II A. We describe our notation in Sec. II B 1 and
present our gauge invariant approach for calculating the
principal symbol in spherically symmetric spacetimes in
Sec. II B 3. We finally analyze the principal symbol in a
local null frame and present different diagnostic tools that
can be used to understand the breakdown of hyperbolicity
in Sec. II C.

A. Field equations

The action for ESGB gravity is given by

S ¼ 1

8π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2
−
ð∇ϕÞ2

2
þ l2fðϕÞG

�
þ Smatter:

ð1Þ

The field equations derived from the above action are

Eμν ≔Gμν−
�
∇μϕ∇νϕ−

gμν
2
ð∇ϕÞ2

�

þ2l2δαβγδκσρðμgνÞδR
κσ

αβ∇ρ∇γfðϕÞ−8πTmatter
μν ¼ 0; ð2Þ

TABLE I. Families of initial data used in our numerical simulations. The acronyms GBCIC, BHIC, and SBSCIC stand for Gauss-
Bonnet collapse initial condition, BH initial condition, and stable boson star initial condition, respectively. See Sec. III A for more
information.

Name Complex scalar field profile Gauss-Bonnet scalar field profile Initial excision position

GBCIC None ϕbumpðA; rl; ruÞ r ¼ 0

BHIC None MBH; ϕbumpðA; rl; ruÞ r ¼ MBH

SBSCIC ρ0ðrÞ; Boson star is in its ground state ϕbumpðA; rl; ruÞ r ¼ 0

FIG. 1. Cartoon depicting gravitational collapse of a shell of GB scalar field ϕ. The shell starts at the outermost layer and collapses
inwards as time advances, as indicated by the red arrows. The three different panels show the different types of initial data we study (see
Sec. III A and Table I). On the leftmost panel, we show the gravitational collapse of the scalar field in an otherwise flat spacetime [Gauss-
Bonnet collapse initial condition (GBCIC)]. The middle panel shows the infall of the scalar field onto a boson star [stable boson star
initial condition (SBSCIC)]. The right panel depicts the infall of the scalar field onto a Schwarzschild BH [BH initial condition (BHIC)].
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Eϕ ≔ □ϕþ l2f0ðϕÞG ¼ 0; ð3Þ

where δαβγδκσρμ is the generalized Kronecker delta tensor and
Tmatter
μν is the stress-energy tensor for other matter fields. For

the analysis presented in this section we make no assump-
tions about the matter stress energy tensor beyond that it
consists of only first order derivatives acting on the matter
fields, and it describes matter fields that are minimally
coupled to the spacetime metric. We also find it convenient
to define a “total” stress energy tensor, which includes the
“massless” piece of the Gauss-Bonnet scalar field and the
matter stress energy tensor

Tμν ≔
�
∇μϕ∇νϕ −

gμν
2

ð∇ϕÞ2
�
þ 8πTmatter

μν : ð4Þ

In Sec. III we use a complex scalar field ρ with a mass
mb ¼ Mb=ℏ which admits boson-star solutions [72,73] for
the matter model

Smatter ¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ð−∇aρ∇aρ
� −m2

bρρ
�Þ; ð5aÞ

Eρ ≔ □ρ −m2
bρ ¼ 0: ð5bÞ

We briefly review some basic properties of boson stars in
Appendix B; see Refs. [72,73] for comprehensive reviews.
We use the boson star solutions we construct as a stand-in
toy model for more realistic stars (such as neutron stars and
white dwarfs).

B. Gauge invariant notion of hyperbolicity for
spherically symmetric spacetimes

We now outline our derivation of a covariant
expression for the principal symbol of ESGB gravity
in spherically symmetric spacetimes. We adopt the
notation of Refs. [38,56,74], and we refer the reader to
Refs. [38,56,75–77] for a more detailed account of the
principal symbol and its relation to the well-posedness of
the initial value problem.
We first review how the principal symbol is defined. We

consider a system of partial differential equations (PDEs)
EIðx; u; ∂u; ∂2uÞ, where the spacetime coordinates are
given by xμ, and uJ denote the evolved fields. The index
I ∈ ð1; 2;…; NÞ is used to count the number of equations,
where N is the total number of fields. Given a covector ξμ,
the principal symbol is defined to be [38,56,75,76]

PIJðξÞ ≔ Pμν
IJξμξν ¼

∂EI

∂ð∂μ∂νuJÞ
ξμξν; ð6Þ

and as a shorthand, we will write PðξÞ ¼ PIJðξÞ. We say a
covector ξμ is characteristic if it satisfies the characteristic
equation

det ðPðξÞÞ ¼ 0: ð7Þ

The system of partial differential equations EI at a
spacetime point xμ are said to be
(1) Hyperbolic, if all the solutions of the characteristic

equation are real.
(2) Elliptic, if all the solutions to the characteristic

equation are imaginary.
If there is only one dynamical field N ¼ 1, then the
character of the equation can be analyzed by looking at
the signature of the principal symbol. So, for a scalar
equation the above definitions can be stated in the follow-
ing equivalent form [75]. Given a scalar PDE

Eðx; u; ∂u; ∂2uÞ ¼ 0 ð8Þ

the PDE at a spacetime point xμ is said to be
(1) Hyperbolic, if the signature of the matrix Pμν is

Lorentzian; i.e., Pμν has one negative eigenvalue and
the other eigenvalues are positive.

(2) Elliptic, if the matrix Pμν is positive or negative
definite; i.e., the eigenvalues are all positive or all
negative.

We now focus on the ESGB field equations in spherical
symmetry and state the simplifications that can be used to
calculate the principal symbol. The propagation of the
scalar field ϕ is governed by Eq. (3). As we see from
Eq. (3), the Gauss-Bonnet scalar G contains second
derivatives of the metric. We show that for a spherically
symmetric spacetime one can use the tensor equations of
motion to trade the second derivatives of the metric in G for
second derivatives of the scalar field. This means that we
can rewrite the scalar field equation to take the form

Eϕ ¼ □ϕþ l2f0G½∂2ϕ; ∂ϕ;ϕ�: ð9Þ

After this simplification is achieved, we can focus on the
above equation and calculate the principal symbol using
Eq. (6) for the gauge-invariant scalar field ϕ.
We stress that this approach relies heavily on the

spherical symmetry of the spacetime. Outside of spherical
symmetry, one must generally contend with gauge degrees
of freedom, which complicate the analysis of the character-
istics; for more discussion see [44,56,71,74].

1. Notation

Here we set the notation we use to derive the principal
symbol and understand its properties in spherical symmet-
rically symmetric spacetimes. We decompose the four-
dimensional (4D) metric gμν as [78]

ds2 ¼ αabduadub þ r2ðuaÞΩABdθAdθB: ð10Þ

The function rðu0; u1Þ measures the proper radius of the
2-sphere and ΩAB is the standard metric on the 2-sphere.
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The above metric is the most general metric for a spheri-
cally symmetric spacetime. To simplify our analysis we
will use the following notation: uppercase Latin letters
ðA;B;…Þ will be used to represent indices on the 2-sphere,
lowercase Latin letters ða; b;…Þ will be used to represent
indices “perpendicular” to the 2-sphere in the “t − r” plane,
and lowercase Greek letters ðμ; ν;…Þ will be used for
general four-dimensional indices. We will use ∇μ to denote
the 4D covariant derivative and Da to denote the 2D
covariant derivative compatible with αab. The Christoffel
symbol and Riemann tensor for the metric of Eq. (10) are
listed in Appendix A 1.
To simplify our calculations, we find it useful to

introduce the following linear operators (here F is any
scalar function):

λhabi½F� ≔ DaDbF −
1

2
αabD2F; ð11Þ

λ½F� ≔ D2F: ð12Þ

The first operator is a symmetric trace-free (STF) operator
and D2 ≔ DaDa is the d’Alembertian. We will also use the
following notation to denote the two-dimensional STF
operation and trace on a general tensor Σab:

Σhabi ≔ ΣðabÞ −
1

2
αabΣ2; ð13Þ

Σ2 ≔ αabΣab: ð14Þ

We denote the four-dimensional trace with

Σ4 ≔ gμνΣμν ¼ αabΣab þ
ΩAB

r2
ΣAB; ð15Þ

¼ Σ2 þ
ΩAB

r2
ΣAB; ð16Þ

and the difference between a 2D trace and a 4D trace by Σ̃,

Σ̃ ≔
ΩAB

r2
ΣAB ¼ Σ4 − Σ2: ð17Þ

Finally, we introduce three scalar functions,

σ ≔ ðDrÞ2 − 1 ¼ −
2M
r

; ð18Þ

μ ≔ r − 8l2ðDcrÞðDcfÞ; ð19Þ

π1 ≔
96σðf0Þ2

r2μ
¼ −

192Mðf0Þ2
r3μ

; ð20Þ

where the scalar function Mðu0; u1Þ is the quasilocal
Misner-Sharp mass [78].

2. Projection of the equations of motion

We now outline our derivation of the principal symbol,
leaving details to Appendix A 2. We first begin by studying
the projections Eab and EAB of the gravitational field
equations Eμν of Eq. (2). The tensor Eab allows us to
solve for λhabi½r� and λ½r� as functions of λhabi½f� and λ½f�,
respectively, where f ≔ fðϕÞ is shorthand for the scalar
Gauss-Bonnet coupling function. The final solutions are
given in Eqs. (A24) and (A25).
Next, we study the projection of the gravitational tensor

equations of motion on its spherical indices (EAB), which
allows us to obtain the two-dimensional Ricci scalar
RðαabÞ as a function of λhabi½f� and λ½f�. The solution
for R is given in Eq. (A27).
For the benefit of the reader, we present here some of the

final expressions that will be important below, namely

λhabi½r� ¼
4l2σ

μ
λhabi½f� −

r2

2μ
Thabi; ð21Þ

λ½r� ¼ ð4l2λ½f� − 1Þσ
μ

þ r2T2

μ
; ð22Þ

R¼ 16l2

μ
λhcdi½f�λhcdi½r�−

8l2

μ
λ½f�λ½r�þ2λ½r�

μ
−
rT̃
μ
; ð23Þ

G ¼ 12

r2
λ½r�2 − 24

r2
λhabi½r�λhabi½r�

−
8

μ
λhabi½r�Thabi −

8T2

μ
λ½r� þ 4σ

μr3
T̃; ð24Þ

where Thabi denotes the STF part of the stress energy
tensor; the functions T2, T̃, σ, and μ are defined in
Eqs. (13), (17), (18), and (19), respectively. The first three
equalities come from the field equations for the metric
tensor, while the last one can be computed from the
definition of the Gauss-Bonnet invariant and the above
expressions.
One can also think of the above equations as providing a

relation between derivatives of the metric functions and
derivatives of the scalar field, which one can now use in the
equation of motion for the scalar field. More precisely, the
scalar field equation of motion can be written as

Eϕ ¼ □ϕþ l2f0G ¼ 0;

¼ D2ϕþ 2

r
DarDaϕþ l2f0G½f� ¼ 0; ð25Þ

where in the second line G½f� is a function of derivatives of
fðϕÞ, when one substitutes Eqs. (21) and (22) into Eq. (24).
The final expression for G½f� is long and un-illuminating, so
we present it in Eq. (A29).
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3. Expression for the principal symbol

Given Eq. (25), we can now obtain the principal symbol
for the scalar degree of freedom (more details are given in
Appendix A 3). We start by looking at the scalar field
equations of motion [Eq. (25)], where G in Eq. (24) is now
viewed as a function that depends on f through λhabi½r� in
Eq. (21) and λ½r� in Eq. (22). The principal symbol is
therefore given by

P½Eϕ� ¼ P½DaDaϕ� þ l2f0P½G½f��; ð26Þ

where we have ignored the lower order terms. The first term
in the above equation is given by

P½DaDaϕ� ¼ αabξaξb; ð27Þ

while the second term P½G½f�� is calculated in Eq. (A34).
Using Eq. (A34), we see that the principal symbol can be
written as in Eq. (A37)

Pab ¼ αab

�
1þ π1l4

�
λ½r� − r2

3μ
T2

��

þ π1l4r

�
Rhabi −

r
3μ

Thabi

�
; ð28Þ

where Rhabi is the two-dimensional STF form of the Ricci
tensor [see Eq. (A19)] and Thabi is the two-dimensional
STF form of the full stress energy tensor, defined in Eq. (4).
For ease of numerical implementation, we also provide
two other equivalent forms of the principal symbol in
Eqs. (A38) and (A39) in terms of the derivatives of the
scalar field.
The above equation is gauge invariant in the following

sense. This equation describes the principal symbol for the
scalar degree of freedom in ESGB gravity in spherical
symmetry, which is the only gauge-invariant dynamical
degree of freedom for the theory in such spacetimes
(outside of the matter fields, which again we assume are
minimally coupled to the spacetime metric and do not
couple with derivatives to ϕ). Our derivation hinged on the
fact that we could replace second derivatives of the metric
functions αab and r with second derivatives of ϕ. This is
possible because there are effectively no tensor degrees of
freedom in spherical symmetry.

C. Analysis in a local null frame

Solutions to ESGB gravity are well-known to typically
contain regions inside which the NCC is violated [65–68].
The NCC is a crucial ingredient in many classical results
on the properties of BHs, most notably the area theorem
[79,80]. During dynamical evolution, the area of the BH is
known to decrease in ESGB theory; heuristically, the
growth of the scalar hair around the BH extracts energy

from it, which forces the area to shrink in size3 [65].
However, there need not be any connection between
violations of the NCC and the hyperbolicity of a general
theory of gravity. For example, a ghost field has hyper-
bolic equations of motion, and solutions to the theory
violate the NCC as long as ∇μϕ ≠ 0. Nevertheless, one
may suspect that, for theories such as ESGB gravity,
which are supposed to capture leading-order effective
corrections to the Einstein equations, there could be some
connection between the breakdown of the theory and large
violations of the NCC. Below we show that this suspicion
is unfounded: there is no actual connection between
violations of the NCC and the breakdown of the full
equations of motion in ESGB gravity, at least in spheri-
cally symmetric spacetimes.
To show this, we decompose the spacetime into null

components. In spherical symmetry, there are two preferred
null frame vectors that are orthogonal to the two spheres
that foliate the spatial slices (surfaces with constant areal
radius r). Consider a local null frame with outgoing null
vector ka and ingoing null vector la. The metric in this local
frame is given by

αab ¼ −2lðakbÞ; laka ¼ −1: ð29Þ

The components of the matrix Pab of Eq. (28) in this local
frame are then given by

P ≔
�
Pabkakb Pablakb

Pablakb Pablalb

�
; ð30Þ

where

Pabkakb ¼ π1l4r

�
Rkk −

r
3μ

Tkk

�
≔ π1l4rBkk; ð31Þ

Pablakb ¼ −
�
1þ π1l4

�
λ½r� − r2

3μ
T2

��
; ð32Þ

Pablalb ¼ π1r

�
Rll −

r
3μ

Tll

�
≔ π1l4rBll; ð33Þ

and the determinant is

detP¼ π21l
8r2BllBkk−

�
1þπ1l4

�
λ½r�− r2

3μ
T2

��
2

: ð34Þ

In the above expressions, we have used Bkk as a shorthand
for Babkakb, and similar shorthands are used for other

3We note that although the area of the BH decreases if the
strength of initial data is large, this does not mean that the second
law of BH fails to hold. For weak perturbations of a stationary BH
there exists a prescription to calculate the BH entropy in ESGB
gravity where the second law holds [81].
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quantities. As we discuss in Sec. III B, the transition from
hyperbolic to elliptic equations occurs when detP ¼ 0. If
detP < 0, then the equation of motion for the scalar field is
hyperbolic. The second term in Eq. (34) is negative definite
and arises from the trace of the principal symbol of
Eq. (28). The first term may or may not be positive definite,
and it comes from the STF part of the principal symbol
[Eq. (28)]. We can then think of the failure of hyperbolicity
as arising from “shear” terms in the principal part of the
equations of motion (because shear is typically generated
by STF parts of tensors). We then conclude that the
character of the equation of motion for the scalar field
changes from hyperbolic to elliptic when

π21l
8r2BllBkk ≥

�
1þ π1l4

�
λ½r� − r2

3μ
T2

��
2

; ð35Þ

which is a sufficient condition for the loss of hyperbolicity.
From Eq. (35), we see that Bkk and Bll have to be of the
same sign for the change in character to occur.
We can relate Bkk and Bll to the NCC to understand the

physical significance of Eq. (35). Rewriting some terms in
this equation with the Misner-Sharp mass function of
Eq. (20), we ultimately obtain

BllBkk ≥
r4μ2

M2l8½192ðf0Þ2�2
�
1þπ1l4

�
λ½r�− r2

3μ
T2

��
2

:

ð36Þ

Before we proceed further, let us note that obtaining
necessary conditions for the failure of hyperbolicity for
the field equations [Eqs. (2) and (3)] would need a more
general analysis such as the one carried out in [56,71].
Therefore, we caution the reader that the inequality derived
in Eq. (36) is only a sufficient condition and must be used
as a diagnostic for the loss of hyperbolicity in spherical
symmetry. If this inequality is not satisfied, then the
equations are not necessarily hyperbolic. Nevertheless,
we find that this condition is a good diagnostic in numerical
simulations (see Sec. III).
Let us now provide a better intuitive understanding of the

inequality derived above in Eq. (36). To do this, we first
expand the above inequality

BllBkk ≥
1

r2

�
λ½r� − r2

3μ
T2

�
2

þ 2

π1l4r2

�
λ½r� − r2

3μ
T2

�

þ 1

π21l
8r2

: ð37Þ

One is typically interested in ESGB when the coupling
constant is small. When l is small, the dominant contri-
bution on the right-hand side of the above inequality is
the last term, which scales as l−8. One can simplify the

left-hand side by noting that, to leading order in l, the
functions Bll and Bkk are

Bkk ¼ Rkk −
r
3μ

Tkk ¼
2

3
Rkk þOðl2Þ; ð38Þ

Bll ¼ Rll −
r
3μ

Tll ¼
2

3
Rll þOðl2Þ; ð39Þ

where we used the expression for μ in Eq. (19) and the fact
that to leading order in l the gravitational equations of
motion are those in GR, Rhabi ¼ Thabi þOðl2Þ. Inserting
this expansion into Eq. (37), we see that for small l we can
rewrite the inequality as

RkkRllþOðl2Þ≥ 1

r2

�
λ½r�− r2

3μ
T2

�
2

þ 2

π1l4r2

�
λ½r�− r2

3μ
T2

�
þ 1

π21l
8r2

ð40Þ

≥
r6

M2l8½128ðf0Þ2�2 þOðl−6Þ; ð41Þ

where in the last line, we expanded π1 using Eq. (20).
From the above equation, we see that for small l, the
equations are nonhyperbolic in regions where the product
RkkRll is positive and exceeds the inequality derived
above. Therefore, just the violation of the outgoing or
ingoing NCC (i.e., the violation of the Rkk ≥ 0 and Rll ≥ 0
inequalities) does not necessarily lead to the breakdown
of the equations of motion. Instead, we see that the
equations become nonhyperbolic when there is strong
geodesic focusing, i.e., when RkkRll ∼Oðl−8Þ. We will
see in Sec. III (see also Fig. 4) that our numerical
simulations lose their hyperbolic character precisely when
such strong geodesic focusing occurs.
Finally, we discuss what the above results mean in

the context of the decoupling analysis employed, for
example, in Refs. [30–32,58,59]. In the decoupling
approach, one assumes that small scalar Gauss-Bonnet
perturbations remain small during dynamical evolution of
the initial data. For a sufficiently small duration of time, this
assumption holds true. As time advances, however, the
system may evolve into a strongly gravitating one, even if
the initial data were weak. When this occurs, the strong
focusing of geodesics may lead to the satisfaction of
Eqs. (36) and (41), which, in turn, will force the evolution
equations to lose hyperbolicity and become ill-posed.
Therefore, at least in spherical symmetry, one diagnostic
that could be tracked to see if the evolution equations fail
would be that determined by Eqs. (36) and (41). These
equations can be evaluated on the background GR solution
itself to see how strong the gravitational corrections are. For
a full nonlinear evolution, one can directly track Eq. (34).
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As we have mentioned before, outside spherical symmetry
one needs to worry about gravitational degrees of freedom
and study the full principal symbol [44,56], which couples
gravitational scalar degrees of freedom [71]. Therefore,
obtaining a simple formula to diagnose the breakdown,
such as the one given in Eq. (41), might be challenging
outside of spherical symmetry.

III. NUMERICAL EXPERIMENTS

In this section we describe the results from numerically
simulating spherically symmetric gravitational collapse
in ESGB gravity for the shift-symmetric theory and a
Gaussian coupling function. In Sec. III A, we describe the
details of our numerical setup and of the initial data we use
in our numerical simulations. We describe the different
diagnostics we use to track the breakdown of hyperbolicity
in our numerical simulations in Sec. III B. In Sec. III C we
provide a brief description of static BH solution in ESGB
theories and present the problems that occur as the size of
the BHs get smaller and the curvature scales increase.

A. Numerical setup

We first briefly describe our numerical setup. Our code
closely follows the setup of Ref. [67]. We work in Painlevé-
Gullstrand (PG) coordinates, with the line element

ds2 ¼ −αðt; rÞ2dt2 þ ðdrþ αðt; rÞζðt; rÞdtÞ2 þ r2dΩ2;

ð42Þ

where dΩ2 ¼ dϑ2 þ sin2 ϑdφ is the metric of a unit sphere.
Introducing the following auxiliary variables:

Qðt; rÞ ≔ ∂rϕðt; rÞ; ð43Þ

Pðt; rÞ ≔ 1

αðt; rÞ ∂tϕðt; rÞ − ζðt; rÞQðt; rÞ; ð44Þ

ρðt; rÞ ≔ ρ1 þ iρ2; ð45Þ

Q1;2ðt; rÞ ≔ ∂rρ1;2; ð46Þ

P1;2ðt; rÞ ≔
1

αðt; rÞ ∂tρ1;2ðt; rÞ − ζðt; rÞQ1;2ðt; rÞ; ð47Þ

the equations of motion [Eqs. (2) and (3)] schematically
take the form

∂rζ − F ζðv⃗Þ ¼ 0; ð48Þ

∂rα

α
− F αðv⃗Þ ¼ 0; ð49Þ

∂tP − FPðα; v⃗Þ ¼ 0; ð50Þ

∂tQ − ∂r½αðPþ ζQÞ� ¼ 0; ð51Þ

∂tϕ − αðPþ ζQÞ ¼ 0; ð52Þ

∂tP1;2 − FP1;2
ðα; ζ; ρ1;2Þ ¼ 0; ð53Þ

∂tQ1;2 − ∂r½αðP1;2 þ ζQ1;2Þ� ¼ 0; ð54Þ

∂tρ1;2 − αðP1;2 þ ζQ1;2Þ ¼ 0; ð55Þ

where we have introduced the vector

v⃗ ¼ ðζ; P; P0; Q;Q0;ϕ; P1; Q1; P2; Q2; ρ1; ρ2Þ: ð56Þ

The full expressions for these equations of motion
(modulo the presence of the matter field ρ) can be found
in Appendix C of [67].
The initial data we use are summarized in Table I. The

rescaled bump function is given by

ϕbumpðrÞ ¼

8>><
>>:

0 r ≤ rl
ϕ0ðr; A; rl; ruÞ rl < r < ru
0 r ≥ ru

; ð57Þ

where

ϕ0ðr; A; rl; ruÞ ¼ Aðr − rlÞ2ðr − ruÞ2eð−
1

r−rl
− 1
ru−r

Þ: ð58Þ

Given the profile for the scalar field ϕ we obtain the initial
value for the variableQ by differentiating the above profile.
To initialize the P variable, we use an approximately
ingoing profile

Pð0; rÞ ¼ Qð0; rÞ þ ϕð0; rÞ
r

: ð59Þ

To initialize the complex scalar field, we either set it to zero
everywhere or use a stable boson star profile in its ground
state [72,82,83], depending on the type of initial data
described in Table I. We review the solution spectrum and
how we obtain the boson star initial data in Appendix B.
For the GBCIC case and the SBSCIC, the initial excision

position is at r ¼ 0, and we use the following regularity
conditions at the origin

∂rαjr¼0 ¼ 0; ð60Þ

ζjr¼0 ¼ 0; ð61Þ

∂rPjr¼0 ¼ 0; ð62Þ
Qjr¼0 ¼ 0; ð63Þ
∂rϕjr¼0 ¼ 0; ð64Þ
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∂rP1;2jr¼0 ¼ 0; ð65Þ

Q1;2jr¼0 ¼ 0; ð66Þ

∂rρ1;2jr¼0 ¼ 0: ð67Þ

For the BHIC case, we excise the grid inside the apparent
horizon (AH), which is located at ζ ¼ 1, and the initial
excision position is set to be at rex ¼ MBH. We also set
the shift ζ and lapse α to their GR values at the initial
excision position

ζð0; rexÞ ¼
ffiffiffiffiffiffiffi
2M
rex

s
; ð68Þ

αð0; rexÞ ¼ 1: ð69Þ

This is a valid initial condition as it ensures that the support
of the Gauss-Bonnet scalar is outside the initial AH. This
can be achieved by controlling rl and ru. At the outer
boundary, we set outgoing wave boundary conditions.
We briefly describe the physical motivation behind the

three types of initial data summarized in Table I, as follows:
(1) GBCIC collapses the scalar field ϕ, with a fixed

position determined by rl and ru (57). The physical
situation explored by studying GBCIC is similar to
the study of critical collapse in GR [84], except that
now the phase space of possible end states includes
evolution to NERs.

(2) SBSCIC studies the “dynamical stability” of a non-
BH compact object, when perturbed by a Gauss-
Bonnet scalar field.

(3) BHIC analyzes the situation where the spacetime has
a BH at t ¼ 0. We study the effect of a perturbation
by the Gauss-Bonnet scalar with a fixed rl and ru.
We also use this initial data to find the smallest
possible BH in these theories.

In all cases, we follow the evolution to determine whether
the end state is a BH, a boson star, a flat space, or a NER.
We next describe the numerical schemes used to evolve

our equations. We solve the constraint equations (48)
and (49) using Heun’s method, a second order integration
method. To solve the evolution equations [Eqs. (50)–(55)],
we use the method of lines with a second-order-accurate
finite difference stencil to discretize the spatial derivatives.
We evolve the discretized set of equations using an 4th
order Runge-Kutta (RK4) time integration method. We
provide further details about the code and present our
convergence results in Appendix C.
Finally, we note that we have not derived a rigorous

mathematical proof for the local existence or for the coupled
systems Eqs. (48)–(55). A local existence result has been
obtained for the ESGB field equations [Eqs. (2) and (3)] in a
modified harmonic formulation in Refs. [56,85], but we

make use of a different formulation. Nevertheless, those
results combined with the stability and convergence of our
numerical code provides strong hints for the local existence
result in PG coordinates [Eqs. (48)–(55)].

B. Diagnostics and breakdown
of gradient expansion

In this section we review how we diagnose the break-
down of the hyperbolicity in our numerical code. We
calculate the principal symbol using Eq. (A35). We then
calculate the characteristic speeds c�. Given a character-
istic covector ξa ¼ ðξt; ξrÞ, the characteristic speed in
spherical symmetry is defined by

c ≔ −
ξt
ξr
; ð70Þ

where the ξa satisfy the characteristic equation [38]

det ½Pabξaξb� ¼ 0 ð71Þ

⇒ Pttξ2t þ 2Ptrξtξr þ Prrξ2r ¼ 0 ð72Þ

⇒ Pttc2 − 2Ptrcþ Prr ¼ 0: ð73Þ

This gives us

c� ¼ 1

Ptt

�
Ptr �

ffiffiffiffiffiffiffi
−D

p �
; ð74Þ

where

D ≔ PttPrr − ðPtrÞ2 ð75Þ

is the determinant of the (contravariant) principal symbol.
The characteristic speeds (c�) for GR in PG coordinates are
given by c� ¼ −αðζ � 1Þ. Therefore, in GR, the system of
equations [Eqs. (50)–(52)] is always hyperbolic. This,
however, is not the case in ESGB gravity [65–68].
During gravitational collapse, we track the determinant
in Eq. (75) and the expansion of null congruences
Θ ¼ 1 − ζ. The AH is located at Θ ¼ 0 (in practice we
find that the AH lies close to the “sound horizon,” where
the outgoing scalar characteristic speed is zero) [66]. If the
determinant D is greater than zero before the formation of
an AH, we quit the simulation, since this signals a break-
down of hyperbolicity, and any subsequent evolution would
crash the simulation because of exponentially growing
modes. We also track the determinant after the formation of
an AH and excise the region where D > 0. If this excision
region moves outside the AH, we quit the simulation.
As a consistency check we also track the determinant of

the principal symbol in the null frame [Eq. (34)]. We use
the following null frame
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kμ ¼
�
αð1þ ζÞffiffiffi

2
p ;

1ffiffiffi
2

p ; 0; 0

�
; ð76Þ

lμ ¼
�
αð1 − ζÞffiffiffi

2
p ;−

1ffiffiffi
2

p ; 0; 0

�
ð77Þ

to calculate the determinant.

C. Existence line for static BH solutions

Black holes in ESGB theories are well-known to have a
minimum size, given a value of l [45,47]. To find the
existence line for static BH solutions, one starts by
assuming that the spacetime has a BH, with an event
horizon located at r ¼ rH, and then one expands the field
equations in a Taylor series around r ¼ rH. Let ϕH be the
value of the Gauss-Bonnet scalar field at the event horizon
and ϕ0

H denote the radial derivative of the scalar field at that
same location. Solving the field equations, one finds

ϕ0
H ¼ −r2H þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4H − 192l4f0ðϕHÞ2

p
8rHf0ðϕHÞ

: ð78Þ

For the derivative of the scalar field to remain real, then rH
must satisfy

rH > ½192f0ðϕHÞ�1=4l: ð79Þ

Static BH solutions of ESGB gravity possess a curvature
singularity where ϕ blows up. As one saturates the above
bound, the curvature singularity moves closer to the event
horizon but exactly what happens at the bound is not well
understood [45,47,86]. We also note that the value ϕH is not
an independent value, as the outer boundary condition on ϕ

at spatial infinity affects the value of ϕH [45,47,58].
Heuristically, one expects the gradient expansion to break
down as the size of the BHs becomes small compared to the
coupling constant l. This means that one naturally expects
BHs slightly above the existence line to be unstable to
dynamical evolution.

IV. NUMERICAL COLLAPSE EVOLUTIONS
IN ESGB GRAVITY

In this section, we present the results from our numerical
simulations using the initial data discussed in Table I and
Sec. III A. In Sec. IVAwe present the results for the shift-
symmetric theory, and then we discuss our results for the
Gaussian coupling function in Sec. IV B.
Before proceeding to our numerical results, we sche-

matically explain what we are after. Figure 2 shows a
cartoon that describes the end states of gravitational
collapse in GR (left panel) and in ESGB gravity (right
panel). In GR, a sufficiently small perturbation of a stable
initial state (such as flat spacetime, or a BH spacetime)
results in an end state that is a weakly perturbed initial
state. A sufficiently strong perturbation, however, can
trigger gravitational collapse and a BH end state, even if
the initial state did not contain a BH. In ESGB gravity,
on the other hand, the situation is drastically different
because of the existence of an additional length scale
through the coupling constant l. For sufficiently small l
(as compared to gradients of the perturbations of the
initial state), the evolution is similar to the GR case
described above. But for sufficiently large l (relative to
gradients of the perturbations of the initial state), both
strong and weak perturbations can result in the formation
of NERs.

FIG. 2. Flow chart illustrating the possible end states of gravitational collapse of non-BH initial data in GR (left) versus ESGB gravity
(right). Gravitationally weak initial data in GR might not be weak data in ESGB gravity if the coupling constant l is too large compared
to the gradients present in initial data.
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With this schematic cartoon in mind, we can now
classify the late-time evolution of some given initial data
with a “phase-space” portrait. For concreteness, we char-
acterize the “strength” of our initial data and its initial
perturbations with the total ADM mass M0 of the space-
time. Given this, we will then determine the outcome of the
evolution of these data for a given value of the Gauss-
Bonnet coupling l. For example, consider an imploding
spherical shell of scalar field (in an otherwise flat space-
time) as the initial data. In GR (when l ¼ 0), these data will
completely disperse and evolve into a flat spacetime end
state if the ADM mass of the scalar is small enough. If,
however, the ADM mass is large enough, these same initial
data will evolve into a BH. The dividing line between the
flat spacetime and BH end states is given by the critical
collapse solution of Choptuik [84]. In ESGB theory (when
l ≠ 0), there will be two new kinds of end state: a (scalar)
hairy BH or NERs [38,65,87]. In what follows, we will use
a set of numerical evolutions to construct this phase-space
portrait as a function of the ADM mass of the initial data
and the Gauss-Bonnet coupling constant l for two repre-
sentative coupling functions fðϕÞ.

A. Shift symmetric theory

We first consider results for shift-symmetric ESGB
gravity, i.e., for the coupling function

fðϕÞ ¼ ϕ: ð80Þ

Schwarzschild BHs are not stationary solutions in this
theory. Instead, BHs form scalar hair, the amount of which
depends on the BHmassM and the Gauss-Bonnet coupling
l [46–48]. Below, we describe the phase-space portrait for
the end states of shift-symmetric ESGB theory with the
initial data described in Table I and Sec. III.

1. Phase-space portrait for GBCIC
in shift-symmetric ESGB gravity

We first consider the case in which a Gauss-Bonnet
scalar field collapses into itself in an otherwise flat
spacetime (the GBCIC case with parameters rl ¼ 8 and
ru ¼ 12; see Table I). Figure 3 shows the phase space of
end states. The vertical axis is the initial ADM mass of the
spacetime M0, and the horizontal axis is the value of the
Gauss-Bonnet coupling constant l. For a given value of
the coupling constant l and sufficiently weak initial data
(i.e., small M0), the evolution ends in the complete
dispersal of scalar waves and the end state is Minkowski
spacetime (light blue shaded region). For very small values
of l and moderate M0, one approaches the critical
Choptuik solution, whose numerical characterization
would require the evolution of initial data with adaptive
mesh refinement (AMR). Since our numerical implemen-
tation does not include AMR, we focus on cases with
l > 0.2 to ensure numerical convergence. As the strength

FIG. 3. The phase space of gravitational collapse from GBCIC
(see Table I) with rl ¼ 8 and ru ¼ 12 for the shift symmetric
theory. We see that the phase space consists of three possible end
states: (1) dispersion of the scalar field to flat spacetime (light blue
shaded region); (2) collapse and formation of NERs, where the
theory loses hyperbolicity (green shaded region); and (3) collapse
to scalarized BHs (yellow shaded region). The black shaded
regions represent cases for which a BH is already present in the
initial data due to the high ADMmass of the scalar field. The red,
dash-dotted line is given byEq. (82), and it represents the existence
line for static BH solutions. Note that the bottom half of the figure
is plotted in a log scale. Observe that although static BHs exist
above the red, dash-dotted line, such BHs do not result from scalar
field collapse for a range ofM0 and all l, due to the emergence of
NERs.We remind the reader that the length scales in all the figures
are scaled by a fiducial length scale M⋆.

FIG. 4. Different diagnostics for the emergence of NERs and
the breakdown of hyperbolicity with GBCIC for the shift-
symmetric theory with l ¼ 1 and A ¼ 0.06. Observe that the
NCC is violated at around r ¼ 3 while a NER forms at r ¼ 2.3
(shown as a dotted black line). We also plot the values of − detP
(34) and the values of the outgoing and ingoing characteristic
speeds c� (74). As we see from the figure detP goes to zero at
r ¼ 2.3 signaling the breakdown of hyperbolicity.
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of the initial data (characterized by M0) increases, the
collapse leads to the formation of NERs, and the theory
loses hyperbolicity (light green shaded region).
We determine the existence of NERs through various

diagnostics, shown in Fig. 4 for one example run. In
particular, the figure presents the determinant of principal
symbol detP discussed in Eq. (34) (blue line), the out-
going characteristic speed cþ (bold green line), the
ingoing characteristic speed c− (dashed orange line),
the ingoing (dashed red line) and outgoing (dashed purple
line) null convergence conditions, and the radial coor-
dinate of the NER region (vertical black line) on a time
slice when the NER first appears. As we discussed in
Sec. II C, the breakdown of hyperbolicity is related to
strong focusing of null geodesics, at least in spherical
symmetry. This is visible in the figure, as we see that detP
is zero around the peak of the outgoing convergence
condition. Observe, in particular, that the emergence of
NERs does not occur when the NCC is violated.
Before we describe Fig. 3 further, we recall the existence

condition for the shift symmetric theory that we presented
in Eq. (79), which reduces to

rH > ð194Þ1=4l ∼ 3.73l; ð81Þ

approximating rH ∼ 2MBH. This inequality can then be
rewritten to find approximately

MBH > 1.87l: ð82Þ

This approximate existence line for static BH solutions tells
us that BHs below a certain mass cannot exist in the shift
symmetric theory if one treats the equations of motion as
exact. Equation (82) is shown in Fig. 3 as a dash-dotted
red line.

We now continue discussing Fig. 3. For sufficiently
strong initial data (i.e., for sufficiently large M0, given a
fixed l), the evolution leads to the formation of a trapped
surface, which “hides” the elliptic region. The end state in
this case is the formation of a scalarized BH (shaded yellow
region).4 The dividing line (shown in green) between the
formation of NER and the formation of a stable scalarized
BH lies above the existence line of Eq. (82), shown as a
dash-dotted red line in the figure. This means that although
static scalarized BH exist, dynamical collapse does not
allow for their formation. As we continue to increase the
strength of the initial data, then the data itself already
contains a BH, so the evolution proceeds through the
absorption of the scalar field and a BH end state (black
shaded region).
The general conclusions presented above are robust to

the details associated with the initial data, but the precise
location of the dividing lines between end states in Fig. 3
is not. We compare how the diving lines shift by
increasing the width of the initial profile (i.e., changing
rl and ru) in Fig. 5. When we increase the width of the
scalar field, the latter becomes initially less focused, so
to obtain BH formation, we must endow the field with a
larger ADM mass. The dividing line between the flat
spacetime end state and the NER end state shifts (left
panel) and between the NER end state and the BH end
state (right panel) shifts upwards when the initial pulse is
wider. Therefore, the regime inside which static BHs
exist but scalar field collapse leads to NERs becomes
larger, and the conclusions presented above remain
unchanged.

FIG. 5. Shift in dividing line between the flat spacetime end state and the NER end state (left) and between the NER end state and the
BH end state (right) due to an increase in the width of the initial data. The bold lines in both panels are the same as those shown in Fig. 3.
Observe that as the initial scalar profile is made wider (dashed curves), the dividing lines shift upwards.

4Since our initial data are ingoing, we find the initial mass M0

is close to the final BH mass MBH.
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2. Phase-space portrait for SBSCIC
in shift-symmetric ESGB gravity

We now consider how the results obtained above change
if one considers the collapse of the GB scalar field onto an
(otherwise stable), self-gravitating object, such as a star (the
SBSCIC case). As a toy model for a star, we consider a
boson star because of their relatively simpler equations of
motion, as compared to those of a relativistic fluid. The
boson star profiles we consider are completely determined
by the central value of the scalar field ρc ≔ ρð0Þ and the
mass mb, as we briefly review in Appendix B. We set
ρc ¼ 0.3 and mb ¼ 0.5 which roughly translates to an
initial ADM mass of Mstar ¼ 1.24 and Rstar ¼ 16.8. We
remind the reader that all quantities with the dimensions on
length are scaled with a fiducial mass M⋆ as mentioned in
the Introduction. We now ask how perturbing this star with
an infalling Gauss-Bonnet scalar field affects the boson
star. We set up SBSCIC initial data with rl ¼ 18 and
ru ¼ 22 and vary the amplitude to see the transition
between relaxation back to a boson star and evolution to
NERs or BH formation.
The phase space portrait of end states for perturbed

boson stars is presented in Fig. 6. Observe that this figure is
qualitatively similar to Fig. 3. For a fixed and small value of
l, weak perturbations (with small MGB=Mstar) lead back to
a boson star end state. But as the strength of the perturba-
tion is increased, the perturbed boson star evolves into a
NER. Eventually, for sufficiently strong perturbations, the
boson star collapses to a BH. An interesting feature of this
type of initial data that is not found in the flat spacetime
case is that, as the strength of the Gauss-Bonnet coupling

l is increased, the size of the phase space in which the end
state is a stable boson star rapidly decreases. Eventually,
once lmax > 1.45 all perturbations withMGB=Mstar ≥ 10−6

evolve into NERs.
Such a shrinkage of parameter space is not present when

perturbing flat spacetime. This is because setting the scalar
field amplitude to zero just returns flat spacetime as the
solution. Setting the scalar field amplitude to zero in the
boson star case should return a boson star, but the latter
generically has a nonzero spacetime Gauss-Bonnet curva-
ture, which sources the growth of the scalar field. This leads
us to conjecture that such a breakdown may happen for any
sufficiently compact object in the shift symmetric theory,
given a large enough value of the coupling constant l. The
value of lmax for hyperbolic evolution will depend on the
strength of the background curvature for given scalar field
initial data.

3. Phase-space portrait for BHIC
in shift-symmetric ESGB gravity

We now investigate how the transition to NERs occurs
when the Gauss-Bonnet scalar field falls into a hairy BH
(the BHIC case). Since BHs of arbitrary size cannot exist
in shift symmetric theory [see, e.g., Eq. (82)], we now
construct a phase portrait with the vertical axis representing
the BH mass, while fixing the amplitude of the scalar field
perturbation. More concretely, in all our numerical experi-
ments, we set rl ¼ 8 and ru ¼ 12, and we fix the initial
amplitude of the perturbation to 10−3.
The phase space portrait in the BHIC case is presented in

Fig. 7. For sufficiently large BHs, the scalar field pertur-
bation does little, and the end state is again a BH (black and
green shaded regions). This occurs even in a regime of
parameter space in which the collapse of a scalar field in an
otherwise flat spacetime would have led to the formation of
NERs (green shaded region). As the mass of the BH is
decreased, however, NERs arise generically. The smallest
BHs that are stable to the scalar field perturbation without
forming NERs can be approximately fitted by the line

MBH ¼ ð2.35� 0.008Þl; ð83Þ

which is represented by a purple line in Fig. 7. Observe that
this line lies above the existence line for static solutions
of Eq. (82) (red dot-dashed line), but below the existence
line of the GBCIC case (green line, shown also in green in
Fig. 3). This result is generic, but how close this line is to
the existence line of the GBCIC case depends on the
strength of the initial scalar field.

B. Gaussian theory

We next discuss our numerical results in the Gaussian
theory, which was first introduced in [54] as

FIG. 6. Phase space portrait of possible end states in shift
symmetric theory when perturbing a stable boson star with an
infalling Gauss-Bonnet scalar field. Observe that, for sufficiently
large l, extremely small values of initial Gauss-Bonnet scalar
field amplitude can evolve into NERs in the interior of the star.
The orange dashed line indicates the maximum value of l above
which all perturbations from flat space by the Gauss-Bonnet
scalar that we studied end in NER formation.
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fðϕ; μÞ ¼ 1 − e−μϕ
2

2μ
; ð84Þ

where μ is a constant. Since l multiplies this coupling
function, the Gaussian is then parametrized by two con-
stants ðl; μÞ, where l=μ controls the size of the GR
deformation, and μ controls the shape of the coupling
function. In most of this subsection, we will set μ ¼ 3, and
we comment on other values of μ at the end.
Static and spherically symmetric BH solutions for the

Gaussian theory are of two different classes. One of
them consists simply of the Schwarzschild solution with
a zero scalar field (ϕ ¼ 0). The other consists of a non-
Schwarzschild BH solution with nonzero scalar hair. The
existence condition of Eq. (79) implies that these scalarized
solutions occur in a set of banded regions in the l-BH mass
(l-MBH) plane (see, for example, Fig. 2 of Ref. [52]). The
first (GR) branch of solutions is actually unstable to the
growth of scalar hair under a small scalar perturbation in
some regions of parameter space, a process known as
spontaneous BH scalarization.
To better understand how BHs can be unstable to

scalarization in this theory, we consider the scalar equation
of motion [52,54]

□ϕþ l2ϕe−μϕ
2

G ¼ 0: ð85Þ

We rescale ϕ to ϕ=
ffiffiffi
μ

p
and expand about small ϕ to get

ð□þ l2GÞϕ ¼ 0: ð86Þ

The l2G term can act as an “effective mass” in the
linearized equation, and if the mass is tachyonic
(l2G > 0), then the scalar field can be unstable to growth.
As the effective mass varies in space, and due to the

presence of the boundary conditions at infinity and the BH
horizon, not all BHs are unstable to hair growth in this
theory. A detailed analysis shows that Schwarzschild BHs
are unstable to small linear scalar perturbations when

MBH ≤ 1.174l: ð87Þ

In general, coupling functions that can be expanded to give
a coupling of the form∼ϕG to leading order in ϕ can lead to
spontaneous BH scalarization, as discussed, for example,
in [52]. For BHs with MBH ≤ 1.174l, scalar hairy BH
solutions can be found to occur in bands. These solutions
are perturbatively stable, so one concludes that generally
BHs in that mass range should have scalar hair [52,54].
What these earlier perturbative studies do not address,

however, is whether the theory remains predictive (weakly
coupled) during the BH scalarization process. Earlier work
suggests that there is only a narrow range of masses for
which the theory remains weakly coupled and can have
scalar hairy BHs [34]. Here, we present a more exhaustive
analysis of this question, which strongly suggests that the
phenomena of spontaneous scalarization falls very close to
the breakdown of the gradient expansion, used to justify the
truncation of ESGB gravity at quadratic order in curvatures,
splitting the analysis into the three types of initial data we
considered before (GBCIC, SBSCIC, and BHIC). We also
note that the process of spontaneous scalarization has been
questioned by deriving positivity bounds [88].

1. Phase-space portrait for GBCIC in
Gaussian ESGB gravity

We begin by considering again the collapse of the Gauss-
Bonnet scalar field in an otherwise flat spacetime (the
GBCIC case), but this time in Gaussian ESGB theory,
where again we have set the initial conditions to rl ¼ 8 and
ru ¼ 12. The phase space portrait of end states that we find
is shown in Fig. 8. As before, for weak data (small M0),
the scalar field disperses and the spacetime remains flat
(blue region). As the strength of the data is increased, the
collapse of the scalar field leads to a NER (green region).
Eventually, for even larger values of M0, the scalar field
collapses to a BH (yellow region) or the initial data already
contains a BH (black region).
Observe that the phase space portrait of Fig. 8 is

qualitatively similar to that found in the shift-symmetric
theory in Fig. 3. Observe that the curve separating NER
formation from dispersion to flat spacetime is slightly
higher in Gaussian ESGB theory than in the shift-
symmetric theory. This is because, for weak initial data,

FIG. 7. The smallest possible BHs allowed in shift symmetric
theory as a function of the coupling constant with BHIC. We
set the parameters rl ¼ 8, ru ¼ 12, and A ¼ 10−3. Dynamical
evolution from BHIC shows that theory loses hyperbolicity
below the purple line. We also show the existence line for static
BH solutions (red dash-dotted line) and the existence line from
GBCIC (shown in green, same as in Fig. 3). The purple line
depends on the strength of the initial scalar field profile and can
get closer to the green line if one increases the initial amplitude of
the scalar field.
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the Gaussian coupling function exponentially suppresses
the Gauss-Bonnet corrections to the equations of motion
(i.e., when ϕ grows large, e−3ϕ

2 ≪ 1).
We emphasize that we do not form any scalarized BHs as

end states of gravitational collapse in our simulations with
GBCIC. As we see in the figure, the curve separating
collapse to BHs lies much above the line below which the
Schwarzschild solution is unstable, as given in Eq. (87)
(red dash-dotted line). The precise location of this curve,
however, depends on the details of the initial scalar field
profile. As we will show in Sec. IV B 3, there are finely
tuned choices of scalar field initial data that do lead to the
formation of scalarized BHs.

2. Phase-space portrait for SBSCIC
in Gaussian ESGB gravity

We now consider again the collapse of the Gauss-Bonnet
scalar field into an otherwise stable boson star (the SBSCIC
case), but this time in Gaussian ESGB theory. The phase
space portrait we obtain is shown in Fig. 9. As in the shift-
symmetric case, for sufficiently weak initial data, the scalar
field perturbation disperses and the end state is a boson star
(blue region). For any fixed value of l ≠ 0, however, as the
strength of the initial perturbation increases, the evolution
forms NERs inside which hyperbolicity is lost (green
regions). Unlike in the shift symmetric case, however,
we do not find a maximum value of l for which NERs
always appear (i.e., there is no analog of the maximum-l,

vertical line of Fig. 6). Eventually, for sufficiently strong
initial perturbations, the scalar field collapses to a BH
(yellow region) and all NERs are hidden inside the horizon.

3. Phase-space portrait for BHIC
in Gaussian ESGB gravity

We finally consider again an infalling scalar field
perturbation into an otherwise stable BH (the BHIC case),
but this time in Gaussian ESGB theory. The phase space
portrait is shown in Fig. 10. As noted before, the existence
line from BHIC (shown in purple) depends on the strength
of initial data and can lie anywhere between the purple line
and the green line. Nevertheless, for the present choice of
parameters (A ¼ 10−3, rl ¼ 8, and ru ¼ 12), we find that
one can form some scalarized BHs for which the elliptic
regions are not naked, but instead are hidden inside the AH
of the scalarized BHs. This set of scalarized solutions lies
very close to the Schwarzschild instability line, and their
mass can be best fit by the line

MBH ¼ ð1.08� 0.01Þl: ð88Þ

These results are consistent with those of [34], which found
that the evolution of spherically symmetric BHs smaller
than MBH ¼ 1.09l leads to NERs.
Our results suggest that one has to be careful in

interpreting the results obtained in the decoupling limit,
such as in Refs. [31,32]. For the model we consider in this
paper, the decoupling limit would result in exponential
growth of the scalar field on the GR background, if the

FIG. 9. Phase space portrait of end states for a scalar field
perturbation of a boson star (SBSCIC case) in Gaussian ESGB
theory, with initial scalar field parameters rl ¼ 18, ru ¼ 22, and
A ¼ 10−3. The strength of the scalar field amplitude required to
destabilize the star decreases as one increases the coupling
constant l. The dividing line between evolution into NER and
dispersion back to the stable boson star is shown in blue. Observe
that for all values of l, NERs generically arise for sufficiently
strong initial scalar field perturbations.

FIG. 8. Phase space of scalar collapse in an otherwise flat
spacetime (the GBCIC case) in Gaussian ESGB theory with
μ ¼ 3. Observe that, as in the shift-symmetric case, the phase
space contains three possible end states: dispersion to flat space
(blue region), collapse leading to NERs and the breakdown of
hyperbolicity (green region), and collapse to nonhairy, Schwarzs-
child BHs (yellow region). The dash-dotted red line indicates the
region below which the Schwarzschild solution is unstable to
scalar hair growth [see Eq. (87)]. Observe that for all simulations,
scalar field collapse never leads to spontaneously scalarized BHs
due to the emergence of NERs at small scalar field masses.

WHERE AND WHY DOES EINSTEIN-SCALAR-GAUSS-BONNET … PHYS. REV. D 107, 044044 (2023)

044044-15



mass of the GR solution is below the Schwarzschild
instability line of Eq. (87). This, however, does not mean
that the BH spontaneously scalarizes if one backreacts the
scalar field, because NERs may in fact appear. In reality,
what the decoupling analysis implies is that either the
solution spontaneously scalarizes or the theory exits its
domain of validity due to the loss of hyperbolicity.

4. Generalization to other values of μ

At this junction, one may wonder how our results and
conclusions would change if we changed the value of μ in
Eq. (84). To understand this, we look at the Lagrangian for
a general μ:

L ¼ R − ð∇ϕÞ2 þ l2

μ
ð1 − e−μϕ

2ÞG: ð89Þ

The scalar field equation of motion is then given by

□ϕþ l2ϕe−μϕ
2

G ¼ 0: ð90Þ

Rescaling the scalar field via ϕ̃ ¼ ffiffiffiffiffiffiffiffi
μ=3

p
ϕ, we then find

□ϕ̃þ l2ϕ̃e−3ϕ̃
2

G ¼ 0: ð91Þ

Therefore, the μ constant in reality can be reabsorbed
through a field redefinition, and only the coupling l
determines the evolution equations. As a corollary, if
one were to repeat the linear stability analysis of [52,54]

with these equations, one would indeed find that
Schwarzschild BHs suffer tachyonic instability if

MBH ≤ 1.174l: ð92Þ

Although the onset of the BH scalarization instability
is unchanged by the value of μ, the amplitude of the scalar
field around a scalarized BH does change, thus reducing
the effect of the scalar Gauss-Bonnet corrections to the
equations of motion. This fact was used in [89] to evolve a
collapsing fluid simulation through the formation of a BH in
the Gaussian theory. By picking large values of μ, the authors
were able to evolve the full theory without any loss of
hyperbolicity. We show the phase space for μ ¼ 48 in the
GBCIC case in Fig. 11. Observe that the Schwarzschild
instability line overtakes the line dividing NERs from BH
collapse. Therefore, one can form scalarized BHs with
μ ¼ 48 without the loss of hyperbolicity for sufficiently
large l. The amount (amplitude) of the scalar hair on the BH,
however, decreases by a factor of

ffiffiffiffiffiffiffiffi
1=μ

p
as compared to the

μ ¼ 3 theory, which leads to smaller observable effects.

V. CONCLUSIONS AND FUTURE DIRECTIONS

ESGB gravity captures the leading-order, scalar-
tensor interactions in low-energy theories of quantum
gravity [40–43]. While the equations of motion for the
theory can be solved for weakly coupled solutions (up to
truncation error) using the techniques of numerical rela-
tivity [34,37,38,44,56], they can break down when the

FIG. 11. Phase space portrait for the collapse of the Gauss-
Bonnet scalar field on an otherwise flat spacetime (the GBCIC
case) in the Gaussian theory with μ ¼ 48. Observe that the
Schwarzschild instability line crosses the line dividing NER
formation at l ∼ 2.1. Therefore, for this value of μ one can
collapse the Gauss-Bonnet scalar field into scalarized BHs. The
magnitude of the scalar hair, however, is suppressed by a factor of
μ−1=2, thus reducing the impact of the Gauss-Bonnet correction
on observable effects.

FIG. 10. Stability of small BHs is Gaussian theory with μ ¼ 3
with BHIC. We set a fixed scalar field perturbation with rl ¼ 8,
ru ¼ 12, and A ¼ 10−3. The subsequent evolution of the scalar
field results in NER for BH masses below the purple line. We also
show the Schwarzschild instability line (87) as a dashed red line.
The green line separating the collapse to NER with GBCIC is
shown in green (the same line is shown in Fig. 11). The purple
line can be shifted closer to the green line by increasing the
amplitude of the scalar field perturbation.
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curvature scales grow too large [34,65,66,87]. This break-
down can be interpreted as indicating that the theory has
entered a strong coupling regime, where higher-order
corrections to the equation of motion become important.
In this paper, we performed a detailed investigation of

the breakdown of the equations of motion for two ESGB
theories (a shift-symmetric and a Gaussian one) and derived
a gauge-invariant expression for the principal symbol for
general ESGB theories of gravity in spherically symmetric
spacetimes. Our expression for the principal symbol show
that (at least in spherical symmetry), the breakdown of the
equations of motion arises first in regions where the
geodesic focusing is strong compared to the length scales
set by the gradient present in the field [see Eqs. (34) and
(41) for a precise condition]. Moreover, the breakdown is
not tied to the violation of the null convergence condition
which underlies the BH area theorem [79], and which is
generically violated in solutions to ESGB theories of
gravity [90]. While the formulas we derived [Eqs. (34)
and (41)] for the breakdown of the theory only hold for
spherically symmetric spacetimes, it may serve as a useful
heuristic diagnostic to determine the causes of breakdown
in full 3þ 1 simulations of the theory.
Moreover, in this paper, we also performed a detailed

study of the nonlinear, dynamical stability of compact
objects. In particular, we considered three types of spheri-
cally symmetric initial data (see Table I and Fig. 1): the
infall of a shell of Gauss-Bonnet scalar on an otherwise flat
spacetime, on an otherwise stable boson star, and on an
otherwise stable, hairy black hole. We then numerically
simulated the 1þ 1 evolution of the ESGB field equations
of these data (in both a shift-symmetric and Gaussian
theory) to determine whether the end state was the same as
the unperturbed initial data (i.e., that without the infalling
scalar field), whether it was a black hole (identified through
the formation of an apparent horizon), or whether it was the
formation of a NER, which we determined through the
gauge invariant approach mentioned above.
When considering the collapse of the Gauss-Bonnet

scalar in an otherwise flat spacetime, we found that there is
a “gap” in the phase space between gravitational collapse to
BHs and dispersion to flat spacetime, extending earlier
work [65,87]. We also showed that the size of this gap
increases as the value of the coupling constant increases.
Our analysis also found that the hyperbolicity breaks down
precisely in the region where spontaneous scalarization is
conjectured to occur for the Gaussian theory. This result
was suggested in [34], but we strengthen it here by proving
that the breakdown in hyperbolicity is gauge invariant and
also by providing the complete picture of the phase space
of end states. These results indicate that the phase space
available for spontaneous scalarization and descalarization,
observed, e.g., in Refs. [31,32] without backreacting the
scalar field onto the metric, might be quite small and
require fine-tuning of initial data.

When considering the perturbations of an (otherwise
stable) boson star in its ground state by an infalling Gauss-
Bonnet scalar field, we showed that the structure of the
phase space is very similar to that of critical gravitational
collapse with Gauss-Bonnet collapse initial conditions.
This result indicates that larger values of the coupling
constant can push compact objects, such as white dwarfs
and neutron stars, into the strongly coupled regime (and
hence out of its regime of predictability). Moreover, our
results indicate that the formation of spontaneously sca-
larized black holes from the collapse of stars may require
fine-tuned initial data.
When considering perturbations of an (otherwise stable)

hair black hole, we were able to study the size of the
smallest possible BHs5 allowed in both the shift symmetric
and the Gaussian theory. In the shift symmetric theory,
we showed that the smallest possible BHs lie above the
existence line obtained by static analysis. For the Gaussian
theory, we showed that the size of the smallest possible
BHs lie very close to the Schwarzschild instability line,
again confirming that spontaneous scalarization might
require fine-tuning of initial data and coupling constants
[89]. Our results indicate that the kind of initial data
considered is very important when studying gradient
expansions of gravity, such as in ESGB theory.
Our work points to a few natural avenues to explore in

the future. One direction would be to use our gauge
invariant formalism to study the formation of NER in
theories that include terms such as αðϕÞðð∇ϕÞ2Þ2 in the
action [37,91], which we set to zero in this paper. It would
be very straightforward to extend our derivation to include
these terms. Indeed, recent work has investigated in detail
the hyperbolic properties of “K-essence” theories, which
include terms such as αðϕÞ [92,93].
A second direction would be to extend the analysis

performed here to axisymmetric gravitational collapse and
obtain sufficient conditions for the breakdown of hyper-
bolicity. Our gauge invariant approach made heavy use
of spherical symmetry to trade second derivatives of the
metric for second derivatives of the scalar field. This is
justified in spherical symmetry because the gravitational
degrees of freedom are gauge degrees of freedom. It is not
entirely clear as to how one could extend our approach to
axisymmetry since propagating gravitational degree of
freedom mix with scalar degrees of freedom.
Spinning black holes are smaller than nonspinning

black holes with the same mass. Therefore, the addition
of angular momentum may further shrink the size of
parameter space available for stable evolution of BHs in
ESGB gravity. Studying the impact of rotation would also
allow for the exploration of ESGB gravity theories that

5The strength of the initial perturbation controls the breakdown
of hyperbolicity; therefore, the dynamical stability of compact
objects is tied with the kind of initial perturbation one considers.
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allow for the spin-induced spontaneous scalarization of
black holes [32,94–97]. It would be interesting to explore if
this phenomena also falls in the region of the parameter
space where the theory loses hyperbolicity fails.
Finally, we emphasize that a more general analysis of the

characteristic polynomial of ESGB gravity (among other
theories) was carried out in [71]. It would be interesting to
compare our results in detail to those obtained in that work,
which may provide guidance on how to address some of the
projects we mentioned above.
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APPENDIX A: SPHERICAL DECOMPOSITION
OF THE METRIC AND CONSTRUCTION OF Pab

1. Metric, Christoffel symbol, and
components of curvature tensor

In this section we list the Christoffel symbols and the
curvature components obtained from the metric decom-
position (10). The Christoffel symbols are given by [78]

Γa
bc ¼ ð2ÞΓa

bc; ðA1Þ

Γa
AB ¼ −ΩABrDar; ðA2Þ

ΓA
Bc ¼

δAB
r
Dcr; ðA3Þ

ΓA
BC ¼ ðsÞΓA

BC; ðA4Þ

Γa
Ac ¼ ΓA

ac ¼ 0: ðA5Þ

Curvature components are given by [78]

Rabcd ¼ Rabcd ¼
1

2
Rðαacαbd − αadαbcÞ; ðA6Þ

RaAbB ¼ −ðrDaDbrÞΩAB; ðA7Þ

RABCD ¼ ½1 − ðDrÞ2�r2ðΩACΩBD − ΩADΩBCÞ; ðA8Þ

where Rabcd and R denote the two-dimensional curvature
tensor associated with the metric αab. The components of
the double dual of the Riemann tensor are given by

ð�R�Þabcd ¼
½ðDrÞ2 − 1�

r2
ðαacαbd − αadαbcÞ; ðA9Þ

ð�R�ÞaAbB ¼ rΩABðαabD2r −DaDbrÞ; ðA10Þ

ð�R�ÞABCD ¼ −
Rr4

2
ðΩACΩBD − ΩADΩBCÞ: ðA11Þ

The components of contracted curvature scalars are given
by [78]

Rab ¼
1

2
Rαab −

2

r
DaDbr; ðA12Þ

RAB ¼ ½1 − ðDrÞ2 − rD2r�ΩAB; ðA13Þ

Gab ¼ αab

�
2

r
D2rþ ðDrÞ2 − 1

r2

�
−
2

r
DaDbr; ðA14Þ

GAB ¼ ΩAB

�
rD2r −

r2

2
R
�
; ðA15Þ

R ¼ Rþ 2

r2
½1 − ðDrÞ2� − 4

r
D2r; ðA16Þ

G ¼ 4

r2
½2ðD2rÞ2 − 2ðDaDbrÞ2 þ ð1 − ðDrÞ2ÞR� ðA17Þ

¼ 8

r2
Da½DarD2r − ðDbrÞDaDbr� þR

r2
: ðA18Þ

The Gauss-Bonnet invariant is topological (a total deriva-
tive) as we can see from the above expression (as the 2D
Ricci scalar is topological—note from the metric determi-
nant

ffiffiffiffiffiffi−gp ¼ r2
ffiffiffi
α

p ffiffiffiffi
Ω

p
). We also note that the Ricci scalar

Rab and the Gauss-Bonnet scalar G can be written down in
the following equivalent form using the STF operators
defined in Eq. (11):

Rab ¼ −
2

r
λhabi½r� þ

αab
2

�
R −

2

r
λ½r�

�
; ðA19Þ

G ¼ 4

r2
λ½r�2 − 8

r2
λhabi½r�λhabi½r� −

4σ

r2
R; ðA20Þ

where the scalar function σ is defined in Eq. (18).

2. Projection of gravitational equations of motion

We start by projecting Eq. (2) onto the indices ða; bÞ,

Eab ¼ Ehabi þ
1

2
αabE2; ðA21Þ

where
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Ehabi ¼−
2

r
λhabi½r�−Thabi

þ
�
16l2ðDcrDcfÞ

r2
λhabi½r�þ

8l2σ

r2
λhabi½f�

�
; ðA22Þ

E2 ¼
λ½r�
r

þ σ

r2
−
�
8l2ðDcrDcfÞ

r2
λ½r� þ 4l2σ

r2
λ½f�

�
− T2:

ðA23Þ

These equations can be solved for the trace-free and trace
parts to obtain

λhabi½r� ¼
4l2σ

μ
λhabi½f� −

r2

2μ
Thabi; ðA24Þ

λ½r� ¼ ð4l2λ½f� − 1Þσ
μ

þ r2T2

μ
: ðA25Þ

The projection of equations onto indices ðA;BÞ results in

EAB ¼ ΩAB

	
−
r
2
Rμþ rλ½r� þ 8l2rλhcdi½r�λhcdi½f�

− 4l2rλ½r�λ½f�−


TAB ¼ 0: ðA26Þ

Contracting with ΩAB and solving for R we obtain

R ¼ 16l2

μ
λhcdi½f�λhcdi½r� −

8l2

μ
λ½f�λ½r� þ 2λ½r�

μ
−
rT̃
μ
:

ðA27Þ

We can now use Eqs. (A24), (A25), and (A27) to write the
Gauss-Bonnet scalar (A20) as

G ¼ 12

r2
λ½r�2 − 24

r2
λhabi½r�λhabi½r� −

8

μ
λhabi½r�Thabi

−
8T2

μ
λ½r� þ 4σ

μr3
T̃: ðA28Þ

The above equation can be simplified to

G¼ 192λ½f�2σ2l4

μ2r2
þ32λ½f�σl2ð2r2T2−3σÞ

μ2r2

−
384λhabi½f�λhabi½f�σ2l4

μ2r2
þ64λhabi½f�Thabiσl2

μ2

−
2r2ThabiThabi

μ2
−
2ð−2r5T2

2þ8r3σT2−6rσ2−2μσT̃Þ
μ2r3

;

ðA29Þ

using Eqs. (A24) and (A25).

3. Details of the construction of the principal symbol

The definition of the principal symbol is given in Eq. (6).
We note that because of spherical symmetry the scalar field
dynamics and characteristics are effectively restricted to the
t-r plane. That is, we only consider characteristic covectors
of the form ξμ ¼ ðξa; 0Þ (the angular indexed components
are zero). In spherical symmetry Eq. (6) reduces to

PðξÞ ¼ Pabξaξb ¼
∂Eϕ

∂ð∂a∂bϕÞ
ξaξb; ðA30Þ

where Eϕ is defined in Eq. (25). Let us use the symbol P½X�
to denote the principal part of a quantity X. As the scalar
degree of freedom drives the evolution of ESGB gravity in
spherical symmetry, we consider P½Eϕ� as the candidate
principal symbol for those spacetimes. From Eq. (25)

P½Eϕ� ¼ P½DaDaϕ� þ l2f0P½G½f��
¼ αabξaξb þ l2f0P½G½f��: ðA31Þ

Let us now calculate P½G½f��. From Eqs. (21) and (22) we
see that

P½λhabi½r�� ¼
4l2σ

μ
P½λhabi½f�� ¼

4l2σf0

μ
Xhabi; ðA32Þ

P½λ½r�� ¼ 4l2σ

μ
P½λ½f�� ¼ 4l2σf0

μ
ξ22; ðA33Þ

where Xhabi ¼ ξhaξbi and ξ22 ¼ αabξaξb. Let us now sim-
plify P½G½f�� (24) using the above equations

P½G½f�� ¼ 24

r2
λ½r�P½λ½r�� − 48

r2
λhabi½r�P½λhabi½r��

−
8

μ
P½λhabi½r��Thabi −

8T2

μ
P½λ½r��;

¼ 24

r2

�
4l2σf0

μ

�
λ½r�ξ22 −

48

r2
λhcdi½r�

�
4l2σf0

μ

�
Xhcdi

−
8

μ

�
4l2σf0

μ

�
ThabiXhabi −

8

μ

�
4l2σf0

μ

�
T2ξ

2
2;

¼ 96l2σf0

r2μ
λ½r�ξ22 −

192l2σf0

r2μ
λhcdi½r�Xhcdi

−
32l2σf0

μ2
ThabiXhabi −

32l2σf0

μ2
T2ξ

2
2: ðA34Þ

We can now use the above equation in Eq. (A31) to get
P½Eϕ�≡ Pabξ

aξb:
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Pab ¼ αab

�
1þ 96l4σðf0Þ2

r2μ
λ½r� − 32l4σðf0Þ2

μ2
T2

�

−
192l4σðf0Þ2

r2μ
λhabi½r� −

32l4σðf0Þ2
μ2

Thabi: ðA35Þ

We can now trade the λhabi½r� term in the above equation for
the four-dimensional Ricci tensor Rhabi using Eq. (A19).
This finally simplifies Pab to

Pab ¼ αab

�
1þ 96l4σðf0Þ2

r2μ
λ½r� − 32l4σðf0Þ2

μ2
T2

�

þ 96l4σðf0Þ2
rμ

Rhabi −
32l4σðf0Þ2

μ2
Thabi ðA36Þ

¼ αab

�
1þ π1l4

�
λ½r� − r2

3μ
T2

��

þ π1l4r

�
Rhabi −

r
3μ

Thabi

�
; ðA37Þ

where π1 is defined in Eq. (20). We also provide the
following equivalent forms in terms of λ½f� and λhabi½f� of
the above equation using Eqs. (A24) and (A25), which may
be useful for numerical implementation:

Pab ¼ αab

	
1þ π1l4

�ð4l2λ½f� − 1Þσ
μ

þ 2r2

3μ
T2

�


þ π1l4r

�
Rhabi −

r
3μ

Thabi

�
ðA38Þ

⇔ Pab ¼ αab

	
1þ π1l4

�ð4l2λ½f� − 1Þσ
μ

þ 2r2

3μ
T2

�


þ π1l4r

�
2r
3μ

Thabi −
8l2σ

rμ
λhabi½f�

�
: ðA39Þ

APPENDIX B: BOSON STAR SOLUTIONS

Here we briefly review boson star solutions for the
theory (5) and summarize how we construct the boson star
initial data. For SBS initial data we are interested in how the
boson star is affected by the presence of the Gauss-Bonnet
scalar field. Therefore, we construct the boson star initial
data in GR and then superimpose the Gauss-Bonnet scalar
field later. We will also only consider the boson star in its
ground state [72,83]. Our coordinates are in Painlevé-
Gullstrand coordinates:

ds2 ¼ −α2ð1 − ζ2Þdt2 þ 2αζdtdrþ dr2 þ r2dΩ2: ðB1Þ

To construct the boson star initial data we use the following
ansatz for the complex scalar field ρ:

ρðt; rÞ ¼ ρ0ðrÞ exp ð−iωðtþ υðrÞÞÞ; ðB2Þ

where υðrÞ satisfies the following ordinary differential
equation (ODE):

υ0ðrÞ ¼ −
ζ

αð1 − ζ2Þ ; ðB3Þ

where the prime 0 indicates a radial derivative: υ0 ≔ dυ=dr.
We have defined σ so that the boson star solution ansatz is
computed in Schwarzschild-type coordinates (the υ0 essen-
tially cancels out the rescaled shift variable ζ in the metric).
Note that we can think of the variable ρ as giving us the
“density” of the complex scalar field. We next introduce
dimensionless variables (we have defined QðρÞ ≔ dρ=dr)

r̄ ≔ mbr; ðB4Þ

ῡ ≔ ωυ; ðB5Þ

ᾱ ≔
mbα

ω
; ðB6Þ

Q̄ðρÞ ≔
QðρÞ
mb

: ðB7Þ

In these variables the field equations in GR reduce to

ῡ0 ¼ −
ζ

ᾱð1 − ζ2Þ ; ðB8Þ

ζ0 ¼ −
r̄Q̄2

ðρÞ
4ζ

þ ζ

2r̄
þ 1

4
r̄Q̄2

ðρÞζ −
r̄ρ20
4ζ

þ r̄ρ20
4ᾱ2ζð−1þ ζ2Þ ;

ðB9Þ

ᾱ0 ¼
r̄ðᾱ2Q̄2

ðρÞð−1þ ζ2Þ2 þ ρ20Þ
2ᾱð−1þ ζ2Þ2 ; ðB10Þ

Q̄0
ðρÞ ¼ −

2ρ0
ᾱ2

þ ð−1þζ2Þð2r̄ρ0þQ̄ðρÞð−4þ2ζ2þr̄2ρ2
0
ÞÞ

r̄

2ð−1þ ζ2Þ2 ; ðB11Þ

ρ00 ¼ Q̄ðρÞ: ðB12Þ

The above system of equations can be solved as a shooting
problem with given ρc and asymptotically flat boundary
conditions (ρ ¼ 0, α ¼ 1, and ζ ¼ 0 at r ¼ ∞). The only
“free” parameter for the shooting method for the scaled
variables is ᾱ0. We therefore perform a search in ᾱ0.
The solution spectrum of boson star solutions are

characterized by the number of nodes (zero crossings) in
the profile of ρ0ðrÞ. The ground state consists of no nodes
and excited states consist of one or more nodes. We will
only consider boson stars in their ground state. After the
search for the ground state is finished for a given ρc, the
value of the frequency is obtained by
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ω

mb
¼ 1

ᾱð∞Þ : ðB13Þ

After the frequency of the boson star is obtained, we
transform the variables back to scaled variables and obtain
ρð0; rÞ from Eq. (B2). We use this profile as the initial data
for SBS. We also use the following definition for the radius
and the mass of the boson star:

Rstar ¼ R95; ðB14Þ

Mstar ¼ ζ2r=2jr¼∞; ðB15Þ

where R95 is the radius at which the density is 0.05
times ρc.

APPENDIX C: CONVERGENCE TESTS

In this appendix we describe our code in more detail and
then describe the convergence of our simulations. In the

code, we compactify the radial coordinate with the follow-
ing function [67]:

r ¼ x

ð1 − x2

x2∞
Þ ; ðC1Þ

where x∞ is the compactification length. We note that this
form of compactification preserves the symmetry proper-
ties of the functions near r ¼ 0. For all our simulations we
set x∞ ¼ 100. After compactification, we view the field
variables ðζ; α; P;Q;ϕÞ as functions of coordinates ðt; xÞ.
We use a uniform grid in ðt; xÞ coordinates with a Courant-
Friedrichs-Lewy (CFL) number of 0.2. We discretize the
spatial derivatives using second order finite difference
stencils. At the origin we stagger the grid and reflect
the value of the function using the symmetry properties of
the function (60)–(64). For BH spacetimes we discretize the
spatial derivatives using forward stencils at the excision
point up until 3 grid points before the location of the
apparent horizon and use central stencils thereafter. We find

FIG. 12. Convergence of the rr component of the tensor equations of motion Err [see Eq. (2)]. We achieve close to second order
convergence for all our runs.
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that this strategy of using forward finite difference stencils
reduces the oscillations one would observe when the
elliptic region begins to grow for BHs near the threshold
between evolution to stable scalarized BHs and naked
elliptic regions.
Our method for evolution for a single time step is as

follows. We first solve the constraint equations (48)
and (49) using Heun’s method to obtain ζ and α. After
the integration of the constraint, we evolve the time
evolution equations (50)–(52). Our time stepping method
uses second order stencils for spatial derivatives followed
by a RK4 time step of the discretized set of ODEs. We
continue the evolution until the system settles to a static
state or we form a naked elliptic region.
We now present convergence results from four different

runs in the shift symmetric theory (see Fig. 12):
(i) RS-1: Run with CIC and parameters l ¼ 0.5 and

A ¼ 0.1, which leads to the formation of a naked
elliptic region.

(ii) RS-2: Run with CIC and parameters l ¼ 0.5 and
A ¼ 0.18, which leads to the formation of scalar-
ized BH.

(iii) RS-3: Run with BHIC and parameters l ¼ 0.5 and
M ¼ 1.1, which leads to the formation of a naked
elliptic region outside the AH.

(iv) RS-4: Run with BHIC and parameters l ¼ 0.5 and
M ¼ 1.3, which leads to the formation of a stable
scalarized BH.

These four runs illustrate the possible end states of
gravitational collapse apart fromdispersion back to flat space.
For each of these runs we use three different resolutions. The
lowest resolution run has nx ¼ 5000 (dx ∼ 0.02) points, and
the medium resolution run and high resolution run have
double and quadruple the number of radial points of the
lowest resolution run. We use the Err component of the
gravitational equation of motion [see Eq. (2)] as a measure of
the rate of convergence. From Fig. 12 we see that we achieve
second order convergence for all our runs except for RS-1,
where we see slightly less than second order convergence.
From our discretization scheme we expect an order of
convergence between second and fourth orders (depending
on what terms in our code contribute the most to our error
budget). We have checked that we achieve similar results for
the Gaussian theory and for SBSCIC intial data.
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