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Motivated by recent results reporting the instability of horizonless objects with stable light rings, we
revisit the linearized stability of such structures. In particular, we consider an exterior Kerr spacetime
truncated at a surface where Dirichlet conditions on a massless scalar are imposed. This spacetime has
ergoregions and light rings when the surface is placed sufficiently deep in the gravitational potential. We
establish that the spacetime is linearly, mode unstable when it is sufficiently compact, and in a mechanism
associated with the ergoregion. In particular, such instability has associated zero modes. At large multipole
number the critical surface location for zero modes to exist is precisely the location of the ergosurface along
the equator. We show that such modes do not exist when the surface is outside the ergoregion, and that any
putative linear instability mechanism acts on timescales τ ≳ 105M, where M is the black hole mass. Our
results indicate therefore that at least certain classes of objects are linearly stable in the absence of
ergoregions, even if rotation and light rings are present.
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I. INTRODUCTION

The special properties of black hole (BH) horizons and
the failure of classical general relativity in their interior call
for outstanding observational evidence for BHs [1,2]. In
parallel, theoretical arguments constraining the universe of
alternatives are welcome. Stability arguments are a robust
indicator for the feasibility of the equilibrium solutions of a
given theory. In fact, the very existence of structure—
galaxies, planets, stars—is due to a wide array of instability
mechanisms, such as Jeans’ [3,4]. In the context of the
gravitational physics of very compact objects, two mech-
anisms can play a role, and they are tied to the distinctive
features of horizons, or the absence thereof. These mech-
anisms hinge on fundamental aspects of general relativity,
specifically the existence of ergoregions and regions of the
spacetime where lensing is so strong that photon orbits can
“close,” and which therefore work as trapping regions.
The vacuum Kerr spacetime possesses an ergoregion, a

region within which static timelike observers do not exist
and “negative energy” states are allowed. The existence of
the ergoregion allows for efficient extraction of energy
from spinning BHs [5–9]. In the absence of horizons,
ergoregions give rise to a linear instability: any small
negative-energy fluctuation within the ergoregion must
trigger a positive-energy state upon traveling to the exterior
of the ergoregion (where only positive-energy states are
allowed). Energy conservation then implies that the
negative energy states inside must grow in amplitude,

triggering an exponentially growing cascade [9–14]. This
mechanism was shown to be effective for spinning compact
objects, with timescales which are astrophysically relevant
[15–24]. Thus, spinning objects whose exterior is close to
Kerr, but which do not have horizons should be spinning
down and emitting copious amounts of gravitational waves.
A stochastic gravitational-wave background from spin loss
has not been detected yet, thus excluding classes of
horizonless compact objects via observations [25].
In addition to the ergoregion instability, it was argued

that even nonspinning objects should be unstable, if
compact enough to develop light rings, against a nonlinear
mechanism. Schwarzschild BHs have a single, unstable
photon surface. However, in the absence of horizons, stable
photon surfaces necessarily appear [26–28]. In these
spacetimes, linearized fluctuations decay extremely slowly,
leading to the conjecture that nonlinear effects might cause
either a collapse to a BH or dispersion of star material
[26,27]. Unlike the ergoregion instability, this “trapping
instability” (TI) is nonlinear in nature. Therefore, the
estimation of timescales or even the verification that the
instability is present is a formidable problem.
Nevertheless, it was recently reported that the TI was

observed in two different classes of objects made of
fundamental fields, i.e. boson and Proca stars [29]. The
objects all were spinning stars and the instability timescale
was always relatively short, raising the possibility that the
mechanism observed is not a TI in nature, and possibly not
even nonlinear, but rather something else (for example, as

PHYSICAL REVIEW D 107, 044035 (2023)

2470-0010=2023=107(4)=044035(12) 044035-1 © 2023 American Physical Society

https://orcid.org/0000-0002-3138-7530
https://orcid.org/0000-0003-0553-0433
https://orcid.org/0000-0002-1960-8185
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.044035&domain=pdf&date_stamp=2023-02-16
https://doi.org/10.1103/PhysRevD.107.044035
https://doi.org/10.1103/PhysRevD.107.044035
https://doi.org/10.1103/PhysRevD.107.044035
https://doi.org/10.1103/PhysRevD.107.044035


we discuss in the main text, the stiffness of the system
under study could introduce artificial effects). The work
reported in Ref. [29] motivated us to understand in finer
detail the ergoregion instability of Kerr-like objects, studied
in the literature but not exhaustively [2,19,23,24]. In
particular, Refs. [23,24] studied the instability when the
surface sits deep in the gravitational well (in fact, close to
the horizon). A study on the ergoregion instability thresh-
old was done in a fluid setup [30], where strong evidence
was found that the critical surface is indeed the ergosurface
(see also Ref. [31] where zero modes—a property of special
interest in Kerr-like geometries, as we will show—were
investigated).
Here, we aim to explore further the ergoregion instability

in the exterior Kerr spacetime (truncated at a finite radius
outside the horizon), and to understand at which surface the
instability is quenched (do we find numerical evidence that
it coincides with the ergosurface?) and whether new (linear)
instabilities—related to the presence of light rings—set in
even when the surface sits outside the ergosurface. We note
that the interplay between ergoregions and light rings is
made all the more interesting since stationary, axisymmet-
ric, and asymptotically flat spacetime in 1þ 3 dimensions
with an ergoregion must have at least one light ring on its
exterior [32].

II. SETUP

A. The spacetime, coordinates, and dynamical
equations

In Boyer-Lindquist coordinates, the metric of Kerr
spacetime can be written as

ds2 ¼
�
1 −

2Mr
ϒ2

�
dt2 þ 4aMrsin2θ

ϒ2
dtdφ

−
�
ðr2 þ a2Þsin2θ þ 2Mr

ϒ2
a2sin4θ

�
dφ2

−
ϒ2

Δ
dr2 −ϒ2dθ2; ð1Þ

where

Δ ¼ r2 − 2Mrþ a2; ϒ2 ¼ r2 þ a2 cos2 θ: ð2Þ

The horizons of this geometry are located at r� ¼
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, i.e. the outer event and Cauchy horizons,

respectively. These will be absent in our construction. The
ergosurface is defined by the zeros of gtt, which is the torus
rergo ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos2 θ

p
. On the equator and the

poles, rergo ¼ 2M;M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, respectively. The ergo-

region is the chief responsible for a linear instability, which
is governed by the angular velocity

Ω ¼ a
2Mrþ

: ð3Þ

The spacetime also has unstable light rings at rLR ¼
2Mð1þ cos ð2

3
arccosð∓a=MÞÞÞ. When a ¼ ffiffiffi

2
p

M=2 ∼
0.707, the corotating light ring sits at the same radius than
the ergoregion in the equatorial plane (r ¼ 2M).
On the Kerr background, a single master equation

governs perturbations of massless fields Ψ [33]
�ðr2 þ a2Þ2

Δ
− a2sin2θ

�
∂
2
tΨ − Δ−s

∂rðΔsþ1
∂rΨÞ

þ 4Mar
Δ

∂t∂φΨþ a2

Δ
∂
2
φΨ −DsΨ − 2s

aðr −MÞ
Δ

∂φΨ

− 2s

�
Mðr2 − a2Þ

Δ
− r − ia cos θ

�
∂tΨ ¼ 0; ð4Þ

where Ψ is a field with spin s, Ds is the spin-weighted
spherical Laplacian given by

Ds ≡ 1

sin θ
∂

∂θ

�
sin θ

∂

∂θ

�
þ
�
s −

ð−i∂φ þ s cos θÞ2
sin2θ

�
:

We will focus for simplicity on scalar fields, s ¼ 0. We
find no reason why scalars should have special properties in
this context, so we expect similar results for other massless
fields. Following Ref. [34], we briefly review and introduce
the horizon penetrating, hyperboloidally compactified
coordinates fτ; ρ; θ;ϕg, which is a natural choice for
studying BH perturbations [35]. First of all, the ingoing
coordinates fv; r; θ;ϕg are given by

dv ¼ dtþ 2Mr
Δ

dr; dϕ ¼ dφþ a
Δ
dr: ð5Þ

The hyperboloidal time variable τ is defined as

dτ≡ dv −
�
1þ 4M

r

�
dr; ð6Þ

and the compactified radial coordinate ρ as

ρ≡ 1

r
: ð7Þ

By applying the separation of variables, setting

Ψðτ; ρ; θ;ϕÞ ¼ e−iωτeimϕSðθÞRðρÞ; ð8Þ
Eq. (4) is separated into two equations

C2R00ðρÞ þ C1R0ðρÞ þ ðC0 − 0AlmðcÞÞR ¼ 0; ð9Þ
1

sin θ
d
dθ

�
sin θ

dS
dθ

�

þ
�
a2ω2 cos2 θ −

m2

sin2 θ
þ 0AlmðcÞ

�
S ¼ 0; ð10Þ
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where c ¼ aω is the oblateness parameter, 0AlmðcÞ is the
angular separation constant and

C2 ¼ −ρ2ð1 − 2Mρþ a2ρ2Þ; ð11Þ

C1 ¼ 2iω − 2ρþ 2i½amþ a2ω −Mð3iþ 8MωÞ�ρ2
þ 4a2ð2iωM − 1Þρ3; ð12Þ

C0 ¼ ωð2amþ a2ω − 16M2ωÞ
þ 2ðiþ 4ωMÞðamþ a2ω −Mðiþ 4MωÞÞρ
þ 2a2ðiþ 2ωMÞðiþ 4ωMÞρ2: ð13Þ

Notice that, in the zero-rotation limit, 0AlmðcÞ ¼ lðlþ 1Þ
where l is the angular integer number used to label the
harmonics. In this limit, scalar spheroidal harmonics are
simply the standard spherical harmonics [36].

B. Boundary conditions

We will deal only with the exterior Kerr spacetime by
imposing boundary conditions at the surface of the ultra-
compact object, which we parametrize as

r0 ¼ rþð1þ ϵÞ: ð14Þ

In particular, we enforce Dirichlet boundary conditions on
the radial function,

Rð1=r0Þ ¼ 0; ð15Þ

which means that Ψ also vanishes at the surface.
We will not deal with the interior region, and instead

assume that it is composed of a material where condition
(15) holds. Our main goal is to understand the ergoregion
instability and possible linear instability mechanisms asso-
ciated with the existence of light rings. Therefore, we
assume that the matter content of the object is such that
scalar waves are totally reflected.1 Dirichlet boundary
conditions are also intended to mimic the regularity
conditions in the interior of the object. We do not expect
any new qualitative feature to arise from the introduction of
the interior itself, but parameters describing the interior
(e.g., the equation of state of matter, etc.) could possibly
mask the physics we want to explore and bring in new
unwanted complications. The physics we want to under-
stand is related to features that are found in the exterior
vacuum spacetime already.

The above setup has two necessary ingredients that we
require: an ergoregion and a trapping region. There is no
stable light ring, instead the trapping is caused by the
Dirichlet conditions at the boundary, which confine per-
turbations in the region between the surface and the
unstable light ring. This feature can be more easily seen
in nonspinning geometries, which are governed by a
wavelike equation with a potential peaked at close to the
r ¼ 3M surface [38]. We have confirmed numerically that
large l modes are extremely long-lived when a ¼ 0, as in
Ref. [27]. Note also that the nonspinning geometry of
compact stars is stable, hence putative new features—if
there are any at the linear order—should be associated with
rotation and trapping, both present in our setup.
However, it is still an interesting issue to understand at

least the effects of allowing the scalar wave to probe the
interior. With this in mind, we discuss a simple two-
dimensional toy model in Appendix A, where we imple-
ment superradiance via a Lorentz-violating term in the
Klein-Gordon equation (following the original work by
Zel’dovich [6,7]), and we mimic the star interior assigning
an absorption parameter and a sound speed different from
unity in its interior. Our main result from Appendix A is
Fig. 10, which shows that imposing Dirichlet boundary
conditions at the surface is a limiting case of dealing with
the interior of an absorbing star. Thus, the toy model further
supports our use of a simple Kerr exterior where the
boundary conditions are imposed at the cutoff radius.

III. NUMERICAL APPROACH

A. Frequency-domain calculations of the spectra

A robust method to deal with the eigenfrequencies of
Kerr BHs—stable, well-tested and widely used in the
computation of Kerr quasinormal modes (QNMs)—con-
sists on a continued-fraction representation of the problem,
also known as Leaver method [39,40]. Unfortunately, the
method is well suited for BH spacetimes, but not for the
problem at hand, where we need to enforce boundary
condition (15) at a finite radius r0. We use instead the
approach by Ripley [34], which discretizes the radial
equation using a Chebyshev pseudospectral method, and
use the Cook-Zalutskiy spectral approach [41] to solve the
angular sector. The spin-weighted spheroidal harmonics are
related to the angular spheroidal function of the first kind
when s ¼ 0 and φ ¼ 0, see Refs. [36,42–44] for an
extensive discussion. For c ¼ 0, 0Almð0Þ increases mono-
tonically with l, but for c ≠ 0, the lth eigenvalue is not
defined uniquely. In Ref. [41], the lth eigenvalue is
identified via continuity along some sequence of solutions
connected to the well-defined value of 0Almð0Þ. In our
case, since we do not study extreme spin parameters,
we find that the lth smallest eigenvalue is same as
previous one. For a more detailed explanation, please refer
to Ref. [41].

1This procedure is akin to studying reflection of electromag-
netic waves off a perfect conductor [37]. In reality, a formal
analysis would require one to provide the conductivity and
permeability of the material, but the correct calculation in the
perfect conductor limit allows one to simply impose boundary
conditions at the surface of the conductor and to forget about the
conductor itself.
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Furthermore, due to the rapid change of the eigenfunc-
tion as the boundary approaches the horizon, we made the
following improvements to Ripley’s method. First of all,
the matrix given by Chebyshev pseudospectral method
with Dirichlet boundary condition (15) is very ill condi-
tioned, so we replace the Chebyshev pseudospectral
method with ultraspherical or Olver-Townsend spectral
method [45], which gives sparser and better conditioned
matrices and was incorporated into CHEBFUN [46] and
ApproxFun.jl [47] packages. Especially, in one-dimensional
cases, the condition number of the matrix is bounded by a
constant [45].
To further confirm the correctness of our results, we also

use a direct integration method to check our results. For
given parameters, we need to search the dominant mode
and overtones. To avoid missing the modes we are
interested in, we use the global complex root and pole
finding algorithm [48–50] to search multiple modes. In
addition, we also perform an adaptive sampling in the
complex plane region using the ADAPTIVE package [51] to
be further sure we are not missing some related modes.

B. Time-domain analysis

To further validate our results in the frequency domain,
we also perform a time domain analysis following using the
1þ 1 approach of Ref. [52]. Our procedure is almost
identical, except that we use Dirichlet boundary condition
(15) at the left boundary and an outgoing boundary condition
at the right boundary (typical r ∼ 1000M) [53]. The decom-
position of the scalar field can be written as

Ψ ¼
X∞
j¼jmj

ψ jðrÞYjmðθÞ; ð16Þ

where YjmðθÞ is the spherical harmonic of degree j and
order m. To specify initial data, we first define a tortoise
coordinate as

dr�
dr

¼ r2 þ a2

Δ
; ð17Þ

or, after fixing the constant of integration,

r� ¼ rþ 2M
rþ − r−

�
rþ ln

���� r − rþ
2M

���� − r− ln

���� r − r−
2M

����
�
: ð18Þ

Our initial condition is a time-symmetric Gaussian,

ψ l¼m ¼ exp

�
−
r� − rc
2σ2

�
; ψ l>m ¼ 0 ¼ ∂tψ l; ð19Þ

with rc ¼ 10M and σ ¼ 2M.We extract the dominantmodes
from the time series data using the Prony method [54] and
compare them with the results in the frequency domain.

1. Stiffness and numerical instability

For some surface locations, the time-domain evolutions
can become very challenging: the modes are extremely
long-lived and the system becomes stiff, leading to the
appearance of numerical instabilities. Unlike physical
instabilities, which we find and discuss below when
ergoregions are present, numerical instabilities are not
robust against grid settings and in particular when the
resolution increases. Nevertheless, they are important to
identify as they set a limit on the region of the parameter
space we are able to probe. We can estimate the stiffness of
our system since the signal (as we will see below in more
detail) has the late-time form

ψl¼mðt; rÞ ¼
Xn
j¼0

e−iωjtcjðrÞ; ð20Þ

where ω0 is the dominant mode and ωjðj > 0Þ are the jth
overtones. Normally there are infinite terms, but in the
following we ignore the terms with cj ≪ 1. Then the
stiffness ratio at some fixed radius is given by [55]

S ¼ jImðωnÞj
jImðω0Þj

: ð21Þ

The ratio above is a measure of stiffness of the system;
differential equation systems with larger stiffness ratio can
be considered more stiff. From the frequency domain data
in Table I, we have that jImðω0Þj ≪ 1 and decreases as
l ¼ m increases, thus stiffness becomes more and more
important. Accordingly, evolving the system for large
timescales is challenging. Thus, in this work we limit
ourselves to excluding possible instabilities with timescales
τ ≲ 105M only.

IV. RESULTS

We have searched for the complex eigenfrequencies,
which we write as

ω ¼ ωR þ iωI; ð22Þ

TABLE I. QNMs for a ¼ 0.5M, l ¼ m, and a surface at
r0 ¼ 2M. Notice that modes with very small imaginary parts
may have considerable relative error.

l ¼ m Mω 0AlmðcÞ
1 −0.338 − 7.47 × 10−2i 1.98 − 1.02 × 10−2i
2 −0.444 − 2.24 × 10−2i 5.97 − 2.86 × 10−3i
3 −0.532 − 3.44 × 10−3i 12.0 − 4.09 × 10−4i
4 −0.600 − 1.79 × 10−4i 20.0 − 1.96 × 10−5i
5 −0.652 − 4.06 × 10−6i 30.0 − 4.09 × 10−7i
6 −0.696 − 5.62 × 10−8i 42.0 − 5.24 × 10−9i
7 −0.734 − 4.95 × 10−10i 56.0 − 4.29 × 10−11i
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for different spacetime spin parameter a and surface
location r0 (or ϵ). We focus solely on the modes with
l ¼ m, for which there is an infinity of solutions, called
overtones. The modes with l ¼ m have instability rates
higher than the modes with l > m (for details see
Appendix B), so we can proceed focusing only on
l ¼ m modes, which is safe since we are concerned with
the disappearance of instability. Although not the focus of
this work, we also verified that in the spinless a ¼ 0 limit,
large l modes are extremely long lived, as in Ref. [27] (but
in the latter work boundary conditions are imposed at the
origin). In fact, we find that all modes are stable but their
lifetime increases exponentially with l. This finding lends
support to the claim that the geometry is a trapping
geometry as we discussed in the introduction.
Our results are summarized in Figs. 1, 2, and Table II,

and are always expressed in units of the spacetime mass, or

equivalently, we setM ¼ 1. We first focus on r0 close to rþ
(ϵ ≪ 1) so we recover previous results in the literature
[23,24]. Figure 1 shows a few tens of modes for the first six
multipoles. There are a few aspects worth highlighting. The
first is that there are both stable and unstable modes, and
that the transition from stability to instability is well marked
by the superradiant threshold ωR ¼ mΩ: modes for which
jωRj < mΩ are unstable, whereas the other modes are
stable. The dominant unstable mode is shown in Table II.
Our results are consistent and in excellent agreement with
the analytical and numerical results reported in Ref. [24]
for ϵ ≪ 1.
The threshold varies with r0 [or ϵ, cf. Eq. (14)]. Figure 2

illustrates how the unstable modes converge to marginally
stable modes when ϵ varies. These results, complementary
to those in Refs. [23,24], indicate that all unstable modes
pass through zero frequency modes before they become
stable [9,24]. When ϵ ≪ 1, our results are consistent with
those of Refs. [23,24]. We complemented the frequency-
domain analysis with the evolution in time of the wave
equation subjected to Dirichlet boundary conditions (15) at
the surface of the object. Figure 3 shows the evolution for a
rapidly spinning object with a ¼ 0.99M and surface at

FIG. 1. QNMs of a spacetime with a ¼ 0.99, ϵ ¼ 10−3 for the
six lowest multipoles with l ¼ m. The figure includes both stable
and unstable modes. Top panel: the dashed lines mark the
superradiant condition ωR ¼ mΩ, which is the onset of the
instability. Unstable modes are barely visible on this scale.
Bottom panel: enlargement of the top panel, showing only
unstable modes with positive ωR. The next mode, with larger
ωR would be stable and would therefore fall below to the negative
ωI plane.

FIG. 2. QNMs for a ¼ 0.99M and l ¼ m ¼ 1 as a function of
ϵ. We select five unstable modes at ϵ ¼ 10−3 and follow them as ϵ
increases. The figure shows that the modes eventually become
zero-frequency modes, in this case at ϵ ¼ 0.0019, 0.0047, 0.012,
0.031, and 0.096, marked by dashed lines. Our results indicate
that all the unstable modes pass through zero frequency modes
before becoming stable.

TABLE II. Dominant unstable QNMs for a ¼ 0.99M and a
surface at ϵ ¼ 10−3.

l ¼ m Mω 0AlmðcÞ
1 0.339þ 2.29 × 10−5i 1.64 − 2.61 × 10−6i
2 0.757þ 1.16 × 10−5i 5.91 − 2.55 × 10−6i
3 1.18þ 4.82 × 10−6i 11.8 − 1.29 × 10−6i
4 1.60þ 1.84 × 10−6i 19.8 − 5.52 × 10−7i
5 2.02þ 6.69 × 10−7i 29.7 − 2.17 × 10−7i
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ϵ ¼ 10−3; 10−2. An initial transient is followed by a rapid
exponential growth, with a growth rate which we extracted
using Prony techniques. The results of the time evolution
are in very good agreement with the frequency-domain
calculation of the dominant mode.

A. The zero-frequency modes

Our numerical study indicates that, at fixed overtone, the
transition from stability to instability occurs via a zero-
frequency mode. A similar feature had been observed
numerically in analog fluid geometries [30] and used to
explore analytically the transition from stability to insta-
bility [31]. The existence of zero-frequency modes is—to
our knowledge—far from trivial or obvious. Nevertheless,
as we show below, they exist and we find simple analytical
expressions requiring regularity at the boundaries. These
modes provide a clean discriminator to understand better
when our spacetime becomes linearly stable, so they merit a
more detailed analysis (see also Ref. [56], where the
investigation of zero modes in this setup was initiated).
When ω ¼ 0, 0Almð0Þ ¼ lðlþ 1Þ and one finds a simple
solution to the Klein-Gordon equation, in Boyer-Lindquist
coordinates:

Ψ ¼ a1P
−ima

Γ
l

�
r −M
Γ

�
þ a2Q

−ima
Γ

l

�
r −M
Γ

�
;

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð23Þ

where Pν
μðzÞ and Qν

μðzÞ are generalized associated
Legendre functions (type 2) of first kind and second kind
[57]. We will continue with unitsM ¼ 1 and focusing only

on l ¼ m modes. Requiring regularity at infinity, we find
a1=a2 ¼ −π=ð2iÞ. A zero-frequency mode appears when,
and if, the surface at r0 coincides with a zero of the function
Ψ. To analyze the zeros of Ψ, we define an auxiliary
function

F ðα; m; xÞ ¼ P−iαm
m ðxÞ

Q−iαm
m ðxÞ −

2i
π
; ð24Þ

where m ∈ Zþ and

α ¼ affiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p ; α ∈ ð0;þ∞Þ: ð25Þ

x ¼ r − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p ; x ∈ ð1;þ∞Þ: ð26Þ

The function F ðα; m; xÞ has the same zeros as Ψ. Next, we
analyze the zeros of the function analytically and numeri-
cally. We will keepF as a function of xðrÞ although we will
impose the boundary condition at r0. For convenience of
the analysis, we replace m with a continuous variable μ in
F ðα; μ; xÞ where μ ∈ ½1;þ∞Þ is a real number. Figure 4
shows how F ða; μ; xÞ varies with r. We can see that the
asymptotic behavior of the function depends on the surface
location, namely it separates into three cases, 1 < x <ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
(rþ < r < 2) in the top three panels of Fig. 4,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
(r ¼ 2) in the fourth panel of Fig. 4, and

x >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
(r > 2) in the last panel of Fig. 4. We deal

FIG. 3. Time series data for the evolution of the field for a ¼
0.99M and l ¼ m ¼ 1, up to t ¼ 106M. The instability rate
agrees well with frequency domain predictions. In particular,
using a Prony method in the time-domain data we find a dominant
unstable mode with ω ∼ 0.339þ 2.32 × 10−5i for ϵ ¼ 10−3, to be
compared with the frequency-domain prediction in Table II. The
field is extracted at r� ¼ −28.83;−47.25 for ϵ ¼ 10−2; 10−3,
respectively. The instability details are independent on the
extraction radii within numerical error.

FIG. 4. The function F ða; μ; xÞ for a ¼ 0.99 and fixed r as a
function of μ, which is an asymptotically periodic function with a
period given by Eq. (36). We define ΔFR ¼ RefF − 2ffiffi

3
p

π
g and

ΔF I ¼ ImfF þ i 2πg. As r gradually approaches 2M, the zero
points of F gradually disappear. For r ¼ 2M, we derived
analytically the result limμ→þ∞F ða; μ; rÞ ¼ 2ffiffi

3
p

π
− 2i

π , see discus-

sion around (37). For r > 2M, we have limμ→þ∞ F ða; μ; rÞ ¼ 0

(except in the neighborhood of r ¼ 2M). Therefore, we conclude
that there is no zero point for r ≥ 2M.
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with these cases separately and we use the asymptotic
expansion of F ðα; μ; xÞ for μ → þ∞ given in Ref. [58].2

When 1 < x <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
(corresponding to a surface

within the ergoregion, rþ < r < 2), we can see that
F ða; μ; xÞ is an asymptotically periodic function of μ at
fixed a and x. In particular, at large μ

F ∼ −
2i

π − 2πf1f2f3f4f5
−
2i
π
; ð27Þ

f1 ¼ ðα2 þ 1Þ−iαλþλ−1
2; ð28Þ

f2 ¼ ðx2 − 1Þ−iαλ; ð29Þ

f3 ¼ ðxþ if6Þ−2λ; ð30Þ

f4 ¼ f6 þ ix; ð31Þ

f5 ¼ ðf6 þ αxÞ2iαλ; ð32Þ

f6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − x2 þ 1

p
; ð33Þ

and has infinite zeros

λ ¼
tan−1ð xf6Þ
logpðα; xÞ þ nPðα; xÞ; ð34Þ

where n ∈ Z,

pðα; xÞ ¼
�ðα2 þ 1Þðx2 − 1Þ

ðf6 þ αxÞ2
�

α

e2tan
−1f6

x ; ð35Þ

and its period Pðα; xÞ is

Pðα; xÞ ¼ −
2π

logpðα; xÞ : ð36Þ

It is easy to verify that ∂P
∂x > 0, p > 0 and ∂p

∂x > 0, so the
period P increases as x increases, which is consistent
with Fig. 4.
For x ¼ 1, we have Pðα; 1Þ ¼ 0. Thus, for surfaces

placed close to the horizon at rþ there are a large number of
zeros, and hence a large number of unstable modes. For
x ¼ 1þ δ and δ ≪ 1, we obtain the asymptotic expansion
of F ða; μ; xÞ near the horizon. If we keep only the leading
term in δ, then we find a periodic function of logðδÞ with
period 2π=ðαmÞ and zero points at

log δþ 2π

αm
n

¼ i
am

log

�
2−iαmΓð1 − iαmÞΓðiαmþmþ 1Þ
Γð1þ iαmÞΓð−iαmþmþ 1Þ

�
;

where n ∈ Z and δ → 0þ corresponds to n → þ∞. Thus,
as we bring the Dirichlet condition closer to the horizon,
there are more zero frequency modes, i.e. we can get an
infinite number of superradiant modes in this way. This
result is consistent with the findings in Refs. [24,56]
[cf. Eq. (29) with q ¼ 2n where n ¼ 1; 2;…].
On the other hand, for x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
, we have

pðα;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
Þ ¼ 1, then we can get P → þ∞ for

p → 1−. Thus, the number of zero modes vanishes asymp-
totically when the surface approaches the equatorial ergo-
region boundary at r0 ¼ 2M. This zero-frequency behavior
is shown in Fig. 4.
In summary, our analytical results show that there exist

zero modes for objects with ergoregions—as had also been
previously discussed [56]—and their existence is precisely
delimited by the equatorial ergoregion. An example of this
behavior is shown in Figs. 5 and 6. Figure 5 shows the
surface location of the various zero modes, for different
l ¼ m modes. As discussed before, at fixed m there are
several solutions sustaining zero modes. The outermost
solution (i.e. the largest r0, blue dots in Fig. 5) are shown in
Fig. 6 but now for the first 2000 multipoles. We also show
the corresponding modes for a ¼ 0.5M. In other words,
these results strongly suggest that as long as the surface is
placed within the ergoregion, there will be zero modes and
hence linear instabilities. Thus, our findings are consistent
with the generic proofs that asymptotically flat, horizonless
spacetimes with ergoregions are unstable [9–11,13,14].

FIG. 5. The surface location of zero-frequency modes with a ¼
0.99M as a function of l ¼ m. As discussed in the main text, the
outermost zero mode is always at r < 2M in the limit m → ∞. If
we consider m ∈ Zþ as μ ∈ ½1;þ∞Þ, then each zero-mode
family is a continuous line as function of μ. We use different
colors to distinguish the zero points connected by different lines.

2Note that the definition of the generalized associated Legen-
dre function in Ref. [58] is different from ours, as we take into
account when expressing asymptotic properties.
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When the surface location is at the outermost boundary
of the ergosphere (x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
or r ¼ 2M), then two

saddle points coalescence [i.e. Eqs. (4.3) and (4.4) in
Ref. [58]]. Then,

lim
μ→þ∞

F
�
a; μ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p 	
¼ 2ffiffiffi

3
p

π
−
2i
π
; ð37Þ

a limit which is well captured by our numerics at a ¼ 0.99
(cf. panel 4 in Fig. 4).
The third case where the radius is greater than the

outermost boundary of the outer ergosphere (x >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

or r > 2) (except in the neighborhood of the
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
), we

have

lim
μ→þ∞

F ða; μ; xÞ ¼ 0: ð38Þ

Combining Fig. 4, we conclude that there are no zero-
frequency modes when x ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
(r ≥ 2). Especially,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
(r ¼ 2) is not a zero point even in the limit

m → ∞. This indicates that all superradiant modes dis-
appear before reaching the outermost boundary of the outer
ergosphere. Note that when restricting μ ∈ ½1;þ∞Þ to
m ∈ Zþ, the zeros of F ða;m; xÞ may even disappear
earlier when x →

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
.

B. Is there a new family of modes?

Our results are a strong indication that zero-frequency
modes do not exist when r0 > 2M. Thus, the ergoregion
family of modes cannot be the explanation for the findings
of Ref. [29]. However, we are still left with the possibility
that a linearized instability exists, not associated with any

zero-frequency mode. In particular, it is possible that a new
instability mechanism sets in for spinning spacetimes
without ergoregions but with light rings. To investigate
this possibility, we did a thorough search of unstable
modes in the spectrum of the problem when r0 ≥ 2M
and a ¼ 0.5M (as discussed above, for a <

ffiffiffi
2

p
M=2 the

unstable equatorial light ring lies outside the ergoregion).
We found no unstable mode. The evolution of initial
data, using time-domain methods, also shows no hints of
a physical instability, but it does show clearly the domi-
nance of long-lived modes. Typical examples are shown
in Fig. 7.

FIG. 6. Outermost zero-frequency modes as a function of
l ¼ m for two representative values of the spin, a=M ¼ 0.50,
0.99. A polynomial fit indicates that the critical surface lies at
rcrit ¼ 1.998M; 1.999M and at large m for a=M ¼ 0.99, 0.5,
respectively, compatible with the location of the equatorial
ergosurface. The dashed lines are obtained by using the inverse
function of Eq. (34) with n ¼ 1.

FIG. 7. Time series data for the evolution of a scalar field in the
geometry of an object with a ¼ 0.5M and a surface at r0 ¼ 2M.
The field is extracted at r� ¼ −3.69, but the overall behavior is
independent of the extraction radii. Top panel: evolution of the
multipolesm ¼ 1, 2, 3, up to t ¼ 103M. Using a Pronymethod,we
estimate a dominant mode with Mω ¼ −0.338 − 7.48 × 10−2i,
−0.444 − 2.24 × 10−2i, and −0.532 − 3.44 × 10−3i form ¼ 1, 2,
3, respectively. These estimates compare well with the frequency-
domain data in Table I. Bottom panel: same as top panel, for
multipoles m ¼ 4, 5, which are longer-lived, up to t ¼ 104M. A
Prony method now yields Mω ∼ −0.600 − 1.78 × 10−4i and
−0.652 − 2.65 × 10−6i for m ¼ 4, 5, which are still in good
agreement with frequency-domain predictions, despite the rather
large timescales now involved.
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V. DISCUSSION

Our results establish that there are exponentially growing
modes in a horizonless Kerr geometry, when it contains
ergoregions. The instability is connected continuously to
zero-frequency modes which cease to exist for surface
locations outside the ergoregion, i.e. for r0 ≥ 2M. An
important point for the context at hand is that the ergo-
region instability has timescales τ ≳ 105M.3 One of our
main motivations was to understand possible new linear
mechanisms in the absence of an ergoregion but when light
rings are present, possibly explaining the findings of
Ref. [29] and the relatively short timescales reported in
that work (possibly too short for a nonlinear mechanism).
We found no evidence of new instabilities on timescales
≲105M.
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APPENDIX A: MIMICKING THE ERGOREGION
INSTABILITY WITH A TWO-DIMENSIONAL

TOY MODEL

Here, we discuss a simple two-dimensional toy model, as
shown in Fig. 8, where we implement superradiance via a
Lorentz-violating term in the Klein-Gordon equation (fol-
lowing the original work by Zel’dovich [6,7]) and we
mimic the star interior assigning a sound speed different
from unity in its interior. To be specific, we consider the
second order partial differential equation

�
−

1

c2
∂
2

∂t2
þ ∂

2

∂x2
þ S

∂

∂t

�
Φðt; xÞ ¼ 0; ðA1Þ

in the half-line x > 0, where x ¼ 0 stands for the star
center. The speed of propagation is c < 1 in the interior of
the star x < x1, and we assume that the star is an absorber,
with S < 0. Between x1 < x < x2 there is an ergoregion,
which we model by adding a Lorentz-violating parameter
S > 0. For x > x2 we have vacuum and c ¼ 1;S ¼ 0. By
assuming an harmonic ansatz,

Φðt; xÞ ¼ χðxÞe−iωt; ðA2Þ
we can get

χ00ðxÞ þ
�
ω2

c2
− iSω

�
χðxÞ ¼ 0: ðA3Þ

The generic solution is

χ ¼ cðiÞ1 exp

�ð−1Þ14x ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iωþ c2S

p ffiffiffiffi
ω

p
c

�

þ cðiÞ2 exp

�
−
ð−1Þ14x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iωþ c2S

p ffiffiffiffi
ω

p
c

�
; ðA4Þ

where cðiÞ1 and cðiÞ2 are constants in ith interval, which is
determined by the boundary condition χð0Þ ¼ 0, the out-
going boundary condition χðx > x2Þ ∼ expðiωxÞ and con-
nection conditions [χðxÞ and χ0ðxÞ is continuous] at x1
and x2.
Results are summarized in Fig. 9, where for now we let

S ¼ 0 in the star interior, i.e. the star is not absorbing. The
top panel shows the dependence of the characteristic
ringing frequency and the instability timescale on the
speed of waves inside the star. We show the first 10 most
unstable modes, labeled by different colors. The star
material in this model is slowing the back-and-forth process
of negative-energy waves, thus delaying the growth. This
explains why the frequency decreases when c decreases
inside the star, and also why MωI decreases too. The only
exception concerns purely imaginary modes, the instability
rate of which remains roughly constant when the sound
speed changes. These are modes which damp out very
quickly inside the star and therefore are not affected by
sound speed. In fact, and because of this property, we will
see below that such modes reduce to modes calculated with

FIG. 8. Two-dimensional star model with different sound
speed, c, and Lorentz-violating factor, S, in different intervals.
x < x1 is the interior of the star, x1 < x < x2 is the ergoregion
mimicker, and x > x2 is the vacuum case.

3For a=M ¼ 0.99 and m ¼ 1, the maximum instability occurs
at ϵ ∼ 0.0056, for a=M ¼ 0.99 and m ¼ 2 at ϵ ∼ 0.0052, and the
relevant timescales are of order ∼106M [24].
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Dirichlet conditions at the surface. There is no new feature
appearing when the sound speed varies, the structure of the
modes only changes at the qualitative level. The bottom
panel on the other hand, shows the dependence of the
instability on the location of the surface of the star. There
are two noteworthy features here: when x1—the location of
the surface—varies, the main features of the instability
remain, lending support to our procedure of simply
imposing Dirichlet conditions at the surface. The second
noteworthy feature is that when x1 → x2 the instability
disappears, since there is no ergoregion anymore.
Let us now turn the absorption on, in the star interior. In

parallel with conducting materials in electromagnetism, one
could infer that dealing with the star interior is equivalent to
simply imposing Dirichlet conditions at its surface. This is
also the underlying rationale behind the simple model in the

main text. To understand if this is true, we calculate the
characteristic frequencies imposing boundary conditions at
x ¼ 0, and compare them with the spacetime with no star,
whereDirichlet conditions are imposed instead at the surface,
x ¼ x1. Results are summarized in Fig. 10. The figure shows
the relative difference in ωI when calculating the modes
imposing boundary conditions at the center of the star
(x ¼ 0) or at its surface (x ¼ x1) for a very absorbing
material, as a function of the Lorentz-violating factor in
the star interior. The figure shows, in the first place, that no
new qualitative feature arises when imposing conditions at
the star surface. But it also shows that, in the limit where
absorption is very large, S1 → −∞, the QNM frequencies of
the two problems are the same. This justifies well our usage
of the exterior Kerr spacetime in the main body of this work,
with Dirichlet conditions at its surface.

APPENDIX B: l > m CASES

In this appendix, we discuss the behavior of l > m
modes. Figure 11 shows some unstable modes with differ-
ent m and l. We can see that the l ¼ m modes are more
unstable than the l > m modes since their imaginary
part is larger, thus their instability timescale is shorter.
Furthermore, the l > m modes become stable for smaller
values of ϵ, as highlighted by the dashed vertical lines.
Figure 12 shows that the surface location of the zero-
frequency mode always decreases as l grows with fixed m.
This means that modes with l > m always become stable
before modes with l ¼ m as the surface location r0
increases. This ensures that when considering superra-
diance instability, we do not need to consider the modes
with l > m.

FIG. 9. QNMs of the two-dimensional model with x2 ¼ 1 and
S ¼ 100 for x1 < x < x2. The star is not absorbing, so we set
S ¼ 0 in its interior x < x1. We show the 10 most unstable modes,
labeled by different colors. Top panel: QNM frequencies as a
function of the sound speed cwith x1 ¼ 0.4. The black dashed lines
are purely imaginary QNMs. Bottom panel: QNM frequencies as a
function of the surface location x1 when c ¼ 0.1. Notice that when
x1 approaches x2, the instability vanishes. Although not included in
this bottompanel, the instability rate of the purely imaginarymodes
also vanishes when x1 approaches x2.

FIG. 10. QNMs of the two-dimensional model with x1 ¼ 0.4,
x2 ¼ 1, and S ¼ 100 for x1 < x < x2. We vary S ¼ S1 in the star
interior x < x1. These modes are pure imaginary modes, and the
imaginary parts are 9.50, 6.12, 3.61, 1.81, 0.64, and 0.07 in
the limit S1 → −∞ for labels 1 to 6, respectively. In this limit, the
modes converge to modes obtained by imposing Dirichlet
boundary conditions at x1, χðx1Þ ¼ 0.
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