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We discuss slowly rotating, general relativistic, superfluid neutron stars in the Hartle-Thorne
formulation. The composition of the stars is described by a simple two-fluid model which accounts
for superfluid neutrons and all other constituents. We apply a perturbed matching framework to derive a
new formalism for slowly rotating superfluid neutron stars, valid up to second order perturbation theory,
building on the original formulation reported by Andersson and Comer in 2001. The present study
constitutes an extension of previous work in the single-fluid case where it was shown that the Hartle-Thorne
formalism needs to be amended since it does not provide the correct results when the energy density does
not vanish at the surface of the star. We discuss in detail the corrections that need to be applied to the
original two-fluid formalism in order to account for nonvanishing energy densities at the boundary. In the
process, we also find a correction needed in the computation of the deformation of the stellar surface in
the original two-fluid model in all cases (irrespective of the value of the energy density at the surface). The
discrepancies found between the two formalisms are illustrated by building numerical stellar models,
focusing on the comparison in the calculation of the stellar mass, the deformation of the star, and in the
Kepler limit of rotation. In particular, using a toy-model equation of state for which the energy density does
not vanish at the boundary of the star we demonstrate that the corrections to the formalism we find impact
the structure of slowly rotating superfluid neutron stars in a significant way.
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I. INTRODUCTION

In their seminal work in the 1960s, Hartle and Thorne (HT
hereafter) formulated the general relativistic treatment of
isolated slowly rotating compact stars in equilibrium [1,2]
composed of a perfect fluid interior rotating rigidly. This
analytical model provides a perturbative framework to
describe the equilibrium configuration of an isolated com-
pact body up to second order in perturbations in general
relativity, around a static, spherically symmetric configura-
tion. The slow-rotation approximation entails expanding the
metric fields and the matter fields to OðΩ2Þ, where Ω is the
angular velocity of the star. The resulting formalism accu-
rately describes equilibriummodels of typical pulsars but it is
inappropriate for relativistic stars when rotation approaches
the mass-shedding limit [3,4].
Recent studies have shown that the mass of a slowly

rotating relativistic star described by a barotropic equation
of state (EOS) computed using the HT formalism needs to

be amended if the energy density does not vanish at the
surface of the star, since that produces discontinuities of the
second order perturbation fields there, i.e. at the matching
surface between the interior and exterior solutions for
the Euler-Einstein system [5–8]. Only for EOS for which
the energy density vanishes at the boundary of the star, the
expression provided by [1] to compute the mass of the star
yields the correct value. However, there may be situations
for which the energy density can exhibit a discontinuity at
the stellar surface, notably in the case of EOS describing
strange stars (see e.g. [9]). In particular [7] computed
equilibrium configurations of the rotating strange stars
configurations studied in [9] finding significantly higher
values for the total mass when accounting for the correction
to the computation of the mass in the HT formalism. More
precisely, the maximum mass found is ∼11% larger than
that attained in the original HT model. In addition, the
perturbed-matching approach of [5] was also applied in [7]
to the tidal problem in binary systems. It was found that it
fully accounts for the correction to the Love numbers
needed to obtain truly universal I-Love-Q relations, i.e.
valid for both neutron stars and strange stars, yielding in a
natural way the ad hoc corrections used in [10].
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The equilibrium stellar models built using the HT
formalism (including those in [7]) typically assume that
relativistic star matter can be described by a single fluid,
an oversimplified but widely used premise. However, the
composition of a neutron star is far from being made of one
single fluid but rather it includes different constituents. The
interior of the star has a ∼1–2 km deep solid crust in the
outer layers with ions, electrons, nucleii, and a superfluid
neutron gas in the inner crust and a ∼10 km core containing
superfluid neutrons, superconducting protons, and elec-
trons. Close to the center of the star the composition is
almost unknown and proposals involve the possible exist-
ence of exotic particles like hyperons, kaon/pion conden-
sates due to phase transitions, or deconfined quarks. A
formalism to build slowly rotating models of superfluid
neutron stars in general relativity was presented by
Andersson and Comer in [11] (AC hereafter) within the
framework of the HT model. This formalism describes
the neutron star matter as a two-fluid model where one of
the fluids is the superfluid neutron and the other fluid is a
mixture of all other constituents, including protons. As we
show here, the amendment of the computation of the mass
of the star found in the HT formalism for the single-fluid
case is also necessary for the two-fluid model. This has
implications in the formalism to build equilibrium con-
figurations of slowly rotating superfluid neutron stars [11]
or the computation of observables like quasinormal modes
of oscillation [12]. The aim of this work is to present the
correction in the HT formalism for the two-fluid model.
In this paper we apply the perturbed matching frame-

work of [5,8] to derive a new formalism for slowly rotating
superfluid neutron stars, valid up to second order pertur-
bation theory, building on the original two-fluid formu-
lation put forward by AC [11]. Incidentally, we also find
that the computation of the deformation of the star in [11]
by following surfaces of constant energy density needs to
be replaced by surfaces of constant “pressure.” Note that in
the single-fluid (perfect) case with barotropic EOS, those
two approaches lead to the same result (as is done in [1]),
but for the two-fluid model that is not the case. We discuss
the corrections that need to be applied in order to account
for the possibility of discontinuous matter fields at the
matching surface and the determination of the deformation.
We first apply our approach to the specific star model
considered by [11], highlighting the discrepancies found
between the two approaches. Next, using a toy-model
EOS for which the energy density does not vanish at the
boundary of the star we show that the amendments of the
AC formalism we present in this work must be taken into
account as they impact the structure and equilibrium of
stationary models of superfluid neutron stars, namely
their total mass and radius. This has also consequences
for the deformation of the star as well as for the tidal
problem, as it was shown for the single-fluid model
previously discussed by [7].

This article is organized as follows: In Secs. II and III we
discuss the two-fluid model, following the formulation
described in [12], and our perturbative scheme for the two-
fluid case, respectively. These first two sections serve as an
introduction to the formalism and lay the foundation for the
notation that will be used later. The following sections
focus on developing the model to obtain the equations in
the background configuration (Sec. IV), both at first order
(Sec. V) and at second order (Sec. VI). Each of these
sections deals with the inner problem, the outer problem,
the link between both regions, and the computational
procedures carried out to solve both problems. Next, in
Sec. VII we study the deformation of the star comparing
our results with those from [11] and in Sec. VIII we discuss
the Kepler or mass-shedding limit of rotation. Numerical
results are reported in Sec. IX by employing, first, the same
two-fluid EOS as that used by [11] and, second, a toy-
model EOS for which the matter fields are discontinuous at
the stellar surface. Finally, our conclusions are presented
in Sec. X.

II. SUPERFLUID NEUTRON STARS

We start by briefly introducing the formalism of the
two-fluid model for superfluid neutron stars as presented
by [12,13]. We leave the proper physical motivation and
the description of the model to those references and [11],
and we here focus only on the operational procedures
involved.
The central quantity to model general relativistic super-

fluid neutron stars is the so-called master function

Λ ¼ Λðn2; p2; x2Þ; ð1Þ

which depends on n2 ¼ −nαnα, p2 ¼ −pαpα, and
x2 ¼ −pαnα, where nα and pα are given by

nα ¼ nuα; pα ¼ pvα; ð2Þ

and uα and vα are the unit timelike vectors describing
the flow of protons and neutrons, respectively, and n (p) is
the neutron (proton) number density. As stated in [12], the
master function encodes the local thermodynamic state
of the fluid and serves as a Lagrangian for deriving the
superfluid field equations. When taking the limit to a
perfect fluid, Λ corresponds to minus the total energy
density of the fluid.

A. Auxiliary definitions
and energy-momentum tensor

From these quantities [12] define the following set of
convenient auxiliary objects. First, using the short-hand
notation for the first derivatives ofΛwith respect to its three
arguments
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A ≔ −
∂Λðn2; p2; x2Þ

∂x2
; B ≔ −2

∂Λðn2; p2; x2Þ
∂n2

;

C ≔ −2
∂Λðn2; p2; x2Þ

∂p2
;

the following one-forms are defined

μα ≔ Bnα þApα; χα ≔ Cpα þAnα;

which are dynamically and thermodynamically conjugate
to nα and pα, respectively [12]. After defining the gener-
alized pressure as

Ψ ≔ Λ − nαμα − pαχα; ð3Þ

the energy-momentum tensor of the fluid is then given by

Tα
β ¼ Ψδαβ þ pαχβ þ nαμβ: ð4Þ

B. Equations of the fluid

The equations of motion are given by the number density
conservation equations

∇αnα ¼ 0; ∇αpα ¼ 0; ð5Þ

and by the Euler equations

nαð∇αμβ −∇βμαÞ ¼ 0; pαð∇αχβ −∇βχαÞ ¼ 0: ð6Þ

Equations (5) and (6) imply ∇αTαβ ¼ 0.

C. Stationary and axisymmetric configurations,
circularity condition, and rigid rotation

We next assume that the spacetime and the fluid are
stationary and axisymmetric, and that the flows satisfy the
circularity condition, i.e. they rotate around the axis (there
are no convective motions), and rotate rigidly. In conse-
quence, following the conventions and notation in [11], we
take a coordinate system ft; r; θ;ϕg adapted to the sym-
metries, so that ∂t is a timelike Killing vector field and ∂ϕ is
an axial Killing vector field (with regular axis), the pair
fθ;ϕg coordinates the sphere, and the metric has the form

gSTAX ¼ −ðN2 − sin2θKðNϕÞ2Þdt2 þ Vdr2

− 2sin2θKNϕdtdϕþ Kðdθ2 þ sin2θdϕ2Þ; ð7Þ

where all functions depend only on r and θ, and the vectors
u and v (we use index-free notation when convenient)
satisfy

u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − sin2 θKðNϕ − Ω̃nÞ2

q ð∂t þ Ω̃n∂ϕÞ;

v ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − sin2 θKðNϕ − Ω̃pÞ2

q ð∂t þ Ω̃p∂ϕÞ; ð8Þ

for some constants Ω̃n and Ω̃p, which represent the angular
velocities of neutrons and protons, respectively.
Equation (5) are automatically satisfied, and Eq. (6) are

equivalent to [11]

μc ¼ −gð∂t þ Ω̃n∂ϕ; μÞ; χc ¼ −gð∂t þ Ω̃p∂ϕ; χÞ; ð9Þ

for some constants μc and χc. Note we use gð·; ·Þ for the
scalar product in the index-free notation.
The functions (of r and θ) involved in the two-fluid

problem are thus given by the list fN;Nϕ; K; Vg plus the
four constants fΩ̃p; Ω̃n; μc; χcg.

D. Global configuration: Vacuum exterior
and surface of the star

The global configuration for an isolated finite star is built
by the matching of two spacetimes with boundary, one to
describe the interior region ðMþ; gþÞ with boundary Σþ,
that solve the two-fluid model just described, and a vacuum
exterior region ðM−; g−Þ with boundary Σ−. The matching
procedure ensures the point-to-point identification of the
two boundaries to form the so-called matching hypersur-
face Σ≡ Σþ ¼ Σ−. The interior and exterior problems
consist of the corresponding equations, with “regularity”
conditions at the origin and at infinity, plus some relations
of the boundary data on Σ� provided by the matching
conditions (so that there are no energy surface layers at the
boundary). The matching conditions determine also the
form of Σ, and thus provide the surface of the star. In this
section we obtain the equation that determines the surface
of the star in the two-fluid model. In the following we use
the þ and − indexes to refer to interior and exterior
quantities, respectively.
Given that the exterior region is vacuum, the matching

conditions imply

EinðgþÞαβnαþjΣþ ¼ 0; ð10Þ

where nαþ is normal to the hypersurface Σþ, and we use
EinðgÞ to denote the Einstein tensor computed from g. The
vector nαþ, defined in principle only on Σþ, is an unknown
of the problem.
The assumption that the whole configuration is sta-

tionary and axisymmetric, that is, that both the interior
and exterior regions are stationary and axisymmetric and
that the boundaries Σþ and Σ− preserve those symmetries
(see [14]), implies that nαþ must be orthogonal to the
Killings ∂t and ∂ϕ. This implies, in particular, that nαþ is
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spacelike. It is then chosen to point fromMþ inwards, and
normalized to one. Analogously, we will have another
normal nα

− defined on Σ− to point M− outwards, to be
identified to nαþ at each point of Σ.
For the two-fluid model above, for which in particular

Eq. (8) holds, we have necessarily that the vectors uα and vα

(on Σþ) are orthogonal to nαþ, and hence also are nα, pα, μα,
and χα by construction. Therefore, given (4), condition (10)
is written equivalently as

ðΨnαþ þ pαχβn
β
þ þ nαμβn

β
þÞjΣþ ¼ ΨnαþjΣþ ¼ 0;

and thus

ΨjΣþ ¼ 0: ð11Þ

In terms of the chart ft; r; θ;ϕg introduced above, this
equation can be written as

Ψðr; θÞ ¼ 0;

which is the equation that defines Σþ in an implicit manner
in terms of r and θ.
Condition (11) is a necessary condition for the matching,

but it is not sufficient. Nevertheless, as shown in [15]
(see also [16]) that condition will be the only one involving
only the interior side. The rest of the matching conditions
provide the matching hypersurface from the other side Σ−

and relations between the boundary data for the interior and
exterior problems.

III. PERTURBATION SCHEME
TO SECOND ORDER

In this sectionwe introduce the ingredients and procedures
we will follow in subsequent sections to set and solve
the stationary and axisymmetric perturbative model of the
two-fluid star around static and spherically symmetric back-
ground configuration. We follow the stationary and axisym-
metric perturbative scheme to second order around a static
and spherically symmetric background ðM; gÞ as described
in [5] (see also [8]) based in an abstract perturbation
parameter ε. We refer to [17] for the set of definitions
involved in a perturbation scheme, which basically consists
of a family of spacetimes ðMε; ĝεÞwith ðM0; ĝ0Þ ¼ ðM; gÞ
together with a class of point identification (gauges). On the
other hand, wewill try to stick close to the notation in [11] for
the names of the functions relative to the background, first
and second order perturbations.

A. The geometry

We are thus given a static and spherically symmetric
background spacetime ðM; gÞ with

g ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð12Þ

and first and second order perturbation tensors on ðM; gÞ
K1 ¼ −2r2ωðrÞsin2θdtdϕ; ð13Þ

K2 ¼ ð−4eνðrÞhðr; θÞ þ 2r2ω2ðrÞsin2θÞdt2
þ 4eλðrÞvðr; θÞdr2 þ 4r2kðr; θÞðdθ2 þ sin2θdϕ2Þ:

ð14Þ

The family of tensors relative to the perturbation scheme to
second order in terms of a (so far abstract) parameter ε,
gε ¼ gþ εK1 þ ε2

2
K2 þOðε3Þ, corresponds to the form (7)

with the correspondences

N ¼ eνðrÞ=2ð1þ ε2hðr; θÞÞ;
V ¼ eλðrÞð1þ 2ε2vðr; θÞÞ;
K ¼ r2ð1þ 2ε2kðr; θÞÞ; Nϕ ¼ εωðr; θÞ: ð15Þ

B. The two-fluid interior

The two-fluid interior is assumed to be based on some
function Λ with three arguments. The form of Λ is given by
the background configuration, and it is assumed that such
form is kept in the perturbative scheme (see [17]). This is
analogous to the single-fluid case (the HT model) in which
the same barotropic EOS is imposed at all the perturbative
levels, in particular at the background. Explicitly, one
demands that Λεðn2ε ; p2

ε ; x2εÞ ¼ Λðn2ε ; p2
ε ; x2εÞ, where nε,

pε, and xε will correspond to the fluid functions for each
value of ε.
Following [11] we use the expansions

nεðr; θÞ ¼ n0ðrÞð1þ ε2ηðr; θÞÞ;
pεðr; θÞ ¼ p0ðrÞð1þ ε2Φðr; θÞÞ; ð16Þ

and the notation Λε ≔ Λðn2ε ; p2
ε ; x2εÞ, so that Λ0 ¼

Λðn20; p2
0; x

2
0Þ. More explicitly we will also use Λ0ðrÞ ≔

Λðn20ðrÞ; p2
0ðrÞ; x20ðrÞÞ and equivalently for Ψ0ðrÞ.

The perturbation of the velocity vector of the fluids is
assumed to be driven by the rotations

Ω̃n ¼ εΩn; Ω̃p ¼ εΩp; ð17Þ
for some constants Ωn and Ωp, so that the rotation enters
at first order of ε (and not at second order, see [8]).
Introducing the correspondences (15) into (8) we have
uε ¼ uð0Þ þ εuð1Þ þ 1

2
ε2uð2Þ þOðε3Þ and vε¼vð0Þ þεvð1Þþ

1
2
ε2vð2Þ þOðε3Þ with

uð0Þ ¼ e−νðrÞ=2∂t; uð1Þ ¼ e−νðrÞ=2Ωn∂ϕ;

uð2Þ ¼ ð−2e−νðrÞ=2hðr;θÞ þ e−3νðrÞ=2r2sin2θðωðrÞ−ΩnÞÞ∂t;
vð0Þ ¼ e−νðrÞ=2∂t; vð1Þ ¼ e−νðrÞ=2Ωp∂ϕ;

vð2Þ ¼ ð−2e−νðrÞ=2hðr;θÞ þ e−3νðrÞ=2r2sin2θðωðrÞ−ΩpÞÞ∂t:
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Now, from nαε ¼ nεuαε and pα
ε ¼ pεvαε we have

nαε ¼ n0

�
uαð0Þ þ εuαð1Þ þ

ε2

2
ðuαð2Þ þ 2ηuαð0ÞÞ

�
þOðε3Þ;

pα
ε ¼ p0

�
vαð0Þ þ εvαð1Þ þ

ε2

2
ðvαð2Þ þ 2Φvαð0ÞÞ

�
þOðε3Þ;

from where, using the definition x2ε ¼ −pερn
ρ
ε , we obtain

x2εðr; θÞ ¼ n0ðrÞp0ðrÞ
�
1þ 1

2
ε2ð2Φðr; θÞ þ 2ηðr; θÞ

þ e−νðrÞr2sin2θðΩn −ΩpÞ2Þ
�
þOðε3Þ: ð18Þ

Then, in particular,

x20ðrÞ ¼ n0ðrÞp0ðrÞ: ð19Þ

The Einstein field equations must hold now for each
member of the family of the perturbation scheme para-
metrized with ε, that is

EinðgεÞαβ ¼ ϰTε
α
β; ð20Þ

where ϰ ¼ 8πG=c4 and with the obvious extensions of the
previously defined quantities to the ε family given by

Tε
α
β ¼ Ψεδ

α
β þ pα

ε χεβ þ nαεμεβ;

Ψε ¼ Λε − nρεμερ − pρ
εχερ;

μεα ¼ Bεnεα þAεpεα; χεα ¼ Cεpεα þAεnεα;

Aε ¼ −
∂Λðn2ε ; p2

ε ; x2εÞ
∂x2ε

; Bε ¼ −2
∂Λðn2ε ; p2

ε ; x2εÞ
∂n2ε

;

Cε ¼ −2
∂Λðn2ε ; p2

ε ; x2εÞ
∂p2

ε
:

The explicit dependence on r and θ of these quantities is
obtained once we introduce the expressions of the corre-
sponding functions nε and pε from (16) and xε from (18). In
the following we will use the notationO0 ≔ Oεjε¼0 for any
object O. Observe that A0, B0, and C0 are functions that
depend only on r.
As mentioned above, the only remaining equations we

have to impose are the Eulerian equations for the fluid (9).
These equations applied to each member of the family of
the perturbation scheme just read

μcε ¼ −gεð∂t þ εΩn∂ϕ; μεÞ;
χcε ¼ −gεð∂t þ εΩp∂ϕ; χεÞ: ð21Þ

The expansions on ε of the left-hand sides are taken to be of
the form

μcε ¼ μ∞ð1þ ε2γnÞ þOðε3Þ;
χcε ¼ χ∞ð1þ ε2γpÞ þOðε3Þ; ð22Þ

which define the four constants μ∞ð¼ μc0Þ, χ∞ð¼ χc0Þ, γn,
and γp.

1. The perturbation parameter ε

The introduction of the perturbation parameter ε by
means of (17) has been performed, as mentioned earlier, to
incorporate the rotation at first (and only at first) order. The
fact that this can be done in the perfect fluid case has been
argued many times in the literature (see e.g. [1]), and has
been finally shown in full in [8]. In doing so we have passed
from two parameters in the “full exact” case, Ω̃n and Ω̃p to
three, namely ε, Ωn, and Ωp. The scalability property of
perturbative schemes introduces the freedom of redefining
the perturbation parameter, and that freedom has translated
here into the introduction of the spurious information
provided by one extra parameter. The perturbation scheme
does not depend on that choice (let us refer to [8] for a full
account on the subject in the perfect fluid case).
From a computational point of view the procedure

consists on choosing freely the value of one paramenter
amongst Ωp, Ωn, and ε, solve the problems, and then
simply use the scalability property to fix the model to the
data we want. A particular choice can consist on setting
ε ¼ 1. Instead, following [11] in essence, we will use the
parameter

Δ ¼ Ω̃n

Ω̃p
; ð23Þ

which equals, by construction,Δ ¼ Ωn=Ωp, and eventually
fix ε ¼ Ω̃p, so thatΩp ¼ 1 and the perturbation depends on
two parameters, Δð¼ ΩnÞ and ε ¼ Ω̃p. With this choice ε
contains the numerical value of the (rigid) rotation of the
fluid of protons.
This choice of parametrization will be imposed only

when needed, when we eventually describe the computa-
tional process. The reason is for convenience, since we
prefer to leave all the construction in terms of Ωn and Ωp

and keep all expressions symmetric with respect to the two
fluids. Motivated by the notation used in some parts of [11],
we will use a “little hat” notation to indicate that some
quantity f has been calculated by setting Ωn ¼ Δ, Ωp ¼ 1

in the corresponding equations to obtain f̂. This means that,
for any quantity f1 at first order we have f̂1 ¼ f1=Ωp by
definition, while for any quantity f2 at second order,
f̂2 ¼ f2=Ω2

p. Observe that εf1 ¼ Ω̃pf̂1 and ε2f2 ¼ Ω̃2
pf̂2

because ε ¼ Ω̃p=Ωp.
Finally, let us note that given (17), the parameters Ω̃p and

Ω̃n here correspond to Ωp and Ωn used in [11].
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C. The global perturbation scheme

The background configuration follows the construction
as described in Sec. II D, and it is thus divided into the
interior part ðMþ; gþÞ with boundary Σþ and the exterior
part ðM−; g−Þ with boundary Σ−, with g� of the form (12)
and identified boundaries as Σ≡ Σþ ¼ Σ−. Although we
ought to be using ftþ; rþ; θþ;ϕþg and ft−; r−; θ−;ϕ−g for
the charts at the exterior and interior domains, respectively,
we are going to use a common name ft; r; θ;ϕg to simplify
the notation whenever that does not lead to confusion.
For a global static and spherically symmetric back-

ground configuration, the matching in the background
configuration is performed assuming that the spherical
symmetry and staticity of the exterior and interior regions is
preserved by the matching [14]. As a result, the boundaries
Σ� are defined in each case by rþ ¼ Rþ and r− ¼ R−,
respectively, for some pair of positive reals Rþ and R−, and
we take rþ ∈ ð0; RþÞ for the interior and r− ∈ ðR−;∞Þ
for the exterior. The normal vectors are then given by
n�
0 ¼ −e−λ�ðR�Þ=2∂�r , that are to be identified by the

matching procedure. We will then use the usual notation
½f� ≔ fþjrþ¼Rþ − f−jr−¼R−

, where fþ and f− are functions
defined on Mþ and M−, respectively.
From the perturbation scheme one constructs the set of

interior and exterior problems for the families of metrics gþε
and g−ε . In the interior the equations at first and second order
correspond to the first and second derivatives of (20) for gþε
with respect of ε evaluated at ε ¼ 0, respectively. The
equations on the exterior are obtained equivalently, but now
using (20) for g−ε with the right-hand side set to zero. At
first order the functions involved will be those appearing in
K1, and at second order, those in K2 plus those in K1

feeding the “inhomogeneous” part of the equations. If we
call fþ and f− the set of functions involved at some order
on each region, the procedure thus provides equations on
ðMþ; gþÞ and ðM−; g−Þ for fþ and f−.
The matching procedure using the perturbation scheme

provides, first, relations between the boundary data of the
functions f on Σþ and Σ− by means of their differences, or
jumps, [f], and possibly ½f0�. The equations that determine
these jumps will depend, in general, on the two classes of
(spacetime) gauges used to construct the interior and
exterior problems (one gauge at the interior and another
at the exterior), and also on the class of gauges involved in
the construction of the family of matching hypersurfaces
Σε ≡ Σþ

ε ¼ Σ−
ε as subsets in the correspondingM� (see [5]

for an expanded description), which we refer to as the
hypersurface gauge [18,19].
Second, the matching procedure provides the deforma-

tion of the matching hypersurface, that is encoded in the
family of hypersurfaces Σ�

ε (one family at each side). That
deformation is described at each point on the respective
Σ� ¼ Σ�

0 by a vector Z�
1 at first order and Z�

2 at second
order. At the interior, Zþ

1 corresponds to the velocity vector
at points on Σþ of the curves that follow the points on the

family Σþ
ε identified by the hypersurface gauge followed by

the spacetime gauge at the þ side, and Zþ
2 corresponds to

the acceleration of that curve on Σþ. The same goes for the
exterior region with −. Each of the four vectors Z�

1=2 can be

decomposed as tangent T�
1=2 and normal parts to the corres-

ponding Σ� as Z�
1 ¼ T�

1 þQ�
1 n

�
0 and Z�

2 ¼ T�
2 þQ�

2 n
�
0 ,

where Q�
1 and Q�

2 are two pairs of functions defined on
their respective Σ�. The deformation of Σ described by Σε

as a set of points corresponds then, at each side, to the
normal part of Z�

1=2, that is Q�
1 at first order, and Q�

2 at
second order. The deformations refer to the (spacetime)
gauges used at each side. To sum up, the perturbed
matching conditions to second order will provide relations
between

(i) the jumps of the functions, and possibly derivatives,
of the background configuration,

(ii) the jumps [f], and possibly ½f0�, of the functions f
involved in K1 and K2,

(iii) the differences of the tangent vectors T�
1 and T�

2 ,
(iv) two pairs of functions Q�

1 and Q�
2 (at each corre-

sponding side) that describe the deformation of the
surface of the star (as seen from each side and with
respect to the gauge used).

Let us stress that these relations follow from a pure
geometrical setting. The perturbed matching between the
two sides�will exist if there exist functionsQ�

1 andQ�
2 and

vectors T�
1 and T�

2 such that all the perturbed matching
conditions are satisfied.On the other hand, in principle, those
conditions may not provide a closed system for all the jumps
and Q�

1 and Q�
2 , that is, that some freedom can be left (and

some not even fixed by a choice of gauge, see [19]).
Nevertheless, when the field equations are imposed,

possibly complemented with some other matter-field con-
ditions at the boundary (as for instance no layer of electrical
charge), more conditions on the jumps of the relevant
functions may appear. One expects that the system of
equations for the jumps and the functions Q�

1 and Q�
2 in

terms of background quantities closes, and that the solution
exists.
Finally, let us remark that the quantities involved in this

perturbative scheme are, in general, gauge dependent. Part
of the analysis of the problem consists of the control over
all those dependencies. In particular,Q�

2 are both spacetime
and hypersurface-gauge dependent. However, in the case of
stationary and axisymmetric perturbations around static
and spherically symmetric backgrounds, the deformation of
the hypersurface (at second order) appears in the matching
equations in terms of alternative functions Ξ� constructed
from Q�

2 , as shown in [5,8], that are hypersurface-gauge
invariant if Q1 ¼ 0 and also invariant under the class of
gauges at second order that maintain the form of the second
order perturbation tensor used in the more general analysis
there. In the present case, that is, for the class of gauges in
which K1 and K2 have the form (13) and (14), we have
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Ξ� ¼ Q�
2 þ κðT�

1 ; T
�
1 Þ:

A hypersurface gauge (see [5,8]) can always be chosen so
that either Tþ

1 or T−
1 vanishes (but not both). Choosing, e.g.

T−
1 ¼ 0 we are left with Ξ− ¼ Q−

2 .
Next we deal with the building of the background

configuration, and follow with the first and the second
order problems. In each case we present the equations of
the interior region, the solution of the vacuum exterior,
and the equations that provide the matching of the two
problems, that will be taken from the geometrical analysis
in [8] (see also [5]).1 Each section will end with an account
on the explicit procedure used to solve the corresponding
global interior-exterior problem.

IV. THE BACKGROUND CONFIGURATION

A. Interior problem

Once the function Λ is set the list of quantities that
describe the background configuration of the interior of the
star is given by fλþðrÞ; νþðrÞ; n0ðrÞ; p0ðrÞg plus the pair of
constants fμ∞; χ∞g. The equations are found from (20) and
(21), evaluated at ε ¼ 0. From Eq. (20) we obtain

λ0þ ¼ þ 1 − eλþ

r
− ϰreλþΛ0; ð24Þ

ν0þ ¼ −
1 − eλþ

r
þ ϰreλþΨ0; ð25Þ

while Eq. (21) yields [12]

μ∞e−νþðrÞ=2 ¼ B0ðrÞn0ðrÞ þA0ðrÞp0ðrÞ≕ μ0ðrÞ; ð26Þ

χ∞e−νþðrÞ=2 ¼ A0ðrÞn0ðrÞ þ C0ðrÞp0ðrÞ≕ χ0ðrÞ; ð27Þ

where we take advantage of the expressions to introduce
two auxiliary functions μ0 and χ0.

2 It is important to stress
that if μ0 vanishes at some point then it vanishes every-
where, and the same for χ0. The radial derivatives of the two
equations in (26)–(27) provide, respectively,

A0
0p

0
0 þ B0

0n
0
0 þ

1

2
ðB0n0 þA0p0Þν0þ ¼ 0; ð28Þ

C00p
0
0 þA0

0n
0
0 þ

1

2
ðA0n0 þ C0p0Þν0þ ¼ 0; ð29Þ

with3

A0
0 ≔A0 þ 2

∂B0

∂p2
0

n0p0 þ 2
∂A0

∂n20
n20 þ 2

∂A0

∂p2
0

p2
0 þ

∂A0

∂x20
n0p0;

B0
0 ≔ B0 þ 2

∂B0

∂n20
n20 þ 4

∂A0

∂n20
n0p0 þ

∂A0

∂x20
p2
0;

C00 ≔ C0 þ 2
∂C0
∂p2

0

p2
0 þ 4

∂A0

∂p2
0

n0p0 þ
∂A0

∂x20
n20:

Observe that with our notation the following chain of
identities (and the analogous) holds

∂B0

∂p2
0

¼ ∂Bðn20; p2
0; x

2
0Þ

∂p2
0

¼ ∂Bðn2ε ; p2
ε ; x2εÞ

∂p2
ε

����
ε¼0

:

For convenience, let us define the auxiliary functions (for
each region þ and −) jðrÞ and MðrÞ by

jðrÞ ≔ e−ðλðrÞþνðrÞÞ=2; 1 −
2MðrÞ

r
≔ e−λðrÞ:

The function MðrÞ corresponds to the (Misner-Sharp)
mass, and (24) can be reexpressed as [11]

MðrÞ ¼ 4π

Z
r

0

s2ð−Λ0ðsÞÞds:

We end this subsection with some remarks. First, the
invertibility of the system (28)–(29) must be kept under
control. For that we can reexpress (28)–(29) as

A

�
n0
p0

�0
¼ −

1

2
ν0þB

�
n0
p0

�

with

A ≔
�
B0
0 A0

0

A0
0 C00

�
; B ≔

�
B0 A0

A0 C0

�
: ð30Þ

Therefore Λ will have to satisfy the condition that A is
invertible in all the range r ∈ ð0; RþÞ, so that the system
(28)–(29) is equivalent to

�
n0
p0

�0
¼ −

1

2
ν0þA−1B

�
n0
p0

�
: ð31Þ

It must be kept in mind, however, that we had (26)–(27),
which reads

BðrÞ
�
n0
p0

�
ðrÞ ¼

�
μ0

χ0

�
ðrÞ ¼ e−νþðrÞ=2

�
μ∞

χ∞

�
;

and therefore (31) can be also written as

1The perturbed matching (and thus the quantities Q�
1 and Q�

2

and the vector fields T�
1 and T�

2 ) is assumed in [5] to be axially
symmetric. The general analysis is made in [8], where it is shown
that axial symmetry of the perturbed matching is a necessary
consequence of the whole setting.

2Then, for the one-form μεα we have μ0αdxα ¼ μ0ðrÞeνðrÞ=2dt.
3Our A0

0, etc. correspond to A0
0j0, etc. in [11].
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�
n0
p0

�0
¼ −

1

2
ν0þA−1e−νþ=2

�
μ∞

χ∞

�
: ð32Þ

The importance of this form of the equations for n0ðrÞ and
p0ðrÞ is that it provides n00 and p0

0 at all points where A is
invertible, even at points where n0 and p0 vanish, where B
necessarily diverges.
Also,we have by construction the equalities, cf. (26)–(27),

Ψ0ðrÞ − Λ0ðrÞ ¼ n0ðrÞμ0ðrÞ þ p0ðrÞχ0ðrÞ;
¼ e−νþðrÞ=2ðμ∞n0ðrÞ þ χ∞p0ðrÞÞ; ð33Þ

and also

Ψ0ðrÞ − Λ0ðrÞ ¼ −
1

ϰ

ðj2þðrÞÞ0eνþðrÞ
r

ð34Þ

by (24) and (25) in terms of the metric functions.
A straightforward calculation using the chain rule with

(31) and (33) allows us to write

Ψ0
0ðrÞ ¼ −

1

2
ν0ðrÞðΨ0ðrÞ − Λ0ðrÞÞ; ð35Þ

and (we avoid the r dependence and the þ “interior”
subindex)

Λ0
0 ¼

1

2
ν0

1

detA
ðC00μ20 − 2μ0χ0A0

0 þ B0
0χ

2
0Þ;

¼ 1

2
ν0e−ν

1

detA
ðC00μ2∞ − 2μ∞χ∞A0

0 þ B0
0χ

2
∞Þ ð36Þ

after using (32) in the last equality.
Differentiating Eq. (25), and using (35) together with

(24)–(25), we get an equation for ν00 only in terms of λ

2rν00þ þ ν0þðrν0þ − 2Þ − λ0þð2þ rν0þÞ þ
4

r
ðeλþ − 1Þ ¼ 0;

ð37Þ
which is the same equation that in the perfect fluid case
arises because of the isotropy of the pressure.
The fact that the metric g is smooth at the origin implies

that λðrÞ and νðrÞ are smooth up to the boundary and admit
the expansions (see a full proof, e.g. in [8])

λðrÞ ¼ λ0 þ λ2r2 þOðr4Þ; νðrÞ ¼ ν0 þ ν2r2 þOðr4Þ:

Introducing this in the field equations (24) and (25) we
obtain

λð0Þ ¼ λ0 ¼ 0; λ2 ¼ −
1

3
ϰΛ0ð0Þ;

ν2 ¼
1

2
ϰ

�
Ψ0ð0Þ −

1

3
Λ0ð0Þ

�
: ð38Þ

Observe that ν0 remains free, and that accounts to the
freedom of shifting the “Newtonian” potential. Asking that
the potential is zero at infinity in the global problem will fix
that value, see below. It is also worth noticing that, a priori,
the functions n0ðrÞ and p0ðrÞ need not follow the same
pattern as the metric functions around the origin (expansion
in even powers of r). However, taking

n0ðrÞ ¼ n0ð0Þ þ n0;1rþ n0;2r2 þOðr3Þ;
p0ðrÞ ¼ p0ð0Þ þ p0;1rþ p0;2r2 þOðr3Þ;

the Eulerian equations (31) evaluated on r ¼ 0, since
ν0ð0Þ ¼ 0, imply that n0;1 ¼ p0;1 ¼ 0 in particular.
Let us now stress the fact that the existence of the

solution to the perturbative scheme for perfect fluids
requires that the sum of the central energy density and
pressure does not vanish at the origin [8]. Although the full
problem has not been dealt with rigour, later we will find
that in the two-fluid model we will need to ask, equiv-
alently, that Ψ0ð0Þ − Λ0ð0Þ ≠ 0. As a result, cf. (33), we
shall demand that

A.1 μ∞ and χ∞ cannot both be zero.
The assumption Ψ0ð0Þ − Λ0ð0Þ ≠ 0 can be motivated on

physical grounds by requiring the positivity of the mass
MðrÞ around the origin, and thus that −Λ0ð0Þ > 0, plus the
positivity of the effective pressure.

B. Exterior solution

The outer vacuum region ðM−; g−Þ is defined by Λ ¼ 0,
n0 ¼ 0, p0 ¼ 0, and is thus described by the set
fλ−ðrÞ; ν−ðrÞg. The solution of field equations is

e−λ−ðrÞ ¼ eν−ðrÞ ¼ 1 −
2M
r

; ð39Þ

for some constant M, that hold over some domain r ∈
ðR−;∞Þ for some R− > 0. Observe that the solution can
equivalently be charaterized byM−ðrÞ ¼ M and j−ðrÞ ¼ 1
for r ∈ ðR−;∞Þ. We assume in the following that

A.2 M > 0.
so we trivially recover Schwarzschild with mass M on r ∈
ðR−;∞Þ with the “usual” coordinates.

C. Matching of the problems

The matching of the background configuration is given
by the conditions (see e.g. [8])

R− ¼ Rþ ≕R; ½ν� ¼ 0; ½ν0� ¼ 0; ½λ� ¼ 0: ð40Þ

Using that the exterior solution is given by (39), these
conditions imply

eλþðRÞ ¼ e−νþðRÞ ¼ R
R − 2M

; ð41Þ
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and

ν0þðRÞ ¼
1

R
2M

R − 2M
: ð42Þ

In terms of M and j we have

M ¼ M−ðRÞ; j−ðRÞ ¼ 1:

Introducing these relations on (25) we obtain

½Ψ0� ¼ 0: ð43Þ

This is the only consequence the matching conditions have
on the functions describing the matter content.
Note ½Λ0�¼Λ0ðRÞ≔Λðn20ðRÞ;p2

0ðRÞ;x20ðRÞÞ and equiv-
alently ½Ψ0� ¼ Ψ0ðRÞ because the corresponding functions
on the exterior vanish identically. From (33) we can write
Ψ0ðRÞ ¼ 0 equivalently as

Λ0ðRÞ ¼ −e−νþðRÞ=2ðμ∞n0ðRÞ þ χ∞p0ðRÞÞ;

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
R − 2M

r
ðμ∞n0ðRÞ þ χ∞p0ðRÞÞ; ð44Þ

after using (41) in the last equality. Equation (43) shows
that the matching hypersurface (the value of R in this case)
is determined by the vanishing of Ψ0, i.e. the first solution
of Ψ0ðRÞ ¼ 0, whereas Λ0ðRÞ attains the value given by
(44). That value will depend upon the explicit form of Λ in
terms of its three arguments. In the perfect fluid case that
corresponds to the equation of state, see e.g. [5,8].
A rigorous treatment of the existence and uniqueness

problem (that will be presented elsewhere) will also need an
assumption on the behavior of Λ0 at the boundary, namely
that if it vanishes then both n0 and p0 must also vanish,
that is,

A.3 Λ0ðRÞ ¼ Λðn20ðRÞ; p2
0ðRÞ; x20ðRÞÞ ¼ 0⟹ n0ðRÞ ¼

p0ðRÞ ¼ 0.
Let us stress that if one demands μ∞ ¼ χ∞, as in the models
in [11], assumption A.1 as well as A.3 [because of (44)] are
automatically satisfied.
The first and second order matching conditions will

contain jumps of higher derivatives of λ and ν. For later use,
then, we present next the expressions relating those
differences with the fluid quantities on the surface.
Using (40) taking into account the field equations (24)
and (37) (and yet another radial derivative) we obtain

½λ0� ¼ −ϰReλðRÞ½Λ0�; ð45Þ

½λ00� ¼ −ReλðRÞϰ½Λ0
0� þ ½λ02�; ð46Þ

½ν00� ¼ −ϰ
�
1þ Rν0ðRÞ

2

�
eλðRÞ½Λ0�; ð47Þ

½ν000� ¼ 1

R

�
1þ Rν0ðRÞ

2

�
½λ00� þ Cν½λ0�; ð48Þ

where Cν is a constant whose explicit form will not be
needed, that relate the geometrical jumps with the jumps of
the matter field.
In the following, for any quantity f satisfying ½f� ¼ 0 we

will use simply fðRÞ ¼ fþðRÞ ¼ f−ðRÞ and just f if f is
only defined on the boundary.

D. Solving the background global problem

To sum up, given a function of three arguments Λ, the
background interior is described by four functions
fλþðrÞ; νþðrÞ; n0ðrÞ; p0ðrÞg that satisfy Eqs. (24), (25),
(31) on the domain r ∈ ð0; RÞ for some constant R > 0
that is fixed by the matching procedure below. Two first
integrals to the system are given by (26)–(27). Moreover, it
must be stressed that νþðrÞ only enters the equations
algebraically through ν0þðrÞ. As a result, the system of
equations provide ν0þðrÞ, and thus νþðrÞ up to a free
additive constant. This is equivalent to the fact that ν0 ≔
νþð0Þ is left undetermined by the interior problem, and has
to be fixed a posteriori by imposing that νþðRÞ ¼ −λþðRÞ
[cf. (40)] as follows.
The procedure is to integrate Eqs. (24), (25), (31),

replacing νðrÞ by some function ν̃ðrÞ, from the origin (at
r ¼ 0) given the conditions (38) plus finite values for n0ð0Þ
and p0ð0Þ, together with the condition ν̃ð0Þ ¼ 0. The
interior problem thus integrated, which is independent of
ν̃ð0Þ, provides λþðrÞ, n0ðrÞ, and p0ðrÞ, and therefore also
Ψ0ðrÞ. Because of the matching condition (43), and given
that the exterior is vacuum, R is obtained as the (first) zero
Ψ0ðRÞ ¼ 0. Now we just have to set νþðrÞ ¼ ν̃ðrÞ −
ν̃ðRÞ − λþðRÞ to have the complete solution for the interior.
The global solution is completed once the exterior

parameter M is obtained from (41).

V. FIRST ORDER PROBLEM

The equations are found by differentiating once (21) and
(20) with respect to ε and evaluating at ε ¼ 0. From (21) we
do not obtain anything, while the field equations provide
the equations for ωþðrÞ and ω−ðrÞ on their respective
regions. The matching will be provided by Proposition 1 in
[5] (see also [8]).

A. Equations at the interior

On the interior region the equation for ωþðrÞ is given by
1

r3
ðr4jω0þÞ0 ¼ 2jL; ð49Þ

where here we use the convenient definition

L ≔ ϰreλþðLnn0μ0 þ Lpp0χ0Þ;
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with [11]

Ln ≔ ωþ − Ωn; Lp ≔ ωþ −Ωp:

Later we will use the equality

L ¼ ϰreλþLnðΨ0 − Λ0Þ þ ϰreλþðΩn −ΩpÞχ0p0;

¼ Lnðν0þ þ λ0þÞ þ ϰreλþðΩn −ΩpÞχ0p0 ð50Þ

that follows from (33), (24), and (25).

B. Exterior solution

The equation for ω−ðrÞ is (49) with L ¼ 0. The solution
that vanishes at infinity is

ω−ðrÞ ¼
2J
r3

ð51Þ

for some constant J. Observe that we can always choose
this exterior solution, vanishing at infinity, fixing the first
order gauge on the exterior region [5,8].

C. First order matching

The first order matching is provided by Proposition B.1
in [8], see also Proposition 1 in [5]. Let us recall that
the result in [8] generalizes that in [5] in that Q�

1 and
the vectors T�

1 can depend on all the coordinates on the
boundary fτ; ϑ;φg, and the condition ν0ðRÞ ≠ 0 was
missing in the statement in Proposition 1 in [5]. Observe
first that the conditions ν0ðRÞ ≠ 0 and 2eλðRÞ − 2þ
Rν0ðRÞ ≠ 0 are satisfied because M ≠ 0. By fixing the
first order gauge on the interior region (using the gauge
vector V1 ¼ b1t∂ϕ, see Proposition 2.5. in [8]) we can also
choose b1 ¼ 0 in Proposition B.1 in [8]) so that the interior
and exterior problems are matched (in those fixed first order
gauges) by

½ω� ¼ 0; ½ω0� ¼ 0; ð52Þ

and the deformation quantities Q�
1 ðτ; ϑ;φÞ satisfy

½Q1� ¼ 0; Q1½λ0� ¼ 0; Q1½ν00� ¼ 0: ð53Þ

Using (45) and (47) the above three conditions turn into

½Q1� ¼ 0; Q1Λ0ðRÞ ¼ 0: ð54Þ

Consequently, given assumption A.3, we also have

Q1p0ðRÞ ¼ 0; Q1n0ðRÞ ¼ 0: ð55Þ

It is convenient, for later use, to use these matching
conditions together with Eq. (49) on each region to obtain

½ω00� ¼ 2

R
LðRÞ þ 1

2
ðλ0þðRÞ þ ν0þðRÞÞω0ðRÞ

¼ ϰeλðRÞ
�
−Λ0ðRÞ

�
2ðωðRÞ − ΩnÞ þ

1

2
Rω0ðRÞ

�

þ 2ðΩn −ΩpÞχ0ðRÞp0ðRÞ
�
: ð56Þ

The above properties of Q1 thus imply

Q1½ω00� ¼ 0:

D. Solving the first order global problem

To be consistent with [11] we follow initially the
procedure used there to calculate the first order global
problem for the functions ωþ and ω−. We already have the
exterior solution (51). As for the interior, instead of
computing ωþ, we use L̂nðrÞ ≔ ωþðrÞ=Ωp − Ωn=Ωp,
and use the quotient Δ ¼ Ωn=Ωp as the free parameter
of the problem together with Ω̃p.
Equation (49) is equivalent to

1

r4

�
r4jðrÞL̂0

nðrÞ
�0

− 2ϰeðλþðrÞ−νþðrÞÞ=2ðΨ0 − Λ0ÞL̂n

¼ 2ϰeðλþðrÞ−νþðrÞÞ=2ðΔ − 1Þχ0ðrÞp0ðrÞ ð57Þ

after making use of (50). This equation corresponds
to (44) in [11] before dividing by Ωp. Given (51), the
matching conditions (52) imply [compare with (62) and
(63) in [11]]

L̂nðRÞ ¼ −Δþ 1

Ωp

2J
R3

; L̂0
nðRÞ ¼ −

1

Ωp

6J
R4

⟹ L̂0
nðRÞ ¼ −

3

R
ðL̂nðRÞ þ ΔÞ: ð58Þ

The pole structure of (57) under the assumption that
Ψ0ð0Þ − Λ0ð0Þ does not vanish implies that the homo-
geneous part of (57) admits a unique bounded solution up
to a scaling factor (see e.g. Lemma D.2 in [8]). Therefore,
operationally, to integrate the interior problem we start with
a function GðrÞ that satisfies the homogeneous part of (57)
(the left-hand side) and assume Gð0Þ ¼ 1. Next, we take a
particular solution FðrÞ of the full equation (57) integrating
from the origin under the assumption Fð0Þ ¼ 0. It can be
shown that such particular solution, vanishing at the origin,
is unique. Then

L̂nðrÞ ¼ αGðrÞ þ FðrÞ;

with
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α ¼ −
3ðFðRÞ þ ΔÞ þ RF0ðRÞ

3GðRÞ þ RG0ðRÞ
solves (57) and satisfies (58). The global solution for ω is
thus given by

ωþðrÞ ¼ ΩpðαGðrÞ þ FðrÞ þ ΔÞ; ω−ðrÞ ¼
2J
r3

with

J ¼ −
1

6
R4ω0þðRÞ ¼ −

1

6
ΩpR4ðαG0ðRÞ þ F0ðRÞÞ:

ð59Þ

Using Eq. (49) one can rewrite the value of J as an
integral of L, and thus recover the integral expression for J
found in Eq. (59) in [11].
As explained in Sec. III B 1, we use the “little hat”

notation f̂ ≔ f=Ωp for any first order quantity f, in
particular ω̂� ≔ ω�=Ωp.

1. Rotation and angular momentum

Let us recall that the rotation of the fluids are given
by (17), and Ω̃n and Ω̃p are taken to be the two parameters
of the model, that we take to be in the form of Δ and Ω̃p.
Also, the cross term in dtdϕ at first order in the family of
metrics gε is given by εωðrÞ with (59). As a result, the total
angular momentum JS of the solution (to first order), and
thus of the star configuration, is given by JS ¼ εJ ¼ Ω̃pĴ,
and therefore

JS ¼ −
1

6
Ω̃pR4ðαG0ðRÞ þ F0ðRÞÞ: ð60Þ

VI. SECOND ORDER PROBLEM

The problem at second order is tackled using an
expansion in Legendre polynomials Plðcos θÞ. We follow
[11] and take the usual form for the functions hðr; θÞ,
vðr; θÞ, and kðr; θÞ at both domains (the interior Mþ and
the exterior M−), given by

h�ðr; θÞ ¼ h�0 ðrÞ þ h�2 ðrÞP2ðcos θÞ;
v�ðr; θÞ ¼ v�0 ðrÞ þ v�2 ðrÞP2ðcos θÞ;
k�ðr; θÞ ¼ k�2 ðrÞP2ðcos θÞ; ð61Þ

where P2ðcos θÞ ¼ ð3 cos2 θ − 1Þ=2, and also

ηðr; θÞ ¼ η0ðrÞ þ η2ðrÞP2ðcos θÞ;
Φðr; θÞ ¼ Φ0ðrÞ þΦ2ðrÞP2ðcos θÞ

at the interior. The second order problem eventually
separates onto a problem involving only l ¼ 0 functions
and another for l ¼ 2 functions (see below). This form
of the functions entering the second order perturbation
tensor is assumed in [11] for the two-fluid problem
following the arguments used in the original Hartle-
Thorne model (for a perfect fluid). Let us stress here
that the fact that there exist gauges at the interior and
exterior regions such that the perturbation tensors to
second order for any stationary and axisymmetric per-
turbation for a perfect fluid have this form has been
shown only recently, and with no need of equatorial
symmetry, in the two works [8,17]. Here we just follow
[11] and take this form of the second order perturbation
functions by assumption.
In order to have more compact expressions, and to ease

the comparison with the expressions found in [5], we
introduce some convenient auxiliary definitions related
with the second order pressure that shall be used to
substitute the set fηlðrÞ;ΦlðrÞg. Since A is invertible,
for each l ¼ 0, 2 we define the set of (four) functions
fPlnðrÞ;PlpðrÞg such that

�
n0ηl
p0Φl

�
¼ A−1

�
Pln

Plp

�

− ð1 − lÞ r
2

3
e−νðΩn −ΩpÞ2A−1

�
p0Dn

n0Dp

�

ð62Þ

holds, with

Dn ≔ A0 þ 2n20
∂A0

∂n20
þ n0p0

∂A0

∂x20
;

Dp ≔ A0 þ 2p2
0

∂A0

∂p2
0

þ n0p0

∂A0

∂x20
: ð63Þ

It is also convenient to define a quantity that depends on r
and is constructed from the background and first order
solutions, plus the parameters Ωn and Ωp, and can be
therefore already computed. That is

fω ≔
1

6
e−ðλþνÞr4ω02

þ ϰ
r4

3eν
ðL2

nn20B0 þ L2
pp2

0C0 þ 2LnLpn0p0A0Þ;

¼ 1

6
e−ðλþνÞr4ω02 þ ϰ

r4

3eν
fðΨ0 − Λ0ÞL2

n

− χ0p0ðL2
n − L2

pÞ − n0p0A0ðΩn − ΩpÞ2g:

Furthermore, let us finally introduce the convenient aux-
iliary quantities
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Pl ≔ n0Pln þ p0Plp;

ϒ0 ≔ η0n20B0 þΦ0p2
0C0 þ ðη0 þΦ0Þx20A0;

¼ −
2

ν0þ

��
P0n −

r2

3
e−νðΩn − ΩpÞ2Dnp0

�
n00

þ
�
P0p −

r2

3
e−νðΩn −ΩpÞ2Dpn0

�
p0
0

�
; ð64Þ

A. Equations at the interior

The equations are found by differentiating twice (20) and
(21) with respect to ε and evaluating at ε ¼ 0. We do not
specify the þ superindex in this subsection. The Euler
equations (21) with (22), using (26)–(27), provide

P0n − μ0

�
r2

3
e−νL2

n − h0 þ γn

�
¼ 0;

P0p − χ0

�
r2

3
e−νL2

p − h0 þ γp

�
¼ 0; ð65Þ

P2n þ μ0

�
r2

3
e−νL2

n þ h2

�
¼ 0;

P2p þ χ0

�
r2

3
e−νL2

p þ h2

�
¼ 0: ð66Þ

From the field equations (20) we obtain

ðre−λv0Þ0 ¼
ϰ

2
r2
�
ϒ0 þ

r2

3
e−νn0p0A0ðΩn −ΩpÞ2

�

þ fω −
1

12
r4e−ðλþνÞω02; ð67Þ

h00 −
�
ν0 þ 1

r

�
v0

¼ ϰ

2
reλP0 −

r3

12eν
ð2ϰeλn0p0A0ðΩn −ΩpÞ2 þ ω02Þ; ð68Þ

and

v2 ¼ fω − h2; ð69Þ

ðk2 þ h2Þ0 ¼ −ν0h2 þ fω

�
1

r
þ ν0

2

�
; ð70Þ

h02 ¼ −
�
ν0 þ 1

rν0

�
2

r
ðeλ − 1Þ − λ0 − ν0

��
h2

− 4
h2 þ k2
r2ν0

eλ −
r2e−ν

3ν0
ω02 þ 1

2r2

�
2

ν0
eλ þ r2ν0

�
fω:

ð71Þ

The comparison with the equations in [11] is given by the
following. Equations {(65), (66), (67), (68), (69)} corre-
spond to {(42), (43), (47), (49), (45) in [11]} one by one,
respectively, while the set {(69), (70), (71)} is equivalent to
{(45), (46), (50) in [11]}. The remaining equation (48) in [11]
can be shown to be a consequence of the rest.

B. Exterior solution

The functions in the exterior region fhl; vl; k2g satisfy
Eqs. (67)–(71) with vanishing n0, p0 (and thus vanishing
ϒ0 and P0) and ω ¼ ω− given by (51). The solutions are
given for r ∈ ðR;∞Þ by [5,11]

h−0 ðrÞ ¼ −v−0 ðrÞ ¼ −
δM

r − 2M
þ J2

r3ðr − 2MÞ ; ð72Þ

and

h−2 ðrÞ ¼ −C
�
3

2

r2

M2

�
1 −

2M
r

�
log

�
1 −

2M
r

�

þ ðr −MÞð3 − 6M=r − 2ðM=rÞ2Þ
Mð1 − 2M=rÞ

�

þ J2

Mr3

�
1þM

r

�
; ð73Þ

k−2 ðrÞ ¼ C

�
3

2

r2

M2

�
1 −

2M2

r2

�
log

�
1 −

2M
r

�

þ 3ðr −MÞ − 8ðM=rÞ2ðr −M=2Þ
Mð1 − 2M=rÞ

�

−
J2

Mr3

�
1þ 2M

r

�
; ð74Þ

v−2 ðrÞ ¼ −h−2 ðrÞ þ
2J2

Mr3

�
1 −

2M
r

�
; ð75Þ

where δM and C are constants. Let us note that, as in the
first order case, the gauge at the exterior is fixed so that the
solution vanishes at infinity (see [8]).

C. Second order matching

For the matching of the second order problem we
use Proposition B.7 in [8] (see also Proposition 2 in [5],
bearing in mind that Proposition B.7 allows a priori for an
arbitrary deformation of the surface, while in [5] the
deformation is assumed to be axially symmetric). Let us
stress that this is a geometrical result, that is, independent of
the field equations. We apply Proposition B.7 in [8] for
R ¼ r,W ¼ 0, and n ¼ −eλðRÞ=2∂r, noting that the present
class of gauges correspond to k�0 ðrÞ ¼ f�ðr; θÞ ¼ 0 as they
appear in [8] and that m in [8] is v here. First, given that h,
m, k satisfy (61) we get c0 ¼ c1 ¼ H1 ¼ 0. Then, after
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using the background matching (40) and (53) [so that
Q1½ω00� ¼ 0 and the relations involving ðQ1Þ2 after (5.68) in
[8] hold], we obtain the following set of relations:

½Ξ� ¼ 0; ð76Þ

½k� ¼ 0; ½h� ¼ 1

2
H0;

½v� − R½k0� ¼ e−λðRÞ

4
feλðRÞ=2Ξ½λ0� − ðQ1Þ2½λ00�g; ð77Þ

½h0� − R
2
ν0ðRÞ½k0� ¼ e−λðRÞ

4
feλðRÞ=2Ξ½ν00� − ðQ1Þ2½ν000�g:

ð78Þ

So far we have not used the field equations, neither at the
background level nor at first and second order. This result
is, so far, purely geometric. As explained in [5,8] (see
Proposition 2.5 in [8]), a change of gauge driven by the
vector Vþ

2 ¼ H0t∂t in the interior region only affects hþ0

and allows us to setH0 ¼ 0 in the matching without loss of
generality (but keeping in mind this change has been
already used). This corresponds with a trivial shift of the
function h at the interior, and this is, in turn, a consequence
of the usual freedom in the shift of the Newtonian potential
(and ν in the background configuration). This choice leaves
us with no freedom left in the spacetime gauges.
If we introduce the background field equations through

the relations (45)–(48) and write down explicitly the above
relations in terms of the functions introduced in the
decompositions (61) plus

ðQ1Þ2ðt; θ;ϕÞ ¼
X2
l¼0

Qlðt;ϕÞPlðcos θÞ þQ⊥ðt; θ;ϕÞ;

Ξðt; θ;ϕÞ ¼
X2
l¼0

Ξlðt;ϕÞPlðcos θÞ þ Ξ⊥ðt; θ;ϕÞ;

then the relations (77)–(78) are equivalent to

½h0� ¼ 0; ½v0� ¼ −
1

4
ReλðRÞ=2Ξ0ϰΛ0ðRÞ þ

1

4
RQ0ϰ½Λ0

0�; ð79Þ

½h00� ¼ −
1

4
eλðRÞ=2Ξ0

�
1þ Rν0ðRÞ

2

�
ϰΛ0ðRÞ þ

1

4
Q0

�
1þ Rν0ðRÞ

2

�
ϰ½Λ0

0�; ð80Þ

½k2� ¼ 0; ½h2� ¼ 0;

½v2� − R½k02� ¼ −
1

4
ReλðRÞ=2Ξ2ϰΛ0ðRÞ þ

1

4
RQ2ϰ½Λ0

0�; ð81Þ

½h02� −
R
2
ν0ðRÞ½k02� ¼ −

1

4
eλðRÞ=2Ξ2

�
1þ Rν0ðRÞ

2

�
ϰΛ0ðRÞ þ

1

4
Ξ2

�
1þ Rν0ðRÞ

2

�
ϰ½Λ0

0�; ð82Þ

and

Ξ1 ¼ Ξ⊥ ¼ Q1 ¼ Q⊥ ¼ 0: ð83Þ

For the above we have used repeatedly the identity ½ab� ¼
aþ½b� þ b−½a� to find that e.g. Q1½λ02� ¼ 0. Observe that
because of (54), if Λ0ðRÞ ≠ 0 then Q1 ¼ 0, in all the above
relations either Q1 or Ξ appear, never both.
We next compute the differences (the interior and

exterior quantities on r ¼ R) of the second order field
equations [the set (67)–(71)] to find relations between
the jumps of functions implied by the field equations
that will have to be used in combination with the set
of matching conditions above. Note that the Eulerian
equations (65)–(66) only provide information on r ¼ R
at the interior related to Pln and Plp, which do not appear
in the matching conditions above. Likewise, the difference
of (67) involves ½v00� and thus does not provide any

information that enters the matching conditions above.
We only have to focus on (68)–(71).
It is convenient to compute first ½fω�, which using the

identity ½ab� ¼ aþ½b� þ b−½a� yields

½fω� ¼ ϰ
R4

3
eλðRÞf−χ0ðRÞp0ðRÞðL2

n − L2
pÞðRÞ

− Λ0ðRÞL2
nðRÞ − n0ðRÞp0ðRÞA0ðRÞðΩn −ΩpÞ2g:

ð84Þ

The difference of Eq. (68) reads

½h00� −
�
ν0ðRÞ þ 1

R

�
½v0� ¼

ϰ

2
ReλðRÞP0ðRÞ

−
R3

6
e2λðRÞϰn0ðRÞp0ðRÞA0ðRÞðΩn −ΩpÞ2; ð85Þ
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while the differences of (69)–(71) read, respectively,

½v2� ¼ ½fω� − ½h2�; ð86Þ

½h02� þ ½k02� ¼ −ν0ðRÞ½h2� þ ½fω�
�
1

R
þ ν0ðRÞ

2

�
; ð87Þ

and

½h02� ¼ −
�
ν0ðRÞ þ 1

Rν0ðRÞ
�
2

R
ðeλðRÞ − 1Þ − λ0−ðRÞ − ν0ðRÞ

��
½h2� − hþ2 ðRÞ

1

ν0ðRÞ e
λðRÞϰΛ0ðRÞ

− 4
1

Rν0ðRÞ e
λðRÞð½h2� þ ½k2�Þ þ

1

2R2

�
2

ν0ðRÞ e
λðRÞ þ R2ν0ðRÞ

�
½fω�; ð88Þ

where we have used the background field equations and the
difference of products in the last equation.
Now we combine the (geometrical) matching conditions

with the jumps of the functions that provide the field
equations and find the necessary and sufficient set of
conditions for the matching to exist plus a relation to
obtain the deformation. We start with the l ¼ 0 sector. A
simple calculation shows that the set of four equations in
{(79)–(80), (85)} is equivalent to the set formed by (85)
(which is implied by the equations) plus the two conditions

½h0� ¼ 0; ð89Þ

½v0� ¼ ϰ
R

ν0ðRÞ e
λðRÞ

×

�
1

3
R2eλðRÞn0ðRÞp0ðRÞA0ðRÞðΩn − ΩpÞ2 − P0ðRÞ

�
;

ð90Þ
and the relation

Ξ0Λ0ðRÞ − e−λðRÞ=2Q0Λ0
0ðRÞ ¼

4

ν0ðRÞ e
λðRÞ=2

×

�
P0ðRÞ −

1

3
R2eλðRÞn0ðRÞp0ðRÞA0ðRÞðΩn −ΩpÞ2

�
ð91Þ

for the deformation (for l ¼ 0).
As for the l ¼ 2 sector, the set of (seven) equations in

{(81), (82), (86), (87), (88)} are not all independent and,
after some algebra, they can be found to be equivalent to the
set formed by the set of relations {(86), (87), (88)}, which

we recall are implied by the field equations, plus the two
conditions

½k2� ¼ 0; ½h2� ¼ 0; ð92Þ
and the relation

Ξ2Λ0ðRÞ − e−λðRÞ=2Q2Λ0
0ðRÞ

¼ 4

ν0ðRÞ e
λðRÞ=2

�
Λ0ðRÞh2ðRÞ −

1

ϰR2
½fω�

�
: ð93Þ

To sum up, the necessary and sufficient conditions for
the matching of the interior and exterior problems at second
order are (89) and (90) together with (92). Moreover, the
deformation quantities are given by (91) and (93). It is
crucial that (90) exhibits a jump which has been overlooked
in all the previous literature on two-fluid models, and is, of
course, directly related to the correction to the Hartle-
Thorne model presented in [5] (see also [8]). That jump has
consequences on the calculation of δM, and the expression
given in [11] needs to be corrected. We will provide that
expression later, when we compute the global solution of
the second order global problem.

D. Solving the second order global problem

We separate the second order problem into the l ¼ 0 and
l ¼ 2 sectors.

1. l = 0

In order to integrate the system in the interior region we
work with the set of functions fvþ0 ;P0n;P0pg, as follows.
We differentiate the two equations in (65) and (66) and
substitute h00 from (68) to obtain (we drop the þ indicators)

P0
0n ¼ −

ν0

2
P0n þ μ0

�
−
ϰ

2
reλðn0P0n þ p0P0pÞ þ

ϰ

6
r3eλ−νn0p0A0ðΩn −ΩpÞ2

−
�
ν0 þ 1

r

�
v0 þ

1

3
ðr2e−νL2

nÞ0 þ
1

12
r3e−νω02

�
; ð94Þ
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P0
0p ¼ −

ν0

2
P0p þ χ0

�
−
ϰ

2
reλðn0P0n þ p0P0pÞ þ

ϰ

6
r3eλ−νn0p0A0ðΩn − ΩpÞ2

−
�
ν0 þ 1

r

�
v0 þ

1

3
ðr2e−νL2

pÞ0 þ
1

12
r3e−νω02

�
: ð95Þ

The system to integrate is thus given by Eqs. (67), (94),
and (95). The conditions we impose at the origin are
P0nð0Þ ¼ 0 and P0pð0Þ ¼ 0, which correspond to the
conditions η0ð0Þ ¼ Φ0ð0Þ ¼ 0 in [11] [cf. Eq. (62)].
Operationally we set Ωp ¼ 1 and Ωn ¼ Δ in the equations.
The solutions thus provide, in fact, the set fv̂þ0 ; P̂0n; P̂0pg ≔
fvþ0 =Ω2

p;P0n=Ω2
p;P0p=Ω2

pg in terms of Δ. The equations,
given the known behavior of λ and ν near the origin as shown
in Sec. IV D, present a structure of the poles at the origin that
imply that the only solution to the homogenous problem
is the trivial one. This means that if there is a bounded solu-
tion, that is the unique solution fv̂þ0 ðrÞ; P̂0nðrÞ; P̂0pðrÞg.
Moreover, v̂þ0 is Oðr4Þ and P̂0n and P̂0p are Oðr2Þ. This is
analogous to the perfect fluid case (see [8]).
It is important to note that the combination χ0 ×

ð95Þ-μ0 × ð96Þ can be readily integrated to get

χ0P̂0n − μ0P̂0p ¼ μ0χ0
r2

3eν
ð2ω̂þð1 − ΔÞ þ Δ2 − 1Þ; ð96Þ

after using that P̂0n and P̂0p vanish at the origin.
Introducing both equations from (65) in this relation it is
straightforward to obtain

γn ¼ γp:

We will use these relations later.
Once the solution fv̂þ0 ðrÞ; P̂0nðrÞ; P̂0pðrÞg is found, we

use the matching conditions (89)–(90) (conveniently di-
vided by Ω2

p) to obtain the value of δM, which is the only
constant on the exterior solution (72) for l ¼ 0 that needs
to be determined. We thus obtain

δM̂ ≔
1

Ω2
p
δM ¼ 1

Ω2
p

�
J2

R3
þ ðR − 2MÞðvþ0 ðRÞ − ½v0�Þ

�
;

¼ Ĵ2

R3
þ ðR − 2MÞv̂þ0 ðRÞ − ϰ

RðR − 2MÞ
ν0ðRÞ eλðRÞ

�
1

3
R2eλðRÞn0ðRÞp0ðRÞA0ðRÞðΔ − 1Þ2 − P̂0ðRÞ

�
: ð97Þ

Observe that expression (60) in [11] needs to be
corrected with the term containing the factor within curly
brackets.
With the value of δM̂ we have thus determined ĥ−0 ðrÞ≔

h−0 ðrÞ=Ω2
p and therefore also ĥþ0 ðRÞ ¼ ĥ−0 ðRÞ because of

½h0� ¼ 0. It only remains to evaluate either one in (65) on
r ¼ R using thevalues of the integrated functions P̂0pðRÞ [or
P̂0nðRÞ] to obtain the value of γ̂p ¼ γ̂n. The whole function
hþ0 ðrÞ is then obtained by isolating it from either relation
in (65).

2. The total mass

The computation of the total mass (using e.g. the approach
in [20]) of the family of geometries given by gε with (7) and
(15) at r → ∞, which depends on the background configu-
ration and the central values of n0 and p0, leads to

MTðn0; p0Þ ¼ Mðn0; p0Þ þ ε2δMðn0; p0Þ;
¼ Mðn0; p0Þ þ Ω̃2

pδM̂ðn0; p0Þ; ð98Þ

using ε ¼ Ω̃p=Ωp, with δM̂ given by (97).

3. l = 2

In the l ¼ 2 sector the problem is set for the pair of
functions fk̂2; ĥ2g, and the system to integrate in the
interior region is given by the set of equations {(70),
(71)} (settingΩp ¼ 1 andΩn ¼ Δ). This time, the structure
of the poles at r ¼ 0 implies that the bounded solutions to
the homogeneous problem are all proportional to some
homogeneous solution, that we shall denote by fk2H; h2Hg.
Therefore, the general solution of the interior problem is
given by

k̂2ðrÞ ¼ Ak2HðrÞ þ k2PðrÞ; ĥ2ðrÞ ¼ Ah2HðrÞ þ h2PðrÞ;

with A ∈ R, where k2PðrÞ þ h2PðrÞ and h2PðrÞ are par-
ticular solutions of {(70), (71)} (withΩp ¼ 1 andΩn ¼ Δ).
Recalling that the exterior solution is given by the expres-
sions (73) and (74), we have two constants to fix, namely A
and Ĉ ≔ C=Ω2

p. These two constants are determined by the
(only) two matching conditions (92) in the l ¼ 2 sector,
explicitly
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Ak2HðRÞ þ k2PðRÞ ¼ k̂−2 ðRÞ;
Ah2HðRÞ þ h2PðRÞ ¼ ĥ−2 ðRÞ;

with k−2 and h−2 given by (73) and (74). Once we have
determined the pair fk̂2ðrÞ; ĥ2ðrÞg, the perturbation metric
function v̂2ðrÞ is determined by the algebraic equation (69).

4. Quadrupole moment

Having obtained the value of the constant Ĉ in the
exterior solution, we can compute the quadrupole moment
of the star using the procedure in [20] (see also [21]; we
observe that this is −Q as defined in [11]) to obtain

QS ¼ ε2
�
8CM3

5
þ J2

M

�
¼ Ω̃2

p

�
8ĈM3

5
þ Ĵ2

M

�
:

VII. DEFORMATION

Once we have the whole perturbed solution (at second
order) in terms of the perturbation functions fv; h; kg, it
only remains to determine the deformation of the surface of
the star with respect to the spherical hypersurface at r ¼ R.
The obtaining of the deformation in the perturbation

scheme we have developed in the previous sections
amounts to the computation of the function Ξ (and Q1

at first order) by means of (83), (91), and (93) together with
(55). Therefore, the procedure only determines the defor-
mation, by means of Ξ0 and Ξ2, if Λ0ðRÞ ≠ 0. This is
analogous to what happens in the perfect fluid case with
barotropic equation of state, as shown in [5] (see also [8]).
If Λ0ðRÞ ≠ 0, then Q1 ¼ 0 by (55) and Ξ reads

ΞðθÞ ¼ Ξ0 þ Ξ2P2ðcos θÞ

with

Ξ0 ¼
4eλðRÞ=2

ν0ðRÞΛ0ðRÞ

×

�
P0ðRÞ −

1

3
R2eλðRÞn0ðRÞp0ðRÞA0ðRÞðΩn −ΩpÞ2

�
;

ð99Þ

Ξ2 ¼
4eλðRÞ=2

ν0ðRÞ
�
h2ðRÞ −

1

ϰR2Λ0ðRÞ
½fω�

�
; ð100Þ

which, we observe, are constants. Using Eqs. (66) and (84)
it is straightforward to obtain the equality

n0ðRÞP2nðRÞ þ p0ðRÞP2pðRÞ ¼ h2Λ0ðRÞ −
½fω�
ϰR2

−
1

3
R2eλðRÞn0ðRÞp0ðRÞA0ðRÞðΩn − ΩpÞ2

that allows us to conveniently reexpress the above pair of
equations in the compact form

Ξl ¼ 4eλðRÞ=2

ν0ðRÞΛ0ðRÞ
�
PlðRÞ

−
1 − l
3

R2eλðRÞn0ðRÞp0ðRÞA0ðRÞðΩn − ΩpÞ2
�
:

ð101Þ
Let us stress that in the perfect fluid case with barotropic

equation of state the factor EðRÞ (the energy density at the
boundary) appears multiplying both left and right hand
sides of the equations analogous to (91) and (93) and thus
disappears from the denominators in the expressions for the
deformation. In the present case the fact that we need
Λ0ðRÞ ≠ 0 is made explicit in the expressions. Despite that,
as argued in [5], the perturbative procedure eventually
determines the deformation if it is continued further to
higher orders, providing the same result. Moreover, it is
shown that the result of that procedure is equivalent to use
the argument presented in [1], based on the Newtonian
approach in [22] (see [6]), in which the perturbative
configuration is assumed to be the second order expansion
of a given exact configuration. Observe that following a
strict perturbative procedure one cannot ensure the sum of
all the orders, and therefore the existence of the full
configuration.
The argument to obtain the deformation using the full

configuration follows the exact result, see Sec. II D, by
which the surface of the star is determined by Ψðr; θÞ ¼ 0,
a curve on the plane fr; θg. Observe that in the perfect
fluid case (no equation of state needed) that corresponds
to Pðr; θÞ ¼ 0 (where P is the pressure). The computation
in [1], however, is made in terms of the surface levels of the
energy density function E. Nevertheless, since it is assumed
a barotropic equation of state of the form EðPÞ, those
surface levels correspond also to the surface levels of the
pressure function P and the result is therefore the same.
In the present case, however, the computation in [11]

[see Eqs. (33)–(39) there] is made using the function Λ,
while the correct computation requires using the function
Ψ. Following the argument in [11] but replacing Λ with Ψ,
the deformation to second order ξðR; θÞ is defined by the
second order term of the total deformation (we add the
parameter ε here)

r̃εðr; θÞ ¼ rþ ε2ξðr; θÞ þOðε3Þ;

determined by Ψεðr̃εðr; θÞ; θÞ ¼ Ψ0ðrÞ and thus given by

Ψεðr; θÞ ¼ Ψ0ðrÞ − Ψ0
0ðrÞε2ξðr; θÞ þOðε3Þ ð102Þ

[mind, for all r ∈ ð0; RÞ]. On the other hand, the expansion
of Ψεðr; θÞ ¼ Ψðnεðr; θÞ2; pεðr; θÞ2; xεðr; θÞ2Þ in ε is given
by [cf. Eq. (106) in [11]]
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Ψε ¼ Ψ0 þ ε2
�
ðn0B0

0 þ p0A0
0Þn0ηþ ðp0C00 þ n0A0

0Þp0Φ

þ 1

2
n0p0

�
A0 þ 2n20

∂A0

∂n20
þ 2p2

0

∂A0

∂p2
0

þ 2n0p0

∂A0

∂x20

�
r2sin2θe−νðΩn −ΩpÞ2

�
: ð103Þ

Introducing this into (102), using sin2 θ ¼ 2=3ðP0ðcos θÞ − P2ðcos θÞÞ, together with (35) and (63) we find

ξðr; θÞ ¼ ξ0ðrÞ þ ξ2ðrÞP2ðcos θÞ

with

ξl ¼ 2

ν0
1

Ψ0 − Λ0

�
ðn0B0

0 þ p0A0
0Þn0ηl þ ðp0C00 þ n0A0

0Þp0Φl þ ð1 − lÞn0p0ðDn þDp −A0Þ
r2

3eν
ðΩn − ΩpÞ2

�
;

¼ 2

ν0
1

Ψ0 − Λ0

�
ðn0p0ÞA

�
n0ηl
p0Φl

�
þ ð1 − lÞn0p0ðDn þDp −A0Þ

r2

3eν
ðΩn −ΩpÞ2

�
: ð104Þ

Using (62), in terms of Pln and Plp, this reads

ξlðrÞ ¼
2

ν0ðrÞ
1

Ψ0ðrÞ − Λ0ðrÞ
�
n0ðrÞPlnðrÞ þ p0ðrÞPlpðrÞ

− ð1 − lÞn0ðrÞp0ðrÞA0ðrÞ
r2

3eνðrÞ
ðΩn −ΩpÞ2

�
:

ð105Þ

Finally, evaluating ξlðrÞ on r ¼ R, using that Ψ0ðRÞ ¼ 0
and νðRÞ ¼ −λðRÞ, plus the auxiliary definition (64), we
directly obtain

ξlðRÞ ¼ −
2

ν0ðRÞΛ0ðRÞ
�
PlðRÞ

− ð1− lÞn0ðRÞp0ðRÞA0ðRÞ
R2

3
eλðRÞðΩn −ΩpÞ2

�
;

ð106Þ

and therefore, by comparing with (101),

ξlðRÞ ¼ −
1

2
e−λðRÞ=2Ξl:

The factors in this expression account for the 1=2 that ought
to be included in ξ for being a second order quantity (the
1
2
ε2 factor), while −e−λ=2 corresponds to the direction and

normalization of the normal to the (background) surface
n0 ¼ −e−λ=2∂r (see Sec. III C).

Let us stress that the expressions of ξlðRÞ contain also
Λ0ðRÞ in the denominators. The advantage of this pro-
cedure, assuming that the exact configuration exists, is that
(105) hold for all r ∈ ð0; RÞ, and therefore ξlðRÞ are to be
obtained as the limits of ξlðr → RÞ if they exist. It is
interesting to note that if A0 ¼ 0 then Δ does not affect the
deformation.
As mentioned, the procedure to obtain the deformation

presented in [11] is just the analog to the above but using Λ
instead of Ψ. Explicitly, the deformation is claimed in [11]
to be the function ξACðr; θÞ that solves the equation (we add
the perturbation parameter ε)

Λεðr; θÞ ¼ Λ0ðrÞ − Λ0
0ε

2ξACðr; θÞ þOðε3Þ: ð107Þ
This function ξAC here is denoted by ξ in [11]. Next we
show that the outcome is just different, and therefore ξAC

does not provide the deformation. From (107) and the
expansion of Λεðr; θÞ ¼ Λðnεðr; θÞ2; pεðr; θÞ2; xεðr; θÞ2Þ
in ε, which is given by [cf. Eq. (105) in [11]]

Λε ¼ Λ0 − ε2
�
μ0n0ηþ χ0p0Φ

þ 1

2eν
r2sin2θA0n0p0ðΩn − ΩpÞ2

�
; ð108Þ

and using (36) for Λ0
0 and (26)–(27), we obtain

ξACðr; θÞ ¼ ξAC0 ðrÞ þ ξAC2 ðrÞP2ðcos θÞ
with

ξACl ðrÞ ¼ 2

ν0ðrÞ
eνðrÞ=2 detAðrÞ

C00ðrÞμ2∞ − 2μ∞χ∞A0
0ðrÞ þ B0

0ðrÞχ2∞
×

�
μ∞ðrÞn0ðrÞηlðrÞ þ χ∞ðrÞp0ðrÞΦlðrÞ þ ð1 − lÞ r2

3eνðrÞ
A0ðrÞn0ðrÞp0ðrÞðΩn −ΩpÞ2

�
: ð109Þ
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In terms of Pln and Plp using (62), this reads (we avoid making the r dependence explicit now)

ξACl ¼ 2

ν0
eν=2

C00μ
2
∞ − 2μ∞χ∞A0

0 þ B0
0χ

2
∞

�
ðμ∞C00 − χ∞A0

0ÞPln þ ðχ∞B0
0 − μ∞A0

0ÞPlp

þ ð1 − lÞ r2

3eν
ðΩn − ΩpÞ2ðdetAA0n0p0 − p0Dnðμ∞C00 − χ∞A0

0Þ − n0Dpðχ∞B0
0 − μ∞A0

0ÞÞ
�
: ð110Þ

In the particular (numerical) case studied in [11], that we
will retake in the following Sec. IX, the function Λ is such
that A0 ¼ 0 (and therefore Dn ¼ Dp ¼ 0 by definition),
and it is assumed χ∞ ¼ μ∞. For any given model with those
two assumptions, Eq. (105) using (33), and the above
expressions simplify to

ξlðrÞ ¼
2

ν0ðrÞ
eνðrÞ=2

μ∞

PlðrÞ
n0ðrÞ þ p0ðrÞ

and

ξACl ðrÞ ¼ 2

ν0ðrÞ
eνðrÞ=2

μ∞

ðC00 −A0
0ÞPln þ ðB0

0 −A0
0ÞPlp

C00ðrÞ − 2A0
0ðrÞ þ B0

0ðrÞ
:

Therefore, in general ξlðrÞ ≠ ξACl ðrÞ even in that case. To
check the equality, or not, of the limits ξlðr → RÞ and
ξACl ðr → RÞ requires the integration of the whole system,
and we leave that to Sec. IX. However, if we also demand
Ωn ¼ Ωp then (66) and (96) with μ∞ ¼ χ∞ lead to

PlnðrÞ − PlpðrÞ ¼ 0;

so that Pl ¼ ðn0 þ p0ÞPln and therefore

ξl ¼ ξACl ¼ 2

ν0ðrÞ
eνðrÞ=2

μ∞
Pln:

Let us stress that if one imposes μ∞ ¼ ν∞ and Ωn ¼ Ωp

then ξl ¼ ξACl irrespective of the form of Λ.

VIII. KEPLER LIMIT

The mass-shedding (Kepler) limit Ω̃K is the maximum
angular velocity of a particle rotating at the equator of the
star as seen by an observer at infinity. Therefore, this sets
the limit on the angular momentum of the fluids forming
the star. For the present two-fluid model, the Kepler limit
will correspond to the limit of the fastest-spinning compo-
nent, i.e. Ω̃K ¼ maxðΩ̃n; Ω̃pÞ.
As stated in [11] the Kepler limit is given by

Ω̃K ¼ Nvffiffiffiffi
K

p þ Nϕ; ð111Þ

where

v ¼ K3=2Nϕ0

NK0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KN0

NK0 þ
�
K3=2Nϕ0

NK0

�
2

s
;

in terms of the functions in (7).
Using (15) this relation reads

Ω̃K ¼ eν=2

r

ffiffiffiffiffiffi
rν0

2

r
þ ε

�
ωþ rω0

2

�
þ ε2eν=2

ffiffiffiffiffi
ν0

2r

r

×

�
h − kþ h0

ν0
−
rk0

2
þ r3ðω0Þ2

4ν0eν

	
þOðε3Þ; ð112Þ

which, evaluated on the equator (θ ¼ π=2) of the perturbed
boundary of the star, r ¼ Rþ ε2ξðRÞ, yields

Ω̃K ¼
ffiffiffiffiffiffi
M
R3

r
− Ω̃p

Ĵ
R3

þ Ω̃2
p

ffiffiffiffiffiffi
M
R3

r �
δM̂
2M

þ ðRþ 3MÞð3R − 2MÞ
4R4M2

Ĵ2 −
3

4R
ð2ξ̂0ðRÞ − ξ̂2ðRÞÞ þ βĈ

�
þOðε3Þ ð113Þ

after using ε ¼ Ω̃p=Ωp, and where

β ¼ 3ðR3 − 2M3Þ
4M3

log

�
1 −

2M
R

�

þ 3R4 − 3R3M − 2R2M2 − 8RM3 þ 6M4

2RM2ðR − 2MÞ :

The expression (113) (see also [23]) differs slightly
from expression (77) in [11] in the square root factor at
second order, the sign in front of ξ2, and its denominator

with R2, which may simply be typos. Since the Kepler
limit will correspond to the fastest rotating fluid, for
Δ > 1 we have Ω̃K ¼ Ω̃n ¼ ΔΩ̃p, whereas for Δ < 1

we have Ω̃K ¼ Ω̃p. In any case, we solve the quadratic
equation for Ω̃p and take the smallest result among the two
solutions.

IX. NUMERICAL RESULTS

We turn now to solve numerically the differential
equations of the formalism we present here in order to
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see the differences arising from the corrections discussed in
this article. The results obtained following the amended
description will be compared with those in [11]. We will
focus on the comparison of three results: the contribution to
second order to the mass, δM, and thus the computation of
the total mass, the deformation of the star ξ0 and ξ2, and the
Kepler limit Ω̃K.

A. Andersson-Comer model

In the first place, we solve the background configuration,
using the master function provided in [11]

Λ0ðn20; p2
0Þ ¼ −mnn0 − σnn

βn
0 −mnp0 − σpp

βp
0 ; ð114Þ

where mn is the mass of the neutron. As in [11] we use the
following numerical values

σn ¼ 0.2mn; βn ¼ 2.3; σp ¼ 2mn; βp ¼ 1.95:

ð115Þ

This master function does not account for entrainment
between the two fluids, which translates intoA0 ¼ A0

0 ¼ 0.
If we impose chemical equilibrium μ∞ ¼ χ∞ (see the

arguments provided in [11]) the following relationship
between n0 and p0 holds

p0 ¼
�
βnσn
βpσp

nβn−10

�
1=ðβp−1Þ

: ð116Þ

For this master function we use units such that
mn ¼ c ¼ G ¼ 1, and the number densities of protons
and neutrons are given in fm−3. We refer to these units as
“code units” (CU). The value of Λ0 in the International
System of Units (SI) is obtained through the relation

ΛSI
0 ¼ ΛCU

0 × c2 ×mn × fm−3: ð117Þ
It must be noted that this distorts the base units, namely the
radial distance r, the time t and the mass m. To recover the
SI units, we need to rescale each variable:

rSI ¼ rCU × c

ffiffiffiffiffiffiffiffiffiffi
fm3

Gmn

s
; ð118Þ

tSI ¼ tCU ×

ffiffiffiffiffiffiffiffiffiffi
fm3

Gmn

s
; ð119Þ

FIG. 1. Normalized radial profiles of relevant quantities of the background configuration for the AC model (in code units): number
density of neutrons n0ðrÞ (top left), number density of protons, p0ðrÞ (top right), energy density, −Λ0ðrÞ (bottom left), and generalized
pressure, Ψ0ðrÞ (bottom right). All four functions vanish at the boundary of the star.
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mSI ¼ mCU × c3

ffiffiffiffiffiffiffiffiffiffiffiffi
fm3

G3mn

s
: ð120Þ

Proceeding with the calculation of the background prob-
lem, we take n0ð0Þ ¼ 0.93 fm−3 and solve Eqs. (24), (25),
and (31), following the procedure of Sec. IV D.As explained
above, to determine the surface of the star we integrate the
equations from the center until the pressure reaches its first
zero,Ψ0ðRÞ ¼ 0. ThevalueR of r for which the pressure first
vanishes sets the radius for the background configuration. In
accordance with [11], the background mass and radius are
given by M ¼ 1.41M⊙ and R ¼ 10.08 km, respectively.
As mentioned before, in the original HT formalism the

functions describing the metric are assumed to be continu-
ous in the interior of the star, in its exterior, and in the
hypersurface separating both regions. However, in the
correction of the HT formalism carried out in [5], it was
shown that v0ðrÞ presents a discontinuity at the boundary
proportional to the energy density at the surface of the star
[see Eq. (77)]. This affects the calculation of δM and thus
the total mass of the star. For the present two-fluid model,
as we can see from Eq. (97), when the number densities of
neutrons and protons vanish at the surface of the star,
n0ðRÞ ¼ p0ðRÞ ¼ 0, which implies PlðRÞ ¼ 0 by defini-
tion, the correction has no numerical effect. As shown in
Fig. 1 for the AC numerical model, the number density of
protons and neutrons tend to zero at the surface. As a result,
in this particular model we should obtain the same value for
the contribution to the mass at second order as in [11].
However, we have encountered a discrepancy in the values.
Explicitly, since MT ¼ M þ δMAC in [11], and here
MT ¼ M þ ε2δM [see (98)] the comparison is given by
the quantities

δMAC ¼ 0.091ðνp=1 kHzÞ2M⊙;

ε2δM ¼ Ω̃2
pδM̂ ¼ 0.084ðνp=1 kHzÞ2M⊙;

where we have used that νp as defined in [11] corresponds
to Ω̃p=ð2πÞ here. We conjecture this discrepancy might
be of numerical origin. A direct comparison with the code
by [11] might shed light on this issue.
On the other hand, in [11] a very interesting way of

calculating the deformation of the star was proposed, that
consisted on tracking the surfaces of constant energy
density [Eq. (110)]. However, as explained in Sec. VII
this analysis has to be carried out using the surfaces of
constant pressure [Eq. (105)]. Concerning the deformation
of the star, we compare in Fig. 2 the functions ξ0 and ξ2
obtained using our formalism (blue curves) with those
from the AC formalism [11] (red curves). As explained in
Sec. VII, for a model without entrainment,Ωn ¼ Ωp, and in
chemical equilibrium, we have ξl ¼ ξACl . However, if we
set Δ ≠ 1, then we should expect different results, as Fig. 2
shows for Δ ¼ 0.5. The difference between the two results

at the surface of the star is plotted in Fig. 3 for different
values of Δ. Note that due to the steepness of ξACl ðrÞ [and
also ξlðrÞ] near r ¼ R, the exact value of ξlðRÞ − ξACl ðRÞ
will be very sensitive to the precision of the numerical
calculations.
The dependence of ξlðRÞ − ξACl ðRÞ with the perturba-

tion parameter ε is straightforward, as it scales with ε2.
However, the dependence with Δ is not so clear from the
equations, so we illustrate it in Fig. 3.
Concerning the computation of the limiting frequency of

the star (the Kepler or mass-shedding limit, Ω̃K) we have
found a different expression from the one proposed in [11]
[their Eq. (77)]. Moreover, this expression also depends on
the deformations of the star ξ0 and ξ2, so the correction of
the deformation also implies a different result for Ω̃K, even
using the equation reported in [11]. The Kepler limits for
both neutrons and protons are displayed in Fig. 4 as a
function of the relative rotation rate Δ.
As we can see from Eq. (113), the mass-shedding limit

depends on the frame dragging (FD), i.e. the distortion of
the spacetime manifold as a consequence of the rotation of

FIG. 2. Normalized radial profiles of the deformations ξlðrÞ
from Eq. (105) (blue) and the functions ξACl ðrÞ from Eq. (110)
(red), for Δ ¼ 0.5. The top panel corresponds to l ¼ 0 and the
bottom one to l ¼ 2.
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the star. If we do not consider frame dragging, the Kepler
limit frequency will be given by

Ω̃no FD
K ¼

ffiffiffiffiffiffi
M
R3

r
: ð121Þ

As stated in Eq. (19) of [11], the slow-rotation approxi-
mation translates into the following inequalities (with
G ¼ 1):

Ω̃2
n or Ω̃2

p or Ω̃nΩ̃p ≪
M
R3

: ð122Þ

We end this section by mentioning the discrepancy also
found with the AC star model for the radial profiles of the
rotationally induced change in the proton number density
p0Φl, depicted in Fig. 5 (compare with the profiles shown
in Fig. 10 of [11]).

B. Our toy model

In order to see the difference of the contribution to the
mass at second order ε2δM between the AC formalism and
the one reported in this work we propose an EOS which
does exhibit a jump in the energy density at the boundary of
the star. To do so we consider the following master function

Λ0ðn20; p2
0; x

2
0Þ ¼ −ðan0 þ bp0 þ cx20Þmn; ð123Þ

where a, b, and c are constants with dimensions dimðaÞ ¼
dimðbÞ ¼ 1 and dimðcÞ ¼ L3. This EOS does not attempt
to describe any physical system and should be simply
regarded as a toy model. Our only purpose in using it is
to show the numerical impact of the correction of δM
discussed in this article. Taking mn ¼ 1 leads to

A0 ¼ c; B0 ¼
a
n0

; C0 ¼
b
p0

; ð124Þ

A0
0 ¼ c; B0

0 ¼ 0; C00 ¼ 0: ð125Þ

Equations (28) and (29) translate into

n00 ¼ −
1

2c
ðbþ c n0Þν0; ð126Þ

p0
0 ¼ −

1

2c
ðaþ cp0Þν0; ð127Þ

and the generalized pressure (3) reads

Ψ0 ¼ cx20: ð128Þ

We impose chemical equilibrium (μ0 ¼ χ0) to set the value
of p0:

FIG. 3. ðξlðRÞ − ξACl ðRÞÞ=R for different values of Δ, running
from Δ ¼ 0 to Δ ¼ 2.

FIG. 4. The mass-shedding limits of the neutron and proton
fluids (in blue and red) as a function of the relative rotation
rate Δ. The Kepler limit corresponds to the largest value
Ω̃k ¼ maxðΩ̃n; Ω̃pÞ. The green line corresponds to the Kepler
limit with no frame dragging, Ω̃no FD

k .

FIG. 5. Radial profiles of the rotationally induced change in the
proton number density, p0ΦlðrÞ, for the AC star model and for
Δ ¼ 1, in code units. The profiles differ from those in Fig. 10
in [11].
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p0 ¼
b − a
c

þ n0: ð129Þ

Both −Λ0 and Ψ0 must remain positive along the star,
so we take the set fa; b; cg ¼ f2; 1; 1g which satisfies the
requirements. For the initial value n0ð0Þ ¼ 1.5 fm−3 we
calculate the profiles of the number densities and pressure
of the background configuration. Those are displayed
in Fig. 6.
Even though our toy model EOS does not attempt to

describe a physical star, we have checked that it is causally
consistent with general relativity, i.e. that the speed of
sound is lower than the speed of light at every point of the
star. We compute the speed of sound as

v2s ¼
∂Ψ0

∂ð−Λ0Þ
¼ ∂Ψ0=∂r

∂ð−Λ0Þ=∂r
: ð130Þ

Figure 7 shows that indeed our EOS preserves causality.
Solving the first and second order (l ¼ 0) system for

corotating fluids (Δ ¼ 1), we obtain that the contribution to
the mass at second order is

ε2δM ¼ 0.0078ðνp=1 kHzÞ2M⊙; ð131Þ

where νp ¼ Ω̃p=ð2πÞ, while the formula in [11] for δM,
that is, without the correction, leads to

ε2δMuncorrected ¼ 0.0033ðνp=1 kHzÞ2M⊙: ð132Þ
Again, the impact of this correction affects the total mass
linearly with ε2, and thus ν2p, but it also depends on the
rotation rate between the two fluids.

FIG. 6. Normalized radial profiles of relevant quantities of the background configuration for the toy model EOS (in code units):
number density of neutrons n0ðrÞ (top left), number density of protons, p0ðrÞ (top right), energy density, −Λ0ðrÞ (bottom left), and
generalized pressure, Ψ0ðrÞ (bottom right). For this model n0ðRÞ ≠ 0 and Λ0ðRÞ ≠ 0.

FIG. 7. Radial profile of the sound speed for our toy model
EOS (blue) and the speed of light (red) in code units. Our EOS
preserves causality at all radial points.
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To illustrate the relevance of this correction we numeri-
cally build stellar configurations based on our toy model
EOS, computing the total mass of the stars as a function of
their average radius, RA ¼ Rþ ε2ξ0ðRÞ. We perform this
procedure for two different rotations. Our first choice is to
consider stars rotating at the Kepler limit without taking
into account frame dragging effects [see Eq. (121)], that is
(see Sec. VIII),

ε ¼
ffiffiffiffiffiffi
M
R3

r
1

Ωp
×

�
1 Δ ≤ 1

1
Δ ; Δ > 1

: ð133Þ

The top panel of Fig. 8 shows the mass of the configu-
rations against the average radius for this case. As expected,
the correction in the mass affects in a significant way the
total mass the configurations can attain.
In our second choice, we set the rotation of the star so

that the ratio between the polar and equatorial radii, RP=RE,
is kept constant, that is,

ε2 ¼ ðRP=RE − 1ÞR
ξP − RP=REξ

E ; ð134Þ

where RP=E ¼ Rþ ε2ξP=E with ξP ¼ ξ0ðRÞ þ ξ2ðRÞ and
ξE ¼ ξ0ðRÞ − ξ2ðRÞ=2. Mass vs radius diagrams for this
second type of configurations are plotted in the bottom
panel of Fig. 8. As for the previous case, the differences
between the original HT formulation and our revised
formalism are quite visible.

X. CONCLUSIONS

Hartle and Thorne’s model [1,2] provides a perturbative
framework to describe the equilibrium configuration of a
slowly rotating isolated compact body in general relativity.
In [5–7] it was found that this formalism had to be amended
in order to correctly describe stars with nonvanishing
energy density at the surface. The amended version of
the formalism yields significant corrections to the total
mass of a slowly rotating relativistic star described by a
single-fluid barotropic EOS, which also affects the tidal
problem in binary systems (i.e. the I-Love-Q relations) [7].
In this paper we have discussed slowly rotating, general

relativistic, superfluid neutron stars assuming that the
composition of the stars is described by a simple two-fluid
model which accounts for superfluid neutrons and all other
constituents. Therefore, our work, which has closely
followed a previous investigation by Andersson and
Comer [11], constitutes an extension of the earlier study
in the single-fluid case that amended the HT model.
The backbone of this article has been to put forward the
analytical corrections of the HT model applied to the
two-fluid problem in general, building on the results
from [5,8,17]. Our specific goal has been to address if
the amendment of the computation of the mass of the star
found in the HT formalism for the single-fluid case in the
presence of discontinuous fields [5–7] also holds in the
two-fluid model. We have found that is indeed the case.
Moreover, we have corrected the determination of the
deformation of the star, which in [11] is obtained using
the surfaces of constant energy density following the
arguments in [1]. The perturbative analysis we have
presented provides the deformation, and we have shown
how that coincides with the outcome obtained by replacing
the surfaces of constant energy density with the surfaces of
constant “pressure.” Let us stress that both procedures
coincide in the single-fluid model (with barotropic EOS),
but not in the two-fluid model.
In order to illustrate the impact of the corrections to the

formalism we have built numerical stellar models, compar-
ing the calculation of the total mass of the star, the
deformation of the star, and the Kepler limit of rotation.
We have first compared our results with those in [11] by
solving the set of equations for the EOS proposed in the
original article along with the same stellar model. Next, we
have used a toy-model EOS for which the energy density

FIG. 8. Total massMT as a function of the average radius of the
star RA for Δ ¼ 1. The top panel corresponds to stars rotating at
the Kepler limit without considering frame dragging effects. For
the models in the bottom panel the ratio of the polar-to-equatorial
radius is set to 0.8. Blue curves take into account the correction of
δM in the formalism while red curves do not. To prepare these
plots we run the initial value of n0 from n0ð0Þ ¼ 1.1 fm−3
to n0ð0Þ ¼ 150 fm−3.
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does not vanish at the boundary of the star to demonstrate
that the corrections of the HT formalism we present in this
paper do impact the structure of slowly rotating superfluid
neutron stars.
While the toy model used in this investigation should not

be regarded by any means as a realistic description of the
composition of actual superfluid neutron stars, it has served
the purpose of illustrating the effect of the corrections in the
formalism. There are physical situations where large non-
zero densities can be attained at the stellar surface, the main
example being pure quark EOS (as described by e.g. the
simple MIT bag model [24]). Quark matter is self-bound
such that low density homogeneous quark matter is
unstable with respect to the formation of a dense cluster.
Homogeneous nuclear matter shows such an instability,
too, depending on the proton fraction. Physically this
means that at low densities nuclear clusters and a crust
form. To improve the “realism” of the results reported in
this work, a possible extension would require to obtain the
master function of [12,13] for the case of superconducting
quark matter, where a two-fluid situation would arise by
assuming pairing only between two flavors (up and down
quarks) and have a nonpaired third flavor (strange quarks).
The master function might be applied in the same way in
this case as for the neutron-proton two-fluid model used
here, in particular as some models for quark matter
resemble technically models applied to the latter case
[e.g. Nambu-Jona-Lasinio (NJL) models [25] are very
similar to relativistic density functional models for nuclear
matter]. Another situation where discontinuities might also
affect the computation of stellar equilibrium models within
the HT formalism is in the case of superfluid magnetars in

which the matter in the core cannot be described with a
single fluid approach (since the neutrons are superfluid). In
this situation the density of the charged components of the
matter EOS (i.e. protons, electrons, and muons) exhibits a
jump at the crust-core interface (see e.g. Fig. 1 in [26]).
Finally, we note that the modifications reported in this

work for the total mass of slowly rotating superfluid
neutron stars are also present for the tidal problem of a
binary system, affecting the I-Love-Q relations of super-
fluid neutron stars [27]. We plan to study the tidal problem
in a future investigation and the results will be reported
elsewhere.
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