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In the analysis of a binary black hole coalescence, it is necessary to include gravitational self-interactions
in order to describe the transition of the gravitational wave signal from the merger to the ringdown stage. In
this paper we study the phenomenology of the generation and propagation of nonlinearities in the ringdown
of a Schwarzschild black hole, using second-order perturbation theory. Following earlier work, we show
that the Green’s function and its causal structure determines how both first-order and second-order
perturbations are generated, and hence highlight that both of these solutions share some physical properties.
In particular, we discuss the sense in which both linear and quadratic quasinormal modes (QNMs) are
generated in the vicinity of the peak of the gravitational potential barrier (loosely referred to as the light
ring). Among the second-order perturbations, there are solutions with linear QNM frequencies (whose
amplitudes are thus renormalized from their linear values), as well as quadratic QNM frequencies with a
distinct spectrum. Moreover, we show using a Wentzel-Kramers-Brillouin analysis that, in the eikonal
limit, waves generated inside the light ring propagate towards the black hole horizon, and only waves
generated outside propagate towards an asymptotic observer. These results might be relevant for recent
discussions on the validity of perturbation theory close to the merger. Finally, we argue that even if
nonlinearities are small, quadratic QNMs may be detectable and would likely be useful for improving
ringdown models of higher angular harmonics and future tests of gravity.
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I. INTRODUCTION

Coalescing black hole (BH) binaries emit gravitational
waves (GWs) that allow us to probe gravity in the strong-
field regime. These GWs are typically analyzed with
different methods depending on the stage of the coales-
cence process. Initially, during the inspiral phase, when the
black holes have small velocities compared to that of light,
GWs can be studied analytically via the post-Newtonian
formalism. Near the moment of the merger, GWs are
sensitive to nonlinear gravitational effects which are ana-
lyzed performing numerical relativity (NR) simulations.
After the merger—in the ringdown phase—the coalescence
process has culminated into a single perturbed black hole,
whose GWs can be analyzed using black hole perturbation
theory.
In particular, during the ringdown, GWs are described by

a linear superposition of quasinormal modes (QNMs),
which correspond to the resonant exponentially-decaying
modes of the final black hole as it settles down to a
stationary state. These modes have an infinite discrete
spectrum of complex frequencies, ω ¼ ωR þ iωI, whose

real part ωR determines the oscillation timescale of the
modes, whereas the imaginary part ωI determines their
exponential damping timescale (see e.g., [1] for a review
on QNMs).
In General Relativity (GR), the amplitude of each QNM

depends on the initial conditions that led to the formation of
the final black hole, but the QNM frequencies are universal
since they are characterized solely by the mass, M, and
angular momentum, J, of the final black hole. The QNM
frequencies are labeled by three discrete numbers; the
angular harmonic indices ðl; mÞ and the degree of the
harmonic overtone number n. If there were additional
fundamental fields present in the Universe, they could
affect the QNM spectrum of BHs and introduce new
parameters determining the frequencies ω. Therefore, the
observation of QNM frequencies can be a powerful tool to
test the properties of gravity (see e.g., [2–7]) and perform
consistency tests of GR [8].
As previously mentioned, the merger process is believed

to be highly nonlinear. However, since the QNMs decay
exponentially fast in time, at some time tref after the merger,
nonlinearities are expected to become irrelevant and the
QNMs can be analyzed using linear perturbation theory.
Nevertheless, there has been some debate concerning
the optimal choice of tref (see related discussions in
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e.g., [9,10]), given the fact that if chosen too late then there
will not be enough ringdown signal left in the available data
due to its fast decay, and if chosen too early then
contamination from nonlinearities may bias the linear
analysis. This issue raises the crucial questions of how
close to the merger linear theory can describe well the GW
signal, and what the relevance of nonlinearities is. In this
paper, we make some preliminary steps in this direction by
understanding the phenomenological properties of the
generation and propagation of second-order BH perturba-
tions. The hope is that this will help improve ringdown
models, and enable the optimal analysis of high quality GW
data expected in the future. In particular, the inclusion of
nonlinearities in ringdown models will potentially allow for
unbiased constraints of quasinormal modes, and thus more
confident tests of gravity. In addition, the detection of
nonlinearities would allow to test the nonlinear dynamical
predictions of GR.
So far, numerical studies have obtained varied conclu-

sions on the relevance of nonlinearities. While it has been
known for some time that the inclusion of linear overtones
in ringdown models improve the fits to GWwaveforms (see
e.g., [11]), [12,13] confirmed that linear QNMs with up
to seven overtones fit well NR simulations of the ðl ¼ 2;
jmj ¼ 2Þ GW signal from nonprecessing nearly-equal
mass binary black hole (BBH) mergers, all the way back
to the moment of the merger, or even slightly before. These
analyses assumed that the QNM frequencies were given by
the predictions from linear BH perturbation theory in GR,
and fit for their amplitudes since these cannot be easily
predicted due to their dependence on premerger history.
Subsequent numerical analyses have included higher har-
monics, and confirmed that a similar linear ringdown
analysis can indeed fit well waveforms of various binary
BH systems [14–18]. These results are somewhat surpris-
ing since the physics of the merger is expected to be highly
nonlinear. For instance, [19] concludes that for precessing
binary systems, linear QNMs do not always fit well GW
signals from NR simulations starting from the merger time.
Nevertheless, these results have motivated the use of the
entire postmerger signal of current GW events, such as
GW150914 [20], to detect the fundamental QNM (n ¼ 0)
as well as the first overtone (n ¼ 1), and to perform tests of
gravity [8,21–23], although different conclusions have
been obtained [24–27].
In this paper, we adopt an analytic approach to non-

linearities, making use of black hole perturbation theory to
second order. A particular focus, though not an exclusive
one, will be on the quadratic QNMs (here dubbed
QQNMs). There have been a number of investigations
on this topic, starting with analyses on Schwarzschild black
holes [28–36], which characterized the QQNM frequency
spectrum and the sources that drive these quadratic modes,
followed by generalizations to Kerr black holes [37–40].
Our goal in this paper is to understand better how, when and

where the second-order perturbations, in particular the
QQNMs, are generated, and how they propagate locally.
For simplicity, our investigation is confined to perturba-
tions around a Schwarzschild black hole, though some of
the conclusions are expected to translate straightforwardly
to a Kerr black hole. Black hole perturbation theory up to
second order has the following schematic form:

Dhð1Þ ∼ 0; Dhð2Þ ∼ hð1Þ2: ð1Þ

The first equation is linear perturbation theory, hð1Þ is the
first-order metric perturbation (indices suppressed) around
the black hole, and D is a linear differential operator which
contains up to two derivatives, and has a nontrivial effective
gravitational potential. The second equation shows how the
second-order perturbation hð2Þ is sourced by quadratic
combinations of hð1Þ [with derivatives acting on hð1Þ kept
implicit]. Importantly, the same operator D appears in both
equations. Our focus in this paper is not on the detailed
form of the hð1Þ2 terms on the right-hand side; they have
been worked out in pioneering papers by [28,29], and we
will make use of certain general features of their results.
Rather, our goal is to study the implications of the operator
D for the generation and propagation of the second-order
perturbations.
Among our findings, let us highlight several key points,

some of which are known from earlier analyses.
(1) Given a pair of modes from the linear QNM

frequency spectrum ωð1Þ ¼ ωð1Þ
R þ iωð1Þ

I and ωð1Þ0 ¼
ωð1Þ0
R þ iωð1Þ0

I , one can see from Eq. (1) that they will

generate a quadratic QNM frequency ωð2Þ ¼ ωð2Þ
R þ

iωð2Þ
I given by ωð2Þ

R ¼ ωð1Þ
R � ωð1Þ0

R and ωð2Þ
I ¼ ωð1Þ

I þ
ωð1Þ0
I [28,33,34]. This means that there is a new

distinct quadratic frequency spectrum of QNMs,
which is fixed and constructed from linear QNM
frequencies.

(2) We formalize the above intuition using the Green’s
function approach, which provides further insights.
We find that the second-order solution is in general a
superposition of modes with the quadratic QNM
spectrum ωð2Þ (as shown in [35]), and modes with
the linear QNM spectrum ωð1Þ.1 This is in agreement
with previous numerical results [40,41]. Importantly,
this result means that the net amplitude of modes
with linear frequencies ωð1Þ receive a nonlinear
renormalization.

(3) The Green’s function’s causal structure sheds light
on the times and locations of linear and quadratic
QNM generation. The amplitudes of the QQNMs
depend on signals that have enough time to reach the

1The second-order solution also has parts that are unrelated to
QNMs or QQNMs, such as polynomial tails [35]. See further
discussion below.
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light ring2 and then the observer (analogous to
previous results for linear QNMs [42,43]). This
supports the buildup picture in which the QNM
amplitudes may accumulate over time as more of the
initial perturbations become causally connected to
the observer and the light ring; the amplitudes of
QNMs are in general not constant at all times even
within linear theory.

(4) To gain a better understanding of how the different
parts of the Green’s function dictate both the linear
evolution and the generation of second-order
perturbations, we work out a simple toy problem:
that of a delta function potential. The solution can be
written down in closed form, and illustrates explic-
itly the key results outlined above.

(5) We use the Wentzel-Kramers-Brillouin (WKB) ap-
proach to study the QNM local propagation in the
high-frequency limit. We show that both linear and
quadratic QNMs generated near the horizon propa-
gate towards the black hole, whereas only those
generated outside the light ring of the black hole will
propagate to the observer. This result analytically
confirms that not all of the GWs escape to infinity,
as part of them are swallowed by the black hole. A
related result was found recently in toy simulations
in [44], where absorption of the initial QNM signal
led to an increase of the black hole horizon. This
result is important to take into account, given that
previous NR simulations find large perturbations
right after merger to be generally confined to regions
very close to the black hole horizon [10,45], which
lends some credence to the notion that while large
perturbations exist very close to the horizon right
after merger, the observable QNMs asymptotically
far are not necessarily sensitive to them. This idea
has been conjectured by some authors [28,45] in
the past.

(6) At a practical level, including QQNMs in ringdown
waveform analyses of simulations and data should
prove beneficial. Previous analyses of head-on black
hole collisions have shown model improvement
when including second-order perturbations [46,47].
In this paper, we discuss when the amplitude of
nonlinearities is large enough to be relevant in ring-
down models. We show that the answer depends
strongly on the angular harmonic structure of the
signal. Take for example a nearly equal-mass binary
merger. At the linear level, the amplitude is domi-
nated by the ðl ¼ 2; jmj ¼ 2Þ angular mode, with
subdominant higher harmonics (see e.g., [16,48,49]).
At second order, one then expects the largest
quadratic QNM mode to have ðl ¼ 4; jmj ¼ 4Þ,

originating from the product of two linear ðl ¼ 2;
jmj ¼ 2Þ modes. We make a simple dimensional
analysis to conclude that its amplitude can be
comparable to or larger than that of the linear QNM
ðl ¼ 4; jmj ¼ 4Þ.

From these results, we conclude that nonlinear QNMs
are expected to always be generated after the merger.
Nonetheless, analytical models that only assume the pres-
ence of linear QNMs frequencies may work better than
expected because: (i) nonlinear effects are partially included
in those models through their renormalized amplitudes, and
(ii) the signal generated close to the horizon, which is
expected to contain the most amount of nonlinearities, will
not propagate to asymptotic observers.
In addition, the amplitude of nonlinearities highly

depend on the angular harmonic structure of the signal.
Previous works using linear QNMs to model the merger
[13,14] focused on ðl ¼ 2; jmj ¼ 2Þ harmonics which,
based on dimensional estimations, are expected to have
subpercent level corrections from nonlinearities for a nearly
equal-mass quasicircular binary black hole coalescence
(see Appendix B). Instead, as previously mentioned,
ðl ¼ 4; jmj ¼ 4Þ harmonics could have large contributions
from nonlinearities. This appears to be the case in the
numerical analysis of [50], and has been confirmed as well
in the recent works developed in parallel to this paper
[51,52]. Therefore, future analyses must be careful when
using linear QNMs frequencies to describe higher harmon-
ics. Indeed, the recent study in [53] has also shown
evidence of quadratic QNMs in ðl ¼ 5; jmj ¼ 4Þ and
ðl ¼ 5; jmj ¼ 5Þ harmonics in at least one specific binary
merger simulation. Furthermore, higher harmonics are
expected to be important in future GW data. Already a
recent analysis of the event GW190521 has claimed
evidence for a subdominant higher harmonic ðl ¼ 3; jmj ¼
3Þ [23], and third-generation GW detectors could observe
between 102–104 events with detectable higher harmonics
in the ringdown [49,54,55]. In addition, LISAwill observe
supermassive black holes binaries with mass M > 106M⊙,
where most of the signal will come from the ringdown since
they will have no (or little) detectable inspiral signal due
to its low frequency. In these cases, the analysis
of higher harmonics will be crucial for extracting informa-
tion about the progenitor’s masses [48] as well as the
inclination, luminosity distance, and localization of the
source [56].
This paper is organized as follows. In Sec. II we review

the general setup for second-order perturbations around a
Schwarzschild black hole, discussing their angular, radial
and temporal structures using separation of variables. In
Sec. III we use the Green’s function approach to confirm
and generalize previous findings on the temporal and
angular profiles of second-order perturbations, and we
work through a toy model to illustrate important features
about the linear and quadratic QNMs, as well as the role of

2We use the term light ring loosely to refer to the location of
the top of the potential in the operator D in Eq. (1).
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causality. In Sec. IV we analyze the radial profile of the
QQNMs in the eikonal limit, which determines the propa-
gation direction of GWs. We consider both near horizon
and spatial infinity regimes using the WKB formalism. In
Sec. V we discuss the relevance of QQNMs with a simple
dimensional analysis, and conclude in Sec. VI with a
summary and discussion of our findings.
We set the speed of light to unity in this paper. Since we

make use of a number of analytical techniques to analyze
the behavior of quadratic QNMs, to ease readability, we
compile common symbols used throughout this paper in
Table I, indicating the location where they were defined for
the first time, and their meaning.

II. SECOND-ORDER PERTURBATIONS AND
QUADRATIC QNMS—GENERAL SETUP

Let us start by considering perturbations of the spacetime
metric gμν as

gμν ¼ ḡμν þ hμν; hμν ≡ εhð1Þμν þ ε2hð2Þμν þOðε3Þ; ð2Þ

where ε ≪ 1 is the perturbation theory parameter and hðjÞμν is
the jth-order perturbation around the background ḡμν. For
simplicity, in this paper we assume the background to be
given by an isolated Schwarzschild black hole,

ds̄2¼−fðrÞdt2þfðrÞ−1dr2þr2ðdθ2þsinðθÞ2dϕ2Þ; ð3Þ

where fðrÞ ¼ 1 − rs=r and rs ¼ 2GM is the Schwarzschild
radius, with M the mass of the black hole and G the
gravitational constant. The Einstein equations in vacuum
can be Taylor expanded in the parameter ε and be sche-
matically expressed as

GμνðgÞ ¼ Gð0Þ
μν ðḡÞ þ εGð1Þ

μν ðhð1ÞÞ
þ ε2½Gð1Þ

μν ðhð2ÞÞ þ Gð2Þ
μν ðhð1Þ; hð1ÞÞ� þOðε3Þ ¼ 0;

ð4Þ

where Gμν is the Einstein tensor, and GðjÞ
μν indicates its jth-

order Taylor expansion in the perturbation hμν. This equa-
tion is satisfied when each εn contribution vanishes sepa-

rately. At leading order, we have Gð0Þ
μν ðḡÞ ¼ 0 which is the

background equation of motion, a solution of which is
Eq. (3). At first and second order in ε, we have

Gð1Þ
μν ðhð1ÞÞ ¼ 0; ð5Þ

Gð1Þ
μν ðhð2ÞÞ ¼ −Gð2Þ

μν ðhð1Þ; hð1ÞÞ≡ Sð2Þμν : ð6Þ

From these results it is clear that the second-order equation
of motion (6) has the same left-hand side structure as the

first-order one, but it has an effective source term Sð2Þμν

determined by the quadratic product of the first-order metric
perturbations hð1Þ. This source will induce nontrivial par-
ticular solutions to Eq. (6), which will determine the
spectrum of the QQNM.3

Before we proceed further, let us clarify perhaps a
pedantic point. The definition of ε, the perturbation
expansion parameter, is location dependent. For instance,
at the location of a far away observer, the expected metric
perturbations are extremely small (for instance, typical GW

TABLE I. Summary of notation used throughout this paper, location where it was introduced, and associated meaning.

Notation Equation Meaning

ε Eq. (2) Expansion parameter in the metric amplitude
ξ ¼ 1=l Above Eq. (89) Expansion parameter in the angular harmonic number l
δ ¼ GM=r Above Eq. (101) Expansion parameter in the radial distance from the source
Δr ¼ ðr� − r̂�Þ=ðMGÞ Below Eq. (87) Expansion parameter in the radial distance from light ring location r̂�
z ∼ Δr=

ffiffiffi
ξ

p
Eq. (88) Suitable radial variable such that z → ∞ describes eikonal limit

XðnÞ Eq. (2) εn order contribution to a variable X
Xξn Eq. (91) ξn order contribution to a variable X
Xij Eq. (92) ξiΔrj order contribution to a variable X
sYlmðθ;ϕÞ Eq. (11) Spin s-weighted ðl; mÞ spherical harmonic
ωR, ωI Above Eq. (21) Real and imaginary parts of any QNM frequency

ω� Eq. (46)
Quadratic QNM frequencies constructed from the sum or (conjugated)

difference of linear QNMs
e;oΨ Eqs. (13) and (14) Even (Zerilli) and odd (Regge-Wheeler) radial variables

ΨF, ΨQ, ΨB Eqs. (40)
Even/odd variables from the Green’s function pieces GF, GQ and GB

described in Sec. III A
VZ, VRW Eqs. (17)–(18) Zerilli and Regge-Wheeler radial potentials
U ¼ ω2 − V Eq. (72) Effective potential U for Regge-Wheeler (V ¼ VRW) and Zerilli (V ¼ VZ) variables

3Note that the homogeneous solution to Eq. (6) will not be
considered part of the QQNMs spectrum here since it will instead
have the same linear QNMs frequencies as the first-order
perturbations.
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strain is at the 10−22 level) and thus linear perturbation
theory, essentially around Minkowski space, is highly
accurate at the observer. On the other hand, the metric
perturbations close to the black hole are considerably
larger, and the expansion parameter ε should be understood
to be defined in that neighborhood. As far as the asymptotic
observer is concerned, the detailed dynamics close to

the black hole generates hð1Þμν and hð2Þμν , and both fall off
inversely proportional to distance, far enough away from
the black hole (see further discussion in Sec. V). Previous
authors have estimated that the QQNMs could give a
correction of about 10% to the linear QNMs at the
detector [33,34].
The (real) metric perturbation at each order can be

written as the real portion of its complex counterpart,

hðjÞμν ¼ ReðhcðjÞμν Þ: ð7Þ
As such, Eqs. (5) and (6) can be recast as (Appendix A)

Gð1Þ
μν ðhcð1ÞÞ ¼ 0; ð8Þ

Gð1Þ
μν ðhcð2ÞÞ ¼ −Gð2Þ

μν

�
1

2
ðhcð1Þ þ hcð1Þ�Þ; hcð1Þ

�
: ð9Þ

Performing a separation of variables, we can write

hcðjÞμν ¼
Z

dω
2π

X10
a¼1

X
l;m

HaðjÞ
lmωðrÞe−iωtTa

lm;μνðθ;ϕÞ; ð10Þ

where HaðjÞ
lmω is the radial function of the jth-order metric

perturbation for each tensor spherical harmonic Ta
lm;μν

(labeled by a from 1 to 10 accounting for the 10 different
metric components) [57,58].
In the rest of this section, we highlight several broad

features of Eqs. (8) and (9) that are relevant for our goal of
understanding the generation and propagation of non-
linearities. The discussion will be schematic, since the
details are not important for our purpose. The reader is
referred to [31,36] for further discussions.

A. Angular structure

Imagine plugging Eq. (10) into Eq. (9). We see that a
product of angular harmonics on the right gives rise to a sum
of angular harmonics on the left. Specifically, in a
Schwarzschild background, the angular tensors Ta

lm are
constructed from spherical harmonics Ylmðθ;ϕÞ and their
derivatives as in [58] or, equivalently, from spin-weighted
spherical harmonics sYlmðθ;ϕÞ [59] (which are defined
when jsj ≤ l and jmj ≤ l). The product of two spin-
weighted spherical harmonics can be reexpressed as a linear
superposition of spin-weighted spherical harmonics—
this is why we use the same angular decomposition in
Eq. (10) for linear and second- (and higher-) order pertur-
bations. In other words, we use the following property of

spin-weighted spherical harmonics, which form a complete
and orthonormal set [59]

X
l2m2

kðlÞkðl0Þ
kðl2Þ

Cðl; m;l0; m0;l2; m2ÞCðl; s;l0; s0;l2; s2Þ

× s2Yl2m2
ðθ;ϕÞ ¼ sYlmðθ;ϕÞs0Yl0m0 ðθ;ϕÞ; ð11Þ

where kðlÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
=

ffiffiffiffiffiffi
4π

p
, and C’s are the Clebsch-

Gordan coefficients that are nonvanishing only if
s2 ¼ sþ s0, m2 ¼ mþm0 and jl − l0j ≤ l2 ≤ jlþ l0j.
This expression helps determine the angular structure of
second-order perturbations in terms of that of the first-order
perturbations. Note that because of the relationship
jl − l0j ≤ l2 ≤ jlþ l0j, the second-order perturbations
will generally have nonvanishing propagating modes with
l2 < 2, contrary to the linear propagating modes, which
must have l;l0 ≥ 2. However, in the large radius r limit,
only the spin s ¼ −2 spherical harmonics are relevant (due
to the peeling theorem [60–62]) and thus modes with
l2 ¼ 0, 1 are not observationally relevant.
In addition, note that a given spherical harmonic of the

second-order perturbations can be sourced by various
multiplications of the linear ones. For instance, a
second-order ðl2 ¼ 4; m2 ¼ 4Þ can be sourced by the
linear ðl¼2;m¼2Þ×ðl0 ¼2;m0 ¼2Þ, ðl ¼ 3; m ¼ 2Þ×
ðl0 ¼ 2; m0 ¼ 2Þ, and so on. In particular, for QNMs with
their distinctive frequencies, this means there are many
quadratic QNM frequencies (an infinite number in fact)
associated with a given spherical harmonic, similar to the
way there are many overtones for linear QNMs of a given
harmonic.
Furthermore, since the background is invariant under

parity, it is useful to split the angular tensors and radial
functions into parity even and parity odd parts, following
Regge-Wheeler [57]. The parity even modes transform as
ð−1Þl while the parity odd modes transform as ð−1Þlþ1. At
the level of linear theory, the two set of modes do not mix.
At second order, it is still true the second-order even modes
and the second-order odd modes do not mix. However, the
second-order even modes can be generated from a number
of sources: linear even × linear even, linear odd ×
linear odd, and linear odd × linear even. (Likewise for
the second-order odd modes.) There is a simple rule
governing the first and second-order perturbations in
harmonic space [31,32,36],

ð−1Þl2σ2 ¼ ð−1Þlð−1Þl0σσ0; ð12Þ
where σ and σ0 (¼ �1) are the parity of the two linear
modes, and σ2 is the parity of the second-order one.

B. Radial structure

Of the ten metric components, there are two propagating
degrees of freedom. Regge andWheeler [57] and Zerilli [58]
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showed how to isolate these two degrees of freedom in linear
perturbation theory and obtain equations of the form:

∂
2
r�
eΨð1Þðr�Þ þ ðω2 − VZðrÞÞeΨð1Þðr�Þ ¼ 0; ð13Þ

∂
2
r�
oΨð1Þðr�Þ þ ðω2 − VRWðrÞÞoΨð1Þðr�Þ ¼ 0; ð14Þ

where eΨð1Þ and oΨð1Þ represent the Zerrilli (even) and
Regge-Wheeler (odd) variables [each formed from judicious

combinations of Hað1Þ
lmω defined in Eq. (10)]. Here, ∂r�

denotes derivative with respect to the tortoise coordinate,
r� ≡ rþ lnðr=rs − 1Þ. These equations are written in fre-
quency-angular-harmonic-space, i.e., we are focusing on a
mode with given ω;l; m (but suppressing the l; m labels).
Keep in mind the most general solution involves a super-
position of the form (10).
It was further shown by [28,29,34,36] that a second-

order version of the Zerilli and Regge-Wheeler variables
can be defined, which obey

∂r�
eΨð2Þðr�Þ þ ðω2 − VZðrÞÞeΨð2Þðr�Þ ¼ eSð2Þðr�Þ; ð15Þ

∂r�
oΨð2Þðr�Þ þ ðω2 − VRWðrÞÞoΨð2Þðr�Þ ¼ oSð2Þðr�Þ; ð16Þ

where eSð2Þ and oSð2Þ represent the sources for the second-
order even and odd perturbations, respectively. Each source
consists of products of two first-order metric perturbations
and their derivatives, which can be reconstructed from
o;eΨð1Þ [36]. The reconstruction means the sources can be
fully expressed in terms of products of o;eΨð1Þ. Some
examples of quadratic sources in the Regge-Wheeler gauge
can be found in [29,34], and a gauge-invariant approach
was studied in [36].4 Equations (15) and (16) can be
generalized to higher orders [32].

The same potentials VZ and VRW show up in both the
first and second-order radial equations. They are given by

VZðrÞ¼2fðrÞL
2r2½ðLþ1Þrþ3GM�þ9G2M2ðLrþGMÞ

r3ðLrþ3GMÞ2 ;

ð17Þ

VRWðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
−
6GM
r3

�
; ð18Þ

where 2L≡ ðlþ 2Þðl − 1Þ. The Zerrilli and Regge-
Wheeler potentials (VZ and VRW) have the general radial
shape shown in Fig. 1. The potentials approach a constant
(zero) near the horizon (r� → −∞) and at spatial infinity
(r� → þ∞), and they reach a maximum at some special
value r̂�, which is l-dependent but approaches the light
ring r̂� → 3GM as l → ∞. Throughout this paper, we use
the term light ring to loosely refer to the top of the potential,
for any l. Note that this general shape applies even for
perturbations around a Kerr black hole, if suitable variables
are chosen, and the potential will have ω and m depend-
ence [63,64].
It is worth stressing that there are many possible choices

for the second-order Regge-Wheeler/Zerilli variables.
One could redefine Ψð2Þ (both even and odd) by adding
extra terms that depend quadratically on the linear
perturbations—the resulting variables would still satisfy
Eqs. (15) and (16) but with correspondingly different
source terms. Following [28], it is useful to take advantage
of this freedom, to modify the source terms so they have the
desired falloff at large distances and close to the horizon,
namely;

e;oSð2Þ ∼ e;oΨð1Þ2r−2 for r → ∞; ð19Þ
e;oSð2Þ ∼ e;oΨð1Þ2ðr − 2GMÞ for r → 2GM: ð20Þ

Since the linear QNM solutions e;oΨð1Þ behave
as expf−iωðt� r�Þg with constant amplitude in the

FIG. 1. A schematic sketch of Regge-Wheeler/Zerilli potential
as a function of the tortoise coordinate r�. The horizon is at r� →
−∞ and spatial infinity at r� → þ∞, and the potential ap-
proaches zero in both limits. The potential has a maximum at a
particular radius r� ¼ r̂� indicated by the vertical dashed line.

4We do not dwell on gauge issues here, since they have been
thoroughly discussed in [29,32]. In broad stroke, they can be
understood as follows: At the linear level, we have schematically
that h̃ð1Þ ∼ hð1Þ þ ξð1Þ, where ξð1Þ represents a first-order coor-
dinate transformation and its derivatives (indices are suppressed;
h̃ð1Þ is the metric perturbation in the new coordinates, while hð1Þ is
the metric perturbation in the old ones). Gauge fixing typically
corresponds to choosing ξð1Þ such that certain components of h̃ð1Þ
vanish. The remaining nonvanishing components then represent
the desired physical degrees of freedom and auxiliary fields.
Alternatively, one can use the gauge choice to express ξð1Þ in
terms of hð1Þ, and substitute that into expressions for the non-
vanishing components of h̃ð1Þ, which can then be reinterpreted as
gauge-invariant combinations of components of hð1Þ (see [6]
Appendix G for concrete examples). At second order, we expect
h̃ð2Þ ∼ hð2Þ þ ξð2Þ þ ξð1Þ2 þ hð1Þξð1Þ (where we have suppressed
derivatives and indices). The procedure for linear theory trans-
lates straightforwardly to second order: gauge fixing means
choosing the appropriate coordinate transformation at second
order ξð2Þ; gauge-invariant combinations can be found in a similar
way.
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r� → �∞ limit, the source terms chosen thus have an
analogous scaling with radius as the potentials in
Eqs. (17)–(18).5 As we will see in Sec. IV, if the sources
had a slower scaling with radius than the above (at the
horizon or infinity), then the solutions for the quadratic
QNMs o;eΨð2Þ would have a divergent power-law scaling.
On the other hand, if the sources decayed faster than this,
the quadratic QNMs would have an asymptotically vanish-
ing scaling at the horizon and infinity. Ultimately, the
physics is independent of the choice of the second-order
variables, but the choice of (19) and (20) helps give the
linear and quadratic QNMs the same asymptotic behavior
and a direct relation to physical quantities such as energy
radiated.

C. Temporal structure: QNMs

The (linear) Regge-Wheeler (14) and Zerrilli (13)
equations are typically solved with the boundary condi-
tions; ingoing into the horizon, and outgoing at infinity.
This turns out to be such a strong requirement that
the frequency ω can only take certain discrete values,
denoted as ωð1Þ. These make up the linear QNM frequency
spectrum and, in general, depend on l; m and the overtone
number n. For a Schwarzschild black hole, the QNM
frequency is m independent; not so for a Kerr black hole.

Thus, depending on context, we sometimes use ωð1Þ
lmn and

sometimes ωð1Þ
ln to highlight the mode dependence of the

QNM frequency, though we often suppress these labels to
avoid clutter. The QNM frequency ωð1Þ is complex: i.e.,

ωð1Þ ¼ ωð1Þ
R þ iωð1Þ

I , with ωð1Þ
I < 0, signaling decay

with time.
It is worth emphasizing that the radial profile of the

QNM solution has an unphysical feature. At r� → �∞, the

QNM mode goes as e−iω
ð1Þðt∓r�Þ; thus with ωð1Þ

I < 0, the
QNM mode diverges as r� → �∞ at a fixed time. Physical
perturbations should have no such divergence. The best
way to think about QNMs is to view them through the lens
of the Green’s function whose causal structure ensures such
divergence does not occur [42,43,65]. This will be dis-
cussed in detail in the next section.
We will also see how quadratic QNMs arise in the

Green’s function approach, but it’s not hard to see how they
come about at an intuitive level. Assuming the right-
hand side of Eq. (9) is composed of a product of linear
modes with time dependence, hcð1Þμν ∝ expf−iωð1Þtg and
∝ expf−iωð1Þ0tg; one can see the time dependence of

hcð2Þμν ∝ expf−iωð2Þtg is given by

ωð2Þ ¼ ωð1Þ þ ωð1Þ0 or ωð2Þ ¼ ωð1Þ − ωð1Þ0�: ð21Þ

Thus, for any two linear QNM frequencies ωð1Þ and ωð1Þ0 ,
there are two possible quadratic QNM frequencies asso-
ciated. Notice that the case with the minus sign can be
alternatively thought of as coming from combining an
ordinary linear mode and a mirror mode (the mirror of an
ordinary mode of frequency ω has frequency −ω� [66,67]).
Separating the frequencies into real and imaginary com-
ponents, we thus have

ωð2Þ
R ¼ ωð1Þ

R � ωð1Þ0
R ; ωð2Þ

I ¼ ωð1Þ
I þ ωð1Þ0

I : ð22Þ

The quadratic QNM decays with time, since ω1
I ;ω

ð1Þ0
I < 0

implies ωð2Þ
I < 0, and in fact decays faster than either of the

parent linear QNM modes. Furthermore, we see that there
can be quadratic QNM frequencies that are purely imagi-

nary (i.e., ωð2Þ
R ¼ 0), which will be excited when a given

linear QNM appears in the source with its conjugate

counterpart i.e., ωð2Þ ¼ ωð1Þ − ωð1Þ� ¼ 2iωð1Þ
I . Note that

the reasoning used here to obtain the quadratic
QNM frequencies is valid for a Schwarzschild or Kerr
black hole.
In addition, since the odd and even linear QNM

perturbations are isospectral, and all of them can contribute
to both odd and even quadratic perturbations, we expect
that the same will hold for quadratic modes; the temporal
frequency spectrum will be the same for odd quadratic and
even quadratic QNMs.
From a phenomenological point of view, we emphasize

that since the decay rate of the linear QNMs grows
quickly with overtone number n, there will be quadratic
QNMs that decay slower than linear overtones. A particu-
larly relevant QQNM will be the one with harmonic
numbers ðl ¼ 4; jmj ¼ 4Þ since it will be mainly sourced
by the multiplication of two fundamental linear QNMs
with (l ¼ 2; jmj ¼ 2)6 [recall Eq. (11)], which are the
dominant modes generated from the merger of nearly
equal-mass binary black holes.7 As an example, for a
Schwarzschild black hole of mass M, the ðl ¼ 2; jmj ¼
2; n ¼ 0Þ linear QNM has frequency GMωð1Þ

220 ¼ 0.374 −
i0.089 [66] and the ðl ¼ 4; jmj ¼ 4; n ¼ 0; 1Þ linear

QNMs have frequencies GMωð1Þ
440 ¼ 0.809 − i0.094 and

GMωð1Þ
441 ¼ 0.797 − i0.284. These frequencies can be

compared to that of the QQNM formed by the multipli-
cation of two linear (2,2,0) modes, which gives

5Keeping t� r� fixed.

6Note that there are infinite pairs of linear QNM frequencies
that will lead quadratic QNMs in the (4,4) harmonic. We have
infinite sources coming from the ð2; 2; nÞ overtones (n ranging
from 0 to ∞), as well as infinite combinations of other
linear angular harmonics and their overtones.

7In addition, the linear ðl ¼ 2; jmj ¼ 2Þ modes could also
source quadratic QNMs with m ¼ 0 and 0 ≤ l ≤ 4. Such
quadratic modes would not oscillate in time, but they would
decay exponentially fast at a rate given by 2ωð1Þ

I22.
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GMωð2Þ
44 ¼ 2GMωð1Þ

220 ¼ 0.748 − i0.1788 and hence decays
slower than the linear (441) mode. An analogous behavior
will hold for any spinning black hole, as it can be seen
from the general fittings in [68]. Thus, models of the
(l ¼ 4; jmj ¼ 4) harmonic in ringdown waveform should
include quadratic perturbations. Indeed, [18] analyzed a
nearly equal mass nonprecessing binary, and found that
fitting linear QNMs to NR waveform simulations gives
larger residuals of the GW power for (l ¼ 4; jmj ¼ 4),
compared to other harmonics, suggesting that an improve-
ment in the linear ringdown model is required for (4,4).
The skeptic might argue that the quadratic QNMs could

have very small amplitudes and therefore negligible impact.
However, this does not seem to be the case, as shown
in [50], where analytical fits to (4,4) GWs from NR simula-
tions were performed and the quadratic (4,4)modewas found
to have a comparable amplitude to the linear (4,4) modes.
More generally, nonlinearities are expected to become
increasingly relevant with increasing harmonic numbers
[e.g., cubic perturbations could be the leading contribution
to the harmonic (6,6), from the multiplication of three linear
(2,2,0) QNMs].

III. THE GREEN’S FUNCTION APPROACH

In this section, we use the Green’s function approach to
formally write down the most general first- and second-
order solutions. A basic observation is that because the
same Green’s function is used for both, certain features get
inherited by both solutions. The Green’s function approach
has been previously used to analyze linear perturbations
[42,43,65,69], and second-order ones [35], as well as the
BH response to test particles [63] and extreme-mass-ratio
inspirals (see e.g., [70,71]). Much of the discussion in this
section is thus a review. Along the way, we highlight a few
key lessons that are perhaps not widely appreciated, and
work out a toy example in great detail to illustrate them.

A. Definitions and setup

The Green’s function G is defined by

ð−∂2t þ ∂
2
r� − V̂ÞGðt; r�; θ;ϕjt̄; r̄�; θ̄; ϕ̄Þ

¼ δðt − t̄Þδðr� − r̄�Þδðθ − θ̄Þδðϕ − ϕ̄Þ= sin θ̄; ð23Þ
where V̂ is an operatorwhich, upon acting on (spin-weighted)
spherical harmonics, gives rise toVRW orVZ [Eqs. (17)–(18)].
Time-translation and rotational invariance means it is con-
venient to expand the Green’s function in terms of Fourier
modes (in time) and spherical harmonics (in angles),

Gðt; r�; θ;ϕjt̄; r̄�; θ̄; ϕ̄Þ
¼

X
l;m

Glðt; r�jt̄; r̄�ÞsYlmðθ;ϕÞsY�
lmðθ̄; ϕ̄Þ

¼
X
l;m

Z
C

dω
2π

e−iωðt−t̄ÞGωlðr�jr̄�ÞsYlmðθ;ϕÞsY�
lmðθ̄; ϕ̄Þ;

ð24Þ

where the integration contour for ω runs slightly above the
real axis (above all poles ofGωl that end up inside an infinite
lower semicircle; see below), such thatG ¼ 0 if t − t̄ < 0 i.e.,
this is a retardedGreen’s function.Wehave introduced several
symbols for the Green’s function:G is the spacetime Green’s
function; Gl is the 2D Green’s function (in radius and time);
Gωl is the radial Green’s function. Substituting this in
Eq. (24), we obtain

ð−∂2t þ ∂
2
r� − Vðr�;lÞÞGlðt; r�jt̄; r̄�Þ ¼ δðt − t̄Þδðr� − r̄�Þ;

ð∂2r� þ ω2 − Vðr�;lÞÞGωlðr�jr̄�Þ ¼ δðr� − r̄�Þ: ð25Þ

The relevant properties of the spin-weighted spherical har-
monics are their orthonormality and completeness [59],

Z
sinθdθdϕsYlmðθ;ϕÞsY�

l0m0 ðθ;ϕÞ¼δll0δmm0 ;
X
l;m

sYlmðθ;ϕÞsY�
lmðθ̄;ϕ̄Þ¼δðθ− θ̄Þδðϕ− ϕ̄Þ=sin θ̄: ð26Þ

Henceforth, for simplicity, we will set the spin s ¼ 0, but it
should bekept inmind the entire discussion of this section can
be promoted straightforwardly to any spin s that describes the
fluctuations of interest.9 As a comparison, we mention that in
the case of a Kerr black hole,Gl andGωl would also depend
on the harmonic number m, and the spherical harmonics
would be generalized to spheroidal harmonics.
To construct Gωl, we need two solutions gout and gin

satisfying

ð∂2r� þ ω2 − Vðr�;lÞÞgout;inðr�Þ ¼ 0 ð27Þ

with the desired asymptotic boundary conditions;
goutðr�Þ → eiωr� as r� → ∞ (outgoing at infinity) and
ginðr�Þ → e−iωr� as r� → −∞ (ingoing to the horizon),
keeping in mind that the potential V vanishes in both limits.
The radial Green’s function Gωl can then be constructed as

8Even though there are infinite quadratic QNM frequencies in
(4,4), for simplicity we do not add additional label in the subscript
of the quadratic frequency aside from its angular harmonics, and
thus implicitly refer to the ð2; 2; 0Þ × ð2; 2; 0Þ quadratic fre-
quency as ωð2Þ

44 .

9For instance, the Regge-Wheeler variable (called Q by Regge
and Wheeler) is defined in terms of the odd part of the metric
fluctuation components hrθ; hrϕ. Thus, it is natural to associate Q
with spin �1 spherical harmonics. But one could also apply
suitable spin raising/lowering operators and think of a variable
related to Q that is effectively a spin-zero quantity, consistent
with the lðlþ 1Þ dependence of VRW.
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Gωlðr�jr̄�Þ ¼
1

W
goutðr�>Þginðr�<Þ; ð28Þ

where r�> ¼ maxðr�; r̄�Þ, r�< ¼ minðr�; r̄�Þ, and W is the
Wronskian,

W ≡ ginðr�Þ∂r�goutðr�Þ − goutðr�Þ∂r�ginðr�Þ: ð29Þ

It is worth noting that gout, gin and W depend implicitly on
ω and l, suppressed here to avoid clutter. In addition, note
that the Wronskian is independent of r�, given the form
of Eq. (27).
For a general value of ω, the boundary conditions for gout

and gin cannot be satisfied at the same time and thus they
describe two independent solutions to the homogeneous
equation, and thus W ≠ 0. However, for ω values that
coincide with the linear QNM spectrum, gout and gin are
given by the same single solution and thus W ¼ 0. As a
consequence, W has first-order [63] poles at the linear

QNM frequencies ω ¼ ωð1Þ
ln (each QNM frequency is

labeled by l and the overtone n; for Kerr black holes,
there would be m dependence as well).
In general, the exact form of Gωl will depend on the

potential V, and for the Zerilli or Regge-Wheeler potentials
the analytical form of Gωl in the full parameter space
ðt; r�; t̄; r̄�Þ is not known, although its qualitative and
asymptotic features are known [42,72]. In particular, after
integrating over ω in Eq. (24), the time-domain Green’s
function can be separated into three qualitatively distinct
pieces:GF (flat),GQ (QNM), andGB (branch cut). The piece
GB has to dowith the fact that gin and gout (and thereforeGωl)
can have branch cuts in the complex ω plane. Such branch
cuts arise from the polynomial radial decay of the potential
(as in the case of VZ or VRW), and can be understood by
backscattering off it [73]. We do not have much to say about
this branch-cut contributionGB, other than to note that it gives
rise to signals that tend to be subdominant compared to QNM
contributions at intermediate times.
The GQ piece of the Green’s function is associated with

the QNM poles where the Wronksian vanishes. Recalling
the relation between the 2D Green’s function Gl and the
(1D) radial Green’s function Gωl,

Glðt; r�jt̄; r̄�Þ ¼
Z
C

dω
2π

e−iωðt−t̄ÞGωlðr�jr̄�Þ; ð30Þ

the QNM contribution to Gl can be written as

GQlðt; r�jt̄; r̄�Þ

¼
X
n

−i
W0

ln
e−iω

ð1Þ
ln ðt−t̄Þgoutðr�>;ωð1Þ

ln Þginðr�<;ωð1Þ
ln ÞΘ; ð31Þ

where ωð1Þ
ln is the (linear) QNM frequency, and W0

ln ≡
∂ωWðωÞ evaluated at the frequency ωð1Þ

ln . The symbol Θ
schematically represents causality constraints for t; t̄; r�; r̄�,
which come about depending on whether the integration
contour in the complex ω plane can be closed to include the
QNM poles or not; we will see below a more explicit
representation of what this causality constraint entails.
Lastly, Gωlðr�jr̄�Þ typically has a pole at ω ¼ 0 (due not

to the Wronskian alone, but its combination with gout and
gin for VRW and VZ). This additional contribution, together
with the arcs of the semi-infinite circle of the integration
contour is known as the flat piece of the Green’s function
GF (or GFl for the 2D Green’s function), and carries
information about high-frequency and asymptotically far
signals that propagate effectively in free space since they
are insensitive to the potential.
To gain more intuition on these different contributions to

the Green’s function, it is useful to have explicit expres-
sions for them. One approach is to display their form in
asymptotic limits; the other is to study a simplified potential
for which closed form analytic expressions are possible. We
show the asymptotic limits in this section, and present the
results of a simplified toy model in Sec. III D.
In the large jr�j limit, where the potential vanishes, gin

and gout behaves as follows (our discussion follows [35]):

gin → e−iωr� for r� → −∞;

gin → Aine−iωr� þ Bineiωr� for r� → ∞; ð32Þ

gout → Aouteiωr� þ Boute−iωr� for r� → −∞;

gout → eiωr� for r� → ∞; ð33Þ

where Ain;Bin;Aout;Bout are coefficients that depend
on ω and l. The Wronskian W can be computed;
W ¼ 2iωAin ¼ 2iωAout. Using these expressions in (28)
and (24), it can be shown that for large jr�j and jr̄�j,

Glðt; r�jt̄; r̄�Þ ∼GFl þ GQl;

GFl ∼ −
1

2
½Θðt − t̄ − jr� − r̄�jÞ − Θðt − t̄ − jr�j − jr̄�jÞ�;

GQl ∼
X
n

−ifln
W0

ln
e−iω

ð1Þ
ln ðt−t̄−jr�j−jr̄�jÞΘðt − t̄ − jr�j − jr̄�jÞ; ð34Þ
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where ΘðxÞ is the step function (unity if x > 0, zero
otherwise). The factor fln is an order unity function of

r�, r̄� and ω
ð1Þ
ln .

10 It is worth stressing the limitation of (34):
it ignores the branch-cut contribution and holds only for
large jr�j and jr̄�j, which is not useful for realistic
calculations but it nevertheless helps illustrates the main
properties of Gl.
The step functions in the above expressions represent

nontrivial causality constraints coming from how the
contour in the ω integral closes. In particular, the step
function for GQl tells us the QNM piece of the Green’s
function does not vanish only if the point ðt̄; r̄�Þ is causally
connected to ðt; r�Þ via the potential, as illustrated in Fig. 2.
In the asymptotic form given for GQl, the potential can

be roughly thought of as being located at small tortoise
radii (i.e., in the vicinity of the origin). In reality of course,
neither VRW nor VZ is well localized (though they do peak
at a small tortoise radius); the step function in GQl presents
what is more akin to a bird’s-eye view of how it behaves. In
particular, the step function tells us GQl vanishes when jr̄�j
is too big, i.e., if jr̄�j veers too far from where the potential
peaks (and the larger t − t̄ − jr�j is, the further jr̄�j can
veer). The step functions in GFl, on the other hand,

combine to constrain r̄� to be within the past light cone
of t; r�, but away from the regions where the potential is
non-negligible (see Fig. 2).
With our bird’s-eye view of the Green’s function (34),

i.e., valid only at large tortoise radius (or absolute value
thereof), let us introduce one small improvement. The
expressions given in (34) privileges the origin, as if the
potential is located there. In practice, if there is a privileged
position, it ought to be the location of the top of the
potential. For instance, in the WKB approach to computing
the linear QNM spectrum, it is the derivatives of the
potential at the top that determines the QNM frequencies.
Henceforth, when we use (34), we will replace r�→ r�− r̂�
and r̄� → r̄� − r̂�, with r̂� representing the location of the
potential peak. In other words, within the large radius
approximation that led to (34), there is effectively no
difference between r� and r� − r̂�, or between r̄� and
r̄� − r̂�, as long as r̂� is small, which it is for VRW and VZ.

B. First-order perturbations

We first review how the Green’s function is used to
evolve the first-order perturbations. Consider a first-order
perturbation

Ψð1Þðt; r�; θ;ϕÞ ¼
X
l;m

Ψð1Þ
lmðt; r�ÞYlmðθ;ϕÞ; ð35Þ

satisfying

ð−∂2t þ ∂
2
r� − VÞΨð1Þ

lmðt; r�Þ ¼ 0: ð36Þ

Recall again, all expressions here can be promoted to
spherical harmonics of any spin-weight. Let us define the
initial conditions to be

ψ0ðr�Þ≡Ψð1Þ
lmð0;r�Þ; _ψ0ðr�Þ≡∂tΨ

ð1Þ
lmðt;r�Þjt¼0; ð37Þ

where we have suppressed the l; m dependence of ψ0 and
_ψ0 to avoid clutter. Henceforth, t ¼ 0 is adopted as the
initial time.
The Green’s function can be used to evolve the linear

perturbation forward as

Ψð1Þ
lmðt;r�Þ¼

Z
dr̄�½∂t̄Gljt̄¼0ψ0ðr̄�Þ−Gljt̄¼0 _ψ0ðr̄�Þ�; ð38Þ

where Glðt; r�jt̄; r̄�Þ represents the 2D Green’s function
defined in Eq. (24). Its retarded nature means it vanishes
unless t > t̄. The derivation of this standard result can be
found in e.g., [43,74,75].

FIG. 2. Support of asymptotic GFl (shaded blue) and GQl
(shaded red) for a given point ðt; r�Þ. Here, u ¼ t − r� and
v ¼ tþ r�, and the potential peak is around r̄� ¼ 0. In general,
the boundaries of these regions are expected to be fuzzy but this
figure schematically illustrates the role of causality constraints.
Horizontal blue lines indicate maximum size of spatial region
causally connected to ðt; r�Þ through GQl and GFl.

10More precisely, fln ¼ 1 if r� and r̄� have opposite signs,
fln ¼ Bin evaluated at ωð1Þ

ln if both r� and r̄� are positive, and
fln ¼ Bout evaluated at ωð1Þ

ln if both r� and r̄� are negative. The
derivation goes roughly as follows: for instance, for r� > 0 and
r̄� < 0 (and both large in magnitude), ginðr�Þgoutðr̄�Þ ¼
eiωðr�−r̄�Þ giving rise to GQl with fln ¼ 1. For r� > r̄� > 0,
ginðr�Þgoutðr̄�Þ¼Ainðeiωðr�−r̄�Þ−eiωðr�þr̄�ÞÞþðAinþBinÞeiωðr�þr̄�Þ,
the first term gives GFl, and the second term gives GQl with the
appropriate fln, keeping in mind W ¼ 2iωAin, and Ain vanishes
at the linear QNM frequencies.
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Making use of (24), we can also write this as

Ψð1Þ
lmðt; r�Þ ¼

Z
dr̄�

Z
dω
2π

e−iωtGωlðr�jr̄�Þ

½iωψ0ðr̄�Þ − _ψ0ðr̄�Þ�: ð39Þ

Making use of the flat/QNM/branch-cut split of the
Green’s function, we can split the linear solution as

Ψð1Þ
lmðt;r�Þ¼Ψð1Þ

F lmðt;r�ÞþΨð1Þ
Q lmðt;r�ÞþΨð1Þ

B lmðt;r�Þ:
ð40Þ

From the asymptotic solutions in (34), we can see that Ψð1Þ
F

gives rise to waves traveling to the left (horizon) or to the
right (infinity) that reflect the initial conditions. We will
work this out in detail in Sec. III D, for a toy example where

GFl given in (34) is exact. In addition, it is known that Ψ
ð1Þ
B

leads to polynomial tails due to the long-range polynomial
decay of VZ and VRW [42,72,73]. It is the QNM piece of the
Green’s function GQl that gives rise to a signal oscillating
at the QNM frequencies.
The QNM part of the linear perturbation is

Ψð1Þ
Q lmðt; r�Þ ¼

Z
dr̄�

X
n

−i
W0

ln
e−iω

ð1Þ
ln tgoutðr�>;ωð1Þ

ln Þginðr�<;ωð1Þ
ln Þ½iωð1Þ

lnψ0ðr̄�Þ − _ψ0ðr̄�Þ�Θ

∼
Z

dr̄�
X
n

−ifln
W0

ln
e−iω

ð1Þ
ln ðt−jr�−r̂�j−jr̄�−r̂�jÞðiωð1Þ

lnψ0ðr̄�Þ − _ψ0ðr̄�ÞÞΘðt − jr� − r̂�j − jr̄� − r̂�jÞ: ð41Þ

The first equality follows from (31),11 whereas in the
second equality we have used the asymptotic expression
and abused (34) a bit; (34) is meant for large jr̄�j (and jr�j),
while the above integral ranges over all values of r̄�.
Nonetheless, a few important points stand: (1) The first-
order perturbation acquires oscillatory behavior at the
QNM frequencies, regardless of details of the initial
conditions (codified by ψ0 and _ψ0). (2) The QNM part
of the Green’s function vanishes if r̄� is too large, due to
the causality constraint signified by the step function.
Thus, the integral over r̄� is limited to regions around the
peak of the potential (with a range determined by
t − jr� − r̂�j) [42,43,69]. (3) Because the range of r̄� that
contributes to the integral is time dependent, the QNM
oscillations in general have time-dependent amplitudes—
this is true even within linear perturbation theory. Thus, in
analyzing numerical/observational ringdown data, the
time-dependent nature of the amplitudes of QNM oscil-
lations should not be interpreted, on its own, as evidence
for the break down of linear perturbation theory. This
raises the interesting question of what precise model to
use when fitting numerical or detected signals with
QNMs, especially close to the merger time. We will
illustrate this amplitude variation in a toy example in
Sec. III D.
Henceforth, we approximate the QNM part of the linear

perturbation as

Ψð1Þ
Q lmðt; r�Þ ∼

X
n

Aðt; r�Þe−iω
ð1Þ
ln ðt−jr�−r̂�jÞΘðt − jr� − r̂�jÞ;

ð42Þ

where Aðt; r�Þ represents the result of the integral over r̄�. If
the initial conditions ψ0, _ψ0 were sufficiently localized
around the peak of the potential, then A would be
time-independent after some amount of time (such that
t − jr� − r̂�j covers the entire range of r̄� − r̂� over which
the initial conditions were nonvanishing), otherwise, Amay

depend on time. Note we have suppressed the l; n, and ωð1Þ
ln

dependence of A to simplify notation.
The remaining step function Θðt − jr� − r̂�jÞ in Eq. (42)

is important: it tells us that if t < jr� − r̂�j (i.e., the location
of interest is too far away relative to the time of interest),
there is no value of r̄� that would satisfy the causality
condition for producing QNMs, and so the integral (41)
vanishes. In other words, the linear QNM oscillations are
visible only to someone at a location r� and time t that is
causally connected to the bulk of the potential (represented
by its peak). The combined presence of Aðt; r�Þ and
Θðt − jr� − r̂�Þ tells us the actual theoretical prediction
for the observable linear perturbations does not have the

precise classic form of a QNM exp½−iωð1Þ
ln ðt − jr� − r̂�jÞ�,

but is instead modulated. In particular, at a fixed time t, the
linear perturbations do not exponentially diverge at
large radius, despite the frequency having a negative
imaginary part (see further detailed discussions of causality
in [43]).

C. Second-order perturbations

Consider next the generalization of Eq. (23) to an
arbitrary source,

11Due to Eq. (38), we expect additional terms coming from
taking the derivative of GQ and this derivative acting onto
the Θ function. For simplicity we have omitted this extra terms
here but they will be shown explicitly in the toy example of
Sec. III D.
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ð−∂2t þ ∂
2
r� − V̂ÞΨð2Þðt; r�; θ;ϕÞ ¼ Sð2Þðt; r�; θ;ϕÞ: ð43Þ

We are interested in Sð2Þ consisting of quadratic combina-
tions of first-order perturbations, sourcing the second-order
perturbations Ψð2Þ. The solution to this equation generally
contains both homogeneous and particular pieces. The
homogeneous solution will be determined by initial con-
ditions on Ψð2Þ, and it will behave exactly as the linear
QNMs Ψð1Þ. For this reason, we will assume that, if
perturbation theory works, all the initial conditions will
be attributed to Ψð1Þ, and Ψð2Þ will vanish initially. Let us
then focus on the particular solution of Ψð2Þ due to the
source, which can be written in terms of the Green’s
function Gðt; r�; θ;ϕjt̄; r̄�; θ̄; ϕ̄Þ as follows:

Ψð2Þðt;r�;θ;ϕÞ¼
Z

dt̄dr̄�dθ̄dϕ̄sin θ̄Gðt;r�;θ;ϕjt̄; r̄�; θ̄;ϕ̄Þ

×Sð2Þðt̄; r̄�; θ̄;ϕ̄Þ; ð44Þ

where the Green’s function can be decomposed in fre-
quency-harmonic space following (24).
The source Sð2Þ is composed of many quadratic combi-

nations of the linear perturbations. We are particularly
interested in linear perturbations that contain the (linear)
QNM oscillations. Consider thus the following illustrative
source, from “squaring” (42):

Sð2Þðt; r�; θ;ϕÞ ¼ ðA1e−iω1ðt−jr�−r̂�jÞYl1m1
ðθ;ϕÞ þ c:c:Þ

× ðA10e−iω
0
1
ðt−jr�−r̂�jÞYl0

1
m0

1
ðθ;ϕÞ þ c:c:Þ

× Θðt − jr� − r̂�jÞ: ð45Þ

Here we assume the source is real, but a complex source
can be dealt with following Eq. (9). We use A1, ω1, l1, m1,
and A10 ;ω0

1;l
0
1; m

0
1 to denote properties of the two linear

QNMs.12

Using the Clebsh-Gordan coefficients (11), the source
can be rewritten as

Sð2Þðt; r�; θ;ϕÞ ¼
Xl¼l1þl0

1

l¼jl1−l01j
½e−iωþðt−jr�−r̂�jÞA1A10clmþYlmþðθ;ϕÞþe−iω−ðt−jr�−r̂�jÞA1A�

10clm−
ð−1Þm0

1Ylm−
ðθ;ϕÞ þ c:c:�

× Θðt − jr� − r̂�jÞ; ð46Þ

where clm are angular-mixing coefficients that appear
on the right-hand side of Eq. (11), and we have
defined m� ¼ m1 �m0

1 as well as the frequencies ωþ ≡
ω1 þ ω0

1 and ω− ≡ ω1 − ω0�
1 that were discussed in

Sec. II A.13

Next, we calculate the second-order solution by sub-
stituting the source (46) into Eq. (44). We first perform the
angular integral as well as t̄ integral from jr̄� − r̂�j to
infinity, assuming that ω is slightly above the real axis (i.e.,
with positive imaginary part),

Ψð2Þ ¼
Xl¼l1þl0

1

l¼jl1−l01j
½clmþYlmþðθ;ϕÞIlþðt; r�Þ

þclm−
ð−1Þm0

1Ylm−
ðθ;ϕÞIl−ðt; r�Þ þ c:c:�; ð47Þ

where

Ilþ¼−i
Z

dr̄�A1ðr̄�ÞA10 ðr̄�Þ
Z

dω
2π

Gωlðr�jr̄�Þ
ðω−ωþÞ

e−iωðt−jr̄�−r̂�jÞ;

ð48Þ

Il−¼−i
Z

dr̄�A1ðr̄�ÞA�
10 ðr̄�Þ

Z
dω
2π

Gωlðr�jr̄�Þ
ðω−ω−Þ

e−iωðt−jr̄�−r̂�jÞ:

ð49Þ

In performing the integral over t̄, which gives us the factor
of ω − ω� in the denominator, we have assumed A1 and A10

are independent of time. As discussed earlier [below
Eq. (42)], this is not true in general, but they might vary
slowly enough compared to the time scale set by ω� or
asymptote to constant values. Here we see that the
integrand in ω now has poles at the linear QNM frequencies
coming from the Gωl, as well as poles at the frequencies
ω� of the quadratic source. While in general we expect the
quadratic and linear frequencies to be different, a previous
analysis shows that there may be enhancements of the
excited amplitudes when the source has a frequency (given
by ω� in our setup) close to the natural frequencies of the
black hole (given by ωð1Þ), in analogy to resonance [63]. To
what extent resonance is important for quadratic QNMs is a
subject we will return to in the future.

12As discussed in Sec. II B, it is desirable to have a source that
falls off at infinity and at the horizon. One can think of these
additional falloff factors as absorbed into the definition of the
amplitudes A1 and A10 . See Sec. III D for a concrete example.

13Here, we use ω1, l1, m1 and ω0
1;l

0
1; m

0
1 to denote properties

of the two linear QNMs, and ω�;l; m� for the corresponding
second-order QNMs. Elsewhere in the paper, we use ω;l; m and
ω0;l0; m0 to denote properties of the two linear QNM modes and
ω2, l2, m2 for the corresponding second QNMs. Also, occa-
sionally, to emphasize that ω;ω0 refer to frequencies of linear
modes, we use ωð1Þ and ωð1Þ0 . And likewise ωð2Þ for the frequency
of the quadratic mode.
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If we were to perform the integrals in Eqs. (50) and (51),
we again expect three distinct contributions to be present in
the second-order solution, coming from GF, GQ and GB.
The solution coming from GF has been studied asymp-
totically in [35] [using expressions in Eq. (34)], where it

was found that Ψð2Þ
F will have QNM ringing solutions at the

quadratic frequencies ω� as well as polynomial tails when
the quadratic source has a long-range polynomial decay.
Intuitively, since GF approximates to a flat space propa-
gator, it is expected to induce solutions with an analogous
functional form as the quadratic source. Mathematically,
the fact that quasinormal modes with ω� appear fromGF is
expected from Eqs. (50) and (51) since any term inGωl—in
particular, those that generate GF—now has extra poles at
ω� that need to be taken into account in the frequency
integral.
In addition, we can analyze the second-order solution

related toGQ. For this, we include both the poles associated
with the vanishing of the Wronskian (located at the linear
QNM frequencies), and the new pole associated with the
frequenciesω�. In that case, from the frequency integral we
expect to obtain terms like

Ilþ ⊃ −
Z

dr̄�A1ðr̄�ÞA10 ðr̄�Þ
�
Gωþlðr�jr̄�Þe−iωþðt−jr�−r̂�jÞ

þ
X
n

goutðr�>;ωð1Þ
ln Þginðr�<;ωð1Þ

ln Þ
W0

lnðωð1Þ
ln − ωþÞ

e−iω
ð1Þ
ln ðt−jr̄�−r̂�jÞ

�
;

ð50Þ

Il− ⊃ −
Z

dr̄�A1ðr̄�ÞA�
10 ðr̄�Þ

�
Gω−lðr�jr̄�Þe−iω−ðt−jr�−r̂�jÞ

þ
X
n

goutðr�>;ωð1Þ
ln Þginðr�<;ωð1Þ

ln Þ
W0

lnðωð1Þ
ln − ω−Þ

e−iω
ð1Þ
ln ðt−jr̄�−r̂�jÞ

�
:

ð51Þ

It is worth noting that these expressions can typically be
simplified if we are interested in Ψð2Þ for asymptotically

far observers, as in that case goutðr�Þ ≈ eiω
ð1Þ
ln r� and

ginðr�<Þ ¼ ginðr̄�Þ, assuming A1 and A10 vanish at suffi-
ciently large r̄�.
From Eqs. (50) and (51) we first see that the second-

order solution from GQ, Ψ
ð2Þ
Q , will generally contain QNMs

at the linear frequencies ωð1Þ
ln . This result shows that the

linear QNM amplitudes receive nonlinear corrections,
which agrees with previous numerical results [35,40] that
have observed quadratic excitations evolving at the linear
frequencies. In addition, here we find that GQ also leads to
further terms that evolve at the quadratic frequencies ω� (in
contrast to what was suggested in [35]). An important
difference is that a given quadratic frequency ω� is only
sourced by one specific pair of linear QNMs in the

quadratic source, whereas a given linear frequency ωð1Þ
ln

is expected to be sourced by an infinite number of pairs of
linear QNMs in the quadratic source. This happens because

ωð1Þ
ln are characteristic frequencies of the Green’s function

(and not a sole property of linear theory) and thus any
source, regardless of its shape, is expected to excite these
characteristic frequencies.
In the next subsection, we will use a toy model to

qualitatively confirm these results and show that Ψð2Þ will
indeed contain both quasinormal modes at the linear
frequencies ωð1Þ (fromGQ) as well as quadratic frequencies
at ω� (from GF and GQ).
Finally, from GB, we expect the second-order solution

Ψð2Þ
B to have polynomial tails (in analogy to the first-order

solution) as well as some exponentials in time with
ω− frequencies. This is because the solution associated
to GB is obtained by integrating over a branch-cut line for
purely negative imaginary values of ω, and sometimes ω−
can lie along that line (when the two linear QNMs in the
quadratic source are the same and one of them is con-

jugated). Thus, the integrand that gives Ψð2Þ
B will have

ω− poles along the branch cut that need to be taken into
account, by deforming the integration contour around
these poles in the complex plane.14 Note however, that these
ω− modes will describe purely exponentially decaying
modes that do not oscillate in time, and can be interpreted
as transitory memory effects.
We emphasize that these qualitative results can be

straightforwardly generalized to jth-order perturbations
since we expect to have the same starting equation (43)
but with a source composed of various multiplications of
perturbations of order lower than j. In particular, we expect
to excite oscillatory modes with frequencies ωðjÞ that
are j additions and/or subtractions of linear QNM frequen-
cies and their conjugates, as well as polynomial tails, and
oscillatory QNMs with linear frequencies ωð1Þ. Therefore,
we expect the linear QNM spectrum to receive amplitude
corrections at all nonlinear orders.

D. Example: Delta function potential

In this section we consider a simple model where we can
calculate analytically the first and second-order solutions
using the Green’s function approach. Let us consider the
following 1þ 1 starting equation of motion,

14Another intuitive way of understanding that we should have
QNM solutions with purely imaginary ω− frequencies from GB is
to note that the choice of the branch-cut location is convention
dependent, and we could have chosen it not to be along the purely
negative imaginary axis, in which case the poles ω− would have
become part of the residue integral and behaved as any other
QNM term found in Ψð2Þ

Q .
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ð−∂2t þ ∂
2
x − V0δðxÞÞΨð1Þðt; xÞ ¼ 0; ð52Þ

where x is analogous to the tortoise coordinate, and ranges
between −∞ to þ∞. Here, we also introduce a potential
parameter V0 > 0 so that the potential is positive and
located at x ¼ 0. This is a toy model in which x ¼ 0 is
analogous to the location where the RW and Zerilli
potentials peak. This potential was studied in e.g., [69].
The retarded Green’s function for Eq. (52) is given

by [69]

Gðt; xjt̄; x̄Þ ¼ GFðt; xjt̄; x̄Þ þGQðt; xjt̄; x̄Þ; ð53Þ

where

GFðt;xjt̄; x̄Þ¼−
1

2
½Θðt− t̄− jx− x̄jÞ−Θðt− t̄− jxj− jx̄jÞ�;

ð54Þ

GQðt;xjt̄; x̄Þ¼−
1

2
e−

V0
2
ðt−t̄−jxj−jx̄jÞΘðt− t̄− jxj− jx̄jÞ; ð55Þ

where GF does not depend on the potential V0 and thus it
propagates signals to the observer through flat space,
whereas GQ depends on the only linear QNM frequency
present in this example ωð1Þ ¼ −iV0=2 (which happens to
be purely imaginary) and propagates signals that get
transmitted or reflected by the potential. Comparing the
above with (34) is instructive; what was approximately true
(in asymptotic limits) is now exactly true for all x and x̄.
Given some initial conditions ψ0ðxÞ and _ψ0ðxÞ, the total

linear solution will contain two pieces, coming from GF
and GQ. In the former case, we replace Eq. (54) into
Eq. (38) (without angular dependence) and obtain

Ψð1Þ
F ðt; xÞ ¼ 1

2
ðψ0ð−uÞ þ ψ0ðvÞÞ þ

1

2

Z
v

−u
dx̄ _ψ0ðx̄Þ

−
1

2
Θðt − jxjÞðψ0ðjxj − tÞ þ ψ0ðt − jxjÞÞ

−
1

2
Θðt − jxjÞ

Z
t−jxj

jxj−t
dx̄ _ψ0ðx̄Þ; ð56Þ

where we have defined u ¼ t − x and v ¼ tþ x. The first
line describes free propagating waves in any direction, that
would always be present, even in the absence of a potential.
The second and third lines describe the region that is
causally connected to the potential at x ¼ 0 and that hence
should not describe completely free waves and this is why it
has opposite signs to the free solution. This happens
because GF contains information about the existence of
the potential [through the second step function in Eq. (54)]
but not to its properties. Therefore, all the free waves
generated by GF vanish at x ¼ 0. These waves have an
analogous behavior to those in a string with a fixed end at a

wall. As a consequence, from (56) we see that the solution

Ψð1Þ
F for x < 0 only depends on the value of the initial

conditions at x < 0, and the same holds for x < 0. In an
analogy with a Schwarzschild black hole, this means that
the free waves traveling close to the horizon only depend on
what was the initial condition close to the horizon, and that
asymptotically far observers are only sensitive to the initial
conditions to the right of the potential. Therefore, if the
initial conditions happen to be large for x < 0 and small for
x > 0 (as one may expect in the case of isolated binary
black hole mergers), then asymptotically far observers will

detect a small signal Ψð1Þ
F at any time. This result empha-

sizes the need for distinguishing and modelling differently
asymptotically far GWs versus the entire GW radial profile.
Next, we calculate the linear solution coming from GQ.

Substituting Eq. (55) into Eq. (38) we obtain [analogous to
(41) whose approximation is now exact],

Ψð1Þ
Q ðt; xÞ ¼ Aðt; xÞe−V0

2
ðt−jxjÞΘðt − jxjÞ ð57Þ

þ1

2
½ψ0ðt− jxjÞþψ0ðjxj− tÞ�Θðt− jxjÞ; ð58Þ

Aðt; xÞ ¼ 1

2

Z
t−jxj

jxj−t
dx̄e

V0
2
jx̄j
�
_ψ0ðx̄Þ − ψ0ðx̄Þ

V0

2

�
: ð59Þ

From here we see that Ψð1Þ
Q has two pieces. On the one

hand, (57) looks analogous to the usual QNM models used
in the literature, that contains an exponential with the linear
QNM frequency ωð1Þ ¼ −iV0=2 and the radiation is out-
going at spatial infinity and ingoing at the horizon. On the
other hand, (58) contains free travelling waves in the region
causally connected to the potential peak, and cancels out
the second line of Eq. (56) in order to recover free-space
waves when V0 ¼ 0. From now on, we then continue
focusing just on (57).
Importantly, the solution (57) includes a causality con-

dition imposed by the theta function, which avoids diver-
gences in the limit of large jxj. In addition, notice that this
linear solution describes a wave that always propagates
away from the potential, which is what happens in the
eikonal limit for linear QNMs of a Schwarzschild black
hole around the light ring, as seen in [76] and confirmed in
the next section.
Contrary to the usual QNM models assumed in the

literature, the amplitude Aðt; xÞ in (59) is not necessarily
given by a constant since the integration boundaries depend
on t and x, due to causality conditions. On the other hand, if
the initial conditions are localized in a region smaller
than t − jxj, then that region will determine the integration
boundaries and A will reach a constant for sufficiently
large t − jxj. For example, if we had initial conditions
with compact support like a Gaussian, ψ0ðxÞ ¼
Ai expf−ðαxÞ2=4g and _ψ0 ¼ 0, we would obtain
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Aðt; xÞ ¼ Ai
ffiffiffi
π

p V0

α
eð

V0
2αÞ

2

�
Erf

�
V0

2α
−
α

2
ðt − jxjÞ

�

− Erf

�
V0

2α

��
; ð60Þ

where ErfðyÞ is the Error function, which approaches �1
when jyj ≫ 1. This means that, due to causality, there will
be a transitional period of ðt − jxjÞ in which the amplitude
jAðt; xÞj will be growing towards a constant, as more of the
signal has enough time to get in causal contact with the
potential and reach the observer. We then emphasize that an
evolving amplitude is not a sign of linear perturbation
breaking, but it instead provides information about the
shape of the initial conditions around the potential peak.
This amplitude evolution was discussed in [42], and also
illustrated in a toy example in [43]. From this example, we
also see that depending on the value of V0=α, the QNM
amplitude reached asymptotically will not necessarily be of
the same order of magnitude as the initial field value
amplitude at the peak, Ai, unless V0=α ∼Oð1Þ. For
instance, as α → ∞, the Gaussian initial condition will
become narrower and there will be less signal available to
reach the potential and observer, and one will obtain
Aðt; xÞ → 0. Whereas for α → 0, there will be more signal
available but there will be a limit anyway for any given
point ðt; r�Þ due to causality. Indeed, let us consider now
extended initial conditions (analogous to the α → 0 limit in
the Gaussian initial condition example) so that ψ0 and _ψ0

are effectively constants in a region of size 2ðt − jxjÞ, then
the amplitude would be

Aðt; xÞ ≈ 4

V0

½eV0
2
ðt−jxjÞ − 1�

�
_ψ0 − ψ0

V0

2

�
: ð61Þ

After replacing this result into Eq. (57), we will obtain a
QNM-like solution with a constant amplitude, in addition
to a ðt; xÞ–independent term that appears because the
exponential in Eq. (57) cancels out the exponential term
in Eq. (61). This constant term illustrates the fact that
additional non-QNM solutions may come fromGQ in order
to satisfy the initial conditions.
Finally, we emphasize that, due to the integration limits

in Eq. (59), in an analogy with a Schwarzschild black hole,
we expect the linear QNMs to be generated around the
potential peak. On the contrary, the free waves in ΨF are
generated away from the potential peak, and their profiles
are expected to mostly depend on the initial conditions near
the horizon and at infinity.
Next, let us discuss the second-order solution. In analogy

to the sources in Eq. (19), let us assume a simple model
where the quadratic source is given by

Sð2Þðt; xÞ ¼ Cs

Ψð1Þ2
Q ðt; xÞ

ð1þ jV0xjÞ2
; ð62Þ

where Cs is some arbitrary source constant and Ψð1Þ
Q is in

Eq. (57) (we consider only the first line corresponding to
the QNM solution) with an exact constant amplitude A. As
mentioned in Sec. II B, it is important to add the 1=x2

suppression to the source, to avoid divergences in Ψð2Þ in
the limit of V0x → ∞. The second-order solution with
vanishing initial conditions can then be calculated as

Ψð2Þ ¼CsA2

Z
dt̄dx̄Gðt;xjt̄; x̄Þ e−V0ðt̄−jx̄jÞ

ð1þjV0x̄jÞ2
Θðt̄− jx̄jÞΘðt̄Þ;

ð63Þ

which will have two contributions Ψð2Þ
F and Ψð2Þ

Q coming

from GF and GQ, respectively. We emphasize that Ψð2Þ
F has

no relation to Ψð1Þ
F in these calculations, since Ψð2Þ

F will be

actually generated from Ψð1Þ
Q due to the source (62). The

only commonality between Ψð1Þ
F and Ψð2Þ

F is that they are
both propagated with the Green’s function GF.
Due to the step functions coming from the quadratic

source and Green’s function, the integrand in (63) will have
support in a finite region of the ðt̄; x̄Þ space, which is
illustrated in Fig. 3. We emphasize that for an observer at
x > 0, GF always has support only for x̄ > 0, regardless of
the source. This makes sense given that GF describes free
waves traveling “directly” to the observer without inter-
acting with the potential. Therefore, we conclude that at
first and second order, GF does not allow signals from one
side of the potential barrier to be transmitted to the other
side. However, from Fig. 3 we see that GQ has support in a
region of positive and negative x̄, yet is always limited by u,
regardless of the source. In the case of a source depending

on Ψð1Þ, the region contributing to Ψð2Þ
Q will be additionally

limited by the support of the source.

FIG. 3. Support of the QQNM integrand for an observer at
x > 0 at a time t. The blue, red and gray shaded regions indicate

the support of GF, GQ and the quadratic source Sð2Þ ∼Ψð1Þ2
Q ,

respectively. In the regions where the shades overlap is where

Ψð2Þ
F and Ψð2Þ

Q have support. Here, u ¼ t − x and v ¼ tþ x.
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It is easiest to describe the support of Fig. 3 in terms of
ū ¼ t̄ − x̄ and v̄ ¼ t̄þ x̄ variables. For x > 0, the integra-

tion limit of Ψð2Þ
F would be between 0 < ū < u and

u < v̄ < v, and for Ψð2Þ
Q between 0 < ū < u and

0 < v̄ < u. Using these limits of integration we obtain
the following second-order solution:

Ψð2Þ
F ¼ CsA2

V2
0

e−2e−V0u½Eið2Þ− e−2V0xEið2þ 2V0xÞ�

þCsA2

V2
0

e−2½e−V0vEið2þV0vÞ− e−V0uEið2þV0uÞ�;

ð64Þ

Ψð2Þ
Q ¼ 2

CsA2

V2
0

e−V0u½1 − 2e−2Eið2Þ�

þ 2
CsA2

V2
0

e−
V0
2
u½−1þ e−1Eið1Þ�

þ 2
CsA2

V2
0

�
2e−2e−V0uEið2þ V0uÞ

− e−1e−
V0
2
uEi

�
1þ V0

u
2

��
; ð65Þ

which also include the same causality condition Θðt − jxjÞ
as the linear QNM solution Ψð1Þ

Q , but it has been omitted in
these expressions for compactness. In Eqs. (64) and (65)
we have introduced the exponential integral function—
Ei—defined as

EiðyÞ ¼ −
Z

∞

−y
dȳe−ȳ=ȳ: ð66Þ

For x < 0, the solutions Ψð2Þ
F and Ψð2Þ

Q have the same
expressions as in Eqs. (64) and (65) making the replace-
ment x → −x, and hence u ↔ v. In obtaining these results,
it was crucial to include all the causality conditions of the
quadratic source and Green’s function, otherwise the
integrals for Ψð2Þ would have diverged.
More generally, from these results we first see that Ψð2Þ

F
has two contributions. The first line of Eq. (64) has a
temporal evolution that goes as twice the linear QNM
frequency. This line has the naive expected behavior
discussed in Sec. II A, but notice that it has a nontrivial
spatial evolution on its amplitude due to the terms depend-
ing on v − u ¼ 2x. Nevertheless, asymptotically for
V0x → ∞, we find that e−V0ðv−uÞEið2þ V0ðv − uÞÞ ≈
e2=ð2V0xÞ which vanishes and thus the first line of
Eq. (64) describes a QNM term with an asymptotically
constant amplitude. The second line of Eq. (64) does not
have a typical oscillatory behavior. For instance, for
V0u; V0v ≫ 1 we find that

e−V0vEið2þV0vÞ−e−V0uEið2þV0uÞ≈
e2

2þV0v
−

e2

2þV0u
;

ð67Þ

which decays polynomially with time and distance. This
tail was initially discussed in [35], where it was found that it
appears due to the long-range behavior 1=x2 of the
quadratic source and it is generated in asymptotically flat
regions instead of near the potential. Indeed, if the source
did not have a 1=x2 decay, we would have not obtained
polynomial solutions in time.
Next, let us discuss the solution Ψð2Þ

Q obtained in
Eq. (65). In the first line we again see a term that behaves
as twice the linear QNM frequency. Notably, the second
line contains a term that behaves exactly like the linear
QNM, which appears due to the presence of this linear
frequency in the Green’s function. In practice though, this
second line is indistinguishable from the linear QNM
which has arbitrary initial conditions. Next, the third line
in Eq. (65) describes again a power-law tail. For V0u ≫ 1
we get

2e−2e−V0uEið2þ V0uÞ − e−1e−
V0
2
uEið1þ V0u=2Þ

≈ −
2

ðV0uÞ2
�
1þ 2

V0u

�
: ð68Þ

Comparing to Eq. (67), this tail coming from Ψð2Þ
Q is

subdominant at future null infinity. As highlighted in
[35], these tails make perturbation theory break down at
some point when Ψð2Þ ≃Ψð1Þ and, in that case, higher-order
nonlinearities must also be included as well as possible
first-order tails for extended potentials.

We notice that Ψð2Þ
F and Ψð2Þ

Q end up having comparable
amplitudes in this toy model, even though the integration
regions in Fig. 3 are very different for GF and GQ. This
happens because the source decays with jxj and u, which
means the source emitted near the potential peak and
around the moment of the merger is what mostly contrib-
utes to the solution, regardless of whether the signal
interacted with the potential or not. In contrast, if the
source did not have a 1=x2 suppression, we would find that

Ψð2Þ
F → ∞ and V0x → ∞ due to the larger integration

region contributing importantly. However, we would not

obtain any divergent term inΨð2Þ
Q since the Green’s function

GQ and the source decay exponentially with t − jxj
and effectively limit the integration region of Ψð2Þ

Q to
V0ðt − jxjÞ ≲ 1 anyway.
Furthermore, the fact that Ψð2Þ

Q is a significant contribu-
tion to the total quadratic solution means that the QQNM
signal detected by an asymptotically far observer still
depends importantly on the source in a region of size u
around the potential (cf. Fig. 3) and not just to the right of
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the potential. In fact, in this model we find that ð1=2ÞΨð2Þ
Q

comes from the source at x < 0 whereas the other half
comes from x > 0. This is because the potential is
symmetric around x ¼ 0, and hence it has equal trans-
mission and reflection coefficients, and in addition the
spatial profile of the source is also symmetric around x ¼ 0.
Finally, if we assume that the QNMs dominate at

intermediate times, compared to the polynomial tails and
free waves, we can model the ringdown signal at these
intermediate times as

Ψ ¼ Ψ1Q þ Ψ2Q; ð69Þ

where we have separated the terms that evolve with the
linear QNM frequency, ωð1Þ ¼ −iV0=2 from those with the
quadratic QNM frequency, ωð2Þ ¼ −iV0,

Ψ1Q ¼ e−
V0
2
ðt−jxjÞ

�
Aþ 2

CsA2

V2
0

ð−1þ e−1Eið1ÞÞ
�
; ð70Þ

Ψ2Q ¼ CsA2

V2
0

e−V0ðt−jxjÞ−2½2e2 − 3Eið2Þ

− e−2V0jxjEið2þ 2V0jxjÞ�: ð71Þ

We emphasize that while Ψ2Q is a purely second-order
perturbation, Ψ1Q contains both first and second-order
perturbations now. In particular, if A ≪ V2

0=Cs then Ψ1Q

will dominate the total Ψ signal, but if A ≫ V2
0=Cs then

Ψ1Q ∼Ψ2Q for t ∼ jxj, andΨ1Q ≫ Ψ2Q for t ≫ jxj þ 1=V0.
In this example then, the linear QNM frequencies always
determine a major/dominant contribution to the signal.
Also notice that Ψ1Q and Ψ2Q satisfy the expected QNM

boundary conditions, and locally propagate away from the
potential in the limit of V0jxj ≫ 1, but their amplitudes are
sensitive to the initial conditions and quadratic source on
both sides of the potential. This local propagation behavior
is the same one that we will find for a Schwarzschild black
hole in the eikonal limit in Sec. IV. This means that once the
QNMs have been generated, the ones inside the light ring
will propagate to the black hole and become unobservable.
Even though this toy example was extremely simple, the

qualitative properties of its Green’s functions are similar to
those of a Schwarzschild black hole, and thus it allowed us
to confirm basic features of the general solutions discussed
in Sec. III C. However, certain differences are expected,
including the obvious fact that there was notGB function in
this toy model. For instance, the Zerilli and Regge-Wheeler
potentials are not symmetric around their peaks, and their
transmission and reflection coefficients may not be equal
and will generically depend on the frequency of the
quadratic QNM present in the source. This may introduce
a preference for sources that come from x < 0 or from
x > 0 to reach an asymptotic observer, and possibly play a
role in determining how large nonlinearities are in

observations. Relatedly, it is not clear whether Ψð2Þ
F and

Ψð2Þ
Q will have comparable amplitudes. In addition, since we

make an angular decomposition into spherical harmonics,
the linear amplitude in Ψ1Q may not be directly related to
the quadratic amplitude in Ψ2Q for a given harmonic.
As exemplified in Sec. II A, this is the case of a

ðl ¼ 4; jmj ¼ 4Þ harmonic, whose linear amplitude Að1Þ
44

can be unrelated to the quadratic amplitude that mostly
comes from the linear ðl ¼ 2; jmj ¼ 2Þ mode and hence

scales as Að2Þ2
22 .

Another difference is that the causality conditions of the
Green’s function and source that appeared as step functions
in this toy model, will become smoother functions in a
Schwarzschild background [43], and thus there may be a
larger region of space around the light ring determining the
amplitudes of the QNMs. All of these complications of a
Schwarzschild black hole will have to be explored in more
detail with the combination of numerical calculations in the
future.
Finally, even within this toy model, there are extended

analyses to deepen our intuition and understanding on the
generation of QNMs. In particular, we assumed that the
source was solely given by Ψð1Þ

Q and ignored the effect of

Ψð1Þ
F . However, generically the source should contain both

parts. The importance ofΨð1Þ
F will be fully dependent on the

initial conditions but it will likely excite additional sol-
utions with the linear QNM frequencies. Future investiga-
tions on realistic initial conditions will help discern the role

of Ψð1Þ
F . In addition, we could have also taken into account

the fact that the amplitude of the linear QNM is not always
constant, and analyzed induced variations in the amplitude
of the quadratic solution. However, in the regime of a slow
time variation in A, compared to 1=V0, we expect to have
the same quadratic QNM result, now with an amplitude A2

that includes a slow time drift at leading order.

IV. LOCAL QQNM BEHAVIOR

In this section we analyze the local radial behavior of the
QQNMs and confirm that not all of the waves travel to
asymptotic observers, since in the eikonal limit the
signals generated inside the light ring travel back to the
black hole.
Let us consider Eqs. (15) and (16) for j ¼ 2. Due to the

similarities between these two equations, all the qualitative
results will be the same for both, and thus from now on we
drop the odd and even superscript inΨðjÞ. In order to obtain
analytical solutions that help gain intuition on the problem,
we use the WKB approach, in analogy to what has been
performed for linear QNMs in the past [76,77].
In this section, we will not consider quadratic perturba-

tions that have power-law behavior or that behave as the
linear QNMs. Instead, we only analyze the particular
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solutions with QQNM frequencies that are an addition or
subtraction of two linear QNM frequencies.

A. Asymptotic regime

Due to the nearly constant shape of the potential towards
the horizon and spatial infinity, one can use the WKB
formalism to obtain asymptotic solutions to the equations
of motion. In particular, a linear QNM with spherical
harmonic number l and eigenfrequency ωð1Þ ¼ ωwill have
no source on its equation, and thus its asymptotic solution
will be of the form [76]

Ψð1Þðr�Þ ∝ Uðr�;ω;lÞ−1=4e�i
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uðr�;ω;lÞ
p

dr� ; ð72Þ

with a proportionality constant fixed by initial conditions.
Here, we have defined the total radial potential
Uðr�;ω;lÞ ¼ ω2 − Vðr�;lÞ ≈ ω2 as r� → �∞, where V
can be VZ or VRW. Note that this WKB solution holds when
U evolves slowly with radius (and hence represents a
modulating amplitude) while the exponential term varies
quickly. This is achieved when the phase

ffiffiffiffi
U

p
takes large

values, which is the case in the eikonal limit, l ≫ 1, since
ω grows with l according to linear theory calculations [76].
In this regime, the exponential term in Eq. (72) varies
quickly whereas the term U−1=4 can be thought of as a slow
varying amplitude. In addition, the � signs in the exponent
of (72) are chosen according to the QNM boundary
conditions, that is, whether we are near the horizon and
we have ingoing waves (−), or spatial infinity with out-
going waves (þ). In particular, given the known asymptotic
behavior of the potentials VZ and VRW, from Eq. (72) we
find that the linear QNMs behave as

Ψð1Þðr�Þ ∼ eþiωr� for r� → þ∞; ð73Þ

Ψð1Þðr�Þ ∼ e−iωr� for r� → −∞; ð74Þ

which are the usual boundary conditions that the quasi-
normal waves satisfy. For concreteness, from now on, let us
focus on the near horizon waves since the result obtained at
spatial infinity will be analogous.
Next, the linear solution (72) will act as a source to the

quadratic QNM variable Ψð2Þ. Without having an explicit
expression of the quadratic source, in the WKB approxi-
mation we can still separate out the fast-varying from the
slow-varying terms, given that we know the source to be a
multiplication of background functions with two linear
perturbations and their derivatives. In particular, the fast
varying source terms can only come from the exponential
piece in (72). We then schematically express the quadratic
equation of motion as

Ψð2Þ00 ðr�Þ þ Uðr�;ω2;l2ÞΨð2Þðr�Þ ¼ Sð2Þðr�Þ

¼ sð2Þðr�Þ exp
�
−i

Z
dr�θ1�ðr�;ω;l;ω0;l0Þ

�
; ð75Þ

where θ1�ðr�;ω;l;ω0;l0Þ can be

θ1þ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðr�;ω;lÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðr�;ω0;l0Þ

p
;

θ1− ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðr�;ω;lÞ

p
− ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðr�;ω0;l0Þ

p
Þ�; ð76Þ

depending on whether the source does not include a
conjugate Ψð1Þ or it does [cf. Eq. (9)]. Here, due to the
angular and temporal variable separation, we have assumed
that only one pair of linear QNM solutions with ðl; m;ωÞ
and ðl0; m0;ω0Þ is sourcing a quadratic mode with given
ðl2; m2;ω2Þ, where ω2 can take two values; ω2 ¼ ωþ ω0
when Eq. (75) has a source with phase θ1þ, or ω2 ¼
ω − ω0� when the source has θ1−. Similarly, we have the
relationships m2 ¼ m�m0 and jl − l0j ≤ l2 ≤ jlþ l0j.
In addition, on the rhs of Eq. (75) we assume sð2Þ to be a

generally complex source function of r�, that can also
depend on the numbers ðl; m;ωÞ and ðl0; m0;ω0Þ due
to derivatives acting on the linear solutions Ψð1Þ and
due to the Clebsch-Gordan coefficients in Eq. (11).
Nevertheless, this source function sð2Þ is expected to
depend on finite maximum powers of ðl;l0Þ, as opposed
to the exponential in (72). As a result, sð2Þ will evolve
slowly in space compared to the exponential term in
Eq. (75) in the limit of ðl;l0Þ → ∞, and is expected to
approach zero in the asymptotic limit, according to
Eqs. (19) and (20).
Next, we use the WKB approach to solve Eq. (75). We

introduce a small parameter η that determines a scaling
between slow- and fast-varying functions of radius. We
thus rewrite Eq. (75) as

η2Ψð2Þ00 ðr�Þ þ Uðr�;ω2;l2ÞΨð2Þðr�Þ ¼ sð2Þðr�Þ

× exp

�
−
i
η

Z
dr�θ1�ðr�;ω;l;ω0;l0ÞÞ

�
; ð77Þ

where the total potential and source are expanded as

U ¼ U0ðr�Þ þ ηU1ðr�Þ þOðη2Þ; ð78Þ

sð2Þ ¼ sð2Þ0 ðr�Þ þ ηsð2Þ1 ðr�Þ þOðη2Þ: ð79Þ

Given this hierarchy between the phase and the coefficients
in the quadratic source, we introduce the following WKB
ansatz for the quadratic QNM solution,

Ψð2Þðr�Þ ¼ e−
i
η

R
dr�θ2ðr�Þ½Ψð2Þ

0 ðr�Þ þ ηΨð2Þ
1 ðr�Þ þOðη2Þ�;

ð80Þ
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which we replace into (77) and obtain, at leading and
subleading order in η, that

θ2 ¼ θ1�; ð81Þ

Ψð2Þ
0 ¼ sð2Þ0

½U0 − θ22�
; ð82Þ

Ψð2Þ
1 ¼ sð2Þ1 þ 2iθ2Ψ

ð2Þ0
0 − ðU1 − iθ02ÞΨð2Þ

0

½U0 − θ22�
: ð83Þ

From these results we can express the leading-order WKB
solution near the horizon as

Ψð2Þðr�Þ ≈ Sð2Þðr�Þ=fUðr�;ω2;l2Þ − θ21�g: ð84Þ

This same expression will also hold at spatial infinity, with
the difference that in that case the source goes as Sð2Þ ∝
expfþi

R
dr�θ1�g and thus θ2 ¼ −θ1�. Note also that the

same functional form holds for the odd and even quadratic
perturbations.
Equation (84) allows us to obtain the asymptotic

behavior of Ψð2Þ, given the asymptotics of the source
Sð2Þ and of ðUðr�;ω2;l2Þ − θ21�Þ. In particular, since at
leading order U ≈ ω2

2 and θ1þ ≈ ωþ ω0 and θ1− ≈ ω − ω0�,
these leading-order expansions will cancel out and we will
obtain that ðUðr�;ω2;l2Þ − θ21�Þ ∝ r−2 at infinity, and
ðUðr�;ω2;l2Þ − θ21�Þ ∝ ðr − 2MGÞ near the horizon. For
an asymptotically vanishing source Sð2Þ with the same
behavior as the Zerilli and RW potentials (as assumed in
Eqs. (19) and (20) we would have at leading order that,

Ψð2Þðr�Þ ∼ eþiω2r� for r� → þ∞; ð85Þ

Ψð2Þðr�Þ ∼ e−iω2r� for r� → −∞; ð86Þ

where we have used the fact that θ1� ≈ ω2, which can be
ωþ ω0 or ω − ω0�. In either case, we see the same plane-
wave behavior as the linear QNM variable in Eqs. (73) and
(74), and thus the quadratic solutions (85)–(86) satisfy the
same boundary conditions of only ingoing waves at the
horizon, and outgoing waves at spatial infinity as the linear
QNMs. In addition, we see that if the source decayed
slower asymptotically, e.g., Sð2Þ ∝ ðr − 2MGÞ0 near the
horizon, then from Eq. (84) we would find that Ψð2Þ ∝
e−iω2r� ðr − 2MGÞ−1 and would have a diverging power-law
scaling. Similarly for any source that decays slower than
r−2 at spatial infinity. On the other hand, if the sources
decayed faster than ðr − 2GMÞ at the horizon or r−2 at
spatial infinity, the solution for Ψð2Þ would also have a
vanishing scaling. For this reason, the asymptotic choice in
Eqs. (19) and (20) is the more natural one, since in that case
the variable Ψð2Þ will be describing more directly the

physical effects of nonlinearities such as the energy carried
by quadratic QNMs, which does not diverge nor vanishes at
the observer.

B. Maximum of potential

Next, we solve the quadratic QNM equation for Ψð2Þ
around the maximum of the potentials VZðr�;lÞ or
VRWðr�;lÞ. In order to do that, we expand the potential
around its maximum, which now does not necessarily vary
slowly in radius compared to the spatial variations ofΨ. For
both Schwarzschild potentials (17) and (18), the maximum
corresponds to the last circular stable photon orbit, at
r̂ → 3MG (or r̂� ≈ 1.6MG) when l → ∞. The location of
the maximum of the potential decays monotonically with l,
and thus for small values of l we will have that r̂ > 3MG,
but its variation with l is slow and we will always be within
10% of 3MG for any l.
Around the potential peak, we can make a second-order

expansion in ðr� − r̂�Þ, such that both Zerilli and RW
potentials take a simple parabolic form,

Uðr�Þ≈Uðr̂�Þþ
1

2
U00ðr̂�Þðr�− r̂�Þ2þOððr�− r̂�Þ3Þ; ð87Þ

where U00ðr̂�Þ ¼ −V 00ðr̂�Þ is the second-order derivative of
the potential with respect to the tortoise coordinate, and can
be calculated analytically from Eqs. (17) and (18). We
emphasize that in principle the expansion (87) is valid for
Δr≡ ðr� − r̂�Þ=ðMGÞ ≪ 1, regardless of the value of l. In
particular, when l ∼Oð1Þ then ðMGÞ4V 00 ∼ 10−2 and its
higher derivatives are smaller, whereas for l → ∞ we find
that ðMGÞ4V 00 and all higher derivatives scale equally as l2.
Nevertheless, the neglected higher-derivative terms, such
as ðMGÞ5V 000 get fractionally smaller with respect to
ðMGÞ4V 00 as l grows, and hence this approximation works
better for large l values.
For this approximated potential, the linear QNM equa-

tion can be solved analytically. The solution satisfying the
QNM boundary conditions has been found to given by [76]

Ψð1Þðr�Þ ∝ Hn

	
z=

ffiffiffi
2

p 

e−

1
4
z2 ; z ¼ ð4kÞ14ei3π=4ðr� − r̂�Þ;

ð88Þ

with a complex proportionality constant depending on
initial conditions. Here, we have introduced k≡
−V 00ðr̂�;lÞ=2 > 0 which is real and positive for a
Schwarzschild black hole, and scales as k ∝ l2 in the
eikonal limit. Also, the functions Hn are the Hermite
polynomials, which are polynomials of order n containing
only even (odd) powers of z when n is even (odd). The
integer number n ≥ 0 describes the overtones of the linear
QNM frequencies. These solutions are valid for the
ordinary QNMs with ωR > 0, while an opposite sign for
the exponent with z2 in (88) is obtained for mirror modes.
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From now on, without loss of generality, we focus on
ordinary modes only.
In order to understand the solution (88) better we analyze

its limiting behavior. We first notice that z is dimensionless
and scales as z ∝

ffiffiffi
l

p
Δr, so we can define an additional

small parameter ξ≡ 1=l, such that ξ1=2 ≪ Δr describes the
limit of z → ∞ as ξ → 0. While the solution (88) is valid in
general around the peak of the potential, this limit is of
particular interest because it will give the solution that joins
the previous WKB asymptotic expansion, and will allow us
to use theWKB approach to solve for the quadratic solution
later on. In this limit z → ∞ as ξ → 0, Ψð1Þ becomes

Ψð1Þðr�Þ ∝ ðr� − r̂�Þne1
2
i
ffiffi
k

p ðr�−r̂�Þ2 ; ð89Þ

which describes a wave with momentum ∼ljr� − r̂�j with
l ≫ 1, and a slow-varying amplitude modulation given by
ðr� − r̂�Þn. Leaving aside this slow amplitude modulation
and recovering the time dependence expf−iωtg of the
QNM solution, we then find that in the jzj ≫ 1 limit Ψð1Þ
has a time and radial fast evolution of the form,

Ψð1Þðr�; tÞ ∝ e−i½ωRt−1
2

ffiffi
k

p ðr�−r̂�Þ2�eωI t; ð90Þ

which describes waves propagating away from r̂� when
ωR > 0, which is the case for the spectrum of the ordinary
linear QNMs. In particular, (90) describes waves propa-
gating towards the horizon for r� < r̂�, and towards spatial
infinity for r� > r̂�.

15 We thus find that the region around
the light ring determines the turning point for the linear
QNM propagation direction in the eikonal regime. Putting
this together with the previous WKB asymptotic solution,
we conclude that high-frequency linear GWs generated
inside the light ring propagate back to the black hole and
become undetectable for asymptotic observers, whereas
those generated outside the light ring become detectable.
Next, using this linear solution as a source, we calculate

the quadratic solution around r̂�. In particular, we consider
again the jzj ≫ 1 regime and use the WKB approach. Let
us make separate perturbative expansions in Δr ≪ 1 and
ξ ≪ 1, using the hierarchy Δr ≫ ξ1=2. Note that while
technically r̂� (and hence Δr) depends on l and that can
introduce ambiguities on how to make these two separate
expansions, in the l ≫ 1 limit the r̂� running with l
becomes negligible and we can simply approximate
r̂ ≈ 3MG to a constant. In addition, the expansion on ξ
alone can become ambiguous in the quadratic QNM
equation, since there are three different values of l

appearing: two coming from the linear QNMs in the
source, l and l0, and another one coming from the
quadratic QNM itself, l2. Here we assume that these three
values are much larger than one and comparable, so that we
can define a single perturbative parameter ξ for the three
harmonic values.
We will first start by writing the approximate quadratic

equation around the potential peak in the eikonal limit. In
order to do that, we first Taylor expand the potential and the
quadratic source in powers of ξ, and for each given power
of ξ we can then make a radial Taylor expansion around the
maximum Δr. We start from Eq. (15) and on its lhs we
expand the function U, making use of the fact that ω2 can
be ωþ ω0 or ω − ω�0 for a pair of linear QNM frequencies
ω and ω0, whose analytical expressions are known in the
eikonal limit [76–78], and hence we know that ω2 and V
scale as ∼l2 ¼ ξ−2 at leading order,

Uðr�;ω2;l2Þ ≈ ξ−2½uξ0ðr�Þ þ ξuξ1ðr�Þ þ � � ��; ð91Þ
where the subscript ξn denotes the nth-order expansion in
ξ. Here, uξ0 and uξ1 are functions of radius that do not
depend on l. If we expanded these functions in a series of
Δr, where we would find that their leading-order term is of
order Δr0 with a next-to-leading order term Δr2 (i.e., the
radial evolution has a parabolic quadratic form around the
peak, as expected),

uξjðr�Þ ¼ u0j þ u2jΔr2; ð92Þ
where uij are constant coefficients indicating the i-th power
inΔr. For the source on the rhs of Eq. (15), we do not make
use of its specific functional form, nevertheless we
know the source is formed as a product of two linear
perturbations with arbitrary eigenfrequencies ω and ω0, as
well as harmonic and overtone numbers ðl; m; nÞ and
ðl0; m0; n0Þ. Both of these linear perturbations could also
appear with radial derivatives. In addition, these second-
order terms will have a background coefficient that is
expected to have a polynomial dependence on the radius r
(which can also be expressed as a power-law dependence
on r� around r̂� when Taylor expanding), as well as a
possible power-law dependence on the harmonic numbers
l and l0, and the eigenfrequencies ω and ω0, appearing
from possible angular and temporal derivatives acting on
the linear perturbations, as well as the Clebsch-Gordan
coefficients. In any case, we can schematically expand and
separate out the source in terms of some slow and fast
varying pieces as follows:

Sð2Þðr�; ξÞ ≈ ξq½Sξ0ðr�Þ þ ξSξ1ðr�Þ þ ξ2Sξ2ðr�Þ þ � � ��
× eiξ

−1κ�ðr�−r̂�Þ2=2; ð93Þ

where we have picked only two linear QNMs contributing
to the source and, analogously to Sec. IVA, their

15Note that in this paper we have a different sign convention
for outgoing and ingoing waves, when compared to [76]. This is

why here the solution Ψð1Þ ∼ eþi
ffiffiffiffi
k1

p
ðr�−r̂�Þ2=2 is the one that

matches our QNM boundary conditions, whereas in [76] the

authors choose Ψð1Þ ∼ e−i
ffiffiffiffi
k1

p
ðr�−r̂�Þ2=2.
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fast-varying phases [cf. Eq. (89)] are responsible for the
fast-varying piece of the source in this eikonal limit, which
lead to the constant exponent factor κ� ≡ ffiffiffi

k
p

=l�
ffiffiffiffi
k0

p
=l0.

The� sign in κ determines whether one of the linear QNMs
in the source was conjugated or not. This sign dependence
shows explicitly that short-wavelength linear modes (i.e.,
with l;l0 ≫ 1) could source both short-wavelength quad-
ratic modes (with lþ l0 ≫ 1) and long-wavelength modes
[with jl − l0j ≲Oð1Þ]. In the eikonal approximation
employed in this paper, we will assume that the source
also has short wavelength and thus we will require
jl − l0j ≫ 1.
Due to the fact that

ffiffiffi
k

p
∝ l in the limit of l ≫ 1, we

have made the l dependence explicit in the source phase by
introducing a ξ−1 scaling in the exponent of Eq. (93), since
the factors k=l2 ¼ U00ðr̂�;lÞ=2 and k0=l02 ¼ U00ðr̂�;l0Þ=2
are independent of l and l0.16 In addition, in Eq. (93), we
have introduced an additional arbitrary power of l, given
by ξq with q some fixed number (that depends on e.g.,
background functions or angular derivatives appearing in
the source), and we have truncated the ξ expansion up to
quadratic order. Also, we have introduced the slow-varying
radial functions Sξj that describe the coefficients of each
power of ξ and are assumed to be independent of l.17 These
functions can now be independently Taylor expanded in
powers of Δr as

Sξjðr�Þ ≈ Δrpj ½c0j þ c1jΔrþ c2jΔr2�; ð94Þ

where pj determines the dominant and lowest power of Δr
appearing in each source coefficient, while cij describes the
constant coefficient of each power Δri in Sξj. Here we have
again truncated up to second order.
Now that the source has a concrete form in our regime of

interest, and we can proceed to obtaining the particular
solution to the QQNM equation by using the WKB
approximation, and proposing an ansatz that has analogous
properties as the source,

Ψð2Þ ≈ ξqþ2½Ψξ0ðr�Þ þ ξΨξ1ðr�Þ þ ξ2Ψξ2ðr�Þ�
× eiξ

−1κ�ðr�−r̂�Þ2=2; ð95Þ

where we also expand

Ψξjðr�Þ ≈ Δrmj ½ψ0j þ ψ1jΔrþ ψ2jΔr2�; ð96Þ

with some powersmj and coefficients ψ ij to be determined.
Replacing the Ψð2Þ ansatz into the quadratic equation of
motion with potential (91) and source (93), we obtain at
each order in ξ:

Ψξ0ðr�Þ ¼
−Sξ0

ðκ2�Δr2 − uξ0Þ
; ð97Þ

Ψξ1ðr�Þ ¼
−Sξ1 þ ðuξ1 þ iκ�ÞΨξ0 þ 2iκ�ΔrΨ0

ξ0

ðκ2�Δr2 − uξ0Þ
; ð98Þ

Ψξ2ðr�Þ ¼
−Sξ2 þ ðuξ1 þ iκ�ÞΨξ1 þ 2iκ�ΔrΨ0

ξ1 þΨ00
ξ0

ðκ2�Δr2 − uξ0Þ
:

ð99Þ

From here we also obtain the relation between the
powers mj and pj; m0 ¼ p0, m1 ¼ minðp1; p0Þ, and m2 ¼
minðp2; p1; p0 − 2Þ. From these results it is straightforward
to obtain the expressions for ψ ij in terms of cij and uij, but
we omit the explicit expressions here.
The main conclusion is that in the eikonal limit, the fast-

varying radial and temporal dependence of the quadratic
perturbation will then go as

Ψð2Þðt; r�Þ ∝ eið
ffiffi
k

p �
ffiffiffi
k0

p
Þðr�−r̂�Þ2=2e−iðωR�ω0

RÞteðωIþω0
IÞt; ð100Þ

with a proportionality function that evolves slowly with r�.
From the results of linear QNM perturbations in the eikonal
limit [76] we know that ωR ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðr̂�;lÞ

p
which grows

monotonically with l and does not depend on the overtone
n. In addition, we also find the same properties for

ffiffiffi
k

p
.

Therefore, in the quadratic solution (100) we see that both
ð ffiffiffi

k
p �

ffiffiffiffi
k0

p
Þ ∝ ðl� l0Þ and ðωR � ω0

RÞ ∝ ðl� l0Þ will
have the same sign, regardless of the harmonic and over-
tone numbers of the linear perturbations in the source. This
solution, in the large jzj limit, thus describes a wave that
propagates away from the potential peak, just as we
confirmed for the linear QNM solution before.
We notice that this result holds regardless of whether the

source contained odd and/or even perturbations. This is
because the linear QNM frequencies are the same for odd
and even, and because both potentials VZ and VRW have the
same form in the eikonal limit and thus both will lead to the
same k values. We also note that due to the simplicity of this
calculation in the eikonal limit, one could iterate the result
and obtain that higher-order perturbations will also describe
waves propagating away from the potential peak in the
eikonal limit.
Finally, let us summarize the results of this section. In

Sec. IVA we showed that only very far away from the
potential peak waves have a definite propagation direction,

16For consistency,
ffiffiffi
k

p
should also be expanded in leading and

subleading powers in l, but in Eq. (93) we only keep the leading-
order one and that is why we can think of

ffiffiffi
k

p
=l as independent of

l. We do this because the subleading terms in
ffiffiffi
k

p
can be

reabsorbed into the functions Sξi, which are kept arbitrary
here anyway.

17Note that the Taylor expansion of the source functions Sξj is
expected to have incremental powers of ξ instead of ξ1=2, even
though the main variable we are using is z ∝ ξ−1=2. This is
because the potentials and the linear solution Ψð1Þ [see Eq. (88)]
can be expanded on incremental integer powers of l.
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as expected from the QNM boundary conditions. However,
in this subsection we generalize that result close to the
potential peak as well. We thus conclude that waves in the
eikonal limit have a definite propagation direction, and
those located inside the light ring propagate to the black
hole, whereas those located outside the light ring propagate
to the observer. We emphasize though that the potential
peak is not the exact location where the propagation
direction turns over. Instead, there is a spatial region
around the peak where the turnover happens, and the
higher the frequency of the wave, the smaller the size of
the turnover region. In particular, we expect the turnover to
start happening when z ∼

ffiffiffi
l

p
Δr ∼ 1, which is when the

approximation employed in this section breaks down. As a
consequence, for small values of l (that dominate GW
signals from typical binary black hole mergers) there may
be a considerably wide region around the potential peak
where waves propagate in any direction, and this case will
be investigated further in the future.

V. IMPORTANCE OF NONLINEARITIES

In general, an understanding of nonlinearties will allow
us to improve future ringdown models and maximize the
science return from future GW events.
First of all, if the inclusion of quadratic QNMs help

improve ringdown models to earlier times (i.e., closer to the
merger), then one can hope to use this early high signal-to-
noise ratio (SNR) data available to detect more QNMs and
include quadratic effects to avoid biases. When interpreting
the results, one must take into consideration that some of
the frequencies detected may not coincide with those of the
linear QNM spectrum, and that would not indicate a
violation of the no-hair theorem, since these detections
could correspond to GR nonlinear frequencies. This will
happen if quadratic QNMs have a large enough amplitude
to become detectable, as could happen for the ðl ¼ 4;
jmj ¼ 4Þ angular harmonic (see estimations below).
Furthermore, by detecting quadratic QNMs, one can test

the nonlinear dynamical predictions of GR. For any given
pair of (linear/parent, quadratic/sourced) QNMs, one can
confirm if their observed complex amplitudes satisfy the
relationships expected from GR, which can be predicted
from the linear QNMs (see [79] on how other work has
proposed the use of linear QNM amplitude relationships to
test GR).
From the results of the previous sections we conclude

that, after the signal has been generated, not all of the
QNMs propagate towards an asymptotic observer but,
during generation, the amplitude of the QNMs that do
arrive at the observer are still influenced by the initial
conditions close to the black hole horizon. Therefore,
whether nonlinearities and, more precisely, quadratic
QNMs can be observed in the ringdown close to the
merger time, largely depends on what was the initial
perturbation amplitude and its radial profile. In order to

properly answer this question, realistic numerical simula-
tions are necessary as well as the mathematical tools to
connect near-BH physics to asymptotic physics (along
similar lines to what has been done in [10]), both beyond
the scope of this current paper. However, following [33], a
simple dimensional analysis for equal-mass nonspinning
black holes could be performed to show that the quadratic
QNMs may have observable amplitudes, even if they are
subdominant and perturbation theory works throughout the
ringdown signal.
Let us assume that we are in a regime where perturbation

theory works and continue using ε as the small expansion
parameter [cf. Eq. (2)]. When analyzing observables, we
are interested in the asymptotic behavior of the fields in the
limit of r → ∞, so we introduce a second perturbation
parameter δ ¼ GM=r and make an expansion of the metric
at leading order in δ, assuming the hierarchy δ ≪ ε. We
emphasize that the two expansions in ε and δ are inde-
pendent since ε can be thought of as a perturbative
expansion of the signal near the BH, whereas δ quantifies
how far the signal is from the BH. Both perturbations εΨð1Þ

and ε2Ψð2Þ will contribute to the metric at the same order in
δ far from BH.
We then start by making a δ Taylor expansion of the

metric perturbation hμν ¼ εhð1Þμν þ ε2hð2Þμν and reviewing its
asymptotic behavior. Since the metric is not gauge invariant
and thus its asymptotic expression may take different
forms, it is convenient to make the customary choice of
asymptotically-flat gauge, in which the spatial components
of hμν are transverse to the radial direction (for a radially-
propagating wave) and will be the dominant terms in a δ
expansion. Indeed, in this gauge, the leading-order asymp-
totic behavior of the metric components in spherical
coordinates is given by [80]

hθθ;hθϕ;hϕϕ∝r; htθ;htϕ;hrθ;hrϕ∝r−1; htt;htr;hrr∝r−2:

ð101Þ

Here, we explicitly see that the dominant components
are those coming from the angular indices, which are
transverse but also asymptotically traceless since
hθθ þ hϕϕ ∝ r0. As a result, we only care about these
angular components, which are determined by two physical
degrees of freedom, corresponding to the two polarizations
carried by gravity in GR, which are in turn determined by
the even and odd-parity fields o;eΨ ¼ εo;eΨð1Þ þ ε2o;eΨð2Þ.
Note that in Cartesian coordinates, the asymptotic trans-
verse traceless metric perturbations decay as 1=r and their
amplitudes are estimated as [81]

h ∼Ψ=r; ð102Þ

which, importantly, includes Ψð1Þ and Ψð2Þ. Therefore, the
fields o;eΨ can be interpreted as a proxy for the amplitude of
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the metric near the location of the source, in the radiation
zone, and the expansion in ε separating εΨð1Þ from ε2Ψð2Þ
indicates the presence of a hierarchy of amplitudes near the
BH. Next, we will see that these amplitudes are the ones
that determine the energy carried by GWs and the relation
between linear and quadratic QNMs.
At leading order in δ, and for appropriate definitions of

the perturbations o;eΨ, the asymptotic power emitted in
gravitational waves can be expressed as [57,58,82]

G
∂E
∂t

¼
X
lmn

αeðlÞ
���� ∂

eΨlmn

∂t

����
2

þ αoðlÞ
���� ∂

oΨlmn

∂t

����
2

; ð103Þ

where we are using the n index to label both the overtones of
the linearQNMsaswell as the discretemodes in the quadratic
QNM frequency spectrum for given ðl; mÞ harmonic num-
bers.Here,wehave additionally introduced the dimensionless
functions αe;oðlÞ that depend on the harmonic number l, but
are assumed to be independent of r and t. These functions
have been introduced to generically describe the arbitrary
normalization of the functions Ψ that has been varied in the
past literature. As discussed in Sec. II B, the definition of the
variables Ψð2Þ involve some arbitrary choices, and here we
choose them such that they encompass all the ε2 perturbations
terms of the asymptotic transverse traceless metric, so that
Eq. (103) holds. Indeed, previous works on quadratic
perturbations obtain slightly different formulas due to their
definitions of quadratic variables [28,34,36].
Separating the linear and quadratic contributions with

different ε powers, we obtain

G _E ≈ ε2G _Eð2Þ þ 2ε3
X
lmn

αeℜ

�
∂
eΨð1Þ

lmn

∂t
∂
eΨð2Þ�

lmn

∂t

�

þ αoℜ

�
∂
oΨð1Þ

lmn

∂t
∂
oΨð2Þ�

lmn

∂t

�
þ ε4

X
lmn

αeðlÞje _Ψð2Þ
lmnj2

þ αoðlÞjo _Ψð2Þ
lmnj2 þOðε4Þ; ð104Þ

where in the first line we have Eð2Þ representing the energy
coming from o;eΨð1Þ, the second line corresponds to the
energy due to the mixing between first and second-order
perturbations, and the third line includes purely second-
order perturbations. As discussed in [36], second-order
perturbation theory only allows for a consistent energy
calculation up to ε3 order, since third-order perturbations
Ψð3Þ will contribute to order ε4 to the energy and hence the
third line in Eq. (104) is technically incomplete.
Recall that Ψð2Þ includes both homogeneous solutions

evolving with the linear QNM frequencies and particular
solutions evolving with the quadratic QNM frequencies.
From this feature, we expect the particular QNM solution to
average out at order ε3 in the energy, after integrating the
power in time. Thus,we expect the homogeneous solution of

Ψð2Þ and possible non-QNM solutions to mostly determine
the energy at order ε3. We expect the particular solution of
Ψð2Þ to mostly contribute at order ε4 to the energy.
Next, we will use the fact that the energy depends

quadratically on the QNM amplitude to estimate the impor-
tance of linear and quadratic perturbations in the strain.
Since the remnant black hole is what generates the

ringdown GWs, the maximum energy GWs can radiate is
M. Therefore, the energy radiated during the ringdown is
usually quantified by the ringdown efficiency εrd—the
fraction of total black hole mass radiated in ringdown
waves. The values can range between εrd ∼ 0.8%–3%
[9,12,83] depending on the binary mass ratio and spins.
Given our assumption that perturbation theory works, most
of the ringdown energy will be coming from the linear
perturbation and thus we can estimate an order of magni-
tude of Eð2Þ=M ∼ 1%.
As en example, in nearly equal-mass nonprecessing

quasicircular BH binaries, the dominant QNM in the
strain has ðl; m; nÞ ¼ ð2; 2; 0Þ, and hence we can
approximate the signal with a single QNM; o;eΨð1Þ≈
o;eAð1Þ

220 expf−iωð1Þ
220tg. For this mode, the energy emitted

due to linear perturbations is then estimated as

Eð2Þ

M
∼
�
Ãð1Þ
220

GM

�2

: ð105Þ

Here, Ãð1Þ
220 is a proxy for the total linear amplitude at t ¼ 0

that includes both odd and even perturbations (and hence it

is directly related to the amplitudes o;eAð1Þ
220). Note that here

we have ignored the role of αo;e since for l ∼Oð1Þ we
expect αo;e ∼Oð1Þ.
From Eq. (105) we obtain Ãð1Þ

220=ðGMÞ ∼ 10%. Next, let
us estimate the dominant quadratic mode, which will be
generated from the linear (220) and will have harmonic

numbers ðl ¼ 4; m ¼ 4Þ and frequency ωð2Þ
44 ¼ 2ωð1Þ

220 asso-
ciated. Both Ψð1Þ and Ψð2Þ have the same units of GM, so a
dimensional analysis would tell us that the amplitude of this
quadratic QNM is of order

Ãð2Þ
44 ∼ ðGMÞ−1Ãð1Þ2

220 ; ð106Þ

which assumes that the coefficients in the quadratic source
are of order GM, which is reasonable since both l and the

QNM frequency ωð1Þ
220 are present in the source and both are

of order unity in this example. In general, for large l values
additional nonunity factors may be expected.
From Eq. (106), we thus estimate that Ãð2Þ

44 =ðGMÞ∼
1% ∼ 10%Ãð1Þ

220. Since for nearly equal-mass binary black
holes, such as GW150914, the leading harmonic mode is
(2,2) and the next-to-leading harmonics, like (4,4), have
amplitudes that are about 1–10% that of (2,2), it is possible
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that the linear and quadratic QNM for the (4,4) harmonic
will have comparable or larger amplitudes near the moment
of the merger. This estimate generally agrees with the
numerical results found in [50–52] for the (4,4) harmonic.
As discussed in the introduction, next generation of GW
detectors will have the ability to measure the (4,4)
harmonic even if its amplitude is a percentage of the
dominant (2,2) mode [49,54], so we expect quadratic
modes to be detectable in the future.
Note that in the estimation of Eq. (106), Clebsch-Gordan

coefficients should also appear, and hence affect the
amplitude of Ψð2Þ. These coefficients take values close to
0.5 or smaller, and suppress some linear harmonics to
sourcing some quadratic harmonics. For instance, while the
leading QQNM is expected to be in (4,4), a subleading
QQNM would be obtained from the product of linear
modes such as ð2; 2Þ × ð4; 4Þ. This combination of linear
modes could source quadratic harmonics with 2 ≤ l ≤ 6
and m ¼ 6, 2. However, the Clebsch-Gordan coefficient to
the (62) quadratic harmonic mode is always one or two
orders of magnitude smaller than the rest. See Appendix B
for a list of useful Clebsch-Gordan coefficients and a
further discussion on subleading quadratic modes.
While in this discussion we assumed perturbation theory

in ε up to second order, the energy expression (103) is
generic asymptotically far, and can be made to include
terms up to arbitrarily high powers of ε. Since the total
ringdown energy has to be smaller than M, we then expect
ÃðjÞ=ðGMÞ to always be smaller than unity even at higher
orders in ε. This may be a hint towards the more general
validity of perturbation theory for the radiated GW signal,
and will be investigated further in the future.

VI. DISCUSSION

The ringdown signal after the merger of two compact
objects is typically analyzed using first-order perturbation
theory, which is expected to work well some time after the
merger, once any nonlinearities of the GWs have decayed.
Motivated by previous studies that have found linear
perturbations to fit surprisingly well the GW signal even
at the moment of the merger or slightly before, in this paper
we analyze the role of nonlinearities by studying their
qualitative physical properties regarding generation and
propagation, and focusing particularly on second-order
perturbations of a Schwarzschild black hole.
Following earlier works, we use the Green’s function

approach to understand the generation of GWs. Since first-
and second-order perturbations (and higher order too) are
calculated using the same Green’s function, we find that
they will all share certain common properties that we
confirm by working out an explicit, fully analytical, toy
example of quasinormal modes. First, we confirm that the
ringdown signal (first and second order) can include
quasinormal modes (QNMs), as well as polynomial tails

and arbitrary signals that depend on the initial conditions
(sometimes referred to as the prompt response).
Second, the causality constraints carried by the Green’s

function mean that at linear and nonlinear order the QNMs
are generated in the region around the potential barrier
peak, in the sense that QNMs are generated dynamically
when signals are in causal contact with the potential peak
(e.g., get reflected or transmitted by the potential barrier).
This means that as time goes on, more signals interact with
the potential and reach the observer, supporting a dynami-
cal buildup picture of the QNM amplitudes. As a result, we
find that the linear QNM amplitude can evolve in time
before reaching a (typically assumed) constant amplitude,
and thus we conclude that a time-evolving amplitude of
QNMs is not necessarily a hint of perturbation theory
breaking. Due to the same buildup picture, as time goes on,
eventually the amplitude of the QNMs might be affected by
the entire initial radial profile of the signal, both close and
far from the black hole. However, it may also be plausible
that, for practical purposes, the initial condition around the
potential peak is the main factor determining the QNM
amplitude. For this reason, a future numerical analysis on
realistic spatial profiles for initial conditions may hold the
key to answer the question of whether strong nonlinearities
are present or not in observable ringdown signals.
Third, we highlight previous results that show the linear

QNM frequencies to be characteristic frequencies of the
Green’s function, as opposed to properties of just first-order
perturbations. As a consequence, solutions with this linear
frequency spectrum can be generated at any order in
perturbation theory via the Green’s function. In practice,
this means that the amplitude of the QNMs with the linear
frequency spectrum gets renormalized by receiving higher-
order corrections, which may be a major reason why
previous analyses found linear QNM frequencies to fit so
well GW simulations even close to the merger. In addition,
we confirm previous results on the presence of a new distinct
higher-order spectrum of QNM frequencies, that are
obtained by adding or subtracting linear QNM frequencies.
Furthermore, we analyze the local propagation behavior of

linear and quadratic perturbations of a Schwarzschild black
hole in the eikonal limit.We use theWKB approach to obtain
the radial solutions to the linear and quadratic Zerilli and
Regge-Wheeler equations. We find that both linear and
quadratic perturbations effectively propagate away from
the potential peak (approximately the light ring in this
regime), which means that only the waves localized outside
the light ring will propagate to an asymptotic observer and
become detectable. Since, based on NR simulations, we
expect most of the nonlinearities to be localized very close to
the BH horizon, this result hints to why linear perturbation
theory may work better than expected in describing asymp-
totically far signals. However, we emphasize that the local
propagation behavior obtained here only holds for high-
frequency waves (l ≫ 1), but typical GW signals are
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dominated by low-frequency waves, whose behavior will be
analyzed further in the future.
We emphasize that further research is needed to fully

understand the role and importance of nonlinearities in the
ringdown. For instance, we assumed a perturbative
approach that does not consider feedback effects to the
black hole background (e.g., [44]). However, due to the still
large emission of GWs around the merger time, and due to
GWs traveling back to the black hole, we expect the total
mass and angular momentum of the black hole to initially
evolve in time, and possibly affect the appropriate values of
the QNM frequencies that one needs to use in ringdown
models near the merger time. However, recent results have
found linear QNMs to fit well the multipole moments of the
dynamical horizon from a binary merger, even when the
horizon area still evolves significantly [84]. It is still to be
understood why this is the case, and whether it is just a
numerical artifact due fitting time-limited signals with
arbitrary number of linear QNMs.
In the future, we plan to generalize the qualitative

analysis performed in this paper to Kerr black holes.
However, we already expect various similarities. Linear
and quadratic perturbations will satisfy the same radial
Teukolsky equation with a vanishing source for the linear
case and a nonvanishing source for quadratic case [39,40],
analogous to the Schwarzschild case. As a result, we again
expect the same Green’s function determining the linear
and quadratic solutions, and hence propagating common
properties to linear and nonlinear modes. Furthermore, the
Green’s function is expected to have similar qualitative
properties to the one of a Schwarzschild black hole [85]. A
WKB analysis of the solutions is also possible to perform
[64,86–88] since the Teukolsky equation can also be
written in a Schrödinger-like form with an effective
potential barrier that peaks at a certain location [63], just
like for Schwarzschild black holes.
Finally, we emphasize that the long-term goal of under-

standing nonlinearities holds great potential since it will
allow us to improve ringdown models, improve the sensi-
tivity of future no-hair theorem tests (by increasing the
likelihood of detecting multiple QNM frequencies), and
probe the dynamical nonlinear behavior of gravity (by
testing whether non-trivial physical effects get excited at
higher order that could modify the amplitude and frequency
of quadratic QNMs expected in vacuum GR). For this
reason, in this paper we argue that even if the nonlinearities

were small during the entire ringdown signal, they will not
necessarily be unobservable given the increased sensitivities
of future GW detectors, and they will be worth exploiting.
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APPENDIX A: COMPLEX VARIABLES

Since the Einstein equations have at most two deriva-
tives, the second-order equation of motion can be generally
expressed as

Gð1Þ
μν ðhð2ÞÞ ¼ L0μν

αβhð2Þαβ þ L1μν
αβγhð2Þαβ;γ þ L2μν

αβγδhð2Þαβ;γδ;

ðA1Þ

Sð2Þμν ðhð1Þ;hð1ÞÞ¼Q0μν
αβγδhð1Þαβ h

ð1Þ
γδ þQ1μν

αβγδλhð1Þαβ;λh
ð1Þ
γδ

þQ2μν
αβγδληhð1Þαβ;ληh

ð1Þ
γδ þQ3μν

αβγδληhð1Þαβ;λh
ð1Þ
γδ;η;

ðA2Þ

where the tensors Li and Qi are formed using the back-
ground metric and its derivatives (and are therefore real),
and the covariant derivatives are taken with respect to the
background metric. From here we see that the real
equations of motion can be expressed in terms of the
complex variables by replacing,

Gð1Þ
μν

�
1

2
ðhcð2Þ þ hcð2Þ�Þ

�

¼ Sð2Þμν

�
1

2
ðhcð1Þ þ hcð1Þ�Þ; 1

2
ðhcð1Þ þ hcð1Þ�Þ

�
ðA3Þ

which explicitly gives that,

L0μν
αβhcð2Þαβ þL1μν

αβγhcð2Þαβ;γþL2μν
αβγδhcð2Þαβ;γδþc:c:¼1

2
½Q0μν

αβγδðhcð1Þαβ hcð1Þγδ þhcð1Þ�αβ hcð1Þγδ ÞþQ1μν
αβγδλðhcð1Þαβ;λh

cð1Þ
γδ þh�cð1Þαβ;λ h

cð1Þ
γδ Þ

þQ2μν
αβγδληðhcð1Þαβ;ληh

cð1Þ
γδ þh�cð1Þαβ;ληh

cð1Þ
γδ Þ

þQ3μν
αβγδληðhcð1Þαβ;λh

cð1Þ
γδ;η þh�cð1Þαβ;λ h

cð1Þ
γδ;η Þ�þc:c:; ðA4Þ

where c:c: stands for complex conjugate. From here we explicitly see that the equation of motion for hcð2Þ can then be
obtained as in Eq. (9).
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APPENDIX B: CLEBSCH-GORDAN
COEFFICIENTS

When calculating the Clebsch-Gordan coefficients that
relate the linear and quadratic QNMs, it is useful to keep
track of the spin nature of the perturbation fields. In order
to do that, it is best to work with the Newman-Penrose
(NP) [62] and Geroch-Held-Penrose (GHP) [89] formal-
ism, as it has been done for Kerr black holes in [40,90]. In
the NP formalism one can express the ten metric perturba-
tions in vacuum in terms of the five complex scalarsΨ0,Ψ1,
Ψ2, Ψ3, Ψ4, which have integer spins ranging from −2 to
þ2. Ψ4 is the observably relevant field that determines the
asymptotic behavior of the metric, has spin −2, and is
directly related to the Zerilli and Regge-Wheeler variables
used throughout this paper (see explicit relationship in
e.g., [81]). Therefore, we are interested in the quadratic
source to Ψ4, which will depend on all of the different
metric components [37] and at most two derivatives acting
in total. As a consequence, this source can contain the
following spin-weighted spherical harmonic multiplica-
tions: −2Ylm × 0Yl0m0 , −1Ylm × −1Yl0m0 , −3Ylm × 1Yl0m0

and −4Ylm × 2Yl0m0 . See Tables II–V for examples of the
angular mixing factors [c.f. Eq. (11)] when multiplying two
given spin-weighted spherical harmonics.
If we consider a GW signal with leading linear mode

from ðl; mÞ ¼ ð2;�2Þ and a next-to-leading order mode
ð4;�4Þ (there could be others like ð3;�3Þ and ð3;�2Þ that
we omit here for concreteness), then the relevant angular
mixing coefficients that will appear in the quadratic source
and determine the leading and next-to-leading quadratic
QNMs are the following:
We emphasize that here we have used the fact that the

GW signal for a mode ðl; mÞ is the same as that for ðl;−mÞ
due to the presence of mirror modes. Here we see that the
leading ð2;�2Þ linear modes will not only source a ð4;�4Þ
quadratic harmonic but also some memory-like modes
(2,0), (3,0), (4,0) that do not oscillate but still decay
exponentially in time. Note that the amplitude of the
quadratic (4,4) mode will be comparable to that of the
(2,0) and (3,0) memory-like modes due to their comparable
angular mixing coefficients.
In addition, there can be various subdominant quadratic

QNMs. As an example, the linear (2,2) and (4,4) QNMs can
source a (6,2) mode, but its amplitude will tend to be
suppressed compared to other modes due to the small
angular mixing coefficient. Nevertheless, these same linear
modes can also source a quadratic ð2;�2Þ mode. If we
consider a GW signal where the amplitudes near the merger
time of the dominant linear (2,2,0) and (4,4,0) modes are

related as Ãð1Þ
440 ∼ 10%Ãð1Þ

220 and Ã
ð1Þ
220=ðGMÞ ∼ 10% (such as

in nearly-equal masses quasicircular binary mergers), then

we could estimate the quadratic (2,2) amplitude Ãð2Þ
22 as

Ãð2Þ
22 ∼Oð0.1ÞðGMÞ−1Ãð1Þ

440Ã
ð1Þ
220 ∼ 0.1%Ãð1Þ

220; ðB1Þ

TABLE II. Multiplication of linear modes with spins s ¼ −2
and s0 ¼ 0 that source a quadratic mode with spin s ¼ −2.

ð−2;l; mÞ × ð0;l0; m0Þ ð−2;l2; m2Þ Angular mixing

ð2; 2Þ × ð2; 2Þ (4, 4) 0.217641
ð2; 2Þ × ð2;−2Þ (4, 0) 0.0260131

(3, 0) −0.119207
(2, 0) 0.180224

ð2; 2Þ × ð4; 4Þ (6, 6) 0.197368
ð4; 4Þ × ð2; 2Þ (6, 6) 0.305761
ð2;−2Þ × ð4; 4Þ (6, 2) 0.00887102

(5, 2) 0.053041
(4, 2) 0.12337
(3, 2) 0.132981
(2, 2) 0.0561946

ð4; 4Þ × ð2;−2Þ (6, 2) 0.0137429
(5, 2) −0.0410854
(4, 2) −0.0424721
(3, 2) 0.206013
(2, 2) 0.217641

TABLE III. Multiplication of linear modes with spins s ¼ −1
and s0 ¼ −1 that source a quadratic mode with spin s ¼ −2.

ð−1;l; mÞ × ð−1;l0; m0Þ ð−2;l2; m2Þ Angular mixing

ð2; 2Þ × ð2; 2Þ (4, 4) 0.355406
ð2; 2Þ × ð2;−2Þ (4, 0) 0.0424791

(2, 0) −0.220728
ð2; 2Þ × ð4; 4Þ (6, 6) 0.353062
ð2;−2Þ × ð4; 4Þ (6, 2) 0.015869

(5, 2) 0.0237206
(4, 2) −0.0827594
(3, 2) −0.208148
(2, 2) −0.125655

TABLE V. Multiplication of linear modes with spins s ¼ −4
and s0 ¼ þ2 that source a quadratic mode with spin s2 ¼ −2.

ðþ2;l; mÞ × ð−4;l0; m0Þ ð−2;l2; m2Þ Angular mixing

ð2; 2Þ × ð4; 4Þ (6, 6) 0.02359
ð2;−2Þ × ð4; 4Þ (6, 2) 0.00106029

(5, 2) −0.0126792
(4, 2) 0.0688127
(3, 2) −0.222519
(2, 2) 0.470158

TABLE IV. Multiplication of linear modes with spins s ¼ −3
and s0 ¼ þ1 that source a quadratic mode with spin s ¼ −2.

ðþ1;l; mÞ × ð−3;l0; m0Þ ð−2;l2; m2Þ Angular mixing

ð2; 2Þ × ð4; 4Þ (6, 6) 0.133445
ð2;−2Þ × ð4; 4Þ (6, 2) 0.0059979

(5, 2) −0.0448278
(4, 2) 0.121645
(3, 2) −0.0786725
(2, 2) −0.332452
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where the prefactor of Oð0.1Þ comes from the various
angular mixing coefficients that range from 0.06 to 0.47,
depending on the spin of the linear modes present in the
source. Here we see that this quadratic mode in (2,2) will
have a subpercent contribution to the total signal, so even

though it typically decays slower than the first linear
overtone (2,2,1), it may not always have an observable
impact. We emphasize though that these estimations are
source-dependent and systems with high-mass ratios will
have a different hierarchy of harmonic multipoles.
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