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In vacuum, the gravitational recoil of the final black hole from the merger of two black holes depends
exclusively on the mass ratio and spins of the coalescing black holes, and on the eccentricity of the binary.
If matter is present, accretion by the merging black holes may modify significantly their masses and spins,
altering both the dynamics of the binary and the gravitational recoil of the remnant black hole. This paper
considers such a scenario. We investigate the effects on the kick of the final black hole from immersing the
binary in a scalar field cloud. We consider two types of configurations: one with nonspinning and unequal-
mass black holes, and a second with equal mass and spinning holes. For both types, we investigate how the
gravitational recoil of the final black hole changes as we vary the energy density of the scalar field. We find
that the accretion of the scalar field by the merging black holes could have a profound effect. For the
nonspinning, unequal-mass binary black holes, the kicks are in general larger than in the vacuum case, with
speeds of ∼1; 200 km=s for binaries with mass ratio 2∶1, 1 order of magnitude larger than in vacuum. For
equal mass, binaries with black holes with spins aligned with the orbital angular momentum, kicks larger
than in vacuum are also found. For systems with spins in the superkick configuration, the scalar field
triggers a similar dependence of the kicks with the entrance angle at merger as in the vacuum case but in this
case depending on the strength of the scalar field.

DOI: 10.1103/PhysRevD.107.044039

I. INTRODUCTION

The gravitational waves (GWs) emitted during the
inspiral and coalescence of a binary black hole (BBH)
carry energy, angular momentum, and linear momentum
[1]. A net loss of linear momentum by the binary in a
certain direction implies a recoil of the final black hole
(BH) in the opposite direction [2–4]. In vacuum, this recoil
or kick depends exclusively on the mass ratio and spins of
the coalescing BHs, and if the binary is not in a quasicir-
cular orbit, the recoil depends also on the eccentricity of the
binary system [5]. When matter is present, the situation is
more complex. For instance, in mixed binary mergers, i.e.
coalescences of BHs with neutron stars, the kick will
depend also on any accretion of matter by the BH during
the merger [6].
For this work, we focus on BH environments permeated

by a scalar field. Scalar fields have been considered as
sources of dark matter [7], in inflationary theories [8–13],
and in the context of modified theories of gravity, such as
scalar-tensor and fðRÞ theories [14–16]. In the presence of
BHs, scalar fields have also been used to probe the
transition from inspiraling BHs to a single perturbed BH
[17]. BBH systems in scalar-tensor [18,19], fðRÞ [20], and
Einstein-Maxwell-dilation [21] theories have been also

studied, as well as BBHs in dynamical Chern-Simons
gravity [22], axionlike scalar fields [23], and scalar
Gauss-Bonnet gravity [24].
Here, we are interested in investigating the effect that a

scalar field may have on the kick of the final BH, an aspect
not considered by the studies mentioned above. We focus
on a simple scenario, a BBH immersed in a spherical shell
of a massive scalar field and study two types of BBH
configurations. One consists of unequal mass binaries with
nonspinning BHs, and in the other, binaries with equal-
mass holes but spinning BHs. For the later, we consider BH
spins aligned with the orbital angular momentum (i.e.,
nonprecessing binaries) and BH spins in the orbital plane in
the superkick configuration [25,26]. In addition to the kick
on the final BH, we also studied the characteristics of the
GWs and the angular momentum radiated in GWs and by
the scalar field.
The paper is organized as follows. In Sec. II, we present

the method to construct initial data. Section III summarizes
the equations of motion for the BBH with scalar field
sources. Section IV presents the methodology to extract
kicks, energy, and angular momentum radiated. The BBH
configurations are given in Sec. V. Results for unequal
mass, nonspinning BHs binaries are given in Sec. VI
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and for equal mass, spinning BHs binaries in Sec. VII.
Conclusions are found in Sec. VIII. Greek indices denote
space-time indices, and Latin indices are used for spatial
indices. We use geometrical units in which G ¼ c ¼ 1. A
subscript 0 denotes initial values. Unless explicitly stated,
we report results in units ofM0, the total initial mass of the
BBH system.

II. INITIAL DATA

Under a 3þ 1 decomposition of the Einstein field
equations [27], the initial data consist of (γij; Kij; ρ; Si),
with γij the spatial metric and Kij the extrinsic curvature of
the constant time, spacelike hypersurfaces. ρ and Si are the
energy and momentum densities, respectively. The initial
data must satisfy the following equations:

Rþ K2 − KijKij ¼ 16πρ ð1Þ

∇jK
j
i −∇iK ¼ 8πSi; ð2Þ

namely the Hamiltonian and momentum constraints,
respectively. Here R is the Ricci scalar, and ∇ denotes
covariant differentiation associated with γij. For our case of
a massive scalar field,

ρ ¼ 1

2
Π2 þ 1

2
∇i∇iϕþ 1

2
m2

ϕϕ
2; ð3Þ

Si ¼ −Π∂iϕ; ð4Þ

with mϕ the mass of the scalar field ϕ and Π its conjugate
momentum.
We solve the constraints (1) and (2) following the York-

Lichnerowicz conformal approach [28–31] in which

γij ¼ ψ4ηij ð5Þ

Kij ¼ Aij ¼ ψ−2Ãij; ð6Þ

with Ai
i ¼ 0, K ¼ 0, and ηij the flat metric. In addition, we

impose ϕ ¼ ϕ̃ and Π ¼ ψ−6Π̃ [32,33]. With these trans-
formations, the Hamiltonian (1) and the momentum (2)
constraints read respectively:

Δψ þ 1

8
ÃijÃijψ

−7 ¼ −πΠ̃2ψ−7 − πψ∂iϕ∂iϕ

− πm2
ϕϕ

2ψ5 ð7Þ

∂jÃ
j
i ¼ −8πΠ̃∂iϕ; ð8Þ

where Δ ¼ ηij∂i∂j.
Since we are modeling BHs as punctures, the conformal

factor ψ diverges at the punctures. Therefore, we will
exploit the freedom for choosing initial data for ϕ and Π

and zero out the divergent terms proportional to ψ and ψ5 in
Eq. (7). We accomplish this by setting initially ϕ ¼ 0. With
this assumption, (7) and (8) become

Δψ þ
�
1

8
ÃijÃij þ πΠ̃2

�
ψ−7 ¼ 0 ð9Þ

∂jÃ
j
i ¼ 0; ð10Þ

respectively.
In Eq. (8), we use the Bowen-York solutions for Ãij, where

the initial binary configuration is fully specified by the mass,
spin, and momenta of the BHs, and their separation. These
parameters are obtained from integrating the post-Newtonian
(PN) equations of motion. The integration starts at large
separations and ends at the separation where the numerical
relativity (NR) initial data are constructed. This method is
known to yield initial data suitable for stitching together NR
and PN evolutions [34]. Since we are interested in asymp-
totically flat solutions to the conformal factor,we require Π̃ to
have compact support. For simplicity, we set

Π̃ðrÞ ¼ Π0 exp

�
−
1

2

�
r − r0
σ

�
2
�
: ð11Þ

That is, the scalar field source is a shell with radius r0,
thickness σ, and amplitude Π0. We solve Eq. (9) with the
2PUNCTURES solver [35], which was modified to include the
Π̃2 term.

III. EVOLUTION EQUATIONS

The evolution equation for the scalar field is

□ϕ ¼ m2
ϕϕ; ð12Þ

with □ ¼ ∇μ∇μ and ∇μ covariant differentiation with
respect to the space-time metric gμν. Under a 3þ 1

decomposition, the space-time metric is decomposed as

gμν ¼ γμν − nμnν; ð13Þ

with nμ ¼ ðα−1;−βiα−1Þ the timelike unit normal vector to
the t ¼ constant spacelike hypersurfaces. Here α and βi are
the lapse function and shift vector, respectively. Given (13),
we rewrite Eq. (12) as

1

α
∂oϕ ¼ −Π; ð14Þ

1

α
∂oΠ ¼ −∇i∇iϕ −∇i ln α∇iϕþ KΠþm2

ϕϕ; ð15Þ

where ∂o ¼ ∂t − βi∂i.
The evolution of the geometry of the spacelike hyper-

sufaces, namely γij and Kij, is handled with the Baumgarte
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Shapiro Shibata Nakamura formulation of the Einstein
equations [36,37]. For a scalar field, the stress-energy
tensor source in these equations is given by

Sij ¼ ∇iϕ∇jϕþ 1

2
γijðΠ2 −∇k∇kϕ −m2

ϕϕ
2Þ: ð16Þ

We used the moving puncture gauge [38,39] to evolve α
and βi. The resulting set of evolution equations is solved
numerically using the Maya code [40–45], our local version
of the Einstein Toolkit code [46].

IV. PHYSICS EXTRACTION

The physical quantities of interest are the spin and
masses of the BHs, as well as the properties of the radiated
emission. The BHmasses and spins are computed using the
dynamical apparent horizons framework [47] as imple-
mented in the Einstein Toolkit[46]. On the other hand, the
energy, linear and angular momentum radiated are com-
puted from the Weyl scalar Ψ4 as follows [1]:

dEgw

dt
¼ lim

r→∞

r2

16π

I ����
Z

t

−∞
Ψ4dt0

����
2

dΩ; ð17Þ

dPgw
i

dt
¼ lim

r→∞

r2

16π

I
l̂i

����
Z

t

−∞
Ψ4dt0

����
2

dΩ; ð18Þ

dJgwi
dt

¼ − lim
r→∞

r2

16π
Re

�I �Z
t

−∞
Ψ̄4dt0

�

× Ĵi

�Z
t

−∞

Z
t0

−∞
Ψ4dt00dt0

�
dΩ

�
; ð19Þ

where dΩ¼ sinθdθdφ, l̂i ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ,
and Ĵi is the angular momentum operator. Integration of
(18) yields the recoil or kick of the final BH from the
emission of GWs.
In addition to GW emission, we also have emission of

energy, linear, and angular momentum associated with the
scalar field. We compute this emission following the
method in Ref. [24] as follows:

dEsf

dt
¼ lim

r→∞
r2
I

TtrdΩ; ð20Þ

dPsf
i

dt
¼ lim

r→∞
r2
I

TirdΩ; ð21Þ

dJsfz
dt

¼ lim
r→∞

r2
I

TϕrdΩ; ð22Þ

where the components of the stress-energy tensor are
given by

Tμν ¼ ∇μϕ∇νϕ − gμν

�
1

2
∇αϕ∇αϕþ 1

2
m2

ϕϕ
2

�
: ð23Þ

In all these fluxes, we evaluate the integrals at a finite
radius and then extrapolate the values to infinity.

V. BINARY CONFIGURATIONS AND
CONVERGENCE TEST

The initial configuration for all BBH systems has the
holes separated by a coordinate distance d ¼ 8M0. The
scalar field momentum shell has radius r0 ¼ 12M0 and
thickness σ ¼ 1M0. We also set the mass of the scalar field
to mϕ ¼ 0.4=M0. Each simulation was carried out with
eight levels of mesh refinements, outer boundary at
317.44M0, and resolution in the finest grid of M0=64.5.
We considered two types of binaries. One is binaries

with nonspinning BHs and initial mass ratios q0 ¼
m1=m2 ¼ ð2; 3; 4Þ. The other type is binaries with equal
mass BHs and their spins antialigned spins with magni-
tudes a ¼ 0.6. For the spinning cases, we investigated two

TABLE I. ADM and scalar field energies in the initial data for
unequal mass, nonspinning BBH configurations.

Case Eϕ=M0 EADM=M0

q2-000 0.0000 0.989
q2-050 0.0289 1.018
q2-075 0.0643 1.053
q2-100 0.1126 1.102

q3-000 0.0000 0.991
q3-050 0.2889 1.019
q3-075 0.0643 1.055
q3-100 0.1126 1.104

q4-000 0.0000 0.992
q4-050 0.2889 1.021
q4-075 0.0643 1.056
q4-100 0.1126 1.105

TABLE II. ADM and scalar field energies in the initial data for
equal mass, spinning BBH configurations.

Case Eϕ=M0 EADM=M0

ak000 0.0000 0.987
ak050 0.0289 1.016
ak075 0.0643 1.052
ak100 0.1127 1.101

a⊥0000 0.0000 0.987
a⊥0125 0.0018 0.989
a⊥0250 0.0072 0.995
a⊥0375 0.0163 1.004

a⊥0500 0.0289 1.017
a⊥0625 0.0449 1.033
a⊥0750 0.0643 1.052
a⊥0875 0.0869 1.075
a⊥1000 0.1127 1.101
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setups: one with the BH spins aligned with the orbital
momentum (nonprecessing binaries) and spins in the
orbital plane (superkick configuration). With the exception
of the superkick configuration binaries, we considered
initial amplitude values of the scalar momentum Π̂0≡
Π0M0 × 103 ¼ ð5.0; 7.5; 10.0Þ. On the other hand, for

superkick binaries, we have added more cases and set
Π̂0 ¼ ð1.25; 2.5; 3.75; 5.0; 6.25; 7.5; 8.50; 10.0Þ. In order to
do comparisons with the vacuum case, we did simulations
with Π̂0 ¼ 0 for all types. The labeling of the simulations is
as follows: A nonspinning, q0 ¼ x with Π̂0 ¼ y:y simu-
lation is labeled qx-0yy. Similarly, an equal mass simu-
lation with spins perpendicular and parallel to the orbital
angular momentum with the same Π̂0 are labeled a⊥0yy
and ak0yy, respectively.
Tables I and II show the scalar field energies Eϕ and total

ADM energy EADM in the initial data for each of the cases.
Notice that EADM ≃ Evac

ADM þ Eϕ where [48]

Eϕ ¼
Z

ρ
ffiffiffi
γ

p
d3x ¼ 1

2

Z
Π̃2ψ−6 ffiffiffi

η
p

d3x: ð24Þ

To check the convergence of our numerical results, we
performed a series of three simulations with low, medium
and high resolutions, M0=43, M0=64.5, and M0=95.75,
respectively at the finest mesh. The binary parameters are
those corresponding to the case ak075. Figure 1 shows
plots of the (2, 2) mode of the Weyl scalar Ψ4 extracted at
r ¼ 75M for the differences (low–medium), superposed
with θk (medium–high). θ is the resolution factor, in this
case θ ¼ 1.5, and k is the convergence rate. From the
superposition, we obtain a convergence rate k ¼ 1.8, which
is acceptable for the results in the present study.

FIG. 2. Mode l ¼ 2,m ¼ 2 of the Weyl scalarΨ4 for the unequal mass and nonspinning BH binaries. The top panels from left to right
are for Π̂0 ¼ ð5.0; 7.5; 10.0Þ, respectively, with lines blue, red, and green corresponding to q0 ¼ ð2; 3; 4Þ, respectively. The bottom
panels from left to right are for q0 ¼ ð2; 3; 4Þ, respectively, with lines blue, red, and green corresponding to Π̂0 ¼ ð5.0; 7.5; 10.0Þ,
respectively.

FIG. 1. Convergence test: plots of the (2, 2) mode of the Weyl
scalar Ψ4 extracted at r ¼ 75M for the differences (low–
medium), superposed with θk (medium–high). θ is the resolution
factor, in this case θ ¼ 1.5, and k is the convergence rate. We
obtain a convergence rate of k ¼ 1.8.
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VI. UNEQUAL MASS, NONSPINNING
BH BINARIES

Figure 2 shows the mode l ¼ 2,m ¼ 2 of theWeyl scalar
Ψ4 for the unequal mass and nonspinning BH binaries. The
top panels from left to right are for Π̂0 ¼ ð5.0; 7.5; 10.0Þ,
respectively, with lines blue, red, and green corresponding
to q0 ¼ ð2; 3; 4Þ, respectively. The bottom panels from left
to right are for q0 ¼ ð2; 3; 4Þ, respectively, with lines blue,
red, and green corresponding to Π̂0 ¼ ð5.0; 7.5; 10.0Þ,
respectively. From the top panels we see that, for a given
Π̂0, the binary merges earlier for smaller q0, as expected
from the vacuum case, since the luminosity in GW during
the inspiral scales as q2=ð1þ qÞ4 [27]. At the same time,
for a given q0, the larger the given value of Π̂0 is, the
smaller the difference among the merger times.

From the bottom panels in Fig. 2, one sees that for a
given q0, the larger Π̂0, the earlier the binary merges. This
is because the luminosity in GW also depends on the total
mass of the binary M as M2 [27]. As we shall see next,
M grows monotonically with Π̂0. Also, when one slices the
data this way, we observe that the differences with Π̂0 in
merger times remain roughly the same independently of q0.
The accretion of the scalar field by the BHs modifies the

total binarymassM and itsmass ratioq as it evolves. Figure 3
shows the evolution ofm1,m2, andM for each initial q0. As
expected, accretion starts when the scalar field shell reaches
theBHs, approximately at a time∼r0. The bottom right panel
also shows the evolution of q due to the changes of the BH
masses. In all panels, lines terminate at the time when the
binary mergers, as signaled by the appearance of a common
apparent horizon. The colors black, blue, red and green

FIG. 3. Unequal mass, nonspinning BBHs: evolution of the BH massesm1 andm2, the total massM, and the mass ratio q due to scalar
field accretion. The black, red, blue, and green correspond to Π̂0 ¼ ð0; 5.0; 7.5; 10.0Þ, respectively. The lines end at the time when the
merger occurs.
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denote Π̂0 ¼ ð0; 5.0; 7.5; 10.0Þ, respectively. Figure 4 shows
the corresponding BH accretion rates.
From Figs. 3 and 4, we observe that the BH masses and

accretion rates growmonotonicallywith Π̂0 for a given initial
q0. Furthermore, the growth is such that the increase in q
is also monotonic with Π̂0. From Fig. 4, given a value of
Π̂0, _m1 > _m2, similar to Bondi accretion behavior in
which the accretion rate is proportional to the mass of
the accreting object. By taking into consideration the growth
in q observed in Fig. 3, namely _q > 0, one obtains
that _m1 > q _m2.

Figure 5 shows the energy, angular momentum, and linear
momentum radiated in GWs (dashed lines) and in the scalar
field (solid lines) for the case Π̂0 ¼ 10.0. We observe in the
left panel that the energy radiated by the scalar field is higher
than in GWs. This can be explained as follows: the ADM
energy at the end of the simulations is given by EADM ¼
Erad
GW þ Erad

ϕ þmf, withmf the mass of the final BH. For the

case q0 ¼ 2 and Π̂0 ¼ 10.0, we have from Table I that
EADM ¼ 1.102M0 and from Table III that mf ¼ 1.0147M0;
thus, Erad

GW þ Erad
ϕ ¼ EADM −mf ≃ 0.087M0. Since energy

FIG. 4. Unequal mass, nonspinning BBH: mass accretion rates for each BH, top to bottom panels Π̂0 ¼ ð0; 5.0; 7.5; 10.0Þ, blue, red,
and green correspond to q0 ¼ ð2; 3; 4Þ, respectively.
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radiated in GWs is typically a few percent, in this case
EGW ≃ 0.025M0, we have that Erad

ϕ ≃ 0.06M0, consistent

with the value in Fig. 5.Another characteristic in this figure is
that, as with GWs, the energy radiated in the scalar field
decreases monotonically with q0.
The angular momentum radiated is depicted in the

middle panel of Fig. 5. As expected, GWs carry away
angular momentum and shrink the binary. The scalar field
also extracts angular momentum but in smaller amounts.
The reason why the scalar field angular momentum
radiation is much smaller than the one in GWs is because
initially the scalar field shell does not have any angular
momentum. All the momentum generated is from the
“stirring” of the scalar field by the binary.
The right panel in Fig. 5 shows the magnitude of linear

momentum emitted, which for these nonprecessing binaries
lies in the xy plane. As with the energy radiated, the
emission of scalar field linear momentum is significantly
larger than in the GWs. Also interesting is the oscillations
in the scalar field linear momentum radiated, which are also
observed in the energy and angular momentum but at a
much smaller scale. The reason for this is because in
systems of BBH with massive scalar fields, as it is in our
case, the scalar fields develop long-lived modes due to the
presence of an effective potential.
Table III shows the mass mf, spin af, and kick velocity

vkick of the remnant BH, where we have combined the
emission of linear momentum by GWs and the scalar field
to estimate the gravitational recoil. Independently of q0,mf

grows monotonically with Π̂0. This is expected from the
way the BHs accrete the scalar field, namely, the more
massive the hole, the more it accretes.
Regarding the final spin, we found that for a given Π̂0, af

decreases as q0 increases. Which is the same trend observed
in the vacuum case; that is, the scalar field modifies the spin
magnitude but not its dependence with q. On the other
hand, if one fixes the attention to the final spin for a given
q0, one sees monotonicity in the q0 ¼ 3 and 4, decreasing
its value with Π̂0 increasing. At first look, this seems

counterintuitive because one would think that, since the
larger the value of Π̂0, the earlier the binary merger, there
would be a larger residual of angular momentum that goes
into the final spin. Yes, there is more angular momentum in
the final BH, but one has to also remember that af ¼
Sf=m2

f is the dimensionless spin parameter, not the angular
momentum Sf. It is the growth in the final mass of the BH
responsible for the decrease in af. Since the growth in the
masses for q0 ¼ 2 is not as large (see Fig. 3), the
monotonicity of af with Π̂0 only shows for large values.
For the kick velocity, given a value of q0, the recoil is

larger than in the vacuum case and increases monotonically
with Π̂0. In vacuum, the maximum kick velocity of the final
BH in nonspinning, unequal-mass BBH occurs near q0 ¼ 3
[3]. In the presence of scalar field, we observe that the
maximum kick for a given Π̂0 occurs for q0 ≤ 2, with Π̂0 ¼
10.0 reaching superkick levels. For a given Π̂0, all the kicks
are larger than in the vacuum case, the reason for this is
because in these configurations the emission of linear
momentum is larger through the scalar field channel.
The initial momentum in the scalar field is not directly

FIG. 5. Unequal mass, nonspinning BBH: energy, angular momentum, and linear momentum radiated in GWs (dashed lines) and in
the scalar field (solid lines) for the case Π̂0 ¼ 10.0. Colors blue, red, and green correspond to q0 ¼ ð2; 3; 4Þ, respectively.

TABLE III. Mass mf , spin af and kick of the final BH for the
unequal mass, nonspinning BBH.

Case mf=M0 af vkick (km=s)

q2-000 0.9612 0.6232 146
q2-050 0.9743 0.6218 550
q2-075 0.9893 0.6230 946
q2-100 1.0147 0.6267 1303

q3-000 0.9712 0.5405 166
q3-050 0.9869 0.5378 289
q3-075 1.0055 0.5370 409
q3-100 1.0337 0.5355 543

q4-000 0.9777 0.4713 149
q4-050 0.9942 0.4686 202
q4-075 1.0137 0.4646 256
q4-100 1.0422 0.4624 304
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responsible for this since it does not have net linear
momentum; it is spherically symmetric. It is through the
interactions with the binary that linear momentum in the
scalar field is redistributed and emitted in a particular
direction. It turns out that this direction is aligned with that
of the linear momentum emitted in GWs. To check the
robustness of our kick velocity results, in addition to the
convergence test presented in Sec. II, we used the heuristic
formula (1) in [26] to compare our kick velocity calculations.
We found that the values obtained for the vacuum cases
q2-000, q3-000, and q4-000 are approximately 6.0%, 4.5%,
and 4.6% different from those obtained with the formula.

VII. EQUAL MASS, SPINNING BH BINARIES

As mentioned before, we considered two setups for
binaries with equal mass and antialigned spinning BHs.

The ak cases have BH spins along the direction of the
orbital angular momentum (i.e., nonprecessing binaries),
and the a⊥ cases have BH spins in the orbital plane in the
superkick configuration [25,26].
Figure 6 shows the mode l ¼ 2,m ¼ 2 of theWeyl scalar

Ψ4. Panels from left to right are for Π̂0 ¼ ð5.0; 7.5; 10.0Þ,
respectively, with red lines for ak and blue for a⊥. It is
interesting to notice that for Π̂0 ¼ 10.0 there is very little
difference in the (2, 2) mode between the ak and a⊥ case,
this in spite of the large difference they have, as we shall
see, in kicks produced. After all, the a⊥ cases are in the
superkick class. This means that the differences are in the
higher modes. We also observe from the waveforms in
Fig. 6 that, as for the unequal mass and nonspinning BH
binaries, the larger the value of Π̂0, the earlier the binary
merges, and the reasons are similar. The accretion of scalar

FIG. 6. Mode l ¼ 2, m ¼ 2 of the Weyl scalar Ψ4 for the equal mass, spinning BH binaries. Panels from left to right correspond to
Π̂0 ¼ ð5.0; 7.5; 10.0Þ, respectively, with red lines for ak and blue for a⊥.

FIG. 7. Evolution of m1, m2 andM for equal mass, spinning BH binaries cases: left panel for ak and right panel a⊥. The colors black,
blue, and green correspond to the scalar shell clouds with Π̂0 ¼ ð0; 5.0; 7.5; 10.0Þ respectively. The lines end at the time when the merger
occurs.
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field by the BH increases their masses and thus the
luminosity of the binary.
Figure 7 shows from top to bottom the evolution of m1,

m2, andM, respectively. The left panels are for the ak cases
and the right ones for a⊥. The line colors black, blue, red,
and green correspond to Π̂0 ¼ ð0; 5.0; 7.5; 10.0Þ, respec-
tively. The behavior in the growth of the masses is similar to
that of unequal mass, nonspinning BH binaries. Namely,
the growth is monotonic with Π̂0. It is interesting to point
out that the growth inm1 andm2 is identical in the a⊥; thus,
q remains unity. This is because, for both holes, the
orientation of their spins relative to the orbital angular
momentum is identical. On the other hand, since for the ak
cases the BH with mass m1 has its spin aligned with the
orbital angular momentum and for the other antialigned, it
is clear from panels top left and middle left that there is a
slight difference in the growth between hole m1 and m2.
The BH with mass m2 grows slightly more than m1.

This translates into mass ratios at merger of q ¼ 1.0049,
1.0073, 1.0102 for Π̂0 ¼ 5.0, 7.5, 10, respectively. This is
consistent with accretion of spinning black holes immersed
in a gaseous environment or circumbinary disks [49].
Figure 8 shows the energy, angular momentum, and

linear momentum radiated as a function of time in GWs
(blue lines), in the scalar field (red lines), and the total
(black lines) for the ak cases, with the top panels for Π̂0 ¼
5.0 and the bottom panels for Π̂0 ¼ 10.0. We observe that
the angular and linear momentum radiated in GWs is larger
than in the scalar field for both Π̂0 values. This is not the
case for the energy radiated. Not surprisingly, the larger the
value of Π̂0, i.e. the larger the initial energy in the scalar
field, the larger the energy emission. This does not imply
that the remnant BH will have a smaller mass. As we can
see from Table IV and saw from Fig. 7, the larger Π̂0, the
larger the final BH because of the accretion of scalar field.
Regarding the radiated angular momentum from the

middle panels of Fig. 8, the scalar field emission is
significantly smaller than from GWs. However, when
comparing the emission in GWs from Π̂0 ¼ 5.0 (top-
middle panel) with that of Π̂0 ¼ 10.0 (bottom-middle
panel), the former is slightly larger. Since the initial
configuration has mostly orbital angular momentum
because the spins are antialigned, this implies that the spin
of the final BH for Π̂0 ¼ 5.0 will be smaller than for
Π̂0 ¼ 10.0, as we can see in Table IV. This is consistent
because the Π̂0 ¼ 10.0 binary merges earlier (see Fig. 6),

FIG. 8. Energy (left panels), angular momentum (middle panels), and linear momentum (right panels) radiated as a function of time in
GWs (blue lines), in the scalar field (red lines), and the total (black lines) for the ak cases, with the top panels for Π̂0 ¼ 5.0 and the
bottom panels for Π̂0 ¼ 10.0.

TABLE IV. Mass mf, spin af and magnitude of the kick of the
final BH for equal mass, spinning BBHs in the ak cases.

Case mf=M0 af jvj (km=s)

ak000 0.9512 0.6851 302
ak050 0.9603 0.6856 285
ak075 0.9691 0.6844 297
ak100 0.9850 0.6970 362
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and thus it does not radiate as much angular momentum as
with the Π̂0 ¼ 5.0 case.
The situation seems to reverse with the linear momentum

radiated. Similar to the angular momentum radiated, it is
still the case that, as the binary merges earlier because of the
presence of the scalar field, it does not “accumulate” as
much kick as in the vacuum case (see kick values for ak050
and ak075 in Table IV). However, as we can see from the
right panels in Fig. 8, the kick contribution from the scalar
field increases with Π̂0 and eventually turns things around.
At Π̂0 ¼ 10.0 this contribution is such that the kick
becomes larger than in the vacuum case.
Figure 9 shows the energy, angular momentum, and

linear momentum radiated as a function of time in GWs
(blue lines), in the scalar field (red lines), and the total
(black lines) for the a⊥ cases, with the top panels for Π̂0 ¼
5.0 and the bottom panels for Π̂0 ¼ 10.0. It is interesting to
observe that the spin configuration does not have a big
effect on the energy and angular momentum radiated. The
left and middle panels in Fig. 9 are very similar to those in
Fig. 8 for the ak cases. The differences come in the linear
momentum radiated (right panels in Fig. 9). Although the
trend of which radiation dominates is similar to those in the
ak cases, the magnitude of the emission in the a⊥ cases is
much larger, after all these are superkick setups.
Table V shows the mass, spin, and the z-component kick

velocity (the most dominant in this cases) for the a⊥ cases.
Regarding the mass of the final BH, for the same reasons as

all the previous binary types, mf increases monotonically
with Π̂0. There seems to be also monotonicity with Π̂0 in
af. The reason is because the larger the value of Π̂0, the
faster the binary merges thus the lower the angular
momentum radiated and the larger residual angular
momentum that goes into the final spin.
There is no monotonicity in the kicks. To help under-

stand the situation, we plot the kicks as a function of Π̂0 in
Fig. 10. In this figure, we observe hints of an oscillatory
trend in the z component of the kick as a function of Π̂0.
The reason for this oscillatory behavior is similar to the one
found in the first studies of superkicks, namely that the
magnitude and direction of the kick is proportional to
the cosine of the angle that the in-plane components of

FIG. 9. Energy (left panels), angular momentum (middle panels), and linear momentum (right panels) radiated as a function of time in
GWs (blue lines), in the scalar field (red lines), and the total (black lines) for the a⊥ cases, with the top panels for Π̂0 ¼ 5.0 and the
bottom panels for Π̂0 ¼ 10.0.

TABLE V. Massmf, spin af and z component of the kick of the
final BH for equal mass, spinning BBHs in the a⊥ cases.

Case mf=M0 af vz (km=s)

a⊥0000 0.9500 0.6797 −2113
a⊥0125 0.9500 0.6786 −2138
a⊥0250 0.9515 0.6801 −1422
a⊥0375 0.9560 0.6860 1020
a⊥0500 0.9582 0.6802 2113
a⊥0625 0.9650 0.6834 −1281
a⊥0750 0.9691 0.6829 335
a⊥0875 0.9734 0.6848 1669
a⊥1000 0.9841 0.6966 −1576
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the spins make with the infall direction at merger [50].
In the vacuum case, this dependence is obtained by
changing the initial direction of the spins. In our case, it
is the effect that the scalar field has on the mass growth of
the holes, and thus its orbital dynamics, that produces the
changes of the spin alignment relative to the infall direction.
Similar to what we did in Sec. VI, we used the heuristic
formula from [26] to compare our kick velocity calcula-
tions. We found that there is an approximately 6% differ-
ence for the case ak000 and 7% for the case a⊥0000
between our results and those from the heuristic formula.

VIII. CONCLUSIONS

We have presented results from a numerical study of
BBH mergers immersed in a scalar field cloud, focusing on
the effects that the cloud has on the gravitational recoil, as
well as on the spin of the final BH. We considered two
initial configuration scenarios: binaries with nonspinning,
unequal mass BHs and binaries with equal mass BHs and
their spins antialigned. For the later case we had two
subcategories, one in which the BH spins were parallel to
the orbital angular momentum (i.e. nonprecessing), and the
other with the BH spins in the orbital plane in the so-called
superkick setup. The initial geometry of the scalar field
cloud was a thin shell encapsulating the binary.
In all cases, because of scalar field accretion, the BHs

gained mass, thus increased the emission of GWs, and as
a consequence accelerated the merger. This also induced
changes in the mass ratio of the binary, with the exception
of the binaries in the superkick configuration because the
spins relative to the orbital momentum were the same.
We computed the radiated energy, angular momentum,

and linear momentum emitted in both the GW and scalar
field channels. For the unequal mass BH binaries, we found
that the scalar field emission was dominant in energy and

linear momentum. Because of the later, the kicks were
larger than in the vacuum case. Since the emission of
angular momentum by the scalar field was smaller than
from GWs, the spins varied very little from their vacuum
counterparts. A similar situation took place with the equal
mass, spinning BH binaries; the presence of the scalar field
did not translate into significant changes in the spin of the
final BH relative to the vacuum case. The main reason for
this general situation is because the initial scalar field cloud
did not have angular momentum that could be transferred
via accretion to the BHs.
Regarding the gravitational recoil of the final BH, for

the case of unequal mass, nonspinning BH binaries, we
obtained that the kicks were larger than their vacuum
counterparts because in these configurations the emission
of linear momentum is larger via the scalar field
channel. Some of the kicks reached superkick levels of
∼1, 300 km=s.
For the binaries with equal mass BHs and spins aligned

with the orbital angular momentum, we observed two
effects competing against each other as we increased Π̂0.
The scalar field accretion increased the BH masses and
accelerated the merger. This ameliorated the “accumula-
tion” of the kick. Acting in the opposite direction was the
linear momentum radiated in the scalar field, increasing
with the value of Π̂0 and eventually yielding kicks larger
than in the vacuum case.
Finally, for equal mass and spinning BH binaries in the

superkick configuration, we observed hints of the oscil-
latory behavior observed in the vacuum case. The reasons
are similar; that is, the magnitude and direction of the kick
is proportional to the cosine of the angle that the in-plane
components of the spins make with the infall direction at
merger [50]. However, instead of this dependence from
changing the initial direction of the spins, in our case, it is
the change in the dynamics of the binary from the mass
growth of the holes that produces the changes of the spin
alignment relative to the infall direction.
One, of course, must take our results with a grain of salt

regarding astrophysical implications. The purpose of our
study was solely to investigate the sensitivity of BBH
merger dynamics and the resulting final BH to the presence
of a scalar field. Our results should be taken as a guide of
the scale of energy in a scalar field necessary to imprint
noticeably effects on the merger time of the binary and the
gravitational recoil of the final black hole. In a subsequent
study, we will focus on the impact in parameter estimation
under the eyepiece of GW analysis.
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