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Finding signatures of dark matter in transport characteristics of solids would be an important step on the
road to detect this illusive component of the mass of our Universe. This is especially important and timely
as the experiments designed to directly detect dark matter particles continue to provide negative results. As
a first step in this direction we consider topologically nontrivial Weyl or Dirac semimetals and derive the
modified kinetic equation taking into account two coupled Uð1Þ-gauge fields, one being the standard
Maxwell electromagnetic field and other corresponding to the dark sector. The resulting Boltzmann kinetic
equation is modified by the Berry curvature which couples to both visible and dark sector gauge fields. It
was revealed that the dark sector induces modifications of transport coefficients due to the appearance of
coupling constant between gauge fields and dark sector magnetic field.
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I. INTRODUCTION

The wealth of gravitational evidence for the existence of
dark matter contrasts with the absence of direct terrestrial
observations of this abundant component of mass of the
Universe [1–3]. The dark matter interactions with baryonic
matter is extremely weak or even null. However, its
existence has been deduced from analysis of gravitational
effects, such as galactic rotation curves, gravitational lens-
ing, the large-scale structure formation of the Universe, and
the cosmic microwave background radiation.
Many experiments aimed at the direct detection of dark

matter include approaches relying on the occasional inter-
actions of visible and dark matter particles. New types of
fundamental particles, being claimed as candidates for dark
matter sector, potentially ought to interact with nuclei in
detector materials on Earth. However, only DAMA col-
laboration [4,5] announced the observed modulation in the
rate of interaction events, which may constitute the spur of
dark matter evidence. But extraordinary claims require
extraordinary evidence. Several groups tried to reproduce
the DAMA results but in vain [6].
On the other hand, the very recent reports from two

experiments indicate negative search results [7,8] (in the
elaborated mass range) for WIMPs and axions, being the
main candidates for dark matter particles due to their
potential to simultaneously solve other problems in the
Standard Model. The only possible signal of direct dark
matter detection remains that from XENON1T [9], the
team still works to achieve better statistics.

However because of the growing sense of some kind of a
crisis in the dark matter search for, stemming from the
absence of the evidence for the most popular candidates for
dark sector particles, some new diversifying experiments
are paid attention to. One ought to look for the unconven-
tional experiments and techniques of detection [10].
One of the directions is related to the implementation of

molecular or condensed matter systems including super-
conductors or superconducting devices. Recent proposals
comprise the search for bosonic dark matter via absorption
in superconductors [11], using superfluid helium [12] or
even optical phonons in polar materials [13]. The others,
are based on the observations of color centers production in
crystals [14], or the usage of bulk three-dimensional Dirac
semimetals [15], topological semiconducting compounds
[16], and multilayered optical devices [17].
Direct methods to detect dark matter particles propose to

use different target materials with suitable characteristics as
discussed in numerous reviews [2,18,19]. The choice of the
target depends on the mass range of expected dark sector
particles and the energy deposited during the scattering
with ordinary matter. Recently, the Dirac semimetals have
been proposed [15] as efficient targets for detection of very
light dark matter, with masses in the keV to MeV range.
These materials possess linear energy spectrum with no or
very tiny gap (when some symmetries are broken) between
valence and conduction band and may thus be sensitive to
very low energies deposited during scattering of dark
matter with electrons. Similar spectrum possess Weyl
semimetals with even number of Dirac cones of various
chiralities of massless quasiparticles residing in symmetry
related cones. These systems are known to break time
reversal symmetry and exhibit anomalous Hall effect [20]
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in absence of any magnetic field. In the quasiclassical
description [21] this behavior is related to the dynamics of
charged particles subject to the Berry curvature which in
the nontrivial way modifies the Boltzmann kinetic
equation.
The most recent review of experimental developments

and ideas of the quest for light dark matter from keV to
sub-GeV, with the implementation of condensed matter
systems, has been published in [22].
In this context one should mention recent proposals of

detecting axionic dark matter [23,24] in condensed matter
systems, namely metals and superconductors. They rely on
the appearance of the high frequency surface electric field if
the axions are subject to the external magnetic field. The
idea is based on the chirality of the axions which are
coupled to both electric and magnetic fields. The resulting
high frequency electric field emerging on the surface of
metals or superconductors [25] can possibly be detected.
Another approach of dark matter detection utilizes the

model of dark photon, pertaining to the class of weakly
interacting sub-eV particles (WISPs), with expected kinetic
mixing between the Maxwell electromagnetic field and the
auxiliary Uð1Þ-gauge field connected with the dark sector.
From the gauge theory point of view, the model can be
regarded as an extension of the Standard Model, by the
introduction of the auxiliary hidden sector Uð1Þ symmetry.
On the other hand, at the level of the unification theories,
one can think about the model as, emerging by compacti-
fication the different models of string/M-theory which
induces the new Uð1Þ-gauge groups. It can be accounted
for as a dark matter sector.
In this attitude one assumes the electromagnetic back-

ground to consist of twoUð1Þ-gauge field strengths, denoted
as Fμν (Maxwell) and Bμν (dark sector), coupled together as
αFμνBμν, constituting the so-called kinetic mixing term.
This mixing modifies various properties of the con-

densed matter systems as, e.g., the superconducting tran-
sition temperature Tc which gets modified from its bare
value Tcð0Þ to the actual value TcðαÞ. The problems in
question were widely treated in the holographic attitude to
the dark matter sector and its influence on various aspects
of physical properties of superconductors/superfluids and
vortices [26–35]. In the aforementioned the so-called
holographic approach, dark sector emerges from the top-
down reduction of superstring/M-theory.
In the present paper we consider classical charged

particles (electrons) in Weyl semimetal, with two Dirac
cones of different chirality and nonzero Berry curvature,
subject to the external electromagnetic Maxwell field. Due
to the coupling between both Uð1Þ fields the equations of
motion are further modified by the Berry curvature. As a
result the kinetic theory is changed in a very nontrivial way.
These modifications influence all transport characteristic of
the system including chiral magnetic effect, anomalous
Hall conductivity and other transport characteristics. The

expected imprints of dark matter in the kinetic coefficients
are proportional to the coupling α. Contrary to the previous
proposals of measuring the electromagnetic fields produced
by dark matter induced oscillating surface currents [23–25]
we propose to measure transport currents in the bulk. In the
concluding section, we shall comment on the dark matter
detection feasibility via observation of the chiral magnetic
effect.
Our first and main aim of this work is thus to derive the

kinetic theory for the chiral system with nontrivial band
topology in the presence of dark sector. It is well known
that the standard Boltzmann kinetic theory must be
properly generalized to study systems with Berry curvature.
Berry curvature acts in momentum space like a magnetic
field in real space [20,21] and introduces important changes
in the kinetic equation. In order to treat the problem
effectively we perform the transformation of the gauge
fields to get rid of the kinetic mixing term. To reach the goal
we generalize the approach of the paper [36] and derive the
Boltzmann kinetic equation valid for Weyl semimetal
subject to visible and dark fields.

A. Background theory remarks

To set the stage we now briefly review the field
theoretical derivation of the kinetic theory [36] to describe
Weyl quasiparticles, which are low energy excitations in
numerous condensed matter compounds. The low energy
Hamiltonian of the Weyl spin 1=2 particle with chirality
λ ¼ �1 in condensed matter can be written as

Hλ ¼ λℏvFk · σ; ð1Þ

where σ is a vector of Pauli 2 × 2 matrices, k is the wave
vector, and vF the Fermi velocity We start with the phase
space action [36] for a particle with λ ¼ 1 and relativistic
spectrum

ϵλðpÞ ¼ λvFjpj ð2Þ

obtained by diagonalizing the relation (1), where p is a
momentum vector. Fermi velocity vF in condensed matter
replaces the light velocity. For simplicity we assume
vF¼1 and work in units with ℏ¼1, c¼1 and Boltzmann
constant kB ¼ 1. Consequently the action reads

I ¼
Z

ðp · _x − jpj − ap · _pÞdt: ð3Þ

In the last equation ap denotes the Berry connection related
to the gauge independent Berry curvature vector Ω by

Ω ¼ ∇p × ap; ð4Þ

which for the system described by the Eq. (1), can be found
as [37]

MAREK ROGATKO and KAROL I. WYSOKINSKI PHYS. REV. D 107, 044036 (2023)

044036-2



Ω ¼ p
2jpj3 : ð5Þ

It contains singularity for p ¼ 0. Using minimal coupling to
the electromagnetic scalar ϕ and vector A potentials one
derives from (3), the equations of motions

_x ¼ vp þ _p ×Ω ð6Þ

_p ¼ Eþ _x ×B; ð7Þ

where E;B denote electric and magnetic Maxwell fields,
respectively. The solution to the classic Boltzmann kinetic
equation for the distribution function is modified by the
modification of the velocity through the Berry curvature,
which acts as a fictitiousmagnetic field inmomentum space.
This “field” affects the transport characteristics of topologi-
cal systems with chiral anomaly leading inter alia to
anomalous Hall [20] and chiral magnetic effects [38].
The kinetic theory equations describe the time evolution

in the phase space of distribution function fλðt; xμ; pμÞ,
bounded with the right-handed fermions for which λ ¼ 1
and left-handed ones with λ ¼ −1. Total change of the
distribution function in phase space results from the
scattering processes

dfλ
dt

¼ ∂fλ
∂t

þ ∂fλ
∂xμ

_xμ þ
∂fλ
∂pμ

_pμ ¼ C½fλ�; ð8Þ

where C½fλ� stands for the adequate collision integral. The
specific functional form of the collision integral will be
discussed later on.
The modifications of the standard equations of motion

given by (6) and (7), affect the transport characteristics of
systems with nontrivial topology of their spectrum. The
mentioned existence of anomalous Hall effect in a time
reversal symmetry breaking materials is an important
resulting feature. Chiral magnetic effect, which is the
appearance of the current along the applied magnetic field
is an important phenomenon first proposed in the context of
particle physics to account for some effects in heavy-ion
collisions [38]. As stated earlier, our first aim is to search
for the signatures of dark sector in these and other transport
characteristics of Weyl semimetals. Thus we shall first
generalize the chiral kinetic theory to take the effect of dark
field into account. Secondly we shall consider the Weyl
semimetal and calculate the dependence of the anomalous
Hall and chiral magnetic effects on the parameters of the
model. Our study indicates that these transport parameters
induced in Weyl semimetals by dark sector electric or
magnetic fields show the same functional dependence with
the amplitude scaled by the coupling between both Uð1Þ
gauge fields.

The organization of the paper is as follows. In the next
Sec. II we shall present the model of dark photon and find
the generalized four-momentum of massive particle mov-
ing in two Uð1Þ-gauge fields. The chiral kinetic theory is
elaborated in Sec. III, where we have restricted our
attention to the case of semiclassical approach and weak
magnetic fields. Section IV is devoted to the collision-less
case, while in Sec. V we consider collision case and pay
attention to dark photon influence on magneto-transport
properties. In Sec. VI we pay attention to the effect of
scattering and its influence on number/charge currents
and conductivities. One also considers the case when the
dark matter charge is equal to zero, but the impact of
dark sector survives by means of α-coupling constant
and dark sector magnetic field. Section VII concludes
our investigations.

II. THE MODEL OF DARK PHOTON

In this section we shortly describe the dark photonmodel
and propose a transformation of underlying gauge fields in
order to simplify the underlying action, i.e., dispose of the
kinetic mixing term. In the process of this we obtain new
gauge fields, being the mixture of the starting ones, with
adequate factors comprising α-coupling constant. Next, one
derives the equation of motion for charged particle affected
by two gauge fields.
The action describing two coupled, massless gauge field

is given by

SM−darkphoton¼
Z

d4xð−FμνFμν−BμνBμν−αFμνBμνÞ; ð9Þ

where α is taken as a coupling constant. The model of
massive dark photon will be briefly discussed in Sec. VII.
To get rid of the kinetic mixing term we define new gauge

fields. They can be written as

Ãμ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2
ðAμ − BμÞ; ð10Þ

B̃μ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2
ðAμ þ BμÞ: ð11Þ

As a result one leaves with only modified gauge fields, i.e.,

FμνFμν þ BμνBμν þ αFμνBμν ⇒ F̃μνF̃μν þ B̃μνB̃μν; ð12Þ

where we set F̃μν ¼ ∂μÃν − ∂νÃμ, and respectively
B̃μν ¼ ∂μB̃ν − ∂νB̃μ. Just the action can be rewritten as

Sm ¼
Z

d4xð−F̃μνF̃μν − B̃μνB̃μνÞ: ð13Þ
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Variation of the action (13) with respect to gμν; Ãμ and B̃μ

reveals the following equations of motion for Maxwell dark
matter system:

∇μF̃μν ¼ 0; ∇μB̃μν ¼ 0: ð14Þ
Having in mind relations (13) and (14), we shall search

for the equation of motion of charged particle in the
background of the modified gauge fields. However, the
consistency of the approach requires the appropriate
redefinitions of the charges coupled to original fields.
The resulting action of massive charged particle influenced
by both visible and dark matter sectors is assumed to be

S ¼ −
Z

m
ffiffiffiffiffiffiffiffiffiffi
−ds2

p
þ ẽA

Z
Ãμdxμ þ ẽB

Z
B̃μdxμ; ð15Þ

where for transformed charges are defined as

ẽA ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2
ðe − edÞ; ð16Þ

ẽB ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2
ðeþ edÞ: ð17Þ

In the above equations e stands for the Maxwell charge,
while ed is connected with the dark sector one. The standard
calculation leads to the following equation of motion

m
Duμ

dτ
¼ ðẽAF̃μν þ ẽBB̃μνÞuν; ð18Þ

where D
dτ denotes in general case the covariant derivative

with respect to the proper time.
As a result the four-momentum of the massive particle

subject to two gauge fields may be written as

Pμ ¼ muμ þ ẽAÃμ þ ẽBB̃μ: ð19Þ

We can notice that transforming the charges and fields
back, one arrives at

Pμ ¼ muμ þ eAμ þ edBμ þ
α

2
ðedAμ þ eBμÞ: ð20Þ

Having in mind the action (9), the above Eq. (20) provides
the consistency in choosing transformed charges (16) and
(17) and fields (10) and (11).
It can be remarked that for the special case, when ed ¼ 0,

the above relation reduces to the following:

Pμ ¼ muμ þ e

�
Aμ þ

α

2
Bμ

�
: ð21Þ

This shows the modifications of the kinetic momentum by
dark sector gauge field.

III. DARK PHOTON CHIRAL KINETIC THEORY

This section will be concerned with the derivation of
basic relations for the kinetic chiral theory of the dark
photon case. The theory in question describes the motion of
particles in the regime where collisions are infrequent
enough. This requires [39,40] that T ≤

ffiffiffiffiffiffiffiffi
BðiÞp

≤ μðiÞλ , where
i ¼ F̃; B̃, and BðiÞ is the magnetic field connected with

the adequate gauge field, while μðiÞλ denotes the suitable
chemical potential. In the aforementioned regime Landau
quantization does not take place.
In order to derive the equations of motion for charge

particle under the influence of external Maxwell and dark
matter gauge fields, as well as, modified by the Berry flux,
we generalize the action (3). Namely, we allow for the
couplings of both effective charges ẽA and ẽB with the
adequate effective gauge fields, in analogy to standard
approach with one Uð1Þ-gauge field [36]

I ¼
Z

t2

t1

dt½pm _xmþ ẽAÃm _xm− ẽAΦðF̃Þ þ ẽBB̃m _xm− ẽBΦðB̃Þ

− jp⃗j− λamðpÞ _pm�; ð22Þ

and perform its variation to find the equations of motion
generalizing those given by Eqs. (6) and (7). It reveals that
the equations of motion imply the following relations:

_pa ¼ ẽAðEðF̃Þ
a þ ϵabc _xbBcðF̃ÞÞ þ ẽBðEðB̃Þ

a þ ϵabc _xbBcðB̃ÞÞ;
ð23Þ

_xa ¼ p̂a þ ϵabc _pbΩc
λ; ð24Þ

where one sets

EðF̃Þ
a ¼ −F̃0a; EðB̃Þ

a ¼ −B̃0a; ð25Þ

and

BðF̃Þ
a ¼ 1

2
ϵabcF̃bc; BðB̃Þ

a ¼ 1

2
ϵabcB̃bc: ð26Þ

With the spectrum (2) and in our units assuming the
Fermi velocity vF ¼ 1, the particle velocity viðpÞ ¼ ∂ϵðpÞ

∂pi
reduces to the direction of the momentum vector

p̂a ¼ pa

jp⃗j : ð27Þ

We have denoted the Berry curvature vector of the Dirac
cone λ as Ωλ. For the Hamiltonian (1) it is given by
formula (5) and in new notation reads
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Ωa
λ ¼ λ

p̂a

2jp⃗j2 : ð28Þ

The solutions of the above relations (23) and (24) for _xμ
and _pμ yield

Kλ _xa ¼ p̂a þ ẽAϵabcEbðF̃ÞΩc
λ þ ẽBϵabcEbðB̃ÞΩc

λ

þ p̂mΩm
λ ðẽABðF̃Þ

a þ ẽBB
ðB̃Þ
a Þ; ð29Þ

and

Kλ _pa ¼ ẽAE
ðF̃Þ
a þ ẽBE

ðB̃Þ
a þ ẽAϵabcp̂bBcðF̃Þ þ ẽBϵabcp̂bBcðB̃Þ

þΩaλ½ẽ2AEðF̃Þ
c BcðF̃Þ þ ẽ2BE

ðB̃Þ
c BcðB̃Þ þ ẽAẽBðEðB̃Þ

c BcðF̃Þ

þEðF̃Þ
c BcðB̃ÞÞ�; ð30Þ

where the determinant of the matrix coefficients is given by

Kλ ¼ 1þ ẽAB
ðF̃Þ
c Ωc

λ þ ẽBB
ðB̃Þ
c Ωc

λ: ð31Þ

Substituting the achieved results to the relation (8), we
obtain all the desired ingredients for the chiral kinetic
equation, for the dark photon–Maxwell system.
Formulas (29)–(31) comprise the general equations of

motion valid in chiral systems, with Berry curvature Ωλ

affected by two gauge fields. They generalize the standard
equations of the chiral kinetic Boltzmann theory and
constitute the main result of this section. For instance, it
can be observed that assuming dark charge ed ¼ 0, one
finds that

Kλ ¼ 1þ e

�
BðFÞ
c þ α

2
BðBÞ
c

�
Ωc

λ; ð32Þ

which clearly shows modification of the effective magnetic
field due to the coupling between visible and dark sectors.
From the set of equations it is visible that even

without dark charge there exist modifications of the chiral
kinetic theory. The adequate terms are all proportional
to α-coupling constant representing small corrections to
the Maxwell fields. However, their presence modifies all
measurable characteristics of the chiral materials and can be
detected in specially designed experiments. In the typical
setup, with external standard electric and magnetic fields,
these corrections are of order of α on top of values of order
one and will be probably hard to detect. However, in the

absence of external EðFÞ
μ and BðFÞ

μ electromagnetic fields,
the base signal is zero and the detection of a probably small

but nonzero signal induced by the dark magnetic field BðBÞ
μ

can be possible and it may serve as an indication of the dark
sector appearance. This scenario has similarities to the
ongoing experiments.

To see directly the expected modifications of the trans-
port characteristics of chiral system we shall derive explicit
formulas for anomalous Hall effect (AHE) and chiral
magnetic effect (CME) in the next section.

IV. ANOMALOUS HALL AND CHIRAL
MAGNETIC EFFECTS: COLLISION-LESS CASE

Nowwe proceed to calculation of the anomalous Hall and
chiral magnetic effects in the collisionless limit in which one
supposes that C½fλ� ¼ 0. One assumes that the resulting
solution of the homogeneous Boltzmann equation reduces to
the Fermi-Dirac distribution function of the form as

fð0Þλ ðp⃗Þ ¼ 1

e
ϵλðp⃗Þ−μ
kBT þ 1

; ð33Þ

whereT denotes temperature, μ chemical potential, and kB is
the Boltzmann constant. As was mentioned in subsection A,
in the Introduction, we shall use units where ℏ ¼ c ¼
kB ¼ 1. We explicitly assume that the spectrum depends
on the handedness λ of Weyl particles.
It turns out that the presence of Berry curvature modifies

the volume of phase-space [21]. As was revealed in [36]
this fact leads to the relation for the measure Kλ, which
implies the following modified Liouville equation:

∂Kλ

∂t
þ ∂

∂xm
ðKλ _xmÞ þ

∂

∂pm
ðKλ _pmÞ

¼ 2λπδ3ðp⃗Þ½ẽ2AEðF̃Þ
c BcðF̃Þ þ ẽ2BE

ðB̃Þ
c BcðB̃Þ

þ ẽAẽBðEðB̃Þ
c BcðF̃Þ þ EðF̃Þ

c BcðB̃ÞÞ�: ð34Þ

The right-hand side of Eq. (34) was achieved by using the
fact of the invariance of the phase space measure
Kλd3x⃗d3p⃗=ð2πÞ3 and the adequate components of the
gauge field equations of motion and the relation for the
Berry monopole

∇⃗pΩλ ¼ 2πλδ3ðp⃗Þ: ð35Þ

Further, we define the number current density in the form

jmλ ¼
Z

d3p
ð2πÞ3 Kλfλ _xm: ð36Þ

Consequently, taking into account the relations (29) and
(33), we obtain the total number current in the collisionless
limit

jaλ ¼ jaðoÞλþ jaðF̃ÞðHallanÞλþ jaðB̃ÞðHallanÞλþ jaðF̃ÞðCMEÞλþ jaðB̃ÞðCMEÞλ; ð37Þ

where the first number current in the above expression
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jaðoÞλ ¼
Z

d3p
ð2πÞ3 f

ð0Þ
λ p̂a; ð38Þ

does not depend on external fields and vanishes as the
equilibrium property of the system. Other terms in Eq. (37)
denote currents, linear in electric and magnetic fields
related to both Uð1Þ sectors. Namely, they constitute the
anomalous Hall number currents

jaðF̃ÞðHall anÞλ ¼ ẽA

Z
d3p
ð2πÞ3 f

ð0Þ
λ ϵabcEðF̃Þ

b Ωcλ;

jaðB̃ÞðHall anÞλ ¼ ẽB

Z
d3p
ð2πÞ3 f

ð0Þ
λ ϵabcEðB̃Þ

b Ωcλ; ð39Þ

and the chiral magnetic number currents (along the direc-
tion of the magnetic fields)

jaðF̃ÞðCMEÞλ ¼ ẽA

Z
d3p
ð2πÞ3 f

ð0Þ
λ p̂mΩm

λ B
aðF̃Þ;

jaðB̃ÞðCMEÞλ ¼ ẽB

Z
d3p
ð2πÞ3 f

ð0Þ
λ p̂mΩm

λ B
aðB̃Þ: ð40Þ

Similarly as in Ref. [36], one uses the relation E ¼ jp⃗j, and
overbar to indicate the averaging over the unit sphere of
directions of vector p̂i, we arrive at the expression

jaðF̃Þ;ðB̃ÞðCMEÞλ ¼ ẽAðBÞ
BaðF̃ÞðBaðB̃ÞÞ

4π2

Z
∞

0

dEfð0Þλ ðE; p̂Þ: ð41Þ

To get the last formulas we introduced expression (28) for
Berry curvature into (40), changed variables using E ¼ jpj,
assumed that in general fðp⃗Þ ¼ fðE; p̂Þ and denoted

fð0Þλ ðE; p̂Þ by

fð0Þλ ðE; p̂Þ ¼ 1

4π

Z
S2p̂

dp̂fð0Þλ ðE; p̂Þ: ð42Þ

Moreover, when one assumes the isotropic Fermi-Dirac

distribution [i.e., for fð0Þλ ðE; p̂Þ ¼ fð0ÞðEÞ], the equilibrium
currents along the directions of the magnetic fields are
induced by both gauge fields describing Maxwell and dark
matter sectors and require finite and different chemical
potential μ of chiral fermions. Namely the number currents
for each chirality are given by

jaðF̃Þ;ðB̃ÞðCMEÞλ ¼ ẽAðBÞλ
μλ
4π2

BaðF̃ÞðBaðB̃ÞÞ: ð43Þ

The charge currents densities are calculated in the next
section.

A. Charge current densities

Let us remark that in order to obtain charge current
densities and connected transport characteristics, one ought
to multiply the quantities achieved previously as in the
Eq. (43) by corresponding charges given by the relations
(16) and (17). Namely they are provided by

j̃aðF̃ÞðHall anÞλ ¼ ẽAj
aðF̃Þ
ðHall anÞλ; j̃aðF̃ÞðCMEÞλ ¼ ẽAj

aðF̃Þ
ðCMEÞλ; ð44Þ

for the field F̃ and corresponding effective charges ẽA and
respectively the analogous forms for B̃ field multiplied by
ẽB. The conductivities connected with adequate current
densities are defined in a standard way.
For the case when ed ¼ 0, the total charge current along

the applied magnetic field (known as chiral magnetic
effect) in the node λ reads

j̃aðCMEÞλ ¼ j̃aðF̃ÞðCMEÞλþ j̃aðB̃ÞðCMEÞλ

¼ e2
Z

d3p
ð2πÞ3f

ð0Þ
λ p̂mΩm

λ ðβFBaðFÞ þβBBaðBÞÞ; ð45Þ

and for the isotropic Fermi-Dirac distribution, one gets

j̃aðCMEÞλ ¼ e2λ
μλ
2π2

ðβFBaðFÞ þ βBBaðBÞÞ; ð46Þ

where we have denoted

βF ¼
�
2þ α

4

�3
2 þ

�
2 − α

4

�3
2

; ð47Þ

βB ¼
�
2þ α

4

�3
2

−
�
2 − α

4

�3
2

: ð48Þ

In a similar manner one finds that

j̃aðHallanÞλ ¼ j̃aðF̃ÞðHallanÞλþ j̃aðB̃ÞðHallanÞλ

¼ e2
Z

d3p
ð2πÞ3f

ð0Þ
λ ϵabcðβFEðFÞ

b þβBE
ðBÞ
b ÞΩcλ: ð49Þ

V. CHIRAL ANOMALY IN THE PRESENCE
OF TWO GAUGE FIELDS F̃μν AND B̃μν

The presence of two gauge fields affects the value of the
anomaly. To get some information on it in the theory in
question we proceed as in [36], by first defining phase
space currents ðKfð0Þ; Kfð0Þ _x; Kfð0Þ _pÞ, formulate equation
similar to (34) and integrate it over all momenta.
Consequently we arrive at the following expression:

∂nλ
∂t

þ∇ajaλ ¼
λ

4π2
fð0Þλ ð0Þ½ẽ2AEðF̃Þ

c BcðF̃Þ þ ẽ2BE
ðB̃Þ
c BcðB̃Þ

þ ẽAẽBðEðB̃Þ
c BcðF̃Þ þ EðF̃Þ

c BcðB̃ÞÞ�; ð50Þ
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where the particle number is given by

nλ ¼
Z

d3p
ð2πÞ3Kλfλ; ð51Þ

while fð0Þλ ð0Þ is the value of the distribution function fð0Þλ
for pi equal to zero. For the Fermi-Dirac distribution at zero
temperature and for the nonzero (positive) values of the

chemical potentials, fð0Þλ ð0Þ is equal to one. Setting to zero
all the components of dark matter sector field and
α-coupling constant, one obtains the limit of electromag-
netic anomaly [36].
As was remarked in Ref. [36], the above calculations

should be taken with a great care, because of the fact that
we integrated over the whole phase space, including the
singular point where p⃗ ¼ 0. At this point the classical
description is not valid and it is proposed that the region
around the singularity ought to be excluded. However the
classical description is reliable for p⃗ outside the infinitesi-
mal region near singular point in the phase space manifold.
The relation (50) implies that the particle number

described by (51) around the Fermi surface is not conserved
for single chirality, due to the nonzero value of the right-
hand side of the relation. The nonconservation is caused by
the existence of electric and magnetic fields connected with
the considered gauge fields F̃μν and B̃μν. Moreover prior
to the ordinary Maxwell case we obtained that the mixture
composed of electric and magnetic fields pertaining to the
different gauge sectors, also plays the role the role in the
nonconservation. This fact constitutes the additional new
effect emerging form taking into account the dark matter
sector coupled to the Maxwell electrodynamics via kinetic
mixing term.
The conservation of the total charge requires that the

total current is also conserved. This is indeed the case as the
right-hand side of (50) vanishes, when summed up over
two Weyl nodes. However, the chiral current is not
conserved and subtracting both sides of Eq. (50) for both
signs of the chirality λ gives the chiral anomaly, which is
twice the right-hand side of the above equation. We
conclude with the remark that both gauge fields contribute
to chiral anomaly.

VI. EFFECT OF SCATTERING

In the previous section we have considered collisionless
limit. In what follows we shall consider the collision term in
the relaxation time approximation with a single relaxation
time corresponding to intra node scatterings. The collision
integral is given by

C1½fλ� ¼ −
δfλ
τ

; ð52Þ

where δfλ ¼ fλ − fð0Þλ , fð0Þλ is the Fermi-Dirac distribution
function. This term constitutes modification on the right-
hand side of the continuity relation (50).

As our aim is to consider the homogeneous and sta-
tionary case, the linearized form of the Boltzmann equation
is easy to solve for the correction to the equilibrium
distribution function. The obtained solution reveals that
one can split out-of-equilibrium distribution function δfλ as

δfλ ¼ δfðOÞ
λ þ δfðHall anÞλ þ δfðCMEÞ

λ ; ð53Þ

where δfðOÞ
λ stand for ordinary or Ohmic part of the

correction and we have denoted the above ingredients by

δfðOÞ
λ ¼ −

τ

Kλ

∂f0λ
∂pi ½ẽAEiðF̃Þ þ ẽBEiðB̃Þ�; ð54Þ

δfðHallanÞλ ¼−
τ

Kλ

∂f0λ
∂pi ½ẽAϵibcp̂bB

ðF̃Þ
c þ ẽBϵibcp̂bB

ðB̃Þ
c �; ð55Þ

δfðCMEÞ
λ ¼ −

τ

Kλ

∂f0λ
∂pi ½ẽ2AEðF̃Þ

c BcðF̃Þ þ ẽ2BE
ðB̃Þ
c BcðB̃Þ

þ ẽAẽBðEðB̃Þ
c BcðF̃Þ þ EðF̃Þ

c BcðB̃ÞÞ�Ωi
λ: ð56Þ

Consequently the number current operators can be decom-
posed as (see Eq. (37) in the latter section)

jmðOÞλ ¼
Z

d3p
ð2πÞ3 p̂

mδfλ; ð57Þ

jmðHall anÞλ ¼
Z

d3p
ð2πÞ3 ϵ

mbcΩcλðẽAEðF̃Þ
b þ ẽBE

ðB̃Þ
b Þδfλ; ð58Þ

jmðCMEÞλ ¼
Z

d3p
ð2πÞ3 p̂cΩc

λðẽABmðF̃Þ þ ẽBBmðB̃ÞÞδfλ: ð59Þ

The proportionality of the corrections to the scattering time
τ clearly shows that the above are the corrections due to the
collisions in the system. In the following we shall analyze
the contributions of visible and dark matter sectors, to
various parts of the current.

A. Conductivities for F̃μν and B̃μν field strengths

This subsection will be devoted to the magneto-transport
properties influenced by dark matter sector. Because the
anomalous Hall current is always transverse to the electric

fields EðF̃Þ
a and EðB̃Þ

a , so it will not be amiss to ignore it [41].
In the theory under consideration we shall consider

conductivities associated with F̃μν and B̃μν field strengths,
respectively. The total conductivity bounded with F̃μν and
the handedness λ, can be written as the derivative of the
number current with respect to EbðF̃Þ multiplied by the
corresponding charge (ẽA). It yields
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σb
aðF̃; λÞ ¼ ẽA

∂

∂EbðF̃Þ ðjaðOÞλ þ jaðCMEÞλÞ

¼ σb
að1ÞðF̃Þ þ σb

að2ÞðF̃Þ þ σb
að3ÞðF̃Þ; ð60Þ

where one denotes

σb
að1ÞðF̃Þ ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ
ẽ2A

�
−
∂f0λ
∂pb

�
; ð61Þ

and σb
að2ÞðF̃Þ implies the following:

σb
að2ÞðF̃Þ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λẽ
2
AðẽABðF̃Þ

b þ ẽBB
ðB̃Þ
b Þ

ð62Þ

þ
Z

d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pb

�
ẽ2AðẽABaðF̃Þ þ ẽBBaðB̃ÞÞ;

ð63Þ

while for σbað3ÞðF̃Þ one has the relation

σb
að3ÞðF̃Þ ¼

Z
d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λẽ
2
A

× ðẽABaðF̃Þ þ ẽBBaðB̃ÞÞðẽABðF̃Þ
b þ ẽBB

ðB̃Þ
b Þ:

ð64Þ

On the other hand, for B̃μν field strength and the adequate
value of λ, the total conductivity connected with the number
currents, is given by

σb
aðB̃; λÞ ¼ ẽB

∂

∂EbðB̃Þ ðj̃aðOÞλ þ j̃aðCMEÞλÞ

¼ σb
að1ÞðB̃Þ þ σb

að2ÞðB̃Þ þ σb
að3ÞðB̃Þ; ð65Þ

where we set

σb
að1ÞðB̃Þ ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ
ẽ2B

�
−
∂f0λ
∂pb

�
; ð66Þ

and denote

σb
að2ÞðB̃Þ ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λẽ
2
B

× ðẽABðF̃Þ
b þ ẽBB

ðB̃Þ
b Þ ð67Þ

þ
Z

d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pb

�
ẽ2B

× ðẽABaðF̃Þ þ ẽBBaðB̃ÞÞ; ð68Þ

while σb
að3ÞðB̃Þ can be written in the form as follows:

σb
að3ÞðB̃Þ ¼

Z
d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λẽ
2
B

× ðẽABaðF̃Þ þ ẽBBaðB̃ÞÞðẽABðF̃Þ
b þ ẽBB

ðB̃Þ
b Þ:

ð69Þ

The obtained results are valid for an arbitrary choice of the
components of gauge fields in question.

B. Limiting case for ed = 0

For completeness of the results we quote the relations for
the adequate conductivities bounded with charge current
densities, in the limit when dark matter charge is equal to
zero. They imply the following:

σb
að1ÞðF̃Þ ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ

� ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2

�
2

e2
�
−
∂f0λ
∂pb

�
;

σb
að2ÞðF̃Þ ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λe
3

� ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2

�
2
�
BðFÞ
b þ α

2
BðBÞ
b

�

þ
Z

d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pb

�
e3
� ffiffiffiffiffiffiffiffiffiffiffi

2 − α
p

2

�
2
�
BðFÞ
b þ α

2
BðBÞ
b

�
;

σb
að3ÞðF̃Þ ¼

Z
d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λe
3

� ffiffiffiffiffiffiffiffiffiffiffi
2 − α

p

2

�
2
�
BaðFÞ þ α

2
BaðBÞ

��
BðFÞ
b þ α

2
BðBÞ
b

�
; ð70Þ

and for B̃μν field strength, we obtain
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σb
að1ÞðB̃Þ ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ

� ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2

�
2

e2
�
−
∂f0λ
∂pb

�
;

σb
að2ÞðB̃Þ ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λe
3

� ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2

�
2
�
BðFÞ
b þ α

2
BðBÞ
b

�

þ
Z

d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pb

�
e3
� ffiffiffiffiffiffiffiffiffiffiffi

2þ α
p

2

�
2
�
BðFÞ
b þ α

2
BðBÞ
b

�
;

σb
að3ÞðB̃Þ ¼

Z
d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λe
3

� ffiffiffiffiffiffiffiffiffiffiffi
2þ α

p

2

�
2
�
BaðFÞ þ α

2
BaðBÞ

��
BðFÞ
b þ α

2
BðBÞ
b

�
; ð71Þ

where now Kλ is given by the relation (32).
From the experimental point of view the sums of terms, i.e., σbaðiÞðF̃Þ þ σb

aðiÞðB̃Þ matter and one gets the following
expressions:

σb
að1Þ ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ
e2
�
−
∂f0λ
∂pb

�
;

σb
að2Þ ¼

Z
d3p
ð2πÞ3 p̂

a τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λe
3

�
BðFÞ
b þ α

2
BðBÞ
b

�
þ
Z

d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pb

�
e3
�
BðFÞ
b þ α

2
BðBÞ
b

�
;

σb
að3Þ ¼

Z
d3p
ð2πÞ3 p̂cΩc

λ

τ

Kλ

�
−
∂f0λ
∂pi

�
Ωi

λe
3

�
BaðFÞ þ α

2
BaðBÞ

��
BðFÞ
b þ α

2
BðBÞ
b

�
; ð72Þ

where now theKλ is given by the relation (32). It is the term
σb

að2Þ which can be regarded as describing the magnitude
of the dark field induced chiral magnetic conductivity.

VII. DARK PHOTON MASSIVE CASE

To finish with, let us give some remarks concerning the
dark photon massive case and derivation of equations of
motion for charge particle influenced by Maxwell and
massive dark matter sectors.
The action for the massive case of dark photon will be

provided by

SDM¼
Z

d4x

�
−FμνFμν−BμνBμν−αFμνBμν−

m2
DM

2
BμBμ

�
;

ð73Þ

where as in the previous sections, α stands for a coupling
constant.
In the case under consideration, in order to eliminate the

kinetic mixing term we define new gauge fields in the forms
as follows:

Ãμ ¼ Aμ þ
α

2
Bμ; B̃μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α2

4

r
Bμ: ð74Þ

The above transformation enables us to rewrite the
action (73)

FμνFμν þ BμνBμν þ αFμνBμν þm2
DM

2
BμBμ

⇒ F̃μνF̃μν þ B̃μνB̃μν þ m̃2
DM

2
B̃μB̃μ; ð75Þ

where we denoted by m̃DM

m̃2
DM ¼ m2

DM

1 − α2

4

: ð76Þ

The equations ofmotion for Ãμ and B̃μ gauge fields nowyield

∇μF̃μν ¼ 0; ∇μB̃μν −
m̃2

DM

4
B̃ν ¼ 0: ð77Þ

The equations of motion for charge particle under the
influence of external Maxwell and massive dark matter
gauge fields, will be derived from the action (22), where now
the B̃μ field will obey the equation of motion (77) and the
transformed charges imply

ẽA ¼ eþ α

2
ed; ẽB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α2

4

r
ed: ð78Þ

After performing variation, the equations of motion for _pa
and _xa, will be provided by the relations (23) and (24), with
the new meaning of the gauge fields (74) and charges (78).
In the context of the results presented in Sec. VI B for

ed ¼ 0 case, we give some remarks concerning the
estimations of the magnitude of the chiral magnetic effect
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induced by dark matter induced magnetic field. First of all,
let us suppose that we are able to conduct an experiment in
which one gets rid of the influence of magnetic Maxwell

field, i.e., BðFÞ
a ¼ 0.

The recent measurements of the local dark matter
densities conducted by LAMOST DR5 and Gaia DR2
experiments [42,43], reveal that our Galactic disc is
immersed in dark matter halo with a characteristic mass
density ρDM ¼ 0.5 GeV=cm3. On the basis of the action
(73) the dark matter density is expected to be bounded with
the average dark field of magnitude B depending on dark
photon mass [23–25,44]

ρDM ¼ m2
DMB

2
c=2: ð79Þ

Having in mind equation for hidden photon field given in
Ref. [25]

B⃗ ¼ B⃗c cosðmDMt −mDMv⃗DM · x⃗Þ; ð80Þ

one finds the z-component of the dark matter magnetic
induction

BðBÞz ¼ mDMðBy
cvxDM − Bx

cv
y
DMÞ sinðmDMt −mDMv⃗DM · x⃗Þ:

ð81Þ

Due to the fact that the direction of the dark matter B⃗ field
is expected to be constant over a large regions in space, one
finds that on average the magnetic induction is of the order

of BðBÞ
c ¼ jv⃗DMjmDMBc. Using Eq. (79) for ρDM we find

BðBÞ
c ¼ jv⃗DMj

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
. Note, that in natural units both sides

have mass dimension eV2, as they should. Interestingly, the
magnetic induction does not depend on the mass of dark
photon. However, the frequency of the field depends on
mDM, as is seen from the relation (80).
We take dark matter velocity as jv⃗DMj ≈ 10−3 [24]. Thus

BðBÞ
c ≈ 2.77 × 10−6 eV2 in natural units, or expressed in

Tesla the dark matter induced magnetic induction

BðBÞ
c ≈ 4 × 10−9T, which amounts to the tiny fraction of

the Earth magnetic field.

Thus we conclude that even for α not much smaller
than about 10−6 [45], the CME signal as given by Eq. (72)

which is proportional to αBðBÞ
c , (by the direct inspection it

can be checked that the same situation holds for dark
massive photon case), will be rather difficult to measure
directly.

VIII. CONCLUSIONS

In the paper we have generalized the chiral kinetic theory
taking into account the effects of two coupled Uð1Þ-gauge
fields. One is the standard Maxwell field, while the other
pertains to the hidden sector. Both fields are coupled by the
so-called kinetic mixing term.
Our main aim was to find the modifications of the

Boltzmann kinetic equation by dark photon and envisage
the additional effects in transport coefficients caused by dark
sector. The obtained results show that chiral Boltzmann
theory is severelymodified. The distribution function and the
resulting currents are affected by both Uð1Þ fields. The
nontrivial topology of Dirac/Weyl semimetals leads to the
chiral magnetic effect, which constitutes the current flow
along the applied magnetic field. It happens that the afore-
mentioned effect may also result from the presence of dark
sector induced magnetic field as is obvious from Eq. (72).
Even though its direct detection in bulk experiments, with an

applied external EðFÞ
μ and BðFÞ

μ Maxwell fields may be
difficult, as it appears as an additive correction proportional
to α, it could be measurable in the experiments without

applied external magnetic field BðFÞ
μ ¼ 0. In such a case

signal proportional to αBðBÞ
μ stemming from the dark

magnetic field becomes the only nonzero signal. The order
of magnitude estimation demonstrates that its direct obser-
vation will be difficult, if feasible at all.
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