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One of the key ingredients for making binary waveform predictions in a beyond-general-relativity (GR)
theory of gravity is understanding the energy and angular momentum carried by gravitational waves and
any other radiated fields. Identifying the appropriate energy functional is unclear in Hassan-Rosen
bigravity, a ghost-free theory with one massive and one massless graviton. The difficulty arises from the
new degrees of freedom and length scales which are not present in GR, rendering an Isaacson-style
averaging calculation ambiguous. In this article we compute the energy carried by gravitational waves in
bigravity starting from the action, using the canonical current formalism. The canonical current agrees with
other common energy calculations in GR, and is unambiguous (modulo boundary terms), making it a
convenient choice for quantifying the energy of gravitational waves in bigravity or any diffeomorphism-
invariant theories of gravity. This calculation opens the door for future waveform modeling in bigravity to
correctly include backreaction due to emission of gravitational waves.
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I. INTRODUCTION

The study of massive spin-2 particles can be traced back
to thework of Fierz and Pauli [1]. Their work was the first to
construct a linear solution to the relativistic wave equation
with the addition of a massive spin-2 field. Later, Salam
et al. added a massive spin-2 field with a massless graviton
demonstrating the use of a dynamical reference metric and
expanding on the theory of massive gravity [2]. However,
attempts to further the theory to a nonlinear regime failed
due to the presence of a ghostlike scalar propagating
mode [3]. It would not be for several more decades before
de Rham and Gabadadze showed that by using an effective
field theory (EFT) approach, specific coefficients can be
chosen such that the decoupling limit is ghost-free [4]. This
work led to the formulation of de Rham-Gabadadze-Tolley
theory, where the action was properly generalized to remove
additional scalar ghosts [5,6]. This theory’s breakthrough
was to introduce the proper interaction between the two
metrics in the Lagrangian which allowed for a closed form,
nonlinear action for a massive gravity theory without ghosts.

Following this work, Hassan and Rosen promoted the
auxiliary metric to a dynamical field [7–11]. This led
to a ghost-free theory with 7 degrees of freedom.
Massive bigravity (or bimetric gravity depending on your
source) [12] is the resulting theory and the one we are
interested in with this work.
Previous studies of this theory in astrophysical settings

have resulted in black hole [13–17], neutron star [18], exact
plane wave [19,20], and cosmological solutions [21–24].
However, these works showed there is no analog to
Birkhoff’s theorem for bigravity [12,25]. Particularly for
the case of black holes, this leads to the property that these
objects might have “hair” [14,17], the presence of which
would leave an imprint on the quasinormal mode frequencies
within the ring-down regime of a binary waveform [26]. The
past several years of gravitational-wave (GW) detections
have allowed for bounds to be placed on the ability of black
holes to have hair [27,28]. There are, moreover, cosmologi-
cal constraints on bigravity, see for example [22,24,29,30].
Although bigravity theories are usually considered to

explain the late-time cosmic expansion, there have been
studies regarding bigravity in the context of dark matter as
well [31]. There are instabilities in linear cosmological
perturbations in bigravity theories, which can be remedied
by adding a dark sector or considering special initial
conditions or backgrounds [31–34]. Furthermore, there
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are viable extensions of bigravity to chameleon bigravity to
make massive gravity compatible with solar system tests
without using the Vainshtein mechanism [35]. A con-
strained Hamiltonian theory of ghost-free bigravity that
contains four degrees of freedom instead of seven has been
obtained as well [36]. For simplicity we only consider the
Hassan-Rosen massive bigravity theory, though it should
be straightforward to apply the techniques of this paper to
other bigravity theories.
The presence of additional degrees of freedom for our

system could lead to a gravitational radiation flux for a
binary system that deviates from that expected in general
relativity (GR) [37,38]. In this paper, we will concern
ourselves with the study of energy flux in bigravity. This is
often found by first calculating an effective gravitational-
wave stress energy tensor and integrating this quantity
over a constant-time cross section at null infinity. Avariety
of methods for finding the energy-momentum tensor have
been found in GR, but some of the most common methods
used in GR include the “Isaacson” method [39,40],
method of a perturbed action [41], finding a pseudotensor
through the use of tensor densities to construct a con-
served quantity based on symmetry [42], as well as using
diffeomorphism invariance of a theory to build a con-
served quantity [43].
The methods above have several drawbacks when

attempting to apply them to bigravity. For one, the methods
above place little physical meaning on the quantities when
applied to a theory where two dynamical metrics are
present. For example, given the Isaacson method, we find
ourselves with two separate field equations, but how could
a “proper” source of the gravitational curvature be sepa-
rated out to call it the typical “stress-energy tensor.” This is
more straightforward in GR, but convoluted when it is
unknown how two metrics will act in general. A second
concern which arises is the issue of averaging, which
Isaacson performed in order to eliminate the higher
frequency variations in a gravitational wave, as well as

to obtain a conserved current which was gauge invariant.
With the current understanding of bigravity, the character-
istic length over which an averaging procedure needs to
take place is not clear (see Fig. 1). With the characteristic
curvature of two separate metrics, as well as the wavelength
of the graviton and any propagating GW wavelength,
finding an averaging procedure to damp out the highly
oscillatory terms is not trivial since how these lengths
compare to one another is not known a priori.
A second method of investigating the energy flux can be

through the use of a canonical current [44,45]. These
currents are locally conserved and associated with specific
Killing symmetries, and have been used for a variety of
applications in the literature [46–50]. Should we be
interested in the flux of energy of our system, we should
focus our efforts with a temporal Killing field. However,
this formulation will also allow for linear and momentum
flux based on translational or rotational Killing fields as
well [51]. The method of finding these conserved currents
involves the variation of the Lagrangian with respect to the
different dynamical fields considered in the problem. In this
work, we derive for the first time a conserved current in
bigravity theory. One aspect of note is the fact that although
the theory was motivated with the assumption that there
exists a massive graviton, the resulting quantity mFP does
not appear in the final result. An analogous situation
appears in the case of a massive scalar field, which we
discuss in the Appendix.
The paper is outlined as follows: in Sec. II we present an

overview of ghost-free massive bigravity in both a general
and linearized form. Section III discusses our attempts at
constructing conserved quantities. Here, we make use of
the Isaacson approach III A, method of canonical currents
III B, as well as an overview of asymptotic charges [52,53]
in Sec. III C. We use the conventions for the metric,
Riemann tensor, and differential forms from Wald [54].
We work in geometric units, where G ¼ c ¼ 1, but ℏ ≠ 1.
For simplicity of notation for our various metrics,

FIG. 1. Length scale comparison for a typical binary system in bigravity. In GR, there is a clear hierarchy of length scales
RS ≪ Rorb ≪ λGW ≪ LST. There is an unambiguous choice for Lavg to separate the last two, λGW ≪ Lavg ≪ LST. Bigravity introduces
additional length scales, without an obvious hierarchy, so the choice of averaging length scale is ambiguous.
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quantities pertaining to the gab metric will be written as
standard notation while those relating to fab will be
denoted with an overhead tilde (˜). While using an
index-free (or partially index-free) notation for tensors,
we denote these tensors in bold (this is standard for
differential forms; we merely extend this convention to
all tensors). In particular, we use bold for tensors that
appear as the arguments of functions and functionals,
except for the determinant.

II. REVIEW OF BIGRAVITY

A. General formulation

The theory of ghost-free massive bigravity is discussed
in [10], and we present their results here. We start with the
Lagrangian density for the theory, which (using the
formalism laid out in e.g., [44]) we write as a four-form L1

L ¼ Rϵþ α2R̃ ϵ̃−2m2Vϵ; ð1Þ

where the theory contains two dynamical metrics gab and
fab. The four-form ϵ denotes the volume form defined with
respect to the metric gab, and R denotes the Ricci scalar
constructed from gab—as remarked in the Introduction,
quantities with tildes are associated with fab, and so ϵ̃ is the
volume form defined with respect to fab and R̃ the Ricci
scalar constructed from fab.
The potential V is constructed in such a way as to

eliminate the Boulware-Deser ghost [5,55]:

V ¼
X4
n¼0

βnenðSÞ; ð2Þ

where βn are dimensionless interaction parameters,2 and
enðSÞ are the elementary symmetric polynomials con-
structed from the eigenvalues of the tensor Sab:

detðI þ tSÞ≡X∞
n¼0

tnenðSÞ: ð3Þ

Equivalently, they are given by the tensorial expression [56]

enðSÞ≡ S½a1a1 � � � San�an : ð4Þ

It follows from this expression that e4ðSÞ ¼ det S and
enðSÞ ¼ 0 for n > 4. The tensor Sab is defined to be the
“square root” of the tensor gacfcb:

SacScb ¼ gacfcb: ð5Þ

We assume g, f are both invertible, and that the principal
square root S exists, which requires that the null cones
intersect, admitting a common timelike direction and
a hypersurface that is spacelike with respect to both
metrics [57]; then S−1 must also exist. Evaluating the
elementary symmetric polynomials for ðS−1Þab yields

enðS−1Þ ¼
e4−nðSÞ
e4ðSÞ

; ð6Þ

and since det S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
, it follows that

enðS−1Þϵ̃ ¼ e4−nðSÞϵ: ð7Þ

This implies that the Lagrangian four-form in Eq. (1) is
invariant under the discrete transformation

ðα−1gab; α4−nβnÞ ↔ ðαfab; αnβ4−nÞ: ð8Þ

Finally, note that m has units of inverse length in units
where G ¼ c ¼ 1, but ℏ ≠ 1 (as is typically done in
classical general relativity). As this form is conventional,
we will not introduce a factor of ℏ into the equations which
appear in this paper.
Varying the Lagrangian and neglecting total derivative

terms (see Sec. III B for more details on these terms, which
are quite important to the construction of conserved
currents) we obtain a set of field equations which we
express as

Gab þm2Vab ¼ 0; ð9aÞ

G̃ab þm2

α2
Ṽab ¼ 0; ð9bÞ

where Gab is the standard Einstein tensor constructed from
gab, whose indices are raised with gab; similarly, G̃ab is
constructed from fab and has its indices raised using fab.
The “potential” terms Vab and Ṽab are defined by

δðVϵÞ ¼ 2ðVabδgabϵþ Ṽabδfabϵ̃Þ: ð10Þ

The details of deriving Eq. (9) are given in Sec. III B below.
The tensors Vab and Ṽab can be written in terms of two
tensor fields, Ua

bðSÞ and Ũa
bðSÞ, which only depend on

either metric through S:

Vab ¼ Ua
cðSÞgbc; Ṽab ¼ Ũa

cðSÞfbc: ð11Þ

These tensors, in turn, can be expressed in terms of the
elementary symmetric polynomials as

1Note that this expression is missing a conventional factor of
1

16π that typically appears; this is only for brevity, and can easily be
added to any of the expressions that appear in this paper.

2Note that, by rescaling these parameters, one can eliminatem;
similarly, in the case where fab does not couple to matter, one can
eliminate α.
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Ua
bðSÞ ¼

X3
n¼0

ð−1ÞnβnðYnÞabðSÞ; ð12aÞ

Ũa
bðSÞ ¼

X3
n¼0

ð−1Þnβ4−nðYnÞabðS−1Þ; ð12bÞ

where the tensors ðYnÞabðSÞ are defined by

ðYnÞabðSÞ≡
Xn
k¼0

ð−1ÞkekðSÞðSn−kÞab: ð13Þ

An alternate definition is given by the variation of the
elementary symmetric polynomials {note the factor of
ð−1Þn difference from Eq. (1.44) of [56], which arises
from a difference in the definition of ðYnÞabðSÞ}:

δ½enþ1ðSÞ� ¼ ð−1ÞnðYnÞabδSba: ð14Þ

Another interesting property of these tensors is the fact that
ðYnÞab ¼ 0 in n dimensions is equivalent to the Cayley-
Hamilton theorem [58]. The exact derivation of this form of
Vab and Ṽab is presented in detail in, for example, [59].
By the diffeomorphism invariance of this theory, one can

derive a divergence identity given by [60]

gab∇cVbcϵþ fab∇̃cṼ
bcϵ̃ ¼ 0: ð15Þ

In addition to this, Eqs. (10) and (5) can be used to derive
the following identity [14,61]:

gabVbcϵþ fabṼ
bcϵ̃ − Vδacϵ ¼ 0: ð16Þ

B. Linearized theory

We now consider a linearization of our metrics about a
general background solution; following [44], we use the
same notation as we used for variations above: consider a
one-parameter family of metrics gabðλÞ and fabðλÞ, and
define the variation operation δ for any tensor QðλÞ by

δQ≡ ∂Q
∂λ

����
λ¼0

: ð17Þ

Analogously, in the case where one has an n-parameter
family (with parameters λ1;…; λn), one can define a
variation with respect to any subset of these parameters:

δi1 � � � δijQ≡ ∂
jQ

∂λi1 � � � ∂λij

����
λ1¼���¼λn¼0

: ð18Þ

For simplicity, we denote the background value by Q.
Moreover, when computing higher variations, we write

δnQ≡ 1

n!
∂
nQ
∂λn

����
λ¼0

; ð19Þ

the generalization to the multiparameter family case is
analogous to Eq. (18).
While the above formalism will be very useful in

Sec. III B below, we specialize in this section to the case
of only a single variation, and a one-parameter family. If
one has (in general) nonlinear functional Q½Φ�, where Φ is
some tensor field, then one can construct a linear functional
by considering a one-parameter familyΦðλÞ and taking the
variation of Q:

δQ½Φ�≡ Q
ð1Þ
fδΦg: ð20Þ

The underset number here indicates the order of the
expansion, which in this case is linear. Here, we denote
explicitly (multi)linear functionals by curly braces, and
reserve square brackets for arbitrary functionals. Similarly,
for the case of a nonlinear function QðΦÞ, we write instead

δQðΦÞ≡ Q
ð1Þ

· δΦ; ð21Þ

where the “·” indicates contraction with the indices of δΦ.
Except in cases where it is particularly relevant, we
suppress the (potentially nonlinear) dependence on Φ,
keeping only the linear dependence as explicit: the above
equation is an example of this, as (in general) Q

ð1Þ
will

depend on the background value Φ.
We now apply this notation to the problem at hand.

Taking a variation of Eq. II A, we find that

G
ð1Þ

abfδgg þm2δVab ¼ 0; ð22aÞ

G̃
ð1Þ

abfδfg þm2

α2
δṼab ¼ 0: ð22bÞ

Using Eq. (11), we find that

δVab ¼ −Vacgbdδgcd þ gbcU
ð1Þ

a
cd

eδSde; ð23aÞ

δṼab ¼ −Ṽacfbdδfcd þ gbc Ũ
ð1Þ

a
cd

eδSde: ð23bÞ

We do not expand these results further, as the formulas for
the U

ð1Þ
a
cd

e, Ũ
ð1Þ

a
cd

e, and δSab are all quite complicated.

However, as this expression will be useful below, we write
out the variation of ðYnÞab: using Eqs. (13) and (14), we
find that
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δ½ðYnÞabðSÞ� ¼
Xn
k¼0

ð−1Þk
�
ð−1Þk−1ðYk−1ÞdcðSÞðSn−kÞab

þekðSÞ
Xn−k−1
j¼0

ðSjÞacðSn−k−j−1Þdb
�
δScd: ð24Þ

As the general case is rather complicated, we consider
only the case where the background solutions are propor-
tional to one another [62],

fab ¼ c2gab; ð25Þ

where c is a constant (not to be confused with the speed of
light, which is 1 in our units). Proportionality of fab and gab
implies that

fab ¼ c−2gab; Sab ¼ cδab; ϵ̃ ¼ c4ϵ; ð26Þ

whereas the constancy of c implies that

∇̃a¼∇a; G̃ab¼c−4Gab; G̃
ð1Þ

abfhg¼c−6G
ð1Þ

abfhg; ð27Þ

for any rank two tensor hab. Moreover, we have that

enðS�1Þ ¼ c�n

�
4

n

�
; ð28Þ

so that

ðYnÞabðS�1Þ¼ c�n
Xn
k¼0

ð−1Þk
�
4

k

�
δab ¼ð−1Þnc�n

�
3

n

�
δab:

ð29Þ

These equations, together with Eq. (24), then imply that

δ½ðYnÞabðS�1Þ� ¼ c�ðn−1Þ Xn
k¼0

ð−1Þk
��

3

k − 1

�
δdcδ

a
b

þ ðn − kÞ
�
4

k

�
δacδ

d
b

�
δðS�1Þcd

¼ ð−1Þnc�ðn−1Þ
�

2

n − 1

�
ðδdcδab − δacδ

d
bÞ

× δðS�1Þcd: ð30Þ

Equations (28) and (29) imply that

Vab ¼ Λg

m2
gab; Ṽab ¼ Λf

m2α2c4
gab; ð31Þ

where

Λg ¼ m2ðβ0 þ 3cβ1 þ 3c2β2 þ c3β3Þ; ð32aÞ

Λf ¼
m2

α2c2
ðcβ1 þ 3c2β2 þ 3c3β3 þ c4β4Þ: ð32bÞ

As such, the background Einstein equations in Eq. (9)
become

Gab þ Λggab ¼ 0 ¼ Gab þ Λfgab: ð33Þ

This set of equations is only consistent if Λg ¼ Λf, which
provides a constraint in terms of a quartic polynomial in c
(given the coefficients βn). Moreover, since this back-
ground has a nonvanishing cosmological constant, it cannot
be asymptotically flat, unless Λ ¼ 0. For arbitrary values of
the coefficients βn, this cannot simultaneously be enforced
while also demanding that Λg ¼ Λf (as this would require
simultaneously solving the polynomial equations obtained
by setting the right-hand sides of Eq. (32) to zero with a
single c). As such, one can think of this as a constraint on
the coefficients βn.
The real advantage of the proportional background,

however, is in simplifying the formula for δSab, which
takes the form

δSab ¼
1

2c
gacðδfcb − c2δgcbÞ; ð34Þ

which comes from expanding the variation of Eq. (5).
Moreover, using Eqs. (12) and (24), together with the fact
that δðS−1Þab ¼ −δSab, one finds that

U
ð1Þ

a
bc

dδScd ¼ −c4 Ũ
ð1Þ

a
bc

dδScd

¼ m2
FP

m2

α2c
1þ α2c2

ðδabδScc − δSabÞ; ð35Þ

where

m2
FP ≡m2

�
1þ 1

α2c2

�
ðcβ1 þ 2c2β2 þ c3β3Þ: ð36Þ

Note that, like m, mFP has units of inverse length. As such,
using Eq. (23), Eq. (22) becomes

G
ð1Þ

abfδgg ¼ Λgacgbdδgcd

−m2
FP

α2c
1þ α2c2

ðgabδScc − gbcδSacÞ; ð37aÞ

G
ð1Þ

abfδfg ¼ Λgacgbdδfcd

þm2
FP

c
1þ α2c2

ðgabδScc − gbcδSacÞ: ð37bÞ

Following the work of [55], this form of the linearized
Einstein equations can be decoupled by defining
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γabðλÞ≡gabðλÞþα2fabðλÞ; ϕabðλÞ≡gacScbðλÞ; ð38Þ

such that

δγab ¼ δgabþα2δfab; δϕab ¼
1

2c
ðδfab−c2δgabÞ: ð39Þ

Adding together Eq. (37a) and α2 times Eq. (37b) shows
that δγab obeys the linearized Einstein equations with
cosmological constant Λ:

G
ð1Þ

abfδγg ¼ Λgacgbdδγcd: ð40Þ

On the contrary, subtracting c2 times Eq. (37a) from
Eq. (37b), and then dividing by an overall factor of 2c
shows that δϕab obeys the massive Fierz-Pauli equations,
with mass mFP:

G
ð1Þ

abfδϕg¼
��

Λ−
m2

FP

2

�
gacgbdþm2

FP

2
gabgcd

�
δϕcd: ð41Þ

An interesting property of δϕcd is that it is gauge
invariant: under a linearized diffeomorphism, since

δgab → δgab þ £ξgab; δfab → δfab þ c2£ξgab; ð42Þ

it follows that

δγab → δγab þ ð1þ α2c2Þ£ξgab; δϕab → δϕab: ð43Þ

Moreover, by taking the divergence and trace of Eq. (41),
one can show that (see, for example, [63])

gab∇aδϕbc ¼ 0; gabδϕab ¼ 0: ð44Þ

III. CONSERVED QUANTITIES

We now consider the problem of finding a suitable notion
of an energy flux in bigravity. For simplicity, we only
consider the problem of defining such a quantity for
perturbative solutions: that is, we only want to construct
a conserved current out of gab, fab, δgab, δfab, and a
Killing vector ξa.
In this section, we first consider the most commonly

adopted approach to conserved currents in linearized
gravity, the Isaacson stress-energy tensor, and discuss
the various issues which arise in extending it to bigravity.
We then consider the (much simpler) canonical current, and
show that it is equivalent to a current, which we call the
“effective source current,” generalizing the conserved
current constructed from the effective stress-energy tensor
of general relativity. We then apply this general framework
to the case of bigravity, both generally and in the case
where the backgrounds gab and fab are proportional.
Finally, we discuss a different approach to conserved

quantities in bigravity through asymptotic charges (defined,
for example, through theWald-Zoupas procedure [53]), and
why we do not consider these charges in this paper.

A. Difficulties with the Isaacson stress-energy tensor

One way that has often been used to find such currents is
to start with a notion of an energy-momentum tensor
through the “Isaacson” approach [39,40]. In source-free
GR, the use of the Einstein equations at first order gives the
equations of motion, while at the second order the source
term for the Einstein equations is an “effective source”
given by the second-order perturbation to the Einstein
tensor:

G
ð1Þ

abfδ2gg ¼ −
1

2
G
ð2Þ

abfδg; δgg ð45Þ

(the operator on the right-hand side of this equation is
defined explicitly below). Moreover, assuming that the
perturbations δgab are high-frequency solutions, it becomes
appropriate to average the right-hand side of this equation,
writing

Tab
I ≡ −

1

16π
hG
ð2Þ

abfδg; δggi; ð46Þ

where h� � �i denotes a short-wavelength averaging pro-
cedure, for example the Brill-Hartle approach [64], or as
described by Zalaletdinov [65]. It is this averaging pro-
cedure which becomes ambiguous in the extension to
bigravity.
As understood in GR, an averaging procedure is used in

the presence of small perturbations on a strongly curved
background [64]. Waves are taken to be small enough on
the background to be analyzed in a linearized gravity
approach, where their wavelengths λGW are short compared
to the curvature scale LST of the spacetime on which they
propagate: LST ≫ λGW.
For GWs in vacuum GR on a curved background, there

are only two length scales to consider. However, in
bigravity, we have additional length scales to consider,
as represented in Fig. 1. First, the procedure is already
ambiguous because there are two metrics. The Brill-Hartle
approach requires using the parallel propagator of one
metric—does it matter which one?
Second, the massive degree of freedom introduces its

own length scale, the Compton wavelength of the graviton,
λc. In GR, when there are only two length scales λGW ≪
LST which are parametrically separated, we only need to
choose an arbitrary averaging length scale Lavg which
separates the two, λGW ≪ Lavg ≪ LST. With the introduc-
tion of λc, we need to know the hierarchy between λc and
LST, and whether Lavg will end up averaging over λc. If the
averaging neglects mass terms, then the results would
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effectively take the massless limit, thus neglecting a
fundamental property of the graviton.
We should also recall that one of the original motivations

for dRGT and bigravity were cosmological in nature, to
make the gravity theory self-accelerate. So, we should also
have a cosmological length scale Lcosm ∼ cH−1

0 . Whether
the curvature radius LST is equal to Lcosm depends on how
close we are to the source—if the curvature is dominated by
the Coulombic contribution ∼GM=R3, or by the Hubble
contribution 1=L2

cosm. In the latter case, and assuming that
dark energy is due to bigravity, Lcosm is related to the
graviton mass and thus λc, but also the coupling constants
and dynamical solution, as seen in Eq. (32).
Finally, there is the question of which effective stress-

energy tensor gives “the” energy. In GR, there is only one
metric equation of motion, so averaging the second
variation of that equation generates an effective stress-
energy tensor. In bigravity, we have two metric equations,
one each for gab and fab. If we followed the Isaacson
procedure, we would have an effective stress-energy tensor
on the right-hand side of each equation. How would we
interpret the two stress tensors? Is the energy loss present in
both tensors, or do we need to take some appropriate
combination of the two?
Given the variety of scales to consider in this theory,

there is no clear approach as to the “proper” way to apply
an averaging scheme similar to the one utilized by Isaacson.
Even if one were to make particular assumptions about the
length scales to ensure a straightforward mathematical
approach, the meaning of the resulting quantity will be
unclear.
As such, one is motivated to consider neglecting the

averaging part of the Isaacson approach, instead simply
defining the right-hand side of Eq. (46), without the
average, as the effective stress-energy tensor. However,
this reveals another issue: this tensor is no longer conserved
in bigravity: while ∇aGab ¼ 0, one has that

∇aGð2Þ
abfδg; δgg ≠ 0: ð47Þ

The vanishing divergence in GR came from G
ð1Þ

abfδgg ¼ 0.

Instead, the analog of the effective stress-energy tensor that
will arise in bigravity should be some combination of
G
ð2Þ

abfδg; δgg, the corresponding object constructed from

fab and δfab, along with terms related to the variations of
the source terms in the equations of motion, Vab and Ṽab.
Very quickly, the equations that arise become quite com-
plicated; a far simpler current, which we consider in the
next section, is the canonical current.

B. Canonical current

In this section, we define a conserved current, which we
refer to (following [51]) as the canonical current [44,45],

and consider its properties in a variety of field theories. This
current is directly constructed from the Lagrangian of any
field theory, and has a wide array of applications: its
integral over a Cauchy surface (the canonical energy)
appears in the analysis of the stability of black hole
spacetimes [47,48] and rotating relativistic stars [46,49],
as well as the proof that black holes cannot by overcharged
or overspun [50]. Moreover, the methods used to construct
this current have proven useful for defining additional types
of conserved currents, not related to isometries of a
spacetime, that may provide methods to understand the
evolution of point particles under the gravitational self-
force [66–68].

1. General formalism

We start by considering a general, diffeomorphism-
invariant theory without internal symmetries.3 For these
theories, a particular type of variation is given by those with
respect to the action of diffeomorphisms characterized by
some vector field ξa. This variation δξ, acting on any tensor
field Q, is given by the Lie derivative:

δξQ ¼ £ξQ: ð48Þ

In particular, for the Lagrangian four-form L, we have that

δξL ¼ dðξ · LÞ; ð49Þ

which follows from Cartan’s magic formula for differential
forms,

£ξω ¼ ξ · ðdωÞ þ dðξ · ωÞ; ð50Þ

and the fact that, as a four-form, dL ¼ 0. Note that this
is a special case of the variation of L under a symmetry:
under a symmetry, the Lagrangian four-form must trans-
form by a boundary term in order to preserve the equations
of motion.
Next, consider an arbitrary variation of the Lagrangian.

Denote the dynamical fields of the theory byΦA, where A is
an abstract index in a vector space in which these fields live;
for the example of bigravity, for example, we write

ΦA ≡ ð gab; fab Þ; ð51Þ

where gab and fab are the two metrics, and so A is an index
on the Cartesian product of two copies of the space of
symmetric, rank two tensor fields. By the product rule, one
can always write

δL≡ EAδΦA þ dðθfδΦgÞ; ð52Þ

3For the case where there are internal symmetries, see the
discussion in [69].
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where we suppress the differential form indices on EA,
which gives the equations of motion of the theory, and
where θ is a linear functional of δΦA (which we indicate
with the curly braces) called the presymplectic potential.
The presymplectic potential can be used to generate two

types of conserved current, both of which are relevant to
this discussion. The first is the Noether current [44,52],
given by

Jξ ≡ θf£ξΦg − ξ · L: ð53Þ

This current is conserved when the equations of motion of
the theory hold:

dJξ ¼ dθf£ξΦg − dðξ · LÞ ¼ −EA£ξΦA: ð54Þ

Since £ξ involves taking derivatives of ξa, one can use the
product rule on the right-hand to yield [52,70]

dJξ ≡ dðξaCaB · EBÞ þ ξaUafEg; ð55Þ

where we drop the vector field indices on CaB that are
contracted into the differential form indices on EB (giving a
three-form). The fact that the boundary term is a linear
function (and not functional) of the equations of motion EA

follows from the fact that the right-hand side of Eq. (54) is
also a linear function of EA. Moreover, the boundary term is
a linear function of ξa, due to the fact that Lie derivatives
involve at most a single derivative of ξa.
Equation (55) can be used to construct the so-called

Noether charge [44,52], which follows from the fact that
UafEg ¼ 0, which we now prove, following [70]. If
UafEg ≠ 0, then there is some ξa with support in some
compact region V such that, for a given volume for ϵ,
ξaUafEg ¼ αϵ, with α ≥ 0 (but α not everywhere 0).
Rearranging Eq. (55) and integrating over ∂V, we have that

Z
∂V
ðJξ − ξaCaB · EBÞ ¼

Z
V
ξaUafEg > 0: ð56Þ

However, since ξa only has support in V and V is compact,
it follows that the left-hand side must also be zero. This is a
contradiction, and so

UafEg ¼ 0: ð57Þ

In the case of general relativity, this equation implies that
∇bGab ¼ 0. For arbitrary theories, we have that

dðJξ − ξaCaB · EBÞ ¼ 0: ð58Þ

At this point, we can apply Wald’s theorem [71], which
yields

Jξ ¼ ξaCaB · EB þ dQξ; ð59Þ

where the two-form Qξ is the Noether charge. In particular,
when the equations of motion hold, Jξ is a total derivative.
The quantity CaB · EB is known as the constraint of the
theory.4

The next current that can be constructed from the
presymplectic potential is the symplectic current [44,45]:

ωfδ1Φ; δ2Φg≡ δ1θfδ2Φg − δ2θfδ1Φg; ð60Þ

which is an antisymmetric, bilinear functional of two
variations δ1ΦA and δ2ΦA, assuming that δ1 and δ2
commute (otherwise there would be a dependence on
½δ2; δ1�ΦA). Whenever δ1ΦA and δ2ΦA satisfy the linearized
equations of motion, ω is also a conserved current, as

dωfδ1Φ; δ2Φg ¼ δ1dθfδ2Φg − δ2dθfδ1Φg
¼ δ2EAδ1ΦA − δ1EAδ2ΦA; ð61Þ

which uses the fact that δ1 and δ2 commute, together with
Eq. (52) for the variation of the Lagrangian. Integrating ω
over a Cauchy surface provides a notion of a symplectic
product on phase space for the field [44].
Moreover, Eq. (59) can be used to show that the

symplectic current is gauge invariant (that is, invariant
under linearized diffeomorphisms), up to a boundary term.
Under a change of gauge, δΦA → δΦA þ £ξΦA (for δ ¼ δ1
or δ2), and so the bilinearity ofω implies that we can reduce
this problem to considering

ωfδΦ; £ξΦg ¼ δθf£ξΦg − £ξθfδΦg; ð62Þ

where we have used the fact that £ξ ¼ δξ; note that
½δ; δξ� ¼ 0. Using the definition of the Noether current
for the first term, together with Cartan’s magic formula for
the second, yields

ωfδΦ; £ξΦg ¼ δJξ þ ξ · ðδL − dθfδΦgÞ − dðξ · θfδΦgÞ
¼ ξ · ðEAδΦAÞ þ ξaδðCaB · EBÞ
þ dðδQξ − ξ · θfδΦgÞ; ð63Þ

where we have used the variation of the Lagrangian and
Eq. (59). As such, when E ¼ 0 and δE ¼ 0, we find that

ωfδΦ; £ξΦg ¼ dðδQξ − ξ · θfδΦgÞ; ð64Þ

which is a boundary term.
Using the symplectic current, we can define the canoni-

cal current by

4See Eq. (2.35) of [69] for an expression for the constraint that
is also explicitly linear in E, in a different class of theories than
those considered here.
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Eξfδ1Φ; δ2Φg≡ ωfδ1Φ; £ξδ2Φg; ð65Þ

where δ1 and δ2 commute. Now, take a variation of
Eq. (63), which gives

δ2ωfδ1Φ; £ξΦg ¼ ξ · δ2ðEAδ1ΦAÞ þ ξaδ1δ2ðCaB · EBÞ
þ dδ2ðδ1Qξ − ξ · θfδ1ΦgÞ: ð66Þ

This equation can be used to relate the canonical current to
the effective stress-energy tensor. When we perform an
independent variation δ1 of a multilinear functional
Q
ðmÞ

fδ1Φ;…; δnΦg, there are two contributions. The first

is from the variation of its (possibly nonlinear) dependence
on the background fields, and the second is the higher
variations of all the arguments. This allows us to generalize
the notation introduced in Eq. (20) and so define Q

ðmþ1Þ
via

δ1 Q
ðmÞ

fδ2Φ;…; δnþ1Φg

≡ Q
ðmþ1Þ

fδ1Φ;…; δnþ1Φg

þ
Xn
i¼1

Q
ðmÞ

fδ2Φ;…; δ1δiþ1Φ;…; δnþ1Φg: ð67Þ

As an example, E
ð2Þ

Afδ1Φ; δ2Φg is given by

δ1δ2EA ¼ δ1Eð1Þ
Afδ2Φg

¼ E
ð2Þ

Afδ1Φ; δ2Φg þ E
ð1Þ

Afδ1δ2Φg: ð68Þ

Note that, in Eq. (67), m does not necessarily equal n. By
convention, in the case where the order m is absent, it is
taken to be zero; an example of such a case is the definition
of ω

ð1Þ
fδ1Φ; δ2Φ; δ3Φg:

δ1ωfδ2Φ; δ3Φg≡ ω
ð1Þ
fδ1Φ; δ2Φ; δ3Φg þωfδ1δ2Φ; δ3Φg

þ ωfδ2Φ; δ1δ3Φg: ð69Þ

Using this new notation, the canonical current is related
to variations of the symplectic current by

Eξfδ1Φ; δ2Φg ¼ δ2ωfδ1Φ; £ξΦg − ω
ð1Þ
fδ2Φ; δ1Φ; £ξΦg

− ωfδ1δ2Φ; £ξΦg: ð70Þ

Similarly, note that

δ1δ2ðCaB · EBÞ ¼ δ1δ2CaB · EB þ δ1CaB · δ2EB

þ δ2CaB · δ1EB þ CaB · δ1δ2EB: ð71Þ

When the second-order equations of motion are imposed,
note that Eq. (68) implies that −E

ð2Þ
Afδ1Φ; δ2Φg is the

source for the differential equation satisfied by the second-
order perturbation.
It is from E

ð2Þ
Afδ1Φ; δ2Φg that wewill define the effective

source current. To do so, note that these equations hold,
regardless of the vanishing of the equations of motion, and
so we are free to set δ1δ2ΦA ¼ 0, and impose only the
zeroth- and first-order equations of motion. Equations (66),
(70), (71), and (68) then give

Eξfδ1Φ; δ2Φg ¼ ξaCaB · E
ð2Þ

Bfδ1Φ; δ2Φg

þ dδ2ðδ1Qξ − ξ · θfδ1ΦgÞ
− ω

ð1Þ
fδ2Φ; δ1Φ; £ξΦg: ð72Þ

In the case where ξa is a background symmetry, so that
£ξΦ ¼ 0, it follows that the canonical current is given by

Eξfδ1Φ;δ2Φg ¼ ξaCaB · Eð2Þ
Bfδ1Φ;δ2Φg

− dδ2ðδ1Qξþ ξ · θfδ1ΦgÞ
≡Sξfδ1Φ;δ2Φg− dδ2ðδ1Qξ − ξ · θfδ1ΦgÞ:

ð73Þ

The effective source current Sξ, in the case of general
relativity, when applied to two equal variations δ1gab ¼
δ2gab ¼ δgab, is related to the conserved current arising
from the effective stress-energy tensor. Moreover, this
current, like the canonical current, must be conserved in
the case where the linearized equations of motion hold, and
is gauge invariant up to a boundary term.
One final issue to note is that there are two potential

ambiguities in the canonical current. First, the Lagrangian
L is only defined up to a boundary term:

L → Lþ dη ð74Þ

will yield the same equations of motion, modifying the
presymplectic potential by

θfδΦg → θfδΦg þ δη: ð75Þ

Note, however, that this is the addition of a total variation,
and so does not affect the symplectic current, and therefore
the canonical current. On the other hand, the presymplectic
potential itself has an ambiguity of the form

θfδΦg → θfδΦg þ dϒfδΦg; ð76Þ

since it is only defined in terms of its exterior derivative.
This yields a modification of the symplectic and canonical
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currents by boundary terms, which in the latter case is
given by

Eξfδ1Φ;δ2Φg→Eξfδ1Φ;δ2Φg
þdðϒ

ð1Þ
fδ1Φ;£ξδ2Φg− ϒ

ð1Þ
f£ξδ2Φ;δ1ΦgÞ:

ð77Þ
2. Specialization to bigravity

We now apply this general formalism to the case of
bigravity. To vary the Lagrangian in Eq. (1), we use the
fact that

δϵ ¼ 1

2
δgabgabϵ; ð78Þ

with the same expression holding for ϵ̃, replacing δgab with
δfab and gab with fab. Now, denoting by Ca

bcðλÞ the
connection coefficient between ∇aðλÞ and ∇a (that is,

½∇aðλÞ −∇a�vb ¼ Cb
acðλÞvc; ð79Þ

for any vector va), we find that

gabδRab ¼ 2gab∇½cδCc
a�b ¼ ∇avafδgg; ð80Þ

where

vafδgg≡ 2δC½a
bcgb�c: ð81Þ

A similar expression holds for fabδR̃ab:

fabδR̃ab ¼ ∇̃aṽafδfg: ð82Þ

Combining Eqs. (78), (80), (82), and (10), we find that

δL ¼ −½ðGab þm2VabÞδgabϵþ ðα2G̃ab þm2ṼabÞδfabϵ̃�
þ∇avafδggϵþ α2∇̃aṽafδfgϵ̃: ð83Þ

To get this in the form of Eq. (52), we see that

EA ≡ −
� ðGab þm2VabÞϵ
ðα2G̃ab þm2ṼabÞϵ̃

�
; ð84Þ

and, using the fact that [Eq. (B.2.22) of [54]]

ð∇eveÞϵabcd ¼ dðv · ϵÞ; ð85Þ

we have that

θfδΦg ¼ vfδgg · ϵþ α2ṽfδfg · ϵ̃: ð86Þ

Next, we need to find the constraint. This can be done by
noting that

−EA£ξΦA ¼ 2ðGab þm2VabÞgbcð∇aξ
cÞϵ

þ 2ðα2G̃ab þm2ṼabÞfbcð∇̃aξ
cÞϵ̃: ð87Þ

As such, using Eq. (55),

ðCdE · EEÞabc ¼ 2½ðGef þm2VefÞgfdϵeabc
þ ðα2G̃ef þm2ṼefÞffdϵ̃eabc�; ð88Þ

which implies that, writing CaBc as a row vector,

CaBd ¼ −2
�
gaðbδdcÞ; faðbδdcÞ

�
: ð89Þ

Similarly, we have that

UafEg ¼ 2gac½∇bðGbc þm2VbcÞ�ϵ
þ 2fac½∇̃bðα2G̃bc þm2ṼbcÞ�ϵ̃ ¼ 0; ð90Þ

from which Eq. (15) follows by the Bianchi identities for
Gab and G̃ab.
Using Eq. (86), we can write down the symplectic

current, and therefore the canonical current. First, using
Eq. (67) we can define v

ð1Þ
afδ1g; δ2gg, which is given by

v
ð1Þ

afδ1g; δ2gg ¼ 2δ2C½a
bcδ1gb�c: ð91Þ

A similar expression gives ṽ
ð1Þ

afδ1g̃; δ2g̃g. For the sym-

plectic current, we therefore find that

ωfδ1Φ;δ2Φg¼wfδ1g;δ2gg ·ϵþα2w̃fδ1f ;δ2fg · ϵ̃; ð92Þ

where

wafδ1g; δ2gg≡ v
ð1Þ

afδ1g; δ2gg þ
1

2
gbcδ1gbcvafδ2gg

− ð1 ↔ 2Þ; ð93Þ

with a similar expression holding for w̃a. To use the same
notation as [45],

wafδ1g; δ2gg ¼ Pabcdef½δ1gbc∇dδ2gef − ð1 ↔ 2Þ�; ð94Þ

where

Pabcdef ≡ gaegfbgcd −
1

2
gadgbegfc −

1

2
gabgcdgef

−
1

2
gbcgaegfd þ 1

2
gbcgadgef: ð95Þ

The canonical current can be directly determined
from Eq. (92):
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Eξfδ1Φ; δ2Φg ¼ wfδ1g; £ξδ2gg · ϵþ α2w̃fδ1f ; £ξδ2fg · ϵ̃:
ð96Þ

The effective source current, on the other hand, can be
determined from Eqs. (89) and (84):

ðSξÞabcfδ1Φ; δ2Φg
¼ 2ξd½ðGef

ð2Þ
fδ1g; δ2gg þm2V

ð2Þ
effδ1Φ; δ2ΦgÞgfdϵeabc

þ ðα2 G̃
ð2Þ

effδ1f ; δ2fg þm2 Ṽ
ð2Þ

effδ1Φ; δ2ΦgÞffdϵ̃eabc�:

ð97Þ

Moreover, this equation only holds assuming that the
zeroth- and first-order equations of motion hold (so that
no variations need to be taken of the volume forms ϵ and ϵ̃).
To compute the effective source current, one needs to
compute V

ð2Þ
ef and Ṽ

ð2Þ
ef, both of which are quite lengthy.

Since the canonical current is equivalent, when the equa-
tions of motion hold and up to a boundary term, we propose
that the canonical current is the “best” conserved current to
use for problems in bigravity.
We next note the following property of this theory:

suppose that ξa is a Killing vector of the metric gab, so that
£ξgab ¼ 0. One can show that the equations of motion then
imply that (in general) £ξfab ¼ 0 as well, as follows: by
Eq. (48), we have that applying a Lie derivativewith respect
to ξa is a type of variation, and so Eqs. (22) and (23) yield

G
ð1Þ

abf£ξgg þm2ð−Vacgbd£ξgcd þ gbcU
ð1Þ

a
cd

e£ξSdeÞ ¼ 0:

ð98Þ

However, if £ξgab ¼ 0, this equation then implies that
£ξSab ¼ 0 as well (so long as U

ð1Þ
a
bc

d, considered as a

matrix, has full rank5). The only way that this can occur is if
£ξfab ¼ 0; a similar argument shows that £ξfab ¼ 0

implies that £ξgab ¼ 0. As such, we do not need to
distinguish between ξa being a Killing vector for one
metric or the other.
We now specialize to proportional backgrounds, as

described above in Sec. II B. In this case, we find that

ωfδ1Φ; δ2Φg ¼ ŵfδ1Φ; δ2Φg · ϵ; ð99Þ

where

ŵafδ1Φ;δ2Φg ≡ Pabcdef½δ1gbc∇dδ2gef

þðα=cÞ2δ1fbc∇dδ2fef − ð1↔ 2Þ�: ð100Þ

Moreover, the symplectic current is still diagonal in the
basis of δγab and δϕab, much like it was for δgab and δfab:
using the fact that

δgab ¼
δγab − 2cα2δϕab

1þ c2α2
;

δfab ¼
c2δγab þ 2cδϕab

1þ c2α2
; ð101Þ

we find that

ŵafδ1Φ; δ2Φg ¼ Pabcdef

1þ c2α2
½δ1γbc∇dδ2γef

þ 4α2δ1ϕbc∇dδ2ϕef − ð1 ↔ 2Þ�: ð102Þ

Note, moreover, that the structure is identical to what
appeared in Eq. (100) for each copy.
One property of the canonical current, coming from

Eq. (102), is that it is completely independent of the mass
mFP. This is somewhat unexpected, since, for a massive
scalar field, the usual definition of the conserved current
associated with a Killing vector, Tabξ

b, will be dependent
on the mass. However, as we show in the Appendix, it is
also the case that the canonical current for a massive scalar
field is independent of the mass. For the massive scalar
field, the mass shows up in Tabξ

b due to the equations of
motion, which must hold in order for it to be proportional to
the canonical current (up to a boundary term). Similarly, we
show that, in the geometric optics limit, the dependence of
the stress-energy tensor on the mass goes away, again
suggesting that this mass dependence is not a crucial
feature of this conserved current. Note, however, that in
applications of the canonical current, one typically needs to
use the equations of motion, which are mass-dependent—
similarly, in geometric optics, while the conserved current
is independent of the mass, the geodesics that are followed
by rays are no longer null.
Using Eqs. (65), (99), and (102), one can compute the

canonical current in terms of the fields δγab and δϕab
(setting, for simplicity, δ1 ¼ δ2 ¼ δ). Assuming that one
has computed a quadrupole-formula-like expression for
these fields [using Eqs. (40) and (41)], this would allow one
to compute the flux of the canonical current through a
surface surrounding some compact source, such as that
which appears in Fig. 2. In the case where ξa is a timelike
vector field at infinity, this provides a notion of the “energy
that the source is radiating.” Note that, a priori, there is no
reason why this quantity is necessarily related to changes
in, say, the binding energy of a compact body—this type of

5We suspect that, for generic βn and Sab, both U
ð1Þ

a
bc

d and

Ũ
ð1Þ

a
bc

d have full rank. If this is not the case, it would imply, from

Eqs. (22) and (23), that the equations of motion for δgab and δfab
will be decoupled for certain values for βn and Sab. A family of
solutions where the Killing vectors are not the same, and
therefore this matrix cannot have full rank, is given in [72].
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“flux-balance law” needs to be proven. However, under the
assumption that this flux-balance law holds, the flux of
canonical energy can be used to estimate the evolution of a
binary merger in bigravity.
Such a flux-balance law is certainly plausible: for

example, the canonical current occurs in the flux-balance
law for conserved quantities in the first-order scalar
self-force [68], and the effective source current (and a
straightforward generalization to second order) occurs in
the flux-balance law for second-order gravitational self-
force [73]. Moreover, in Einstein-Maxwell theory, the flux
of the canonical current through the event horizon appears
in the expression for changes in the mass and spin of a
black hole [50], confirming the notion that it represents a
flux of energy/angular momentum in some sense.

C. Asymptotic charges

We now (briefly) discuss another approach to conserved
quantities which we have not explored in this paper. In this
paper, we have primarily been concerned with conserved
currents; integrating such a current over a spacelike sur-
face gives the amount of some conserved quantity that is
“stored in the field” in some region, and the integral over
some timelike or null surface gives the flux of the same
conserved quantity. Using Fig. 2, the former is given by the
integral over Σ1 or Σ2, and the latter by the integral
over B12.
Another approach is to consider integrals over the

boundaries ∂Σ1 or ∂Σ2. Such integrals are called

“asymptotic charges”: here “asymptotic” refers to the fact
that these quantities are computed far from the source, and
“charge” reflects how they can be computed, much like the
electric charge, as an integral over a boundary (in the case
of electric charge, the integrand is the electric field). The
simplest example of asymptotic charges considered in
vacuum general relativity are the Komar formulas for mass
and angular momentum, which are (up to factors) the
integrals of the Noether charge in Eq. (59). These quantities
are related to the Arnowitt-Deser-Misner (ADM) mass and
angular momentum; see the discussion in [52] for more
details, and an approach which can extend this discussion
to more general field theories. In particular, this shows that
the ADM conserved quantities can be understood as
conserved quantities associated with asymptotic sym-
metries, defined in terms of integrals over the sphere at
spacelike infinity. Moreover, they obey an analog of
Hamilton’s equations [44]: denoting these conserved quan-
tities by Hξ, they satisfy

δHξ ¼
Z
Σ
ωðδg; £ξgÞ; ð103Þ

whereΣ is aCauchy surface that extends to infinity.However,
the ADM mass does not evolve—as such, it cannot give
useful information about the dynamics of a spacetime.
Instead, one typically considers the Bondi mass, which is
defined as an integral over a cross section of null infinity, and
whose evolution depends on an integral over null infinity.
Generalizing the work in [52], the Wald-Zoupas pre-

scription [53] shows that there is a way of understanding
the Bondi mass, and other “conserved quantities” defined at
null infinity, as charges associated with asymptotic sym-
metries (for a recent pedagogical overview which also
discusses relations to other asymptotic charges, see [74]).
These quantities now evolve, and their evolution is deter-
mined by flux integrals over null infinity. However, these
quantities QξðSÞ (depending on a spherical cross section S
of null infinity I) are no longer “Hamiltonians” in the sense
of Eq. (103); assuming appropriate falloff conditions as one
approaches future timelike and spacelike infinity, one finds
instead that, for vacuum general relativity [74] (with a
similar result for Einstein-Maxwell theory [51])

δ½QξðS∞Þ−QξðS−∞Þ�≡δF ξðIÞ¼
Z
I
ωðδg;£ξgÞ; ð104Þ

where S�∞ are the spheres at u ¼ �∞, and F ξðBÞ denotes
the “flux” of theWald-Zoupas conserved quantities through
a portion of null infinity. That is, the flux through all of null
infinity is Hamiltonian. Moreover, it follows from this
equation that, in the case where ξa is an exact symmetry,

δ2F ξðIÞ ¼
Z
I
Eξðδg; δgÞ: ð105Þ

FIG. 2. Geometry of various approaches to finding conserved
quantities. Integration about Σ1;2 will present the amount of a
conserved quantity. Integrating over the boundary B12 can yield
the flux of this conserved quantity. Lastly, integration over the
boundary terms ∂Σ12, allows for the calculation of asymptotic
charges.
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This is the relationship between the Wald-Zoupas flux and
the flux of the canonical current. Very important for this
paper, moreover, is the fact that the methods in [53] can be
applied, in principle, for any theory that possesses a
Lagrangian formulation: it has recently been applied to
Einstein-Maxwell theory [51], Brans-Dicke theory [75,76],
and Chern-Simons gravity [77].
In this paper, however, we do not consider applying the

Wald-Zoupas procedure to bigravity, and leave a detailed
discussion to futurework. The primary reason for this is that
(unless the coefficients βn are chosen in a very particular
way) bigravity naturally produces solutions which are not
asymptotically flat. In the case of the proportional back-
ground, this can be seen from the presence of a cosmological
constant in Eq. (33). More generally, attempting to use the
techniques of conformal completion (for an excellent
review, see [78]) shows that bigravity does not generally
admit asymptotically flat solutions, as the Einstein tensor for
either gab or fab does not fall off sufficiently rapidly.
Explicitly, if one assumes (as in general relativity) that gab ¼
Ω−2ĝab and fab ¼ Ω−2f̂ab, where ĝab and f̂ab are both
smooth at Ω ¼ 0 (which represents the boundary of space-
time), then bothVab and Ṽab areOðΩ2Þ, whereas asymptotic
flatness requires thatGab ¼ OðΩ6Þ.While theWald-Zoupas
procedure, in principle, can be applied to any boundary
(even in the original paper it was proposed that it could be
applied to asymptotically anti–de Sitter spacetimes, and
there has been explicit work on finite null surfaces [79]),
there are issues of interpretation in asymptotically de Sitter
spacetimes, as their null infinity is a spacelike surface: there
is no notion of “evolution”, and so an integral over null
infinity cannot really be called a flux. While there has been
some work in adapting the Wald-Zoupas procedure, and
asymptotic charges more generally, to asymptotically de
Sitter spacetimes in general relativity [80–82], we leave a
full discussion in the case of bigravity to future work.

IV. CONCLUSIONS AND DISCUSSION

This paper aims to study the energy flux of linearized
gravitational perturbations in ghost-free bimetric theory (or
bigravity). The theory contains two dynamical metrics and
has its motivation in the accelerated expansion of the
Universe [12] and a self-consistent approach of introducing
mass to gravitons. A special case of bigravity that we
consider is where the background metrics are proportional
to one another, and the equations of motion decouple to
the ones of massive and massless degrees of freedom. We
discuss the applicability of several well-known approaches
to computing energy flux in bigravity: the Isaacson
method [39,40], Wald-Zoupas prescription [53], and a
canonical current [44,45]. We find that the canonical current
approach is the simplest for the problem of bigravity.
A gauge-invariant canonical current (equivalent to an

effective source current up to a boundary term when the

equations ofmotionhold) canbeconstructeddirectly from the
Lagrangian in any diffeomorphism covariant theory through
symplectic currents. We explicitly express the canonical
current in terms of variations of the background metrics
for generic bigravity solutions and also for the case where the
background metrics are proportional. Interestingly, the mass
of the massive degrees of freedom does not appear in the
canonical current for the proportional case. This is consistent
with the case of a massive scalar field in GR, for which the
mass also does not enter the canonical current. By choosing
the vector field to be a timelike Killing vector at infinity, one
can compute the energy flux by integrating the canonical
current over a timelike (or asymptotically null) surface.
Next, we summarize the issues with the Isaacson stress-

energy tensor and Wald-Zoupas prescription. The standard
method of deriving GW stress-energy tensor is the Isaacson
approach which poses several problems when studied in
bigravity. In standard GR, a short-wavelength averaging is
necessary tomake the Isaacson stress-energygauge invariant.
Bigravity has additional degrees of freedom and inherently
contains multiple length scales such as the characteristic
curvature length of the auxiliary metric, Compton wave-
length ofmassive gravitons, and the size of the Universe, as it
is a theory motivated by cosmology. Because of such various
length scales involved, the requirements for short-wave-
length averaging are ambiguous (see Fig. 1). Furthermore,
the stress-energy tensor is not conserved in bigravity without
the averaging. On the other hand, the Wald-Zoupas pre-
scription of “conserved charges” associated with asymptotic
symmetries requires conformal completion of the spacetime
and is usually considered for asymptotically flat spacetimes
[53] (although there are cases which are not asymptotically
flat where it or similar procedures have been applied [79,80]).
Bigravity admits asymptotically flat solutions only for a very
specific choice of parameters in the proportional background,
and for general solutions, the usual conformal completion
does not give a solution that is asymptotically flat. As such,
one should fully investigate the asymptotics of this theory;
insights from the asymptotically de Sitter case in general
relativity studied, for example, in [82–85] may prove useful.
Finally, let us mention possible future prospects of our

work. As already mentioned above, the energy content of
GWs in bigravity could be studied using the Wald-Zoupas
formalism, though this would also require a more rigorous
analysis of the asymptotic structures admitted by bigravity.
This can be specialized to the tuned sector admitting
asymptotically flat solutions, but ideally we would general-
ize to the cosmological setting. The main application of this
work will be to compute GW energy flux radiated by a
compact binary source, and subsequently the gravitational
waveforms as the binary shrinks due to radiation reaction.

A. Sketch of flux-balance calculation

Here we can provide a sketch of how this calculation may
proceed, which somewhat parallels the post-Newtonian

GRAVITATIONAL-WAVE ENERGY AND OTHER FLUXES IN … PHYS. REV. D 107, 044041 (2023)

044041-13



treatment of compact binaries in GR. First, suppose some-
body has successfully handled the near zone generation
problem, and can give us linearized radiative fields δγab and
δϕab in the far zone, on some stationary background, which
determine δΦA ¼ ðδgab; δfabÞ byEq. (101). The energy flux
through some cylinder B12 (as in Fig. 2) is associated to the
Killing vector field generating the stationarity, ξa ¼ ð∂=∂tÞa
as normalized by some family of observers. This energy
flux would be computed by integrating the canonical
current 3-form,

Z
B12

dEGW

dtdΩ
dtdΩ ¼ −

Z
B12

EξðδΦ; δΦÞ: ð106Þ

If we further assume a bidiagonal background, we have that

Z
B12

EξðδΦ; δΦÞ

¼
Z
B12

n̂a
Pabcdef

1þ c2α2
½δγbc∇dδ_γef − δ_γbc∇dδγef

þ 4α2ðδϕbc∇dδ _ϕef − δ _ϕbc∇dδϕefÞ�dtdΩ; ð107Þ

where n̂a is the outward-pointing unit normal to B12 (as
measured by gab), and overdots denote time derivatives, i.e.,
δ_γab ≡ £ξδγab. In the case where δγab is in the transverse-
traceless gauge, one can show that the sum of the terms
quadratic in δγab are negative definite; the same is true for the
gauge-invariant δϕab, so the entire right-hand side is negative
definite. This reflects the fact thatmass is lost by the radiation
of gravitational waves.
Note that the δγab terms alone and the δϕab terms alone

each look like the canonical energy flux as computed in
GR, except (i) they have been scaled differently, and
(ii) δϕab is a massive field. Notice that in the eikonal
limit, we will have ∇a → ika, but that crucially the wave
vectors ka; k0a for the massless and massive field are
different.
In the context of a binary inspiral, a first calculation

could take the adiabatic approximation, and thus take δγab
and δϕab to be periodic with the “instantaneous” orbital
period of a quasicircular binary.
We now return to the near zone, the more challenging

aspect of such a calculation. From separation of scales, we
expect to be able to treat a bound compact binary system
(and the GWs it emits) within the framework of EFT [86].
First, we want to “skeletonize” each compact object, so that
we can replace it with an effective point particle coupled to
one or both of the metrics (and derivatives thereof). This
starts with a strong-field calculation of, e.g., a neutron star
or black hole in this theory, and then we match in the far
zone to the solution from an effective action for a point
particle A on world line γA with coordinates zaAðτAÞ,

Spp;eff ½zA; g; f � ¼
X
A

Z
γA

−mAðg; f ;…ÞdτA

¼
X
A

Z
−mAðg; f ;…Þδ4ðx; zAÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
d4xdτA: ð108Þ

Here δ4ðx; zÞ is an invariant four-dimensional Dirac dis-
tribution [87], and mAð…Þ is a collection of world-line
operators (Wilson coefficients) arising from matching. In
GR, and assuming the so-called effacement principle [38],
this operator is simply a constant [finite size effects
introduce couplings like mA ⊃ CEEabðxÞEabðxÞ with Eab
being the electric part of the Weyl tensor [86] ].
Next, we create a binary with our two effective point

particles interacting with the metric(s), and thus indirectly
with each other. Split each metric into two fields by the
wavelengths of modes,

gab ¼ gpotab þ gradab ; ð109Þ

and similarly for fab, where the “potential” modes gpotab are
long wavelength and nonradiative. Solve for the potential
modes. Presumably, the massive degree of freedom will
have a Yukawa-like solution, which will add to the usual
leading-order Keplerian potential. Integrate out the poten-
tial modes from the action, to arrive at an effective action of
two point particles interacting directly with each other, and
still coupled to radiative modes,

expðiSeff ½z1; z2; grad; f rad�Þ

¼
Z

DgpotDf pot expðiSfield½g; f � þ iSpp;eff ½z1; z2; g; f �Þ:

ð110Þ

Here Sfield is the action for bigravity. Seff will include an
effective interaction potential between the two bodies (in
GR, this procedure yields the Einstein-Infeld-Hoffmann
Lagrangian). Now we can extract the binding energy
EbindðrÞ and orbital frequency relation ωðrÞ on a circular
orbit. A reasonable guess is that EbindðrÞ will include a
Yukawa term after integrating out the massive potential
mode. However since the Compton wavelength of the
massive graviton is extremely long compared to the size of
the system, this may well be approximated by a Kepler
potential with a different effective Newton’s constant.
The coupling to radiative modes remaining in Seff allows

us to compute the radiated GWs in terms of the orbit. Now
assuming a flux-balance law, these ingredients are enough
to compute the slow inspiral for a quasicircular binary, by
asserting that

_EGW ¼
Z

dEGW

dtdΩ
dΩ¼−

d
dt
EbindðrÞ¼−

dEbind

dr
dr
dt

; ð111Þ
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where dEGW=dt=dΩ appeared in Eq. (106), coming from
the canonical current. However, we leave implementing
this sketch to future work.
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APPENDIX: SCALAR FIELD EXAMPLE

In this appendix, we consider the example of a massive
scalar field, and derive two properties of this theory. First,
we show that, while the canonical current only contains
information from the “kinetic” part of the Lagrangian, the
stress-energy current is still related to it by a boundary term,
although the stress-energy current also contains information
about the “potential” part of the Lagrangian. This feature is
shared by bigravity, but it is far less clear in that context how
this arises. Second, we consider the geometric optics limit of
this theory, and show that the mass term does not contribute
to the leading-order average of the stress-energy tensor.
To prove the first result, we start with the Lagrangian for

this theory:

L ¼ −
1

2
ϵ½gabð∇aϕÞð∇bϕÞ þm2ϕ2�: ðA1Þ

Once again, note thatm has units of inverse length. Varying
the Lagrangian gives

δL ¼ −½gabð∇bϕÞð∇aδϕÞ þm2ϕδϕ�ϵ
¼ δϕðgab∇a∇bϕ −m2ϕÞϵ −∇aðδϕgab∇bϕÞϵ
≡ Eδϕþ dθfδϕg; ðA2Þ

where

E ¼ ϵð□ϕ −m2ϕÞ ðA3Þ
and

θfδϕg ¼ vfδϕg · ϵ; vafδϕg≡ −gabδϕ∇bϕ; ðA4Þ

and so

ωfδ1ϕ; δ2ϕg ¼ wfδ1ϕ; δ2ϕg · ϵ;
wafδ1ϕ; δ2ϕg≡ gab½δ1ϕ∇bδ2ϕ − ð1 ↔ 2Þ�: ðA5Þ

We therefore have that the canonical current is

Eξfδ1ϕ; δ2ϕg ¼ wfδ1ϕ; £ξδ2ϕg · ϵ: ðA6Þ

We now consider the stress-energy tensor, which is
obtained (up to unimportant numerical factors) by taking
a variation of the Lagrangian with respect to gab:

Tabϵ≡ δL
δgab

¼ 1

2

�
gacgbdð∇cϕÞð∇dϕÞ

−
1

2
gab½gcdð∇cϕÞð∇dϕÞ þm2ϕ2�

	
ϵ; ðA7Þ

and so

ðjξÞa ≡ Tabgbcξc

¼ 1

2

�
gabξcð∇bϕÞð∇cϕÞ

−
1

2
ξa½gbcð∇bϕÞð∇cϕÞ þm2ϕ2�

	
: ðA8Þ

The stress-energy current is then related to ðjξÞa by

J ξ ≡ jξ · ϵ: ðA9Þ

Our goal is to show that, up to constant factors, a
boundary term, and equations of motion, the stress-energy
current is the same as the canonical current. That is, we
need that

Eξfϕ;ϕg ¼ CJ ξ þ dQ ðA10Þ

holds when the equations of motion hold. Note, first, that
this implies that

wafϕ; £ξϕg ¼ CðjξÞa þ∇bQab; ðA11Þ

where QðabÞ ¼ 0 and

Qab ¼
1

2
Qcdϵcdab: ðA12Þ

Since it is easier, we will work entirely with the vector form
of these equations.
We start with inspecting terms in wafϕ; £ξϕg, which is

given by
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wafϕ; £ξϕg ¼ gab½−ξcð∇bϕÞð∇cϕÞ þ ð∇bξ
cÞϕ∇cϕ

þ ξcϕ∇b∇cϕ�: ðA13Þ

The first term involves ð∇aϕÞð∇bϕÞ, which also appears in
the stress-energy current. The second and third terms,
however contain ∇aξ

b and ∇a∇bϕ, and these types of
terms do not appear in the stress-energy current. For the
second term, we use the fact that ∇ðaξbÞ ¼ 0 to show that

gabð∇bξ
cÞϕ∇cϕ ¼ −gbcð∇cξ

aÞϕ∇bϕ

¼ −∇cðgbcξaϕ∇bϕÞ
þ ξa½gbcð∇bϕÞð∇cϕÞ þ ϕ□ϕ�: ðA14Þ

For the third term, we can use the fact that ∇aξ
a ¼ 0 to

show that

gabξcϕ∇b∇cϕ ¼ ∇cðgabξcϕ∇bϕÞ − gabξcð∇bϕÞð∇cϕÞ:
ðA15Þ

As such, we have that

wafϕ; £ξϕg ¼ −2gabξcð∇bϕÞð∇cϕÞ
þ ξa½gbcð∇bϕÞð∇cϕÞ þ ϕ□ϕ�
−∇bð2ξ½agb�cϕ∇cϕÞ: ðA16Þ

Using the equations of motion, □ϕ ¼ m2ϕ, we find that
Eq. (A11) holds, with

C ¼ −4; Qab ¼ −2ξ½agb�cϕ∇cϕ: ðA17Þ

We now prove the second result. To do so, we start with
the geometric optics ansatz for a massive scalar field:

ϕ ¼ Aℜ½e−iθ�; ðA18Þ

where A is a slowly varying amplitude and θ a rapidly
varying phase. Applying this approximation to the
equations of motion yields, at leading order,

kaka þm2 ¼ 0; ðA19Þ

where ka ¼ ∇aθ is the wave vector. Applying the Brill-
Hartle average, we find that, to leading order,

hTabi ¼ 1

4
A2kakb; ðA20Þ

where we have used Eqs. (A7) and (A19). The mass term
therefore does not contribute to the average of Tab.
Note that there is also another way of deriving this

result, which should also be applicable to any reasonable
notion of geometric optics in bigravity. We have already
shown that Jξ and Eξ are the same, up to overall constants
and a boundary term, for any Killing vector. The canonical
current, applying the geometric optics limit and the Brill-
Hartle average, is given by

hEξfϕ;ϕgi ¼ −A2kakbξb; ðA21Þ

where we have used Eqs. (A5) and (A6). Since the
canonical current does not contain any information about
the mass of the scalar field, the geometric optics limit
clearly does not either. Now, consider the geometric optics
limit of the boundary term dQ. There are two cases: first,
suppose the Q is slowly varying. In that case, dQ is
suppressed in the geometric optics limit. Instead, suppose
then that Q is rapidly varying. In that case, while dQ
would be not suppressed, it would also be rapidly varying,
and therefore be suppressed by the Brill-Hartle average. In
either case, therefore, dQ cannot contribute: the Brill-
Hartle average is insensitive to boundary terms. A similar
result appears in [40,67] for linearized gravity. This
suggests that, should a sensible notion of these ideas exist
in bigravity, the Brill-Hartle average of the canonical
current would be the same as the current constructed from
that theory’s corresponding notion of an Isaacson stress-
energy tensor, which would be the Brill-Hartle average of
the effective source current.
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