PHYSICAL REVIEW D 107, 044034 (2023)

Revised formalism for slowly rotating superfluid neutron stars

in general relativity
Eneko Aranguren ,1’* José A. Font ,2’” Nicolas Sanchis-Gual ,2’i and Raiil Vera®'*

1Department of Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain
Departamento de Astronomia y Astrofisica, Universitat de Valencia,
Dr. Moliner 50, 46100, Burjassot (Valencia), Spain
Observatori Astronomic, Universitat de Valencia, Catedrdtico José Beltrdn 2, 46980, Paterna, Spain

® (Received 7 December 2022; accepted 24 January 2023; published 16 February 2023)

We discuss slowly rotating, general relativistic, superfluid neutron stars in the Hartle-Thorne
formulation. The composition of the stars is described by a simple two-fluid model which accounts
for superfluid neutrons and all other constituents. We apply a perturbed matching framework to derive a
new formalism for slowly rotating superfluid neutron stars, valid up to second order perturbation theory,
building on the original formulation reported by Andersson and Comer in 2001. The present study
constitutes an extension of previous work in the single-fluid case where it was shown that the Hartle-Thorne
formalism needs to be amended since it does not provide the correct results when the energy density does
not vanish at the surface of the star. We discuss in detail the corrections that need to be applied to the
original two-fluid formalism in order to account for nonvanishing energy densities at the boundary. In the
process, we also find a correction needed in the computation of the deformation of the stellar surface in
the original two-fluid model in all cases (irrespective of the value of the energy density at the surface). The
discrepancies found between the two formalisms are illustrated by building numerical stellar models,
focusing on the comparison in the calculation of the stellar mass, the deformation of the star, and in the
Kepler limit of rotation. In particular, using a toy-model equation of state for which the energy density does
not vanish at the boundary of the star we demonstrate that the corrections to the formalism we find impact

the structure of slowly rotating superfluid neutron stars in a significant way.
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I. INTRODUCTION

In their seminal work in the 1960s, Hartle and Thorne (HT
hereafter) formulated the general relativistic treatment of
isolated slowly rotating compact stars in equilibrium [1,2]
composed of a perfect fluid interior rotating rigidly. This
analytical model provides a perturbative framework to
describe the equilibrium configuration of an isolated com-
pact body up to second order in perturbations in general
relativity, around a static, spherically symmetric configura-
tion. The slow-rotation approximation entails expanding the
metric fields and the matter fields to O(Q?), where Q is the
angular velocity of the star. The resulting formalism accu-
rately describes equilibrium models of typical pulsars but it is
inappropriate for relativistic stars when rotation approaches
the mass-shedding limit [3,4].

Recent studies have shown that the mass of a slowly
rotating relativistic star described by a barotropic equation
of state (EOS) computed using the HT formalism needs to
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be amended if the energy density does not vanish at the
surface of the star, since that produces discontinuities of the
second order perturbation fields there, i.e. at the matching
surface between the interior and exterior solutions for
the Euler-Einstein system [5—8]. Only for EOS for which
the energy density vanishes at the boundary of the star, the
expression provided by [1] to compute the mass of the star
yields the correct value. However, there may be situations
for which the energy density can exhibit a discontinuity at
the stellar surface, notably in the case of EOS describing
strange stars (see e.g. [9]). In particular [7] computed
equilibrium configurations of the rotating strange stars
configurations studied in [9] finding significantly higher
values for the total mass when accounting for the correction
to the computation of the mass in the HT formalism. More
precisely, the maximum mass found is ~11% larger than
that attained in the original HT model. In addition, the
perturbed-matching approach of [5] was also applied in [7]
to the tidal problem in binary systems. It was found that it
fully accounts for the correction to the Love numbers
needed to obtain truly universal I-Love-Q relations, i.e.
valid for both neutron stars and strange stars, yielding in a
natural way the ad hoc corrections used in [10].

© 2023 American Physical Society
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The equilibrium stellar models built using the HT
formalism (including those in [7]) typically assume that
relativistic star matter can be described by a single fluid,
an oversimplified but widely used premise. However, the
composition of a neutron star is far from being made of one
single fluid but rather it includes different constituents. The
interior of the star has a ~1-2 km deep solid crust in the
outer layers with ions, electrons, nucleii, and a superfluid
neutron gas in the inner crust and a ~10 km core containing
superfluid neutrons, superconducting protons, and elec-
trons. Close to the center of the star the composition is
almost unknown and proposals involve the possible exist-
ence of exotic particles like hyperons, kaon/pion conden-
sates due to phase transitions, or deconfined quarks. A
formalism to build slowly rotating models of superfluid
neutron stars in general relativity was presented by
Andersson and Comer in [11] (AC hereafter) within the
framework of the HT model. This formalism describes
the neutron star matter as a two-fluid model where one of
the fluids is the superfluid neutron and the other fluid is a
mixture of all other constituents, including protons. As we
show here, the amendment of the computation of the mass
of the star found in the HT formalism for the single-fluid
case is also necessary for the two-fluid model. This has
implications in the formalism to build equilibrium con-
figurations of slowly rotating superfluid neutron stars [11]
or the computation of observables like quasinormal modes
of oscillation [12]. The aim of this work is to present the
correction in the HT formalism for the two-fluid model.

In this paper we apply the perturbed matching frame-
work of [5,8] to derive a new formalism for slowly rotating
superfluid neutron stars, valid up to second order pertur-
bation theory, building on the original two-fluid formu-
lation put forward by AC [11]. Incidentally, we also find
that the computation of the deformation of the star in [11]
by following surfaces of constant energy density needs to
be replaced by surfaces of constant “pressure.” Note that in
the single-fluid (perfect) case with barotropic EOS, those
two approaches lead to the same result (as is done in [1]),
but for the two-fluid model that is not the case. We discuss
the corrections that need to be applied in order to account
for the possibility of discontinuous matter fields at the
matching surface and the determination of the deformation.
We first apply our approach to the specific star model
considered by [11], highlighting the discrepancies found
between the two approaches. Next, using a toy-model
EOS for which the energy density does not vanish at the
boundary of the star we show that the amendments of the
AC formalism we present in this work must be taken into
account as they impact the structure and equilibrium of
stationary models of superfluid neutron stars, namely
their total mass and radius. This has also consequences
for the deformation of the star as well as for the tidal
problem, as it was shown for the single-fluid model
previously discussed by [7].

This article is organized as follows: In Secs. II and IIT we
discuss the two-fluid model, following the formulation
described in [12], and our perturbative scheme for the two-
fluid case, respectively. These first two sections serve as an
introduction to the formalism and lay the foundation for the
notation that will be used later. The following sections
focus on developing the model to obtain the equations in
the background configuration (Sec. IV), both at first order
(Sec. V) and at second order (Sec. VI). Each of these
sections deals with the inner problem, the outer problem,
the link between both regions, and the computational
procedures carried out to solve both problems. Next, in
Sec. VII we study the deformation of the star comparing
our results with those from [11] and in Sec. VIII we discuss
the Kepler or mass-shedding limit of rotation. Numerical
results are reported in Sec. IX by employing, first, the same
two-fluid EOS as that used by [11] and, second, a toy-
model EOS for which the matter fields are discontinuous at
the stellar surface. Finally, our conclusions are presented
in Sec. X.

I1. SUPERFLUID NEUTRON STARS

We start by briefly introducing the formalism of the
two-fluid model for superfluid neutron stars as presented
by [12,13]. We leave the proper physical motivation and
the description of the model to those references and [11],
and we here focus only on the operational procedures
involved.

The central quantity to model general relativistic super-
fluid neutron stars is the so-called master function

A= A(n?, p*.x?), (1)
which depends on n?>= —n,n® p?>=—-p,p% and
x? = —p,n®, where n® and p“ are given by

n*=nu®,  p®=p” (2)

and u” and v* are the unit timelike vectors describing
the flow of protons and neutrons, respectively, and n (p) is
the neutron (proton) number density. As stated in [12], the
master function encodes the local thermodynamic state
of the fluid and serves as a Lagrangian for deriving the
superfluid field equations. When taking the limit to a
perfect fluid, A corresponds to minus the total energy
density of the fluid.

A. Auxiliary definitions
and energy-momentum tensor

From these quantities [12] define the following set of
convenient auxiliary objects. First, using the short-hand
notation for the first derivatives of A with respect to its three
arguments
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the following one-forms are defined

Mo =DBng+ Apy.  Ya=Cpy+ Ang,

which are dynamically and thermodynamically conjugate
to n* and p%, respectively [12]. After defining the gener-
alized pressure as

Wi=A— naﬂa - pa)(w (3)
the energy-momentum tensor of the fluid is then given by

T = Yo5 + p°xp + npg. (4)

B. Equations of the fluid

The equations of motion are given by the number density
conservation equations

V.n* =0, V.p* =0, (5)

and by the Euler equations

n*(Vopg = Vgug) =0, P*(Vaxp = Vpra) =0. (6

Equations (5) and (6) imply VT ;5 = 0.

C. Stationary and axisymmetric configurations,
circularity condition, and rigid rotation

We next assume that the spacetime and the fluid are
stationary and axisymmetric, and that the flows satisfy the
circularity condition, i.e. they rotate around the axis (there
are no convective motions), and rotate rigidly. In conse-
quence, following the conventions and notation in [11], we
take a coordinate system {z,r,0, ¢} adapted to the sym-
metries, so that 9, is a timelike Killing vector field and 9 is
an axial Killing vector field (with regular axis), the pair
{6, ¢} coordinates the sphere, and the metric has the form

JSTAX = —(N2 - sinQHK(fo’)z)d[2 + Vdr
— 2sin?0KN?drdgp + K(d0? + sin®0d¢?),  (7)
where all functions depend only on r and 6, and the vectors

u and v (we use index-free notation when convenient)
satisfy

1 ~
u= (at +Qna¢)’

\/N2 —sin 0K (N? — Q,)?
1 -
V= — (at =+ Qpazﬁ)’ (8)
\/N2 — sin OK(N? — Q)2

for some constants Q,, and Q »» Which represent the angular
velocities of neutrons and protons, respectively.

Equation (5) are automatically satisfied, and Eq. (6) are
equivalent to [11]
He = _g(at + Qnaquﬂ)v Xe = _g(at + Qpa(/)’)()’ (9)
for some constants y. and y.. Note we use g(-,-) for the
scalar product in the index-free notation.

The functions (of r and @) involved in the two-fluid
problem are thus given by the list {N,N?, K, V} plus the
four constants {fz,,, Q. e ye )

D. Global configuration: Vacuum exterior
and surface of the star

The global configuration for an isolated finite star is built
by the matching of two spacetimes with boundary, one to
describe the interior region (M, g*) with boundary X,
that solve the two-fluid model just described, and a vacuum
exterior region (M™, g~) with boundary X~. The matching
procedure ensures the point-to-point identification of the
two boundaries to form the so-called matching hypersur-
face X =X" = X~. The interior and exterior problems
consist of the corresponding equations, with “regularity”
conditions at the origin and at infinity, plus some relations
of the boundary data on X* provided by the matching
conditions (so that there are no energy surface layers at the
boundary). The matching conditions determine also the
form of X, and thus provide the surface of the star. In this
section we obtain the equation that determines the surface
of the star in the two-fluid model. In the following we use
the + and — indexes to refer to interior and exterior
quantities, respectively.

Given that the exterior region is vacuum, the matching
conditions imply

Ein(ng)aﬁ"i’L =0, (10)

where n% is normal to the hypersurface X, and we use
Ein(g) to denote the Einstein tensor computed from g. The
vector n%, defined in principle only on ¥, is an unknown
of the problem.

The assumption that the whole configuration is sta-
tionary and axisymmetric, that is, that both the interior
and exterior regions are stationary and axisymmetric and
that the boundaries £ and X~ preserve those symmetries
(see [14]), implies that nY must be orthogonal to the
Killings 9, and 9. This implies, in particular, that n? is

044034-3



ARANGUREN, FONT, SANCHIS-GUAL, and VERA

PHYS. REV. D 107, 044034 (2023)

spacelike. It is then chosen to point from M™ inwards, and
normalized to one. Analogously, we will have another
normal n® defined on X~ to point M~ outwards, to be
identified to ng at each point of 2.

For the two-fluid model above, for which in particular
Eq. (8) holds, we have necessarily that the vectors u* and v*
(on XT) are orthogonal to n¢, and hence also are n®, p%, u%,
and y* by construction. Therefore, given (4), condition (10)
is written equivalently as

(Pn% + po’)(ﬁn/jr + ﬂaﬂﬂﬁﬁ)|z+ =W¥n4|g: =0,

and thus
¥lg: =0. (11)

In terms of the chart {z,r,0,¢} introduced above, this
equation can be written as

¥(r,0) =0,

which is the equation that defines X" in an implicit manner
in terms of r and 6.

Condition (11) is a necessary condition for the matching,
but it is not sufficient. Nevertheless, as shown in [15]
(see also [16]) that condition will be the only one involving
only the interior side. The rest of the matching conditions
provide the matching hypersurface from the other side X~
and relations between the boundary data for the interior and
exterior problems.

III. PERTURBATION SCHEME
TO SECOND ORDER

In this section we introduce the ingredients and procedures
we will follow in subsequent sections to set and solve
the stationary and axisymmetric perturbative model of the
two-fluid star around static and spherically symmetric back-
ground configuration. We follow the stationary and axisym-
metric perturbative scheme to second order around a static
and spherically symmetric background (M, g) as described
in [5] (see also [8]) based in an abstract perturbation
parameter €. We refer to [17] for the set of definitions
involved in a perturbation scheme, which basically consists
of a family of spacetimes (M,, §,) with (M, §o) = (M, g)
together with a class of point identification (gauges). On the
other hand, we will try to stick close to the notation in [11] for
the names of the functions relative to the background, first
and second order perturbations.

A. The geometry

We are thus given a static and spherically symmetric
background spacetime (M, g) with

g = —e'"de? + Adr? + 2 (d6? + sin? 0dg?),  (12)

and first and second order perturbation tensors on (M, g)
K, = =2r?w(r)sin*0dtd¢, (13)

K, = (=4¢""h(r, ) + 2r*w*(r)sin?@)ds
+ 44 p(r, 0)dr? 4 4r2k(r, 0)(d6* + sin0dg?).
(14)

The family of tensors relative to the perturbation scheme to
second order in terms of a (so far abstract) parameter ¢,
ge =g+ €K, + %Kz + O(€?), corresponds to the form (7)
with the correspondences

N = e*2(1 4 €2h(r,0)),
V = A (1 +26%0(r, 0)),

K = r’(1 4 2&%k(r,0)), N? = ew(r,0). (15)

B. The two-fluid interior

The two-fluid interior is assumed to be based on some
function A with three arguments. The form of A is given by
the background configuration, and it is assumed that such
form is kept in the perturbative scheme (see [17]). This is
analogous to the single-fluid case (the HT model) in which
the same barotropic EOS is imposed at all the perturbative
levels, in particular at the background. Explicitly, one
demands that A,(n2, p2,x?) = A(n2, p2,x%), where n,,
Pe» and x, will correspond to the fluid functions for each
value of e.

Following [11] we use the expansions

ne(r.0) = no(r)(1 + &n(r.0)).

Pe(r.0) = po(r)(1 + £@(r.0)), (16)
and the notation A, :=A(n? p?x2), so that Ay =
A(n}, pg, x3). More expllcltly we will also use Ay(r) :=
A(n(r), pj(r), x3(r)) and equivalently for Wy (r).

The perturbation of the velocity vector of the fluids is
assumed to be driven by the rotations
Q,=eQ, Q,=Q, (17)

for some constants Q, and €, so that the rotation enters
at first order of ¢ (and not at second order, see [8]).
Introducing the correspondences (15) into (8) we have
Ug = U() + EU(y) + %szu@) + 0(83) and Ve =V(0) +£’l)(])+
36205+ O(&*) with

e_y(r>/20t’ u(l) ( )/ Q a¢’
Uy = (=2e2h(r,0) + =32 25in’0(w(r)
1)<0) — e_’/(r>/2at’ 1](1) —eV v(r >/2Qpa¢’

vy = (=2e2h(r,0) + e/ 2sin’0(w(r) — Q) 0,

- Qn))an

044034-4



REVISED FORMALISM FOR SLOWLY-ROTATING SUPERFLUID ...

PHYS. REV. D 107, 044034 (2023)

Now, from n¢ = n.u? and p% = p,v% we have
2

€
n? = no{u‘(’O) +eufy) + > (“?2) + 211u‘(”0))} + 0(&%),

2

&
pe = PO{”?O) +evly +5 (0 + M’”?m)} +0(e),

from where, using the definition x2 = — pg/,n’g’, we obtain

1300 = m(po(){ 1+ 3800(0) + 2100)

+ e 25in20(Q,, — Qp)z)} +0(Y).  (18)

Then, in particular,

x5(r) = no(r)po(r). (19)

The Einstein field equations must hold now for each
member of the family of the perturbation scheme para-
metrized with ¢, that is

Ei”(ge>a/3 = xT.%, (20)

where x = 87G/c* and with the obvious extensions of the
previously defined quantities to the e family given by

T = Wo0f + Pitep + Nikep,
lPE = Ae — n/s]//lgp - p(c"))(e‘p’

Hea = Benea =+ -Aepsav Xea = Cepsa + Aensa’
M) AR ph)
T a2 T ok
£ £
o oM )
‘ op;

The explicit dependence on r and @ of these quantities is
obtained once we introduce the expressions of the corre-
sponding functions n, and p, from (16) and x, from (18). In
the following we will use the notation Oy := O,|,_,, for any
object O. Observe that Ay, B, and C, are functions that
depend only on r.

As mentioned above, the only remaining equations we
have to impose are the Eulerian equations for the fluid (9).
These equations applied to each member of the family of
the perturbation scheme just read

Hee = _ge(at + 8Qna¢a /"e)’
XNee = _gs(at + SQP()¢,)(£). (21)

The expansions on ¢ of the left-hand sides are taken to be of
the form

Hee = Hoo(1 + €27,) + O(&%),
Xee = X1+ E7,) + O(£%), (22)

which define the four constants pio (= fe0)s Xoo (= Xc0)s Vs
and y,.

1. The perturbation parameter €

The introduction of the perturbation parameter ¢ by
means of (17) has been performed, as mentioned earlier, to
incorporate the rotation at first (and only at first) order. The
fact that this can be done in the perfect fluid case has been
argued many times in the literature (see e.g. [1]), and has
been finally shown in full in [8]. In doing so we have passed
from two parameters in the “full exact” case, Q,, and Q » o
three, namely ¢, Q,, and Q,. The scalability property of
perturbative schemes introduces the freedom of redefining
the perturbation parameter, and that freedom has translated
here into the introduction of the spurious information
provided by one extra parameter. The perturbation scheme
does not depend on that choice (let us refer to [8] for a full
account on the subject in the perfect fluid case).

From a computational point of view the procedure
consists on choosing freely the value of one paramenter
amongst Q,, €Q,, and ¢, solve the problems, and then
simply use the scalability property to fix the model to the
data we want. A particular choice can consist on setting
e = 1. Instead, following [11] in essence, we will use the
parameter

A=2" (23)

which equals, by construction, A = Q, /Q ,, and eventually

fixe = Q,, sothat Q, = 1 and the perturbation depends on
two parameters, A(= Q,) and ¢ = flp. With this choice &
contains the numerical value of the (rigid) rotation of the
fluid of protons.

This choice of parametrization will be imposed only
when needed, when we eventually describe the computa-
tional process. The reason is for convenience, since we
prefer to leave all the construction in terms of €2, and €,
and keep all expressions symmetric with respect to the two
fluids. Motivated by the notation used in some parts of [11],
we will use a “little hat” notation to indicate that some
quantity /" has been calculated by setting Q, = A, Q, =1
in the corresponding equations to obtain f This means that,
for any quantity f, at first order we have fl = f1/Q, by
definition, while for any quantity f, at second order,
f2 = f2/Q3. Observe that ef, = Q,f, and €2f, = Q2 f,
because € = Q,/Q,,.

Finally, let us note that given (17), the parameters Q » and
Q, here correspond to Q, and Q, used in [11].
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C. The global perturbation scheme

The background configuration follows the construction
as described in Sec. II D, and it is thus divided into the
interior part (M™, g*) with boundary X+ and the exterior
part (M~, g~) with boundary X~, with g* of the form (12)
and identified boundaries as X = X" = X~. Although we
ought to be using {7, ,r,,0,,¢,} and {t_,r_,0_,¢_} for
the charts at the exterior and interior domains, respectively,
we are going to use a common name {7, r, 0, ¢} to simplify
the notation whenever that does not lead to confusion.

For a global static and spherically symmetric back-
ground configuration, the matching in the background
configuration is performed assuming that the spherical
symmetry and staticity of the exterior and interior regions is
preserved by the matching [14]. As a result, the boundaries
¥+ are defined in each case by r, =R, and r_ = R_,
respectively, for some pair of positive reals R, and R_, and
we take r, € (0,R,) for the interior and r_ € (R_, )
for the exterior. The normal vectors are then given by
ng = —e*(R:)/295 " that are to be identified by the
matching procedure. We will then use the usual notation
[f]+=fil, -k, — f-|,_—r_» where f and f_ are functions
defined on M™ and M~, respectively.

From the perturbation scheme one constructs the set of
interior and exterior problems for the families of metrics g
and g; . In the interior the equations at first and second order
correspond to the first and second derivatives of (20) for g,
with respect of ¢ evaluated at € = 0, respectively. The
equations on the exterior are obtained equivalently, but now
using (20) for g; with the right-hand side set to zero. At
first order the functions involved will be those appearing in
K, and at second order, those in K, plus those in K;
feeding the “inhomogeneous” part of the equations. If we
call f* and f~ the set of functions involved at some order
on each region, the procedure thus provides equations on
(M*,g") and (M~,g7) for f* and f~.

The matching procedure using the perturbation scheme
provides, first, relations between the boundary data of the
functions f on X and £~ by means of their differences, or
jumps, [f1], and possibly [f’]. The equations that determine
these jumps will depend, in general, on the two classes of
(spacetime) gauges used to construct the interior and
exterior problems (one gauge at the interior and another
at the exterior), and also on the class of gauges involved in
the construction of the family of matching hypersurfaces
¥, =X} = X7 as subsets in the corresponding M* (see [5]
for an expanded description), which we refer to as the
hypersurface gauge [18,19].

Second, the matching procedure provides the deforma-
tion of the matching hypersurface, that is encoded in the
family of hypersurfaces X (one family at each side). That
deformation is described at each point on the respective
¥t = ¥F by a vector Z{ at first order and Z5 at second
order. At the interior, Z{ corresponds to the velocity vector
at points on X" of the curves that follow the points on the

family X identified by the hypersurface gauge followed by
the spacetime gauge at the + side, and Z; corresponds to
the acceleration of that curve on 2. The same goes for the
exterior region with —. Each of the four vectors Zf/z can be
decomposed as tangent Tli/2 and normal parts to the corres-
ponding * as Z{ = T{ + O nj and Z5 = T5 + O3 ng,
where QF and Q5 are two pairs of functions defined on
their respective *. The deformation of X described by X,
as a set of points corresponds then, at each side, to the
normal part of Zj,,, that is Qf at first order, and Q5 at

second order. The deformations refer to the (spacetime)
gauges used at each side. To sum up, the perturbed
matching conditions to second order will provide relations
between

(i) the jumps of the functions, and possibly derivatives,

of the background configuration,

(ii) the jumps [f], and possibly [f'], of the functions f

involved in K; and K>,
(iii) the differences of the tangent vectors 75 and T3,
(iv) two pairs of functions Qf and Q5 (at each corre-
sponding side) that describe the deformation of the
surface of the star (as seen from each side and with
respect to the gauge used).
Let us stress that these relations follow from a pure
geometrical setting. The perturbed matching between the
two sides & will exist if there exist functions Q7 and Q5 and
vectors T and T3 such that all the perturbed matching
conditions are satisfied. On the other hand, in principle, those
conditions may not provide a closed system for all the jumps
and QF and Q7, that is, that some freedom can be left (and
some not even fixed by a choice of gauge, see [19]).

Nevertheless, when the field equations are imposed,
possibly complemented with some other matter-field con-
ditions at the boundary (as for instance no layer of electrical
charge), more conditions on the jumps of the relevant
functions may appear. One expects that the system of
equations for the jumps and the functions Q7 and Q5 in
terms of background quantities closes, and that the solution
exists.

Finally, let us remark that the quantities involved in this
perturbative scheme are, in general, gauge dependent. Part
of the analysis of the problem consists of the control over
all those dependencies. In particular, Q5 are both spacetime
and hypersurface-gauge dependent. However, in the case of
stationary and axisymmetric perturbations around static
and spherically symmetric backgrounds, the deformation of
the hypersurface (at second order) appears in the matching
equations in terms of alternative functions Z* constructed
from QF, as shown in [5,8], that are hypersurface-gauge
invariant if Q; = 0 and also invariant under the class of
gauges at second order that maintain the form of the second
order perturbation tensor used in the more general analysis
there. In the present case, that is, for the class of gauges in
which K, and K, have the form (13) and (14), we have
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E* = 05 +«(T5, TY).

A hypersurface gauge (see [5,8]) can always be chosen so
that either 7' or T vanishes (but not both). Choosing, e.g.
T7 =0 we are left with = = Q5.

Next we deal with the building of the background
configuration, and follow with the first and the second
order problems. In each case we present the equations of
the interior region, the solution of the vacuum exterior,
and the equations that provide the matching of the two
problems, that will be taken from the geometrical analysis
in [8] (see also [5]).1 Each section will end with an account
on the explicit procedure used to solve the corresponding
global interior-exterior problem.

IV. THE BACKGROUND CONFIGURATION

A. Interior problem

Once the function A is set the list of quantities that
describe the background configuration of the interior of the
star is given by {1, (r), v, (r), no(r), po(r)} plus the pair of
constants {j, ¥« } - The equations are found from (20) and
(21), evaluated at € = 0. From Eq. (20) we obtain

|- e
¢ — xret A, (24)

A=+

, 1 — et f
Vy=—— + xret+ ¥y, (25)

while Eq. (21) yields [12]
no(r) + Ao(r)po(r)
Koo+ 12 = Ag(r)ng(r) + Co(r) po(r)

where we take advantage of the expressmns to introduce
two auxiliary functions y, and y. Ttis important to stress
that if u, vanishes at some point then it vanishes every-
where, and the same for y. The radial derivatives of the two
equations in (26)—(27) provide, respectively,

fooe ™ 12 = By(r) =tpo(r), (26)

=x0(r), (27)

1
ASply + BYnjy + 5 (Bong + Agpo)Vy =0, (28)

1
Copo + Adng + 5 (Aong + Copo)t/, =0, (29)

with®

"The perturbed matching (and thus the quantities QT and Q5
and the vector fields Tli and Tzi) is assumed in [5] to be axially
symmetric. The general analysis is made in [8], where it is shown
that axial symmetry of the perturbed matching is a necessary
consequence of the whole setting.

2Then for the one-form x,, we have /40adx = po(r)e Un/2dy,

*0ur Ag, etc. correspond to A9 olo» etc. in [11].

oA oA,
2 %% P2+ 20 10 b
a2t apo ot g3 Moo

aBO -

0A, dA,
on (2) 0+4a 2n0p0+a—x(2)p%,

aC 0A 0A
CY:=Co+2—3p3 +4—— — 02
0=0Co+ 00 + 62n0p0+0x%n0

0B,
.Ao —|—2—n0p0 +2—

BY=By+2—

Observe that with our notation the following chain of
identities (and the analogous) holds

0By 0B(n}. p§.x3) oB(nZ, p?.x})
opy  opg 0P e

For convenience, let us define the auxiliary functions (for
each region + and —) j(r) and M(r) by

C MW,

J(r) = e—(/l(r)+1/(r))/2
r

The function M(r) corresponds to the (Misner-Sharp)
mass, and (24) can be reexpressed as [11]

M(r) = 4x /) " $2(=A(s))ds.

We end this subsection with some remarks. First, the
invertibility of the system (28)—(29) must be kept under
control. For that we can reexpress (28)—(29) as

with

-(% 3
S\ )

Therefore A will have to satisfy the condition that 2 is
invertible in all the range r € (0, R, ), so that the system
(28)—(29) is equivalent to

I’lO /_ 1 ,
Po a 2y+

It must be kept in mind, however, that we had (26)—(27),

which reads
<”°>(r) _ s )/z< )
X0 X oo

sl

and therefore (31) can be also written as

(3 8)

2[—123(”0). (31)

Po
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/ 1 -
(no) = ——v;ﬂ_le_”+/2(ﬂ ) (32)
Po 2 Yoo

The importance of this form of the equations for ny(r) and
po(r) is that it provides nj, and py, at all points where 2 is
invertible, even at points where n, and p, vanish, where B
necessarily diverges.

Also, we have by construction the equalities, cf. (26)—(27),

Wo(r) = No(r) = no(r)uo(r) + po(r)xo(r),
= e_y+<r)/2(ﬂoon0(r) +)(oop0(r))’ (33)

and also

i2 (7)) ev+(r)
Wolr) - Ao(r) = — LRy

X r

by (24) and (25) in terms of the metric functions.
A straightforward calculation using the chain rule with
(31) and (33) allows us to write

Wy(r) = 3/ (W) - Aolr).  (35)

and (we avoid the r dependence and the + “interior”
subindex)

1 1
1 1
= El/e_ym (Cgﬂgo - 2ﬂoo)(ooA8 + Bg)(%o) (36)

after using (32) in the last equality.
Differentiating Eq. (25), and using (35) together with
(24)—(25), we get an equation for v only in terms of 4

4
2r/ + V() =2) =22+ /) +— (e = 1) =0,
r
(37)

which is the same equation that in the perfect fluid case
arises because of the isotropy of the pressure.

The fact that the metric g is smooth at the origin implies
that A(r) and v(r) are smooth up to the boundary and admit
the expansions (see a full proof, e.g. in [8])

Mr) =2+ r* + O(r*), v(r) = vy + 1 + O(r*).
Introducing this in the field equations (24) and (25) we
obtain

A0)=1y=0, J= —%}{AO(O),
vy = %%(‘PO(O) —%AO(O)) (38)

Observe that v, remains free, and that accounts to the
freedom of shifting the “Newtonian” potential. Asking that
the potential is zero at infinity in the global problem will fix
that value, see below. It is also worth noticing that, a priori,
the functions ng(r) and py(r) need not follow the same
pattern as the metric functions around the origin (expansion
in even powers of r). However, taking

no(0) + ng v + ngar* + O(r%),
po(0) + po1r+ poar* + O(r),

no(r)

po(r)

the Eulerian equations (31) evaluated on r =0, since
V/(0) =0, imply that ny; = py; = 0 in particular.

Let us now stress the fact that the existence of the
solution to the perturbative scheme for perfect fluids
requires that the sum of the central energy density and
pressure does not vanish at the origin [8]. Although the full
problem has not been dealt with rigour, later we will find
that in the two-fluid model we will need to ask, equiv-
alently, that W,(0) — Ag(0) # 0. As a result, cf. (33), we
shall demand that

A.1 u, and y. cannot both be zero.

The assumption ¥, (0) — Ag(0) # 0 can be motivated on
physical grounds by requiring the positivity of the mass
M (r) around the origin, and thus that —A(0) > 0, plus the
positivity of the effective pressure.

B. Exterior solution

The outer vacuum region (M™, g7) is defined by A = 0,
ng=0, po=0, and is thus described by the set
{A_(r),v_(r)}. The solution of field equations is

() = or-(r) = 1 =2

e =e- =1 p (39)
for some constant M, that hold over some domain r €
(R_, 00) for some R_ > 0. Observe that the solution can
equivalently be charaterized by M_(r) = M and j_(r) = 1
for r € (R_, o). We assume in the following that

A2 M>0.

so we trivially recover Schwarzschild with mass M on r €
(R_, o0) with the “usual” coordinates.

C. Matching of the problems

The matching of the background configuration is given
by the conditions (see e.g. [8])

4] =0. (40)

Using that the exterior solution is given by (39), these
conditions imply

gLr(R) — e_l’+(R) = (41)
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and

1 2M
' (R) =~ : 42
Vi(R) = g (42)

In terms of M and j we have

M=M_(R), j_(R)=1.

Introducing these relations on (25) we obtain
[Wo] = 0. (43)

This is the only consequence the matching conditions have
on the functions describing the matter content.

Note [Ag] =Ag(R):=A(n3(R), p3(R),x3(R)) and equiv-
alently [¥y] = W((R) because the corresponding functions
on the exterior vanish identically. From (33) we can write
¥y(R) = 0 equivalently as

AO(R) = _e_y+(R)/2(/’toon0(R) +)(oop0(R))’

- /R _RzM(/Jool’l()(R) +XoPo(R)),  (44)

after using (41) in the last equality. Equation (43) shows
that the matching hypersurface (the value of R in this case)
is determined by the vanishing of ¥, i.e. the first solution
of Wy(R) = 0, whereas Ay(R) attains the value given by
(44). That value will depend upon the explicit form of A in
terms of its three arguments. In the perfect fluid case that
corresponds to the equation of state, see e.g. [5,8].

A rigorous treatment of the existence and uniqueness
problem (that will be presented elsewhere) will also need an
assumption on the behavior of A, at the boundary, namely
that if it vanishes then both ny and p, must also vanish,
that is,

A3 Ay(R) = A(m(R). pR(R). x3(R)) = 0 => no(R) =

po(R) = 0.
Let us stress that if one demands y,, = ¥, as in the models
in [11], assumption A.7 as well as A.3 [because of (44)] are
automatically satisfied.

The first and second order matching conditions will
contain jumps of higher derivatives of 1 and v. For later use,
then, we present next the expressions relating those
differences with the fluid quantities on the surface.
Using (40) taking into account the field equations (24)
and (37) (and yet another radial derivative) we obtain

V] = —xRe*B[A), (45)
(2] = =R ®)x[Ag] + [47], (46)
V' =-x (1 + @) AR, (47)

1= (1550 a6

where C, is a constant whose explicit form will not be
needed, that relate the geometrical jumps with the jumps of
the matter field.

In the following, for any quantity f satisfying [f] = 0 we
will use simply f(R) = f.(R) = f_(R) and just f if f is
only defined on the boundary.

D. Solving the background global problem

To sum up, given a function of three arguments A, the
background interior is described by four functions
{AL(r), v (r),ng(r), po(r)} that satisfy Egs. (24), (25),
(31) on the domain r € (0, R) for some constant R > 0
that is fixed by the matching procedure below. Two first
integrals to the system are given by (26)—(27). Moreover, it
must be stressed that v, (r) only enters the equations
algebraically through v/, (r). As a result, the system of
equations provide v/ (r), and thus v, (r) up to a free
additive constant. This is equivalent to the fact that v :=
v, (0) is left undetermined by the interior problem, and has
to be fixed a posteriori by imposing that v, (R) = —1, (R)
[cf. (40)] as follows.

The procedure is to integrate Egs. (24), (25), (31),
replacing v(r) by some function 7(r), from the origin (at
r = 0) given the conditions (38) plus finite values for 1y (0)
and py(0), together with the condition I(0) = 0. The
interior problem thus integrated, which is independent of
7(0), provides 4, (r), ny(r), and py(r), and therefore also
W, (r). Because of the matching condition (43), and given
that the exterior is vacuum, R is obtained as the (first) zero
¥o(R) =0. Now we just have to set v (r) =0(r)—
7(R) — 2, (R) to have the complete solution for the interior.

The global solution is completed once the exterior
parameter M is obtained from (41).

V. FIRST ORDER PROBLEM

The equations are found by differentiating once (21) and
(20) with respect to € and evaluating at ¢ = 0. From (21) we
do not obtain anything, while the field equations provide
the equations for w, (r) and w_(r) on their respective
regions. The matching will be provided by Proposition 1 in
[5] (see also [8]).

A. Equations at the interior

On the interior region the equation for w_ (r) is given by
1 Y .
= (rjo') =2jL, (49)
where here we use the convenient definition

L= }(re’h(Lnno,uo + LpPO)(O)?
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with [11]

L,=w,—-Q, L,=w,—-Q,.

Later we will use the equality

L = xre*L,(Wo — o) + xre* (Q, —Q,)x0po-
= Ln(’/+ + ’%r) + %reh (Q'n - Qp))(op() (50)

that follows from (33), (24), and (25).

B. Exterior solution

The equation for w_(r) is (49) with £ = 0. The solution
that vanishes at infinity is

w_(r) =— (51)

for some constant J. Observe that we can always choose
this exterior solution, vanishing at infinity, fixing the first
order gauge on the exterior region [5,8].

C. First order matching

The first order matching is provided by Proposition B.1
in [8], see also Proposition 1 in [5]. Let us recall that
the result in [8] generalizes that in [5] in that Qli and
the vectors T can depend on all the coordinates on the
boundary {z,9,¢}, and the condition /(R)# 0 was
missing in the statement in Proposition 1 in [5]. Observe
first that the conditions 2/(R) #0 and 2e*® —2 4
RV(R) # 0 are satisfied because M # 0. By fixing the
first order gauge on the interior region (using the gauge
vector V| = by1d,, see Proposition 2.5. in [8]) we can also
choose b; = 0 in Proposition B.1 in [8]) so that the interior
and exterior problems are matched (in those fixed first order
gauges) by

0] =0, [@]=0, (52)
and the deformation quantities Q7 (7, 9, ¢) satisfy

(0] =0, 0.[4] =0, 0,[V']=0. (53)

Using (45) and (47) the above three conditions turn into

[Q1] =0.  QiAy(R) =0. (54)

Consequently, given assumption A.3, we also have

Q,po(R) =0, Qny(R) = 0. (55)

It is convenient, for later use, to use these matching
conditions together with Eq. (49) on each region to obtain

2 £(R) +5 (2 (R) + . (R))o/(R)

o] =~

= e =) (20(R) - 2,) + 5 R (B))
1200, —mem)po(m}. (56)

The above properties of O, thus imply

Qi[0"] = 0.

D. Solving the first order global problem

To be consistent with [11] we follow initially the
procedure used there to calculate the first order global
problem for the functions @, and w_. We already have the
exterior solution (51). As for the interior, instead of
computing w., we use L,(r):= o, (r)/Q, -Q,/Q,,
and use the quotient A =€, /Q,, as the free parameter
of the problem together with Qp.

Equation (49) is equivalent to

1 . ! [
A <r4j<r)L;<r>) = el 02y — AL,

— 2}{6(/1+(f)—l’+(r))/2(A = Dyo(r)po(r) (57)

after making use of (50). This equation corresponds
to (44) in [11] before dividing by Q,. Given (51), the
matching conditions (52) imply [compare with (62) and
(63) in [11]]

12
Q,R*’

1 6J

L,(R)=-A+ L(R) = "o’
14

= L,(R) = =5 (L.(R) + A). (58)

x| W

The pole structure of (57) under the assumption that
Wy (0) — Ap(0) does not vanish implies that the homo-
geneous part of (57) admits a unique bounded solution up
to a scaling factor (see e.g. Lemma D.2 in [8]). Therefore,
operationally, to integrate the interior problem we start with
a function G(r) that satisfies the homogeneous part of (57)
(the left-hand side) and assume G(0) = 1. Next, we take a
particular solution F(r) of the full equation (57) integrating
from the origin under the assumption F(0) = 0. It can be
shown that such particular solution, vanishing at the origin,
is unique. Then

o

n(r) = aG(r) + F(r),

with
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3(F(R) + A) + RF'(R)
3G(R) + RG'(R)

a=-

solves (57) and satisfies (58). The global solution for w is
thus given by

w,(r) =9Q,(aG(r) + F(r) + A),
with
J= —éR“a)Qr(R) = —éQpR“(aG’(R) + F'(R)).
(59)

Using Eq. (49) one can rewrite the value of J as an
integral of £, and thus recover the integral expression for J
found in Eq. (59) in [11].

As explained in Sec. IIIB 1, we use the “little hat”
notation j‘ == f/Q, for any first order quantity f, in
particular @4 = w, /Q,,.

1. Rotation and angular momentum
Let us recall that the rotation of the fluids are given
by (17), and Q,, and Q,, are taken to be the two parameters

of the model, that we take to be in the form of A and Qp.
Also, the cross term in dzd¢ at first order in the family of
metrics g, is given by ew(r) with (59). As a result, the total
angular momentum J° of the solution (to first order), and
thus of the star configuration, is given by J® = eJ = fzpj,
and therefore

JS = —éfsz“(aG’(R) + F'(R)). (60)

VI. SECOND ORDER PROBLEM

The problem at second order is tackled using an
expansion in Legendre polynomials P,(cos 6). We follow
[11] and take the usual form for the functions A(r,0),
v(r,0), and k(r,0) at both domains (the interior M™ and
the exterior M™), given by

h*=(r,0) = hi (r) + hy (r)Py(cos0),
vE(r,0) = v3(r) + v5 (r)Py(cos 6),
kx(r,0) = k3 (r)Py(cos ), (61)

where P,(cos @) = (3cos?6 —1)/2, and also

n(r,0) = no(r) + ny(r)Py(cos 0),
D(r,0) = Oy(r) + ©,(r)Py(cos )

at the interior. The second order problem eventually
separates onto a problem involving only # = 0 functions
and another for # = 2 functions (see below). This form
of the functions entering the second order perturbation
tensor is assumed in [11] for the two-fluid problem
following the arguments used in the original Hartle-
Thorne model (for a perfect fluid). Let us stress here
that the fact that there exist gauges at the interior and
exterior regions such that the perturbation tensors to
second order for any stationary and axisymmetric per-
turbation for a perfect fluid have this form has been
shown only recently, and with no need of equatorial
symmetry, in the two works [8,17]. Here we just follow
[11] and take this form of the second order perturbation
functions by assumption.

In order to have more compact expressions, and to ease
the comparison with the expressions found in [5], we
introduce some convenient auxiliary definitions related
with the second order pressure that shall be used to
substitute the set {r,(r). ®,(r)}. Since A is invertible,
for each # =0, 2 we define the set of (four) functions
{Psu(r).Pyy(r)} such that

< notle ) _ g (an>
Po®@s Pep

I"2 _ _ pODn
—(1-¢)=e*(Q, —Qp)22[ 1( D >
ng P
(62)
holds, with
dA, dA,
D, = A, +2néa—n%+”opoa—x3,
0A, 0A,
D = 2p2 2 —_— 63
p AO + Po ap% +n0p0 axg ( )

It is also convenient to define a quantity that depends on r
and is constructed from the background and first order
solutions, plus the parameters Q, and Q,, and can be
therefore already computed. That is

fui= g P

4

7
+ }{Q (L%ln(z)BO + L?JP(Z)CO + 2Lann0p0~A0>7

A
3eY

— xopo(L% — L2) — ngpoAg (2, — Q,)?}.

1
=5 e A e —{(Py — Ag) L2

Furthermore, let us finally introduce the convenient aux-
iliary quantities
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Py =noPs, + P()pr’
Ty := 770"(2)80 + (DOP(Z)CO + (no + CDO)X%AO’

2 r2 -v 2 /
= __/+ POn - ?e (Qn - Qp) an() n

1%
r? )
+ (POP - ge_”(Qn - Qp) Dp”O) P6}, (64)

A. Equations at the interior

The equations are found by differentiating twice (20) and
(21) with respect to ¢ and evaluating at ¢ = 0. We do not
specify the + superindex in this subsection. The Euler
equations (21) with (22), using (26)—(27), provide

2
7)011 _MO{% e_DL% - hO + YH} = 07

2

¥
PO[) —)(o{g €_DL% — ho + }’p} =0, (65)

2
Poy +Mo{%€_”L% + hz} =0,

2
Pgl, +)(0{§6_UL%, + ,’lz} =0. (66)

From the field equations (20) we obtain

x r
(re™vy) == rz{To +—e Y nypoA(Q, — Qp)2}

2 3
1
Ff = — e g2, (67)
12
/ p ]
hy— |V + P (2]
x r
=ZretPy— —— (Z}fellnopo-AO(Qn - Qp)2 + w/z)’ (68)
2 12¢"
and
Uy = f(o - h2’ (69)
) . 1 vV
(k2+/’12) :_Vh2+fw ;+§ ’ (70)

1 /2
I’llz = —{Ul—f—r—y,(;(el— 1)—1’—1/)}}12

hy + k 2eV 1 /2
4 2+ 26,1_re P (—,elﬁ—rzz/)fw.

2 3/ 2r: \v

(71)

The comparison with the equations in [11] is given by the
following. Equations {(65), (66), (67), (68), (69)} corre-
spond to {(42), (43), (47), (49), (45) in [11]} one by one,
respectively, while the set {(69), (70), (71)} is equivalent to
{(45),(46),(50)in [11]}. The remaining equation (48)in [11]
can be shown to be a consequence of the rest.

B. Exterior solution

The functions in the exterior region {/,, v, k,} satisfy
Egs. (67)—(71) with vanishing n,, po (and thus vanishing
T, and Py) and w = w_ given by (51). The solutions are
given for r € (R, o) by [5,11]

iy (r) = =5 (r) = = fA;M + r3(rj_22M) . (72)
and
I (r) = —C{;A’; <1 —2]r”> log <1 - 21”)
(r—M)3—-6M/r— 2(M/r)2)}
M(1—2M/r)
" 153 <1 +Af> (73)
k5 (r) = C{%AZ—QZ (1 —Zr—Afz> log <1 _27M>
3(r—M)—8(M/r)*(r - M/Z)}
M(1—2M/r)
_MJ— (1 +2—M) (74)
0 =00+ g (1=2). 09

where 6M and C are constants. Let us note that, as in the
first order case, the gauge at the exterior is fixed so that the
solution vanishes at infinity (see [8]).

C. Second order matching

For the matching of the second order problem we
use Proposition B.7 in [8] (see also Proposition 2 in [5],
bearing in mind that Proposition B.7 allows a priori for an
arbitrary deformation of the surface, while in [5] the
deformation is assumed to be axially symmetric). Let us
stress that this is a geometrical result, that is, independent of
the field equations. We apply Proposition B.7 in [8] for
R =r, W =0,and n = —¢*®)/29_ noting that the present
class of gauges correspond to k3 (r) = f*(r,0) = 0 as they
appear in [8] and that m in [8] is v here. First, given that &,
m, k satisfy (61) we get ¢y = ¢; = H; = 0. Then, after
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using the background matching (40) and (53) [so that
Q,|@"] = 0 and the relations involving (Q,)? after (5.68) in
[8] hold], we obtain the following set of relations:

&l =0, (76)
K=0. Wl =5Ho,
e—ﬂ(R)
[v] = RK] = ——{/OPE] - (0]}, (77)
e—/l(R)
[h'] _ gl/(R) [k/] _ 1 {eﬂ(R)/zE[l//] _ (Q1>2[1//”]}.

(78)

So far we have not used the field equations, neither at the
background level nor at first and second order. This result
is, so far, purely geometric. As explained in [5,8] (see
Proposition 2.5 in [8]), a change of gauge driven by the
vector V3 = H,to, in the interior region only affects /g

|

and allows us to set Hy = 0 in the matching without loss of
generality (but keeping in mind this change has been
already used). This corresponds with a trivial shift of the
function # at the interior, and this is, in turn, a consequence
of the usual freedom in the shift of the Newtonian potential
(and v in the background configuration). This choice leaves
us with no freedom left in the spacetime gauges.

If we introduce the background field equations through
the relations (45)—(48) and write down explicitly the above
relations in terms of the functions introduced in the
decompositions (61) plus

2

(Q2(1,0.4) =D Qe(t,)Ps(cos0) + Q. (1,6, ¢),

=0

E(t,0,¢) = > E(t,p)Ps(cosO) +E,(1.0,9),

NE

A
Il

0

then the relations (77)—(78) are equivalent to

1 ~ 1
[ho] = 0, [vo] = —ZRGMR)/Qdo%AO(R) + ZRQOK[N)L (79)
1 RV (R 1 RV (R
[hy] = _Zefl(RWEO <1 + ( )>1A0(R) + 1 Qo (1 + 2( )>}f[A6], (80)
ko] =0, [hy] =0,
1 _ 1
[v2] = R[ky] = —ZRCA(RWSMAO(R) + ZRQsz[Af)]v (81)
R 1 RV (R 1 RV (R
(1] — Eu’(R)[kg] = —Ze“RWEz <1 + ( )>;{A0(R) + ZEZ (1 + 2( ))}{[A{)}, (82)
|
and information that enters the matching conditions above.
We only have to focus on (68)—(71).
E,=8,=0,=9, =0. (83) It is convenient to compute first [f,,], which using the

For the above we have used repeatedly the identity [ab] =
at[b] + b~[a] to find that e.g. Q,[A"*] = 0. Observe that
because of (54), if Ag(R) # 0 then Q; = 0, in all the above
relations either Q; or = appear, never both.

We next compute the differences (the interior and
exterior quantities on r = R) of the second order field
equations [the set (67)—(71)] to find relations between
the jumps of functions implied by the field equations
that will have to be used in combination with the set
of matching conditions above. Note that the Eulerian
equations (65)—(66) only provide information on r = R
at the interior related to P, and P, which do not appear
in the matching conditions above. Likewise, the difference
of (67) involves [v] and thus does not provide any

identity [ab] = a*[b] + b~ [a] yields

] = x50 s R)pa(RY(L2 - L3)(R)
— No(RIL(R) = nu(R)pol RV Au(R) (2, — 2,7}

(84)
The difference of Eq. (68) reads

1

1) = (V(R) + )] = 5 ReP (R

= 0 (R) po (B Ao B) (2, - @, (85)
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while the differences of (69)—(71) read, respectively,

] =[] = ). (56)
151+ 1) = =R+ 11+ 250, (57)
and
181 = = (V1) + i (€ = 1) = AR) =V (R) ) Y ] = (R) s o (R)
4z €l 4 1)+ 5 (o €+ RV R) 1) (58)

where we have used the background field equations and the
difference of products in the last equation.

Now we combine the (geometrical) matching conditions
with the jumps of the functions that provide the field
equations and find the necessary and sufficient set of
conditions for the matching to exist plus a relation to
obtain the deformation. We start with the £ = 0 sector. A
simple calculation shows that the set of four equations in
{(79)—(80), (85)} is equivalent to the set formed by (85)
(which is implied by the equations) plus the two conditions

] =0. (89)
R R
[vo] = x m e
(SRR R AR, = 0, = Po() .
(90)
and the relation
Zoha(R) = QN (R) = s
< { Pu®) =S RO R o RAR, -9,
1)

for the deformation (for £ = 0).

As for the £ = 2 sector, the set of (seven) equations in
{(81), (82), (86), (87), (88)} are not all independent and,
after some algebra, they can be found to be equivalent to the
set formed by the set of relations {(86), (87), (88)}, which
|

I/,

2

(o)

X
on = =5 Pon +ﬂ0{—§”€i(”0770n + poPop) +

!
ook 1
0T3

(rPe™L7) +

we recall are implied by the field equations, plus the two
conditions

ko] =0, [h] =0, (92)

and the relation

(1]

2Ao(R) — e B®2Q, AY(R)

P MRI(R) = lfulf. O3

V(R)

To sum up, the necessary and sufficient conditions for
the matching of the interior and exterior problems at second
order are (89) and (90) together with (92). Moreover, the
deformation quantities are given by (91) and (93). It is
crucial that (90) exhibits a jump which has been overlooked
in all the previous literature on two-fluid models, and is, of
course, directly related to the correction to the Hartle-
Thorne model presented in [5] (see also [8]). That jump has
consequences on the calculation of M, and the expression
given in [11] needs to be corrected. We will provide that
expression later, when we compute the global solution of
the second order global problem.

D. Solving the second order global problem

We separate the second order problem into the # = 0 and
¢ =2 sectors.

1. ¢=0

In order to integrate the system in the interior region we
work with the set of functions {vg , Pons 770,,}, as follows.
We differentiate the two equations in (65) and (66) and
substitute A, from (68) to obtain (we drop the + indicators)

X
3 r e ngpoAo(Q, - Q,)?

1
Er%‘”a)’z}, (94)
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/

14 x X
op = —5770,3 +)(o{—§r€ﬂ(no770n + poPop) +gr3€’l_ynopov40(9n -Q,)?

3

1 1
- (1/ + ;) v+ = (rPeL3) +

The system to integrate is thus given by Eqs. (67), (94),
and (95). The conditions we impose at the origin are
Pou(0) =0 and P;,(0) =0, which correspond to the
conditions 7((0) = ®4(0) =0 in [11] [cf. Eq. (62)].
Operationally we set Q, = 1 and Q, = A in the equations.
The solutions thus provide, in fact, the set {17{{ , 750,1, 750 ,,} =
{vg /€92, P,/ Q3. Py, /93 } in terms of A. The equations,
given the known behavior of 4 and v near the origin as shown
in Sec. IV D, present a structure of the poles at the origin that
imply that the only solution to the homogenous problem
is the trivial one. This means that if there is a bounded solu-
tion, that is the unique solution {#g (r), Py, (r), Po,(r)}.
Moreover, g is O(r*) and Py, and Py, are O(r?). This is
analogous to the perfect fluid case (see [8]).

It is important to note that the combination yq X
(95)-pp % (96) can be readily integrated to get
|

1 3 ,—V,,2
pree } (95)

2

A A T R
XoPon — oPop = HoXo3 2o, (1-A)+A% 1), (96)

after using that P, and 7501, vanish at the origin.
Introducing both equations from (65) in this relation it is
straightforward to obtain

Yn = 7p-

We will use these relations later.

Once the solution {# (r), Py, (r), 750,,(;")} is found, we
use the matching conditions (89)—(90) (conveniently di-
vided by Q%,) to obtain the value of 6M, which is the only
constant on the exterior solution (72) for # = 0 that needs
to be determined. We thus obtain

N 1 1 <J2
081 = g M = o (5 (R =200 ) = ) ).
a2™=g\r
72

R(R —2M)

J At
= F+ (R—-2M)dy (R) — x J(R)

Observe that expression (60) in [11] needs to be
corrected with the term containing the factor within curly
brackets.

With the value of S/ we have thus determined /g (r):=
hy(r)/Q3 and therefore also hf(R) = hy(R) because of
[ho] = 0. It only remains to evaluate either one in (65) on
r = R using the values of the integrated functions P, »(R) [or
Py, (R)] to obtain the value of 7» = 7x- The whole function
hg (r) is then obtained by isolating it from either relation

in (65).

2. The total mass

The computation of the total mass (using e.g. the approach
in [20]) of the family of geometries given by g, with (7) and
(15) at r — oo, which depends on the background configu-
ration and the central values of ny and p, leads to

My (ng, po) = M(ny, py) + €26M(ng, po),

= M(ny. po) + Qi&f’[(”o’ Po)s  (98)

using e = Q,,/Q,,, with M given by (97).

eMR) {leel(R)nO(R)po(R).AO(R)(A -1)*- 750(R)}-

3 97)

|
3.¢=2

In the £ = 2 sector the problem is set for the pair of
functions {k,,%,}, and the system to integrate in the
interior region is given by the set of equations {(70),
(71)} (setting €, = 1 and Q, = A). This time, the structure
of the poles at r = 0 implies that the bounded solutions to
the homogeneous problem are all proportional to some
homogeneous solution, that we shall denote by {k,y, hopy }-
Therefore, the general solution of the interior problem is
given by

ka(r) = Akap (r) + kap(r),  hy(r) = Aoy (r) + hap(r),

with A € R, where kyp(r) 4 hyp(r) and hyp(r) are par-
ticular solutions of {(70), (71)} (withQ, = 1and Q, = A).
Recalling that the exterior solution is given by the expres-
sions (73) and (74), we have two constants to fix, namely A
and C := C/ Q%. These two constants are determined by the
(only) two matching conditions (92) in the £ = 2 sector,
explicitly
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Akyy(R) + kap(R) = k5 (R),
Ahyy(R) + hyp(R) = i’f(R>7

with k5 and h; given by (73) and (74). Once we have
determined the pair {k,(r). h,(r)}, the perturbation metric
function 2, (r) is determined by the algebraic equation (69).

4. Quadrupole moment

Having obtained the value of the constant C in the
exterior solution, we can compute the quadrupole moment
of the star using the procedure in [20] (see also [21]; we
observe that this is —Q as defined in [11]) to obtain

sCM®  J? - (8CM3 J?
S_ 2 T o2 v
Q> =¢ ( = + M> p< = + M).

VII. DEFORMATION

Once we have the whole perturbed solution (at second
order) in terms of the perturbation functions {v, h, k}, it
only remains to determine the deformation of the surface of
the star with respect to the spherical hypersurface at r = R.

The obtaining of the deformation in the perturbation
scheme we have developed in the previous sections
amounts to the computation of the function E (and Q;
at first order) by means of (83), (91), and (93) together with
(55). Therefore, the procedure only determines the defor-
mation, by means of 5y and E,, if Ay(R) # 0. This is
analogous to what happens in the perfect fluid case with
barotropic equation of state, as shown in [5] (see also [8]).
If Ag(R) # 0, then Q; = 0 by (55) and E reads

E(Q) = EQ + EzPQ(COS 9)
with

_ 4oMR)/2
' V(R)A(R)

< {Po®) = R DR po AR, - 2,7 .

(99)

(i)~ U} 100

which, we observe, are constants. Using Eqs. (66) and (84)
it is straightforward to obtain the equality

44 R)/2
TR

—
—
—

[fo]

no(R)P2,(R) + po(R)P2,(R) = hyAg(R) — YR2

_ ngemno (R)po(R)Ao(R)(©, — Q)

that allows us to conveniently reexpress the above pair of
equations in the compact form

4eHR)/2
=g

L R (R) po(R) Ao (R) (@ — Qp>2}.
(101)

3

Let us stress that in the perfect fluid case with barotropic
equation of state the factor E(R) (the energy density at the
boundary) appears multiplying both left and right hand
sides of the equations analogous to (91) and (93) and thus
disappears from the denominators in the expressions for the
deformation. In the present case the fact that we need
Ao(R) # 0 is made explicit in the expressions. Despite that,
as argued in [5], the perturbative procedure eventually
determines the deformation if it is continued further to
higher orders, providing the same result. Moreover, it is
shown that the result of that procedure is equivalent to use
the argument presented in [1], based on the Newtonian
approach in [22] (see [6]), in which the perturbative
configuration is assumed to be the second order expansion
of a given exact configuration. Observe that following a
strict perturbative procedure one cannot ensure the sum of
all the orders, and therefore the existence of the full
configuration.

The argument to obtain the deformation using the full
configuration follows the exact result, see Sec. II D, by
which the surface of the star is determined by ¥(r, 6) = 0,
a curve on the plane {r,0}. Observe that in the perfect
fluid case (no equation of state needed) that corresponds
to P(r,0) = 0 (where P is the pressure). The computation
in [1], however, is made in terms of the surface levels of the
energy density function E. Nevertheless, since it is assumed
a barotropic equation of state of the form E(P), those
surface levels correspond also to the surface levels of the
pressure function P and the result is therefore the same.

In the present case, however, the computation in [11]
[see Egs. (33)-(39) there] is made using the function A,
while the correct computation requires using the function
Y. Following the argument in [11] but replacing A with P,
the deformation to second order £(R, €) is defined by the
second order term of the total deformation (we add the
parameter & here)

[1]

Fo(r,0) = r+ 2&(r,0) + O(&°),
determined by W,.(7.(r,6),0) = Wy(r) and thus given by
P.(r.0) = Wo(r) = ¥y (r)e’é(r.0) + O(e')  (102)
[mind, for all » € (0, R)]. On the other hand, the expansion

of W, (r,0) = ¥(n.(r,0)%, p.(r,0)% x,.(r,0)?) in e is given
by [cf. Eq. (106) in [11]]
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Y, =¥+ 82{(”088 + poAY)non + (poC + noAY) po®

1
+=nopo | Ay +2n} 6./4;) +2p} 6,43 + 2n0p0% r’sin* e (Q, — Q)% +. (103)
2 on op o2
Introducing this into (102), using sin? @ = 2/3(Py(cos §) — P,(cos 8)), together with (35) and (63) we find
&(r. ) = &o(r) + &(r)Py(cos 0)
with
2 1 r?
Se = V9, — A, (103 + poAY)none + (poCo + noAY) po®@s + (1 = £)nopo(D, + D,y Ao) (Q -Q,)?
2| {( )m("‘)’”)ﬂl £)n0po(Dy + D,y — Ag) 2(9 g)} (104)
=———<(n -f)n
W, — A, 0Po Po®, 0Po

Using (62), in terms of P, and Py, this reads

2 1
§K(r> = I/(r) lP()(I") _ Ao(r) {nO(r)an(r) + p0<r)7)fp(r)
= (1= o)) Aa(r) 355 (9= 2, .

(105)

Finally, evaluating &,(r) on r = R, using that ¥5(R) =0
and v(R) = —A(R), plus the auxiliary definition (64), we
directly obtain

2
&/(R) = T UR)AS(R) {Pf(R)
(1= OB o R AR e @, 9)}
(106)

and therefore, by comparing with (101),

The factors in this expression account for the 1/2 that ought
to be included in £ for being a second order quantity (the
12 factor), while —e™*/? corresponds to the direction and
normalization of the normal to the (background) surface
ny = —e~*29, (see Sec. I C).

ac/y 2 e!)/2 det A(r)
O o

o = 2eX 0 AN (1) + BY(r)xs
. {ummno(r)nf(r) 2 (PDPo(AB() + (1= )

|

Let us stress that the expressions of £,(R) contain also
Ao(R) in the denominators. The advantage of this pro-
cedure, assuming that the exact configuration exists, is that
(105) hold for all r € (0, R), and therefore &,(R) are to be
obtained as the limits of &,(r — R) if they exist. It is
interesting to note that if .4y = 0 then A does not affect the
deformation.

As mentioned, the procedure to obtain the deformation
presented in [11] is just the analog to the above but using A
instead of W. Explicitly, the deformation is claimed in [11]
to be the function £A€(r, @) that solves the equation (we add
the perturbation parameter €)

Ae(r,0) = No(r)

This function £A€ here is denoted by & in [11]. Next we
show that the outcome is just different, and therefore £A¢
does not provide the deformation. From (107) and the
expansion of A,(r,0) = A(n.(r,0)%, p.(r,0)% x.(r,0)?)
in &, which is given by [cf. Eq. (105) in [11]]

— Npe*é8C(r,0) + O(&%). (107)

A =No - 82{#0”0’7 + Xopo®
1 2 2 2
+ ﬁ r=sin ernopU(Qn - Qp) s (108)
e

and using (36) for A}, and (26)—(27), we obtain
(. 0) = &C(r) + &°(r)Py(cos )

with

7”2

36”(")

Ay(F)no(F)po(r) (@ —9,»2}. (109)
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In terms of Py, and P, using (62), this reads (we avoid making the r dependence explicit now)

2 u/2
AC _ =
‘ v C()/'too_zluoo)(ooAO—’_BO)(oo
r2
1-7¢
-2

In the particular (numerical) case studied in [11], that we
will retake in the following Sec. IX, the function A is such
that A, = 0 (and therefore D, = D, = 0 by definition),
and itis assumed y ., = u.. For any given model with those
two assumptions, Eq. (105) using (33), and the above
expressions simplify to

2 v(r)/2 P
ff(r) = ‘ f(r)
V(r) pe no(r)+ po(r)
and
AC(r) = 2 evn/2 (C8 - Ag)an + (38 - Ag)pr
‘ V(r) pe Co(r) —2A%(r) + BY(r)

Therefore, in general &,(r) # E2°(r) even in that case. To
check the equality, or not, of the limits £,(r — R) and
E2C(r > R) requires the integration of the whole system,
and we leave that to Sec. IX. However, if we also demand
Q, = Q,, then (66) and (96) with p, = y,, lead to

an(r)

so that P, = (ny + po)Ps, and therefore

- pr(r) = 0,

2 (/2

ét’: ? =7 - I"¢n-
V(r) peo

Let us stress that if one imposes po, = vy, and Q, = Q,,
then &, = £2€ irrespective of the form of A.
|

(@, — @, )2 (det WAy po — PoDy (ool = 7 a0 AS) — oD, (7.0 umA()))}

{(/’toocg _)(ooAg)an =+ (ZooBg - ﬂmAg)pr

(110)

VIII. KEPLER LIMIT

The mass-shedding (Kepler) limit Q is the maximum
angular velocity of a particle rotating at the equator of the
star as seen by an observer at infinity. Therefore, this sets
the limit on the angular momentum of the fluids forming
the star. For the present two-fluid model, the Kepler limit
will correspond to the limit of the fastest-spinning compo-
nent, i.e. Qx = max(ﬁn,flp).

As stated in [11] the Kepler limit is given by

~ Nv
Qx = —=+ N?, 111
K — \/j{. ( )
where
K3/2N¢/ 2KN' K3/2N(/)/ 2
=Nk NK’+<NK’>’
in terms of the functions in (7).
Using (15) this relation reads
v/2 / / /
~ e rv re v
Q. = _- —_ 200/2, [ 2
K= 2+€<w+2)+” V2r
h/ rk/ ’,,3((0/)2
h—k+——— 0(&%), 112
[ + 2 * 41/ ¥ } +0(&) (112)

which, evaluated on the equator (9 = x/2) of the perturbed
boundary of the star, r = R + 2£(R), yields

4R*M?

- M < T x, [M(M
QK: E—QPF—FQP E{w‘i‘

after using ¢ = Qp /Q,, and where

o 3(R3 —2M3)log <1 _2;:1)

am?3
3R* —3R3M — 2R*M? — 8RM? + 6M*

2RM?*(R —2M)

The expression (113) (see also [23]) differs slightly
from expression (77) in [11] in the square root factor at
second order, the sign in front of &,, and its denominator

(R+3M)(3R=2M) 5, 3

- QR -G+ o) (1)

with R?, which may simply be typos. Since the Kepler
limit will correspond to the fastest rotating fluid, for
A>1 we have Qp =Q, = AQI,, whereas for A <1
we have Qg = Ql,. In any case, we solve the quadratic
equation for Q » and take the smallest result among the two

solutions.

IX. NUMERICAL RESULTS

We turn now to solve numerically the differential
equations of the formalism we present here in order to
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see the differences arising from the corrections discussed in
this article. The results obtained following the amended
description will be compared with those in [11]. We will
focus on the comparison of three results: the contribution to
second order to the mass, 6M, and thus the computation of
the total mass, the deformation of the star &, and &, and the
Kepler limit Q.

A. Andersson-Comer model

In the first place, we solve the background configuration,
using the master function provided in [11]

n ﬂ
AO(”(Z)’ p%) = —mung — O-nng —m,po— Uppop’ (114)

where m,, is the mass of the neutron. As in [11] we use the
following numerical values

o, =02m,, p,=23, o,=2m,, p,=195.

(115)

P

This master function does not account for entrainment
between the two fluids, which translates into A, = A8 =0.
If we impose chemical equilibrium u, =y, (see the

1.0

0.8 1
0.6 1
o
N
0.4

0.2 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

r/R

0.00 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

r/R

FIG. 1.

arguments provided in [11]) the following relationship
between n, and p, holds

ﬂno-n Pn—1 1/Bp=1)
Po=\7—n .

0
Brop

For this master function we use units such that
m, =c =G =1, and the number densities of protons
and neutrons are given in fm~>. We refer to these units as
“code units” (CU). The value of A, in the International
System of Units (SI) is obtained through the relation

(116)

AT = A§Y x 2 x m, x fm~3. (117)

It must be noted that this distorts the base units, namely the
radial distance r, the time ¢ and the mass m. To recover the
ST units, we need to rescale each variable:

Pl =V x ey [ — (118)

(119)

0.08 4

0.06 1

Po

0.04 4

0.02 1

0.00 T T T .
0.0 0.2 0.4 0.6 0.8 1.0

r/R

0.05 1

0.00 T T T .
0.0 0.2 0.4 0.6 0.8 1.0

r/R

Normalized radial profiles of relevant quantities of the background configuration for the AC model (in code units): number

density of neutrons ng(r) (top left), number density of protons, py(r) (top right), energy density, —Aq(r) (bottom left), and generalized
pressure, W,(r) (bottom right). All four functions vanish at the boundary of the star.
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fm?3

G’m,

ST _ ,,CU

m- =m XC3

(120)

Proceeding with the calculation of the background prob-
lem, we take 74(0) = 0.93 fm=> and solve Egs. (24), (25),
and (31), following the procedure of Sec. IV D. As explained
above, to determine the surface of the star we integrate the
equations from the center until the pressure reaches its first
zero, ¥o(R) = 0. The value R of r for which the pressure first
vanishes sets the radius for the background configuration. In
accordance with [11], the background mass and radius are
given by M = 1.41M and R = 10.08 km, respectively.

As mentioned before, in the original HT formalism the
functions describing the metric are assumed to be continu-
ous in the interior of the star, in its exterior, and in the
hypersurface separating both regions. However, in the
correction of the HT formalism carried out in [5], it was
shown that v((r) presents a discontinuity at the boundary
proportional to the energy density at the surface of the star
[see Eq. (77)]. This affects the calculation of 6M and thus
the total mass of the star. For the present two-fluid model,
as we can see from Eq. (97), when the number densities of
neutrons and protons vanish at the surface of the star,
no(R) = po(R) = 0, which implies P,(R) = 0 by defini-
tion, the correction has no numerical effect. As shown in
Fig. 1 for the AC numerical model, the number density of
protons and neutrons tend to zero at the surface. As a result,
in this particular model we should obtain the same value for
the contribution to the mass at second order as in [11].
However, we have encountered a discrepancy in the values.
Explicitly, since M; = M + 6MA® in [11], and here
My = M + &6M [see (98)] the comparison is given by
the quantities

SMAC = 0.091(v,/1 kHz)’M,,,
e26M = Q26M = 0.084(v, /1 kHz)’ M,

where we have used that v, as defined in [11] corresponds

to Ql,/ (27) here. We conjecture this discrepancy might
be of numerical origin. A direct comparison with the code
by [11] might shed light on this issue.

On the other hand, in [11] a very interesting way of
calculating the deformation of the star was proposed, that
consisted on tracking the surfaces of constant energy
density [Eq. (110)]. However, as explained in Sec. VII
this analysis has to be carried out using the surfaces of
constant pressure [Eq. (105)]. Concerning the deformation
of the star, we compare in Fig. 2 the functions &, and &,
obtained using our formalism (blue curves) with those
from the AC formalism [11] (red curves). As explained in
Sec. VII, for a model without entrainment, 2, = Q s and in
chemical equilibrium, we have &, = f‘;‘c. However, if we
set A # 1, then we should expect different results, as Fig. 2
shows for A = 0.5. The difference between the two results

x10~2

1.25

&/
1.00{ — €1°/R

0.75 1

0.50 1

0.00 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

r/R

1072

~0.11
— &/R

~1.31 — &R
~2.51
~3.71

—4.9 A

—6.1+
0.0 0.2 0.4 0.6 0.8 1.0

r/R

FIG. 2. Normalized radial profiles of the deformations &,(r)
from Eq. (105) (blue) and the functions 2€(r) from Eq. (110)
(red), for A = 0.5. The top panel corresponds to Z = 0 and the
bottom one to £ = 2.

at the surface of the star is plotted in Fig. 3 for different
values of A. Note that due to the steepness of £2(r) [and
also £,(r)] near r = R, the exact value of &,(R) — £2°(R)
will be very sensitive to the precision of the numerical
calculations.

The dependence of &,(R) — E2C(R) with the perturba-
tion parameter ¢ is straightforward, as it scales with £,
However, the dependence with A is not so clear from the
equations, so we illustrate it in Fig. 3.

Concerning the computation of the limiting frequency of
the star (the Kepler or mass-shedding limit, Q) we have
found a different expression from the one proposed in [11]
[their Eq. (77)]. Moreover, this expression also depends on
the deformations of the star &, and &,, so the correction of
the deformation also implies a different result for Qg, even
using the equation reported in [11]. The Kepler limits for
both neutrons and protons are displayed in Fig. 4 as a
function of the relative rotation rate A.

As we can see from Eq. (113), the mass-shedding limit
depends on the frame dragging (FD), i.e. the distortion of
the spacetime manifold as a consequence of the rotation of
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FIG. 3. (£(R) —&C(R))/R for different values of A, running
from A=0to A=2.

the star. If we do not consider frame dragging, the Kepler
limit frequency will be given by

M

AnoFD __ -
QK - RS-

(121)

As stated in Eq. (19) of [11], the slow-rotation approxi-
mation translates into the following inequalities (with
G=1)

Q2 or Q3 or Q0 <<K (122)
n P n=<p S p3-

We end this section by mentioning the discrepancy also
found with the AC star model for the radial profiles of the
rotationally induced change in the proton number density
Po®y, depicted in Fig. 5 (compare with the profiles shown
in Fig. 10 of [11]).

x 27 (Hz)

2500

2000 A

1500 1

1000 -

500 1

0.0

FIG. 4. The mass-shedding limits of the neutron and proton
fluids (in blue and red) as a function of the relative rotation
rate A. The Kepler limit corresponds to the largest value
Q= max(fzn,ﬁp). The green line corresponds to the Kepler

limit with no frame dragging, Q7°™.

10-2
4

! 3

0.0 1
0.4 — po®o

— poPe
_08 4
712 4
—1.6 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
r/R
FIG. 5. Radial profiles of the rotationally induced change in the

proton number density, po®,(r), for the AC star model and for
A =1, in code units. The profiles differ from those in Fig. 10
in [11].

B. Our toy model

In order to see the difference of the contribution to the
mass at second order £26M between the AC formalism and
the one reported in this work we propose an EOS which
does exhibit a jump in the energy density at the boundary of
the star. To do so we consider the following master function

No(n§, pg. x5) = —(ang +bpy + cxg)m,,,  (123)
where a, b, and ¢ are constants with dimensions dim(a) =
dim(b) = 1 and dim(c) = L>. This EOS does not attempt
to describe any physical system and should be simply
regarded as a toy model. Our only purpose in using it is

to show the numerical impact of the correction of oM
discussed in this article. Taking m, = 1 leads to

b
A=c.  By=2, Co=—., (124
no Po
Ay=c, B)=0. =0 (125)
Equations (28) and (29) translate into
ny = —i(b—i—cno)v’, (126)
0 2c
!/ 1 /
Po:—z—c(a‘f'cpo)l/a (127)
and the generalized pressure (3) reads
¥, = cx3. (128)

We impose chemical equilibrium (¢g = y,) to set the value
of po:
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FIG. 6. Normalized radial profiles of relevant quantities of the background configuration for the toy model EOS (in code units):
number density of neutrons ny(r) (top left), number density of protons, py(r) (top right), energy density, —Aq(r) (bottom left), and
generalized pressure, W((r) (bottom right). For this model ny(R) # 0 and Ay(R) # 0.

b—a

Po = + no. (129)

Both —A( and W, must remain positive along the star,
so we take the set {a,b,c} = {2, 1, 1} which satisfies the
requirements. For the initial value ny(0) = 1.5 fm= we
calculate the profiles of the number densities and pressure
of the background configuration. Those are displayed
in Fig. 6.

Even though our toy model EOS does not attempt to
describe a physical star, we have checked that it is causally
consistent with general relativity, i.e. that the speed of
sound is lower than the speed of light at every point of the
star. We compute the speed of sound as

o M
Sd(=Ay)

0‘1’0/0}’
6(—A0)/ar '

(130)

Figure 7 shows that indeed our EOS preserves causality.

Solving the first and second order (¢ = 0) system for
corotating fluids (A = 1), we obtain that the contribution to
the mass at second order is

e6M = 0.0078(v,/1 kHz)*M, (131)

where v, = flp /(2z), while the formula in [11] for M,
that is, without the correction, leads to

2sMvneereeed — 00033 (v, /1 kHz)? M. (132)

Again, the impact of this correction affects the total mass
linearly with €2, and thus v7, but it also depends on the
rotation rate between the two fluids.

1.0

0.9 1

0.8+

a{l}

0.7 4

0.6 -4\
0.5

0.0 0.2 0.4 0.6 0.8 1.0
r/R
FIG. 7. Radial profile of the sound speed for our toy model

EOS (blue) and the speed of light (red) in code units. Our EOS
preserves causality at all radial points.
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FIG. 8. Total mass M7 as a function of the average radius of the

star R4 for A = 1. The top panel corresponds to stars rotating at
the Kepler limit without considering frame dragging effects. For
the models in the bottom panel the ratio of the polar-to-equatorial
radius is set to 0.8. Blue curves take into account the correction of
OM in the formalism while red curves do not. To prepare these
plots we run the initial value of ny from ny(0) = 1.1 fm~3
to ny(0) = 150 fm=3.

To illustrate the relevance of this correction we numeri-
cally build stellar configurations based on our toy model
EOS, computing the total mass of the stars as a function of
their average radius, R, = R + €>&,(R). We perform this
procedure for two different rotations. Our first choice is to
consider stars rotating at the Kepler limit without taking
into account frame dragging effects [see Eq. (121)], that is

(see Sec. VIID),
M 1 { 1 ALI1
E=1/—5—X .
\/R3Qp 1. A>1

The top panel of Fig. 8 shows the mass of the configu-
rations against the average radius for this case. As expected,
the correction in the mass affects in a significant way the
total mass the configurations can attain.

In our second choice, we set the rotation of the star so
that the ratio between the polar and equatorial radii, Rp /R,
is kept constant, that is,

(133)

2 _ (RP/RE_ ])R
&" = Rp/RgE™’

where Rp/p = R+ 2P/E with & = §(R) + &(R) and
EE = &(R) — &,(R)/2. Mass vs radius diagrams for this
second type of configurations are plotted in the bottom
panel of Fig. 8. As for the previous case, the differences
between the original HT formulation and our revised
formalism are quite visible.

(134)

X. CONCLUSIONS

Hartle and Thorne’s model [1,2] provides a perturbative
framework to describe the equilibrium configuration of a
slowly rotating isolated compact body in general relativity.
In [5-7] it was found that this formalism had to be amended
in order to correctly describe stars with nonvanishing
energy density at the surface. The amended version of
the formalism yields significant corrections to the total
mass of a slowly rotating relativistic star described by a
single-fluid barotropic EOS, which also affects the tidal
problem in binary systems (i.e. the I-Love-Q relations) [7].

In this paper we have discussed slowly rotating, general
relativistic, superfluid neutron stars assuming that the
composition of the stars is described by a simple two-fluid
model which accounts for superfluid neutrons and all other
constituents. Therefore, our work, which has closely
followed a previous investigation by Andersson and
Comer [11], constitutes an extension of the earlier study
in the single-fluid case that amended the HT model.
The backbone of this article has been to put forward the
analytical corrections of the HT model applied to the
two-fluid problem in general, building on the results
from [5,8,17]. Our specific goal has been to address if
the amendment of the computation of the mass of the star
found in the HT formalism for the single-fluid case in the
presence of discontinuous fields [5—7] also holds in the
two-fluid model. We have found that is indeed the case.
Moreover, we have corrected the determination of the
deformation of the star, which in [11] is obtained using
the surfaces of constant energy density following the
arguments in [I]. The perturbative analysis we have
presented provides the deformation, and we have shown
how that coincides with the outcome obtained by replacing
the surfaces of constant energy density with the surfaces of
constant “pressure.” Let us stress that both procedures
coincide in the single-fluid model (with barotropic EOS),
but not in the two-fluid model.

In order to illustrate the impact of the corrections to the
formalism we have built numerical stellar models, compar-
ing the calculation of the total mass of the star, the
deformation of the star, and the Kepler limit of rotation.
We have first compared our results with those in [11] by
solving the set of equations for the EOS proposed in the
original article along with the same stellar model. Next, we
have used a toy-model EOS for which the energy density
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does not vanish at the boundary of the star to demonstrate
that the corrections of the HT formalism we present in this
paper do impact the structure of slowly rotating superfluid
neutron stars.

While the toy model used in this investigation should not
be regarded by any means as a realistic description of the
composition of actual superfluid neutron stars, it has served
the purpose of illustrating the effect of the corrections in the
formalism. There are physical situations where large non-
zero densities can be attained at the stellar surface, the main
example being pure quark EOS (as described by e.g. the
simple MIT bag model [24]). Quark matter is self-bound
such that low density homogeneous quark matter is
unstable with respect to the formation of a dense cluster.
Homogeneous nuclear matter shows such an instability,
too, depending on the proton fraction. Physically this
means that at low densities nuclear clusters and a crust
form. To improve the “realism” of the results reported in
this work, a possible extension would require to obtain the
master function of [12,13] for the case of superconducting
quark matter, where a two-fluid situation would arise by
assuming pairing only between two flavors (up and down
quarks) and have a nonpaired third flavor (strange quarks).
The master function might be applied in the same way in
this case as for the neutron-proton two-fluid model used
here, in particular as some models for quark matter
resemble technically models applied to the latter case
[e.g. Nambu-Jona-Lasinio (NJL) models [25] are very
similar to relativistic density functional models for nuclear
matter]. Another situation where discontinuities might also
affect the computation of stellar equilibrium models within
the HT formalism is in the case of superfluid magnetars in

which the matter in the core cannot be described with a
single fluid approach (since the neutrons are superfluid). In
this situation the density of the charged components of the
matter EOS (i.e. protons, electrons, and muons) exhibits a
jump at the crust-core interface (see e.g. Fig. 1 in [26]).

Finally, we note that the modifications reported in this
work for the total mass of slowly rotating superfluid
neutron stars are also present for the tidal problem of a
binary system, affecting the I-Love-Q relations of super-
fluid neutron stars [27]. We plan to study the tidal problem
in a future investigation and the results will be reported
elsewhere.
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