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Using the spinning, supersymmetric worldline quantum field theory formalism we compute the
momentum impulse and spin kick from a scattering of two spinning black holes or neutron stars up to
quadratic order in spin at third post-Minkowskian (PM) order, including radiation-reaction effects and with
arbitrarily misaligned spin directions. Parts of these observables, both conservative and radiative, are also
inferred from lower-PM scattering data by extending Bini and Damour’s linear response formula to include
misaligned spins. By solving Hamilton’s equations of motion we also use a conservative scattering angle to
infer a complete 3PM two-body Hamiltonian including finite-size corrections and misaligned spin-spin
interactions. Finally, we describe mappings to the bound two-body dynamics for aligned spin vectors:
including a numerical plot of the binding energy for circular orbits compared with numerical relativity,
analytic confirmation of the NNLO PN binding energy, and the energy loss over successive orbits.
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I. INTRODUCTION

The need for accurate waveform templates for compari-
son with gravitational wave signals coming from the
LIGO, Virgo, and KAGRA detectors of binary merger
events [1-6]—and in the future LISA, the Einstein
Telescope, and Cosmic Explorer [7]—has provoked enor-
mous interest in the gravitational two-body problem. One
of the most important physical properties influencing the
paths of massive objects following inspiral trajectories,
which as they accelerate produce gravitational waves, is
their spins. Accurately determining the spins of black holes
and neutron stars in binary orbits yields crucial information
about their origins: if the spins are approximately aligned
with the orbital plane, then this suggests formation of the
binary system by slow accretion of matter; if they are
misaligned (precessing), then this indicates formation of
the binary by a random capture event.

A fruitful path has been effective field theory (EFT)-
based methods, which tackle the inspiral stage of the
gravitational two-body problem using its natural separation
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of length scales [8—12]: the size of the massive bodies is far
less than their separation, which in turn is far less than their
distance from us, the observer. Partial results for the
nonspinning two-body Hamiltonian are up to sixth post-
Newtonian (PN) order [13—18]; in the spinning case a
body-fixed frame on the worldline is often used [19-22],
and results are up to N*LO in the spin-orbit sector [23-25]
and in the spin-spin sector [26-33].

However, an excellent alternative approach to the bound
two-body problem comes by way of studying two-body
scattering: here it is natural to define gauge-invariant
scattering observables in terms of the states at past/future
infinity, where the gravitational field is weak. It is also
natural here to adopt the post-Minkowskian (PM) expan-
sion in Newton’s constant G, which resums terms from
infinitely high velocities in the post-Newtonian series.
One may use analytic continuation to directly produce
PM observables for bound orbits [34-37]; alternatively,
conservative scattering observables may be used to infer a
Hamiltonian for the two-body system [38-44]. A more
sophisticated version of this strategy is to infer an effective-
one-body (EOB) Hamiltonian [45-49], which may be
extended to include spin [50-54] and resums information
from the test-body limit.

The worldline quantum field theory (WQFT) is a new
formalism for producing gravitational scattering observ-
ables [55-63]. It builds on the highly successful PM-based
worldline EFT approach [64], which has been used to
produce scattering observables at 3PM [65-67] and 4PM
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orders [68-71]; the worldline EFT has also produced
gravitational bremsstrahlung and radiative observables
including tidal effects and spin [72-75]. The WQFT
goes a step further by quantizing worldline degrees of
freedom, which bypasses the need for intermediate off-shell
objects such as the effective action. A supersymmetric
extension to the worldline accounts for quadratic-in-spin
effects [57,58], conveniently avoiding the typical use of a
body-fixed frame. In Ref. [61] we used the WQFT to
produce conservative scattering observables—the momen-
tum impulse Ap/ and spin kick ASY—at 3PM order.

In this paper, we upgrade these observables to include
radiation-reaction (dissipative) effects, using the Schwinger-
Keldysh in-in formalism [76-80] that has recently been
incorporated into both the WQFT and PM-based worldline
EFT frameworks [63,67]. Our results confirm the radiated
four-momentum P% ; recently predicted with the worldline
EFT approach [75]. Given these new observables, we
postulate and confirm an extension to Bini and Damour’s
linear response relation [81-83] which allows us to predict
terms in the conservative and radiative parts of the full
scattering observables, depending on their behavior under
the time-reversal operation v — —u%. The extension holds
for arbitrary spin orientations, and goes beyond linear
response.

The WQFT is inspired by QFT amplitudes-based methods
for tackling the classical two-body problem [84—87]. These
build on well-honed strategies for deriving scattering
amplitudes [88-92] and performing the associated loop
integrals [93,94]. In the nonspinning case a slew of two-
body results have been produced at 3PM order (two loops)
[95-102] and at 4PM order (three loops) [71,103,104].
There has also recently been work on N-body scattering and
potentials [105]. Radiation-reaction effects have been incor-
porated [106-112], and an in-in style formalism for directly
producing observables has been introduced [113-116]. To
handle spin, higher-spin fields are used [117-126] and
results have been produced at 2PM order at quadratic
[52,127,128], quartic [129], and higher orders in spin
[130-132]. Similar results have also been achieved with
the closely related heavy-particle EFT [133—138].

Most notably, a 3PM quadratic-in-spin Hamiltonian has
now been derived using amplitudes-based methods [139],
involving spin on one of the two massive bodies only and
without finite-size corrections. In this paper, using the
conservative scattering observables derived in Ref. [61] we
both confirm this result and extend it to include spin-spin
effects and finite-size corrections relevant for neutron stars.
Quite remarkably, we find that knowledge of a single
scattering angle suffices to completely determine the
Hamiltonian, also when arbitrarily misaligned spin vectors
are involved.

Our paper is structured as follows. In Sec. II we review
the dynamics of spinning massive bodies, including their
description up to quadratic order in spin in terms of an

N = 2 supersymmetric worldline action. We demonstrate
how, with a suitable SUSY shift, we can switch between the
canonical and covariant spin-supplementary conditions
(SSCs). In Sec. III we review the Schwinger-Keldysh in-
in formalism in the context of WQFT, and in Sec. IV we put
it to use deriving the complete 3PM quadratic-in-spin
momentum impulse Apy and spin kick AS| including
radiation-reaction effects. We present the results schemati-
cally, demonstrate how one may introduce scattering angles
for misaligned spins, and perform various consistency
checks.

Next, in Sec. V we upgrade the linear response relation to
misaligned spin directions, generating both conservative and
radiative terms from the full 3PM scattering observables
Api and ASY. In Sec. VI we use the conservative scattering
observables, and in particular the scattering angle, to build a
complete 3PM quadratic-in-spin Hamiltonian. Finally, in
Sec. VII we discuss unbound-to-bound mappings for the
specific case of aligned spins: we generate the binding
energy for circular orbits, both numerically and analytically
and up to 4PN order, and produce plots of the binding energy
as a function of the orbital frequency close to merger—
comparing our results with numerical relativity. We also
determine the energy radiated per orbit using an appropriate
analytic continuation [37]. In Sec. VIII we conclude.

II. SPINNING MASSIVE BODIES

A pair of black holes or neutron stars interacting through
a gravitational field in D-dimensional Einstein gravity is
described by

2
§= SEH[g/w] + ng[g/w] + ZS(I) [g/w’ xlil’ W?]’ (1)

i=1

where Sgy is the Einstein-Hilbert action (x = /327G),
2 D
Sen=—3 d7x\/=gR, (2)

Sgr is a gauge-fixing term, and S are the two worldline
actions. Up to quadratic order in spin [57,58]

st 1, . Dy 1 o
== / dr; [Egﬂyx*,-‘x? + W0y -t 5 Raveal W0
+ CE,iEi,abl/_/?Wf?Piﬁcdl/_/fl//id} ; (3)

where the projector is P; 4, =1, — eaﬂehb)'c’i‘)'c’;/)'c?, Nap 18
the (mostly minus) Minkowski metric, and E; ), :=
Ry X5 XY /i?. The finite-size multipole moment coeffi-
cients Cg; are defined such that Cg; = 0 for black holes,
and
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L= WVt = i+ K,y (4)

The two bodies with masses m; have positions x/ (z;); the
complex anticommuting fields y?(z;), defined in a local
frame e?(x) with g,, = e%e’n,;, encode spin degrees of
freedom.

The worldline action (3) enjoys a global N' = 2 super-
symmetry:
xff =gy +iepl,  Syi =—eieni —oxiw, . (5)
with constant SUSY parameters €; and €; = 6;. As shown
in Ref. [58], these shifts are generated by the conserved
supercharges X;-y; and X;-y;. There is also a U(l)
symmetry:

51//? = i“i’l/?, 51/_/? = _iail/_/?’ 5x‘ll = 07 (6)

generated by the conserved charge y; - ;. Lastly, repar-
ametrization invariance of the worldlines in z; implies

xz2 =1+ Ralndl/_/?l//fl/_/;l//? + 2CE,iEi,abl/_/?l//?Pi,cdlngW;l (7)

is also preserved. As X7 # 1 generically along the world-
lines this implies that z; are not the proper times; however,
as we are generally only interested in the asymptotic
behavior this subtlety will not be important.

A. Background symmetries

Fields are perturbatively expanded around their back-
ground values at past infinity:

g/w(x) =N+ Kh/w(x)7 (Sa)
X (1) = b + o0 + 2 (7). (8b)
wi(n) =¥ +yi(7), (8¢c)

where p’ = m;v¥ is the initial momentum; the initial value
of the spin tensor is given by

S9b = —2im, P’ (9)

The antisymmetrization [ab] includes a factor 1 /2—note that
this normalization of the spin tensor differs from that used in
Refs. [57,58,61]. The vierbein is similarly expanded as

K2

et =™ (qﬂy + - g h,,h’, + (’)(K3)>, (10)

2

which allows us to drop the distinction between spacetime
u,v, ... and local frame a, b, ... indices. The global N = 2
SUSY in the far past is

oot = ig V! +ie;¥!, o =0, &V = -

i’

= 65" = 2pVspY. (11)

To fix these symmetries we find it convenient to enforce the
covariant SSC:

pi . ‘Pi = 0 = pi’”S"ljw = 0 (12)

Using the reparametrization symmetry we also enforce
v? =1 and b-v; =0, where b* = b, — bl| is the impact
parameter pointing from the first to the second massive
body. Finally, y = v; - v,; we will also make use of unit-
normalized “hatted” variables, e.g. b* = b*/|b|.

The total initial angular momentum of the system is

JH = [HY 1 Splw + S/éy’
L = 2b{'ptl + 26 pY, (13)

where L*¥ is the orbital component. In this context, we see
that the background symmetries (11) correspond simply to
invariance of the system’s total angular momentum under
shifts in the origins of the two bodies b. We can also shift
the center of our coordinate system x* — x* + a*, in which
case L* — LM + 24 PY as discussed in e.g. Ref. [140].
The orbital and spin angular momentum vectors, defined
specifically in D = 4 dimensions, are invariant under these
shifts:

LH = %e"me””Is” = —ée”l,/mb“p’l’p‘z’, (14a)
St = mad = %e”l,/,,,S;'pvf, (14b)
where
P' = pi+ph, (15a)
P = Llrmy - mo) = (yma + m)o] - (15b)

are respectively the total and center-of-mass (CoM) momen-
tum, p* = (0, p). Here E=|P|=MT'=M+/14+2u(y—1)
is the energy in the CoM frame, M = m| + my,v = u/M =
mym,/M? are the total mass and symmetric mass ratio;
Peo = [Poo| = u/7*> — 1/T is the center-of-mass momen-
tum. With the covariant SSC choice (12) the total angular
momentum J# is given by

— vp Do
J =Sy, J0P

2
1+ Y (v PSE— s Pol). (16)
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Notice that J¥ # L* + S + S5, which is due to S/ being
defined in their respective inertial frames ¢* rather than the
center-of-mass frame P*.

B. Canonical spin variables

We also find it useful to introduce canonical variables
[50,51,141] which are designed to ensure that

Jh = Llclan + S/f can + SZ can’ (17)
and P- L., = P-S;cn =0. The canonical spin vectors
S/ .an are given by a boost of the covariant spin vectors S/ to
the center-of-mass frame:

Sl:can = AK (U - P)S;/
P N Si A
=S = (P, (18)

where y; = P - v; is the time component of % in the center-
of-mass frame. To ensure preservation of the total angular
momentum J# (16), we have

2 A
P-S;

Lo =1+ Y (= 080+ 5P pt)]. (19
P vit+1

The canonical impact parameter blan—in terms of which
Lty = —E e € poblan P/ p5—is related to b* by a specific
SUSY shift (11):

P,
€i = ! . (20)

Yi +1

We then have, with E; = y;m
b = SP,, 21

,can 1 +El + . 1 14 ( a)

P,
lI’Ittcam = \Plzl - vi+ 1 UI;’ (21b)

and can confirm that the canonical spin tensor S!%
14
—2im; ‘PE” Can‘Pi’]can satisfies the canonical Pryce-Newton-

Wigner SSC [142-1441]:

ican

N

(P+v,) Wiean=0= (P, +v;,)8%, =0. (22

1,can

The canonical spin vector is then also given by

1 lo}

S";Cdn = 26 VPD-SZ Can (23)
and has a vanishing time component in the center-of-mass
frame: P - §; .., = 0. This will be useful when we construct
a Hamiltonian in Sec. VI

III. WQFT IN-IN FORMALISM

Complete observables including both conservative and
radiative contributions are produced from WQFT using the
Schwinger-Keldysh in-in formalism [76—80]. Formally this
involves doubling the degrees of freedom in our theory:
h;w - {hluwhhw}’ Z {le’zzz} and W - {le’WZz}
Observables are defined in terms of a path integral includ-
ing two copies of the action:

(Oinoin = /D[hAW’ Zﬁi’W%]ei(S[{}l]—S*[{}z])(’)’ (24)

where A=1, 2 and we use the shorthand
{}a =1{9am-X4;»w)i;}. The boundary conditions on
P pyw- 2y and y's; are that all fields equate at future infinity,

iy (t = +00,X) = hy,, (t = +00,X), (25a)
it = +00) = 2(7; = +), (25b)
wii(ti = +o0) = yhi(z; = +00), (25¢)
and vanish at past infinity:
it = =00.%) = Iy, (t = —00,%) =0, (26a)
(e, = —o0) = (e, = —00) =0, (26b)
Wh(z; = —o0) = ylh(r; = —o0) = 0. (26c)

This entangling of the boundary conditions gives rise to oft-
diagonal terms in the propagator matrices involving the
doubled fields. For full details, see Ref. [63].
Fortunately, when performing calculations there is no
need to double degrees of freedom in this way. The key
insight of Ref. [63] was that tree-level single-operator
expectation values (24) are produced using precisely the
same Feynman rules as in the in-out formalism, but with
retarded propagators pointing towards the outgoing line.
The retarded graviton propagator is
uv po

. P;LV'po’
ovwwle = hrPT 27
k o sgn(k9)i0’ 27)

where P,.,6 = Moy — ﬁn}wnm and /0 denotes a small
positive imaginary part. For the worldline modes ' and v/
the retarded propagators are respectively

M v ntv
.T. = Zimi (w T 20)2 5 (283)
1% v ntv
——o = Zimi W) (28b)

The Feynman vertices are unchanged with respect to the in-
in formalism: for example, the single-graviton emission
vertex from worldline i is
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§:_

1
hﬂu(k) + ikpkasipﬂséza +

Weik'biﬁ(k”vi)( Iz u_‘_kaSpu v)

CEl,uu P A
> L kpSit 587 Ak

(29)

where §(w) = 276(w). At tree level the WQFT simply
provides a diagrammatic mechanism for solving the
classical equations of motion in momentum space, and
so the use of retarded propagators ensures that boundary
conditions are fixed in the far past.

IV. RADIATIVE OBSERVABLES
Building on Ref. [61], we compute the momentum

impulse and change in v/

Apl = [md IS = =mio* (2 (@) )in-inlo-o.  (302)

A o= SRS = =i (@)l (30D)

but now also including radiation-reaction effects. Using the
definitions of the spin tensor S (9) and spin vector S%
(14b) we can then also derive the spin kick AS:

ASY = 2im (PV Ay + Ap W+ A Ay,

1

1
AS} = —e,o(STADT + ASY P + ASYAPY). (31)
m;

We seek the 3PM components in a PM expansion:

__?ﬁ'___

AAAA
WW\

| AN
AN

AN
WW\

AX =) G"ax™, (32)

where AX could be any of these observables: Ap/, AS/,
AS, or Ayt

The relevant Feynman diagrams for both calculations are
drawn in Fig. 1. These diagrams make no distinction
between conservative and radiative effects. As only the

2.2 (3)u

m?m3 component of Ap;”* and the m;m35 component

of Al//(13)” are specifically affected by the inclusion of
radiation-reaction effects we recompute these compo-
nents; for the rest, we simply bring forward our previous
results from Ref. [61]. Integrands are assembled using the
WQFT Feynman rules [58] in D =4 —2¢ dimensions,
which involves integration on the momenta or energies of
all internal lines; vertices contain either energy- or
momentum-conserving § functions, whichever is appro-
priate. The energy integrals, corresponding to internal
propagation of z/ or y! modes, are trivial: conserva-
tion of energy at the worldline vertices resolves them
immediately.

Each graph has three unresolved four-momenta to
integrate over. The first of these integrals is a Fourier
transform:

AX(b*, 0%, S1)

- / ¢155 (g 0,5 (g 1) AX (g, SM). (33)
q

where ¢* is the total momentum exchanged from the
second to the first worldline, and [, = [d”q/(27)".

%Wﬁﬁrw

%éﬁ?ﬁﬁj%ﬁ?w%@?%
MWMWW@”?@M

&%%ﬁwmw%

FIG. 1. The 32 types of diagrams contributing to the m3m3 components of A p<13)” and the m;m3 components of Al//(l3)” . Diagrams (a)—

(v) were already present in the conservative calculation [61], though their expressions are modified by the inclusion of radiation; the
mushrooms (w)—(ff) are purely radiative, and did not appear in the strictly conservative calculation [61]. Diagram (y) includes the same
worldline propagator with opposite i0 prescriptions, and so belongs to the K integral family (35). For brevity we use solid lines to
represent both propagating deflection z} and spin modes wﬁ”.
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Here we have implicitly defined the momentum-space
observables AX(g#, v/, 8""), which are given as linear

1° 1
combinations of two-loop Feynman integrals:

](‘71§62:03) [fllll .

ny.ny,....,ny

. ﬂf"bﬂ;l .. .f;"]

8(Z) - 00)8(Ca - v)) O S
- /f].fz D}'Dy---DY ;
D, =, - v, + 6,i0, Dy, = ¢, vy + 6,i0,
Dy = (¢1+ ¢, =g + ossgn(¢] + £3 = 4°)i0.
=4 Ds=6, De=(4-a),
= (=9 (34)

These integrals with retarded propagators were discussed
at length in Ref. [63]: propagators D,—D- are prevented
from going on-shell by the requirement that #; - v, =
¢, - v = 0, so we can safely ignore their i0 prescriptions.
We also require

K3y ngans [+
_/ (k=) 0,)6(£ - 0) 0¥ - P - ko
T ek Dy' Dy’ D5’ D' D5’ ’

Dy =¢-0,+i0, Dy=£-v,—i0,

Dsy=k>+osgn(k®)i0, D,=¢,

fﬂnkvl ...kyn]

Ds= (f—4)27 (35)

which accounts for the possibility of a worldline propagator
appearing twice, but with different i0 prescriptions—
diagram (y) in Fig. 1.

The subsequent integration steps were discussed in
Ref. [61], and are not substantially different with the
inclusion of radiation-reaction effects in the observables.
Tensorial two-loop integrals are reduced to scalar type by
expanding on a suitable basis, and then reduced to master
integrals using integration-by-parts identities. Expressions
for these master integrals were provided in Ref. [63], and
once the Fourier transform (33) has been performed on the
exchanged momentum ¢* we are left with the observables
in D dimensions. The scalar integrals themselves have
simple reality properties:

I((’l 102303)%
ny,ng,..., ni

K

— ( 1>nl+nzl(0| 162303)

..... nys

5 (_1)n1+n2K511?ﬂ2 wwww ns s (36)
i.e. they are either purely real or imaginary, depending on
whether they have an even or odd number of worldline
propagators respectively. While this implies that the
momentum-space observables AX (g*, v/, $%*) are complex
functions, the Fourier transform (33) introduces additional
factors of i, giving rise to purely real observables
AX(b*, V%, ).

The final observables A p(.3)”

B and Ay'** in four dimen-
sions are found by taking the limit D — 4, checking to
ensure the cancellation of all poles in the dimensional
regularization parameter € =2 —2. We generated our
integrand in D = 4 — 2¢ dimensions in order to account
for possible cancellations of ¢ poles with the two-loop
integrals. Like in Ref. [61] we have verified that the
supercharges p?, w; - ;, p; - w;, and p; - ; are conserved.

This means that the following identities,

3 1 2
0=p,-Apy +ap-ap?,
0="9, Ay}’ +Av753) 9+ A Ay At Ayt

(3)

0=p,-ay{) +ap ¥+ apl Ay +ap Ayl

(37)

are satisfied.

A. Results

We find it convenient to decompose the observables into
four gauge-invariant parts each:

Apltl - Apfzggs + Apz( cg)ns + Apz(ra)d + Apt(reZd’ (388')

AS" = ASIE 4 ASTE L ASTH 4 A

i,cons i,cons ;rad irad*

(38b)

The split into conservative ‘“cons” and radiative ‘“rad”
pieces is done with respect to the integrals (34), (35):
the potential and radiative regions [63]. Meanwhile the split
into (4) sectors is defined with respect to behavior under a
time-reversal operation:

AX(i)|v’,‘—>—v’.‘ = iAX(i)? (39)

which ﬂips the signs on the timelike vectors % (and the
momenta p! = m;v!) but not the spacelike vectors b* and
d!, leaving y = v, - v, invariant. Under this operation,
S =" ,,pla? changes sign.

For the impulse, we have

2,2 3 -2
(@4 _ mymj | (4, arccoshy my
Apl,con? - |b|3 |:Cl ! +Z iy n+ly

7 -1 n=1
2.2
Git)u _ MMy (+)
Apl,radﬂ_ EE (v)cs !
3 2.2 n—2
3 rmims (m, (=)
Apgg )M: l 2(_> Cn "
.cons ;:1: |b|3 ",
A (3;—)/4_7”"%’"%
pl,rad - |b|3

(“)u arccoshy

(=)u
x{q + 5 27
Vye—1

¥ T
(7))

(40)
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where

I(v) :——+—2+&;1)

arccosh(y) (41)
3 v v

is a universal prefactor, and v = \/y*> — 1/y. The vectors
are given by

e =, ) - L (42)

with basis elements even/odd under time reversal:

78 - b”, ; b'uy ; Lﬂs - jb”7 l / bﬂ’
P { AT b2
a;-vid; - V5o, a,~baj-lAMﬂ a;-baj-v; |, 43
s ) N a
o o pE kg (439)

- a;-L ,a;-v;, aj-a; , a;-va;-v;
p&_{U’;, lb| Ul;* l|b|lLﬂ’ lb|2]l}’;’ l |ll]|; J/Ul]:7
ai-lA)aj-lA) ﬂai"l)iaj‘if\ ai'viaj'l;/\

TG A TR S

where i, j, k=1,2and 1 =2, 2=1, [# = L*/|L| and
b" = b*/|b| being unit-normalized vectors. Except for
denominators of (y> — 1)"/? the remaining scalar compo-

nents fff) are polynomials in y, Cg;, so we refrain from
providing explicit expressions in the text; instead, we refer
the reader to the Supplemental Material [145] for full
expressions.

Let us remark on certain properties of this result.

Ap ¥ and ApP ¥ are respectively associated with

the real (imaginary) integrals (36), i.e. those with an even
(odd) number of worldline propagators. The factors of z in

A p§3;_)” thus arise from the overall factors of iz in the
purely imaginary master integrals—see Ref. [63]. We also
note the behavior under v — —uv: in each case, the radiative
components pick up the opposite sign from the
conservative components. Finally, the function Z(v) is

familiar: it appears in the 2PM radiated angular momentum
. 3; 3=
(56). As we shall see in Sec. V, Ap ¥ and Ap* ¥ can

i, i
be inferred directly from lower-PM observables, using a
generalization to the linear response relation [81-83].
From the impulse Ap# we straightforwardly recover the

four-momentum radiated from the scattering event:
Pl =—AP' = —Ap/| — Aph, (44)

which vanishes if we consider only conservative scattering.
Here we agree with a recent 3PM worldline EFT result for
PL , obtained by Riva, Vernizzi, and Wong [75]. We also
agree with our own previous result for the leading-order

A

radiated energy in the CoM frame E 4= P - P,

produced in collaboration with Plefka and Steinhoff
[57], in which performing the required integrals necessi-
tated a PN expansion—now we no longer need to do so.
While knowledge of both 6 and P, allows one to
reconstruct Ap/ for aligned spins, this is not true in
general—thus, in this work we fill in the missing pieces
from Ref. [75]. However, we note that a corresponding
expression for J% ; at 3PM order is still lacking [the leading-

order 2PM is known, see Eq. (56) below].
The 3PM spin kick takes a similar form as the impulse:

2,2 3 n—2
3 mym _yu arccoshy m; _
AS(I,cor)lg = |é|32 |:d(1 W + Z <_> d1(1+){l:| >

V 72 -1 n=1 my
(G _ mim3 (-
ASl,rad - |b|3 I(”)di
3 2,2 n-2
(s _ Ty <m1> (+)u
AS = — dy, ",
1,cons ; |b|3 m,
A3
I,rad |b|’i
h 1
i oy (112
Vri—1 2
(45)

but in this case AS™

AS (13;+>” with imaginary integrals (36). The vectors d, d',
are given by

" is associated with real integrals and

di" =GP (v, Ce) - 7, (46)

and involve the same basis of vectors (43). Again, we refer
the interested reader to the Supplemental Material [145] for
fully explicit results.

B. Scattering angles

Conservative dynamics with spin vectors aligned to the
scattering plane are described by a single angle:

Aplll,cons = p”(COS econs - ]) + poobﬂ sin gcons’ (47)
where p* is the CoM momentum (15b). However, generic
spins and radiative effects both require a generalization of
this simple parametrization. Generic spins result in non-
planar motion and a nonzero spin kick; radiative effects in
loss of total four-momentum P ;—we will present a more
generic parametrization below (57).

For generic misaligned spin directions the impulse and
spin kick are parametrized in spherical coordinates in terms
of several angles. We focus on the following two, including
radiation-reaction effects:
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sin 0 _ |Ap1|’ sin 02\ _ |Ap2|’ (48a)
2 2P 2 2P
b-A b-A
sin(¢y) = P P ) sin(¢y) = —sz- (48b)

The conservative counterparts of these angles, 6., and
®eons» are defined by instead inserting Ap - on the right-
hand side. In this case the particle label on the angles is
superficial as Ap .o, = —Aph o For aligned spins at
3PM order these two definitions are equivalent to each
other: 8, = ¢;, which using Eq. (47) holds to all PM orders
for strictly conservative scattering. Up to linear order in
spin the angles equate even for misaligned spin vectors:
0; = ¢; + O(S?), as dependence on the spin vectors S
only enters through the spin-orbit terms L - S;. Surprisingly
though, and in contrast to the use of spherical coordinates,
we will find that only one of these angles suffices to fully
describe the conservative impulse and spin kick.

In the conservative case the interpretation of 6., and
Peons 18 simple. First, ¢, measures the total scattering
angle in the CoM frame in the plane spanned by b* and p.
Second, 6., measures the total angle between the initial
and final momentum (which may point out of the initial
plane). Including radiation-reaction we may still compute
0; and ¢; using Eqgs. (48) although their physical inter-
pretation as scattering angles is less clear. We also note that,
while 0, is independent of the choice of SSC, ¢; is not due
to the manifest dependence on b*, which transforms under
SUSY shifts. To put it another way: the notion of initial
plane of scattering depends on the SSC. For this reason we
will mostly focus on 6., and later use it to parametrize the
Hamiltonian in Sec. VL.

We expand the angle 6; in G and spins:

/\

7 i(w) e -3 om S

1

Z

ij

)1211))],];41/_'_9(}1221] bﬂbb

O3y 4 ) vg)] +O(S3,GY). (49

Here i and j take the values 1,2. The coefficients 0mA) are

functions only of y, v, and Cg;. Note that only the final

(n:2.4,1.j)

coefficients 0 depend on the particle label. The

coefficients 9( 4) are provided in Appendix B and full
expressions for the angles in the Supplemental Material

[145]. Expansion coefficients for 6., i.e. oA are

defined in an equivalent manner.

For aligned spins we verify our results for 8, = 0,
against several results from the literature. First, we repro-
duce the result of our earlier work [61] where the radiative

part of 8; was computed using linear response (see Sec. V)
and has subsequently been extended to all spin orders by
Alessio and Di Vecchia [146]. Second, we match our results
for the probe limit and comparable-mass PN results
[52,147,148]. Finally, for misaligned spin vectors in the
high-energy limit where we let y — oo while keeping E and
! constant we recover a finite result:

GE 1 z"1+_2‘ﬁr+3(i7"1+)2
] 2|bf?

a?+2(b-a;)*] 32 (GE\? L-a
sl (ot B I IRV St
+Z BT %3 (w) [ BT

341a} +a2+50(b-a,)* 9457 . b-awi-a;
20 e 8192 1 |2
2a3 +5(b-a;)?

5Z & b]?

Here we use the notation dff = a £ db. Cancellations
between the conservative and radiative pieces are essential
to ensure the finiteness of this result. Note the dependence
on the particle label in the second term of the second line,
which disappears for Kerr black holes.

Finally, let us discuss parametrizations of the full
radiative observables. One may introduce Lorentz trans-
formations A;#, that transform the initial momenta and spin
vectors to the final ones [51,53,149]:

] L0126, (50)

Api = (A, = 8)pi. (Sla)

AS! = (AF, - )", (51b)
The same transformation acts on both p/ and S%: one sees
this naturally given the requirement that p?, S7, and p; - S;
must all be explicitly conserved. Conservation of p? (S7)
implies that the final momentum (spin vector) is given by a
boost (rotation) of the initial one. Conservation of p; - S;
implies that the boost and rotation may be combined into a
single Lorentz transformation.

V. BEYOND LINEAR RESPONSE

The Bini-Damour linear response relation is used to infer
linearly radiative contributions to the scattering angle 6
from (angular) momentum loss at lower-PM orders. For
aligned spins [81-83]

1 /00 a0
=—(= ZE 2
erad ) (0] Jrad + oE rad) ’ (5 )

where J 4 and E 4 are respectively the angular momentum
and energy losses. In Ref. [61] this was used to deduce the
radiative part of the quadratic-in-spin 3PM scattering angle
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o0

rad
our full calculation of A pg . At 3PM order, given that
E.q ~ O(G?) the second term plays no role: the linear
response is entirely accounted for by the radiated angular
momentum J,,q ~ O(G?).
Using our newly derived observables we have checked
and can confirm that at 3PM order the linear response
relation (52) generalizes for misaligned spin vectors to

for aligned spins, which we have now reconfirmed with

0A 0A
Apis = 2( P+ 050 (53)

a Jy rad apb rad >

Again, the part of this formula carrying P%; vanishes at
3PM order, but we include it to maintain the analogy with

Eq. (52); in Eq. (38a) we defined Ap! ™" as the part of the
impulse even under a time-reversal operation, where
vf — —v'. As a special case of Eq. (53) we derive a linear

response relation for 6; (48a) at 3PM order:

(+) 09, " 69
ei,rad = 2 (a‘]ﬂ ‘]f”ad + == oPH P/;ad (54)

where 0,4 = 60; —0.,s and the (+) superscript was
defined in Eq. (39).
For the spin kick we learn about the odd part ASE_)” :

AS(I;;!:] — 5 IJy lez

1 [oASH 0ASY
< EYE rad oP rad> (55)

The J¥ derivative is equivalent to an L* derivative (16):
when taking these vectorial derivatives, we ignore all
constraints (e.g. L - p; = 0) and treat the vectors involved
(L*, p, a') as independent. All dependence on b* should
be reexpressed in terms of L# by inverting L¥ =
_E_leﬂu/)o‘bbpll)pg'

Both of these linear response relations involve the full
vectorial radiated angular momentum J% ;. We require it
only up to 2PM order:

rad*

AM3 L2 2}/2—1
Jrad =N |: |l(7|1—~ )I(U)C”
2vaz-¢ a3C CEz
1
X<+b|<1+ o ZW ﬂ

(56)

where v=1/y?—1/y is the relative velocity, a§ = d} + db,
and the complex vector is # = "+ lb", the universal
prefactor Z(v) was given in Eq. (41).

For zero or aligned spins, one may straightforwardly
show that the new linear response relation (53) reduces to
the Bini-Damour formula (52) by inserting [36]

Y=
y -1
+ (cos@ —1)p*, (57)

APt = po b sin® — v, - Py

which holds up to the desired 3PM order. This schematic
form of the impulse shows that Ap/ is fully characterized
by 0 and P’ ;: as AptHr = p_sin 0b" knows only about
the scattering angle, the linear response relationship yields
no information concerning Pk ;. We use the fact that, for
aligned spins, J% ; = —JqL*.

However, in this section we generalize beyond simple
linear response. The linear response relation (53) forms part
of a more general pair of relationships that allow us to
reconstruct conservative and radiative parts of the scattering
observables at higher-PM orders:

1
Api (L, pi,ST)

A
pl cons 2(
+Ap}(L! + ALY —pf = Ap[.S; +AS])), (58a)
1
Ap/il,rad :i(Aplil(L”’pl vSM)
— AP (LF + ALF,—pt — Ap!, SY + ASY))  (58b)
for the impulse, and
AS’I‘COHS 2<AS”(LM’pl ’Sﬂ)
—AS’;(U‘—%AL",—p Ap" S”+AS”)) (59a)
AS* _! ASH(LH S"
irad _E( i ( ’pz ’ )
+AS’,.‘(L” +AL",—p’; —Ap’,-‘,Sﬁ’ +AS’;)) (59b)

for the spin kick; we will define the split AX = AX ., +
AX,,q of the full observables into conservative and radiative
parts below. We interpret all observables as real functions
of the initial kinematic vectors: the orbital angular momen-
tum vector L# (14a), the spin vectors S¥ = m;a’, and the

momenta p = m;v.

A. Derivation

We define the conservative part of a single-operator
expectation value as the average of its value evaluated in the
in-in and out-out prescriptions:

<O>cons = (<O>in—in + <O>0ut—0ut)' (60)

| =

The expectation (O) ,_ou 1S computed using precisely
the same Feynman rules as (O);,_;,,» but with advanced
propagators pointing towards the outgoing line instead of
retarded, both on the worldlines and in the bulk. At 3PM
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order, one may verify by explicit calculation that this
definition of the conservative dynamics coincides precisely
with evaluating integrals only in the potential region—the
approach previously taken for the conservative 3PM spin-
ning dynamics in Ref. [61].

Specializing to the impulse Ap/, we therefore have

U
Api,cons

1
=5 (Ap/il.infin (

2 ’pl ’Sﬂ )+Apzout out(L+7pt+’Sﬂ ))

(61)

While Ap%;, ;. is given in terms of background parameters
defined at past infinity (— subscript), Ap/ o, is evalu-
ated in terms of parameters defined at future infinity
(+ subscript). As we prefer to express Apf o in terms
of initial variables we insert '

L =Lr, L' =LK+ ALK, (62a)
po=pf. pio=pi+Apl, (62b)
Sto=8 S =S5+ AS (62¢)

Thus p¥, and S, are given using our preexisting knowl-
edge of the impulse Ap/ and spin kick ASY. We can infer
AL#—and therefore L" —up to 2PM order from the known
2PM angular momentum loss J% ; (56). Using Eq. (16)

AJF = —J" |
1 . .
— AL¥ —(P-Ap;S* + P (p; + Ap;)AS"
+Z:mz( piSt + P (p; + Ap,)AS:
—P-AS;pt —P-(S; + AS,)ApY), (63)

which we can rearrange to find AL#*—ignoring the (linear)
momentum loss Pk, ~O(G?). In the nonspinning case
ALF = —J¥ ;. i.e. the change in the orbital angular momen-
tum vector is given precisely by the total loss of angular
momentum.

Finally, to obtain Eq. (58) we use the fact that

Ap/il,outfout(L”’ p}il’ S/ll) = Aplil,in—in(l‘ pz ’ Sﬂ) (64)
which simply tells us that, having computed Ap; . . we
may easily derive Ap/ . .. by continuing p{ — —p/.
This works because the time-reversal operation induces
a change of sign on the i0 prescription of the propaga-
tors (27) and (28). For the graviton propagator (27)
sgn(k)i0 = (k - v;)i0: the sign on the energy component
of k* is defined by the direction of either velocity vector v*.
For the worldline propagators (28), w — —w: the gz;
propagator (28a) remains the same, but with {0 — —i0,

while the y/} propagator (28b) also picks up an overall sign.
This overall sign is compensated for in the WQFT
Feynman rules for by the vertices, which are themselves
invariant under time reversal except for S* = e 1/ S7,
which flips as " — —S/“. Each time we propagate an
internal spin mode we pick up a factor of S, which
compensates for the additional sign.

The derivation of Eq. (59) for the spin kick proceeds
similarly, although in this case as AS’ is defined indirectly
via Apf and ASY (31) we obtain the different relative
signs. One can see why this is necessary by examining the
spin kick at 1PM order:

. 4m1m2611ub[”(7)1 - 27712)”]
b]*\/r* =1

which is of course purely conservative. It is odd under the
time-reversal v¥ — —¢%, which agrees with Eq. (59b) we

have ASEI)”(L”,pf,S’;) = —ASEI)”<L” =P, S;).

AS{H +0O(8?),  (65)

B. Interpretation
(m:=)p

We can now derive Ap; ;" at any PM order m. To do
so, we insert the PM decomposition (32) into Eq. (58a) and
perform a Taylor-series expansion of the right-hand side,
picking out the desired PM order m:

m 1 m 3
Ap{mH =§<Ap,( H(Lr, p*, 80y + Ap"H (e, —pt, St

+aAp( Du (Lﬂ _pﬂ SM) ALY
oL"
2 m=1)p i
6Ap (L, =P8 « (w
+Z< op" AP;
j=1 J

PIN S O )
L 9Ap" (LK —p )Asj.'))

o8
+-- > (66)

Taking the difference between this formula and its counter-
part with p — —p¥ gives Ap!™ ) on the left-hand side,

1,cons
and the first two terms on the right-hand side cancel out.

Thus, Ap!"" " is given entirely by lower-PM observables.

,cons

Similarly, using Eq. (59a) we may predict ASE cons) .

Using Egs. (58b) and (59b) by the same procedure we
may determine A pl(fa)(’; and ASQQ‘ . However, at 3PM order
an additional simplification is possible: using the fact that
the conservative and radiative observables have opposite
behaviors under v — —v. As J£, is the only nonzero
radiative observable at 2PM order it follows that all other
contributions to the linear response relation cancel out at
3PM order, leaving us with Egs. (53) and (55) as proposed
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earlier. This we have checked -carefully by direct
calculation.

We anticipate that Eq. (59) will be useful for future 4PM
computations, as we will not need to calculate the complete
radiative observables: for the impulse we need only
calculate Ap(l C(m)q and Ap(1 rad>” directly. This cuts down
on the regions within which we need to evaluate the master
integrals: only the conservative sector for the real integrals,
and the radiative sector for the pseudoreal integrals.
However, in the radiative sector this is predicated on our

knowing the 3PM angular momentum loss J£a3 , Which
currently we have only up to the leading 2PM order (56) in
the spinning case. For nonspinning bodies, the 3PM
angular momentum loss has been determined and used
to infer contributions to 4PM scattering observables [140];
a similar concept will certainly apply in the presence

of spin.

VI. HAMILTONIAN

Let us now focus on the strictly conservative part of the
dynamics, encoded by Ap/ .~ and ASY . Computing a
3PM quadratic-in-spin Hamiltonian maps these unbound
observables into bound dynamics, which in the spinning
context is especially useful given the current lack of
direct analytic continuations between bound and unbound
observables with generic misaligned spin directions. In line
with recent literature on post-Minkowskian dynamics
[127,130,139] we work in the CoM frame with canonical
variables p(¢) and x(7) describing the relative momentum
and position of the two bodies respectively. These dynami-
cal variables satisfy canonical Poisson brackets:

{x"(1),p"(t) }pp. = ™",

{S7(1). 8} (1) }pp. = €""*S{(1).

The spin of each body is described by the spin vectors S;(¢),
with the canonical SSC described in Sec. II B.

The Hamiltonian H is fixed in isotropic gauge, meaning
that it does not depend on x(¢) - p(z). It takes the general
form

(67a)

(67b)

H(x,p,S \/p +m? —i-\/p +m3+V(x,p,S;)  (68)

with gravitational potential

V(x.p.S ZoAvA x,p) + O(S?)
=vO 4 ZV (L)) 4 Zv(Z,a.i.j)O(Z.aﬁi.j)
i ij.a
+O(83). (69)

The potential is expanded in spin structures:

o0 =1, (70a)
o = (XxP)-a; 70b
TTRE 7o
.. a,- - a;

OL) = |X|2’ : (70c)

. X-a;X-a;
OR20)) — — L (70d)

. p-ap-a;
O23.4.j) — Tf , (706)

where a; = S;/m;. In each case the first index counts
the spin order; subsequent indices count the specific
structures involved. Note that the symmetric spin structures
ORal2) — ORa2l) are counted twice and their coeffi-
cients are equal. Finally, we PM-expand each component:

VA(x,p) = ;(GM) ). (1)

x|

These coefficients ¢4 fully encode the Hamiltonian.

We fix the coefficients ¢("4)(p?) by matching observ-
ables computed from the Hamiltonian H with scattering
observables from the WQFT. Hamilton’s equations for the
dynamical variables are

oH . oH : oH
=, - -, Si:—Si -, 72
op P= "5 x5 (72

and we solve them perturbatively up to third order in G:

x(1) =xO + 3" G"x" (1) + 0(GY).  (73a)
n=1

p(t) =p? + i G"p" (1) + O(G*),  (73b)
n=1

= i 1)+ O(G*).  (73c)

0 — Po_ ©0) — s _g. 74
X §E can» P P> i i,00° ( )
where p*=(0.ps), S can = (0.8; o) and ban = (0, beyy).

The dimensionless parameter & is defined as & = E|E,/E?,
where E = E, + E, and E; = \/p3, + m?. Inserting the
expansions of the dynamical variables (73) into Hamilton’s
equations (72) we get perturbative equations of motion at
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each PM order. The spatial components of the impulse and
spin kick in the CoM frame are then given by

Ap® = / " drp) (1), (75a)
) _ % 4.&0
AS;V = drS;"” (1), (75b)

where these are the conservative 3-vector components of
Api and ASY .. The change in the canonical spin vector is

i,can*

given in terms of the covariant spin kick by

ASt . — AS

 omPAS; (PP + ) + P (S + AS) AP 76)
a Ei + m; ’

having used the definition of S/
conservative scattering.

Quite remarkably though, we find that knowledge of
Ocons (48) suffices in order to fully fix all coefficients in the
Hamiltonian. The impulse and spin kick may then be
expressed in terms of the coefficients c¢(*)(p?) and
derivatives thereof. The derivatives come about when we
evaluate x by differentiating H with respect to p:

(18), and assuming

ac(n;A) 2 ac(n;A) 2 o

ap(p )2 ap2(p )= opemany),  (77)
where c(54m) = g c("4) /(9p?)"—the observables are
written as functions of ¢4 We then match those
expressions to the explicit WQFT-derived results and
solve for the coefficients. We print the results until linear
in spins here, and the results quadratic in spins in
Appendix C:

2 4
: D (3:0) 1 Do p(1:0) 5(2:0)
c<3 0) (pz) — _—4E§9can +%D |:E—§Qcan ecan :|

4
_ ! 2 p_°°(9(1;0))3
48p2, E&

’

PPl

5
30) 2y _ _ Poo p(3:L0) 1 Do o(1:0) p(2:1.)
C( ! )(p )__4E§ can +27[piOD|:—E§ (ecan ecan

+e£§i?)a£;§*">)}

1 S ot (L
D? [p—” (64)2600:" ﬂ (78)

C16ph T | EE

PPl

Here (ng;A) are canonical expansion coefficients defined in
Appendix A and related to the covariant expansion coef-
ficients of Eq. (49) by

0L = Tol. (79a)

it =T (0" +n—L= gl ). (79
Sk B (790)

A particular subtlety here is that 6% is given in terms of

the previously defined background variables p., 7,

E; = \/p% + m? evaluated at past infinity, e.g.

_ PP :E1E2+Pgo
myny myny

: (80)

instead of the dynamical momentum p(¢): we interpolate to
the full dynamical coefficients c">4*) simply by replacing
one with the other. We have also introduced the differential
operator

Dx] = 2P=X). (81)
0P
and D?[X] = D[D|X]]. The angle and its coefficients are
given in Appendix B, together with full expressions for
the Hamiltonian coefficients given in the Supplemental
Material [145].

We have checked this Hamiltonian numerically against
the recent results obtained in Ref. [139], which also included
3PM quadratic-in-spin terms. Our results complement those
by adding S5, contributions to the Hamiltonian together
with finite-size effects (Cg ; terms) in the S7 sector. We have
also verified that the PN expansion of this Hamiltonian
correctly reproduces 4PN results in the isotropic gauge [29].
We did so by PN-expanding the ¢(4)(p?) coefficients in
powers of p?.

Finally, let us observe that having expressed the coeffi-
cients of the Hamiltonian in terms only of the scattering angle
¢can» this implies that the full conservative scattering observ-

ables A pgi)g’ns and AS Ssc)o’lm may themselves be expressed in
terms of this angle. We would obtain the precise relationship
by solving Hamilton’s equations again for the impulse and
spin kick, but this time plugging in expressions in terms of
(Peons- In contrast to the Hamiltonian, the relations thus
obtained are gauge invariant and will be an intriguing topic

of future studies.

VII. UNBOUND-TO-BOUND MAPPINGS

Let us now discuss how our results may be applied to
describe bound orbits, which the now-complete 3PM
quadratic-in-spin Hamiltonian (68) gives us partial access
to. This will allow us to determine the binding energy,
which together with the radiative fluxes may be used to
inform complete gravitational waveform models. In this
section we specialize to spin vectors aligned with the orbital
angular momentum vector:

St = ma = Gm?yL*, (82)
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where y; are the directed spin lengths and S/, = S}. For
Kerr black holes m;|y;| are the radii of the ring singularities,
and —1 < y; < 1. Using Eq. (19) we see that for aligned
spins Ir = I:é‘an; however, their magnitudes differ and so

using Eq. (19) we introduce

|Lean| _ |0l | € 8
)= el ¢ ov ). (83
GMu ~ Gmp T2\ Xt (83)

where £ = (E—M)/u is the reduced binding energy,
6= (my—my)/M and

_ myyy £ moyy,

, 84
X+ M (84)
L CE,lm%)(% + CE,Zm%)(% 85
XE+ = M2 : (85)

Using axial symmetry the Hamiltonian E = H(r, p,, 2, x;)
depends—besides the masses m; and finite-size coefficients
Cg ;—on the radial coordinate r and momentum p,, where
in axial coordinates

2

Py
pP=pi+ L. (56)
The axial momentum p,, = |L,,| is a constant of motion.
In all of these expressions we leave the dependence on
masses m; and finite-size coefficients Cg; implicit.

A. Numerical PM binding energy

In Fig. 2 we plot the reduced binding energy & =
(H —M)/u for circular orbits as a function of the orbital
frequency GMQ leading up to merger. It is compared with a
numerical relativity (NR) simulation provided by the
Simulating eXtreme Spacetimes (SXS) Collaboration
[150], extracted in Ref. [151]. Our plots are also determined
numerically: within the Hamiltonian we set p, = 0 and,
using p, = 0 = —0H/dr, we solve for A(r) for different
orbital separations r and with specific values of y, y,. The
reduced binding energy & is plotted against the orbital
frequency:

d&
32 = GMQ =— 7
X G a0 (87)

with the number of orbits leading up to merger provided by
NR—see Refs. [48,71] for more details.

The conclusion of these plots is somewhat disappointing:
the quadratic-in-spin part of the Hamiltonian yields little
improvement over the spin-orbit contribution. However,
there is a far more noticeable improvement when going
from 2PM to 3PM order, which suggests that producing
a 4PM spinning Hamiltonian will be a worthwhile
endeavor. A similar improvement of the 4PM (hyperbolic)

GW cycles before merger

40 20 10 5
—0.08 k mi/my =2, x1 = 0.871, x2 = —0.85 A
-0.04} 3
—-0.05} 3
pr=e=: - NR
— L r a0
w T006¢ 2PM S
ook 2PM S*
T 2PM S*
—0.08f ——3PM 5"
[ ——3PM S*
—0.09F ____3pp g2
0.02 0.03 0.04 0.05 0.06

GMQ

FIG. 2. The reduced binding energy &= (H—-M)/u for
circular orbits determined numerically and plotted as a function
of orbital frequency GMQ up to the innermost stable circular
orbit. It is compared for different PM and spin orders with a NR
simulation provided by the SXS Collaboration [150].

Hamiltonian over the 3PM seen in the nonspinning case
[71] also encourages us in this direction; however, it will
also be important to resum in the test-body limit by feeding
these results into a suitable EOB model [45]. It is also worth
noting that, as these plots are generated for circular orbits,
they do not showcase PM results in the best possible light:
it is anticipated that PM-based results will perform better
for highly elliptical orbits, where the velocity at closest
approach between the massive bodies is large [71].

B. Analytic PN binding energy

Working in the PN expansion we may derive precise
analytic formulas for the binding energy £ and periastron
advance A¢. Following closely the discussion in Ref. [148]
(see also Refs. [35,149]) our starting point is the radial
action for unbound orbits:

Wr(g’ ’1’)(1') =

Pf [ drp(r.E ). (88
Gt | drpdAr i) (@)

where Pf denotes the partie finie of the radial action; the
energy constraint E = H(r, p,, 2, y;) can be solved for the
radial momentum p,—but we refrain from doing so
explicitly. The innermost point r;, is given by the root
of p.(rmin,&,4,x;) =0. This unbound radial action
is related to the bound radial action i, by analytic
continuation:

i (EAxi) =w(EAyi) —we(E=Ai=xi),  (89)

which sends 4 — —4 and y; — —y;. For unbound dynamics
the reduced binding energy £ > 0 (y > 1), but now we
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consider values £ < 0 (0 < y < 1) as we see in Fig. 2. The
reduced binding energy £ for circular orbits is derived by
setting the bound radial action to zero:

ir(€.2.2;) = O. (90)

Using Eqs. (90) and (87) we may write £ as a function of x,
the spins y4, yg+, and v.

Rather than the Hamiltonian, we prefer to derive the
radial action—and thus the binding energy £—from the
gauge-invariant conservative scattering angle 6.,,,. It is
given by a A derivative of the unbound radial action w,:

d
ZH—W,(E, ﬂ’)(i) =

EYl _(9cons(5’;{’)(i) +”)’ (91)

and by analytic continuation it is related to the periastron
advance for bound orbits [34-37]:

A¢<5’ /lv)(i) = econs(gv j'v)(i) + econs (5’ _/1’ _Zi)' (92)

We PM-expand the angle in 4 as

0
gcons = ZW ’ (93)

where 9" depends on y; through the ratios y;/A. The
analytic continuation in 4 (89) is trivial for all terms in w,
except the one coming from the nonspinning part of oW,
wherein the dependence on 4 is log(1). With this exception
the odd-in-G terms in the PM expansion disappear in the
difference (89), and the analytic continuation of log(—4) —
log(4) leaves behind a finite piece. We therefore have

Here y should be reexpressed in terms of £. The integral on
Ais elementary but left unresolved because of the remaining
A dependence inside 8.

Naively this result indicates that our 3PM results have
no relevance for the mapping to bound results. However,
this obstacle is conveniently circumvented in the PN
expansion by use of the so-called impetus formula with
PM-coefficients f:

=G
P’ =re%t Z_kfk‘ (95)

This is fed into the definition of the scattering angle by way
of the radial action (88):

T + GCOHS

2
dr— A
G / “arp(red

= G
:_2/ ()/1\/(;2M2 2\ P> Z e )
rl’“n k

(96)

This integral has been performed up to high orders in G in
Ref. [43] and the scattering angle is then expressed in terms
of f,. Knowledge of the 1PM, 2PM, and 3PM scattering
angles suffices in order to fully determine f 3, which may
in turn be used to reconstruct the leading-PN terms of the
angle at higher PM orders.

In order to reconstruct the quadratic-in-spin binding
energy up to 4PN order, we find it necessary to reconstruct
the leading-PN and subleading-PN parts of ® and 6

22— 1 1 o) respectively, at both linear and quadratic order in spin.
i(EAyi) = \/yl— dﬁﬂT”. (94)  Following this procedure, we discover that the binding
-7 energy is
|
9+v 81 —57v + 12

2 =x|1- —x2 o

¢ x[ T T 2w }
L [7)(+ - 8y_ . (9—6lv)y, —(45-v)8y_ e (405 — 1101v + 2902 )y, — (243 — 1650 — 1?)5y_ L ]

3 18 24

Sx
-2 |2 (5= 60~ - (1480

7x?
(198 — 2,2
+216(( 98 — 680v + 3v° )y

2

Sx
+Z%,+ +F((5 - U))(%,+ - 25)(%, )

—2(171 = 1370)8y_y +

(63 —251v + 561%)x%)

7 ((1125 = 10250 + T2 )yd . —26(279 = T0v)xh ) + - ] (97)

At each order in spin, we give the terms up to and including next-to-next-to-leading order in the PN expansion. With the
nonspinning terms appearing up to 2PN order, the spin-orbit and spin-spin terms appear up to 3.5PN and 4PN order

respectively.
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C. Radiated energy

Finally, we may also determine the energy radiated per
orbit in the CoM frame [37]:

Elroa:)(imd(g’ /1’)(1‘) = Erad(57 L)(i) - Erad(‘g’ -4, _)(i)7 (98)
where E,q = P- P,y derives from the full radiative
momentum impulse Ap (44). The same analysis was also
done successfully by Riva, Vernizzi, and Wong [75], who
confirmed that this result for the radiated energy for bound
orbits agrees with the corresponding 4PN terms from
Ref. [32]. To leading-PN at each spin order, we find that

houna _ 2% (14887 4(6T7, — 257 )€
rad M \ 1523 54
236(x2 —xt.,) +92)E
+( (Z+ );E/g) )() >+ (99)

Like in the binding energy (97), we see that the linear-in-
spin terms appear at 1.5PN above the nonspinning; the
quadratic-in-spin terms at 2PN above.

However, we emphasize that, unlike in the case of the
binding energy, this result for the radiated energy does not
encode the full leading-PN result. To see why, we recall that
in the nonspinning case the leading-PN radiated energy
may be derived from Einstein’s quadrupole formula:

(100)

58 " sp Tag

ound __ 27TH? <148<92
Erad = M

244¢ 85>

While we do reproduce the =% contribution, gaining access
to the A7 and 477 contributions via PM-based scattering
calculations would necessitate SPM and 7PM calculations
respectively: a seemingly impossible task. However, a more
encouraging conclusion was reached in Ref. [36]: that by
instead using the PM-scattering data to fix the form of the
(gauge-dependent) instantaneous fluxes of energy and
angular momentum, the leading-PN information could
instead be extracted from a future 4PM derivation. Such
an approach might be especially beneficial in the spinning
case, given the unbound-to-bound mapping’s current limi-
tation to aligned spin vectors. This would be similar to our
present use of the conservative scattering observables to
reconstruct a Hamiltonian, a prospect that we leave for
future work.

VIII. CONCLUSIONS

In this paper we have for the first time provided complete
expressions for the impulse Ap and spin kick AS/ at third
post-Minkowskian (3PM) order to quadratic order in the
spins of two scattering bodies, including finite-size cor-
rections. The computation relied on our use of the spinning,
supersymmetric WQFT formalism [57,58] and its exten-
sion to utilize the Schwinger-Keldysh in-in formalism

[63,76-80]. These results upgrade the previously obtained
conservative observables provided by the present authors
[61], and include knowledge of the total radiated four-
momentum P, which has also recently been computed
using worldline EFT methods [75]. We also wrote down a
scattering angle that encapsulates the motion for arbitrarily
misaligned spin directions.

Next, we demonstrated how both conservative and
radiative parts of these observables may be reconstructed
using an extension of Bini and Damour’s linear response
relation [81-83], incorporating the full 2PM radiated
angular momentum J% ;. These relations build on a split
into conservative and radiative parts as an average of the
full in-in and out-out observables. It will be exciting to see
how these relations may help produce results at 4PM order.
For spin effects this will require a 3PM computation of J%, ,
with spin, but one may already explore nonspinning
applications of the formula. Similar studies have already
been initiated in the nonspinning case in Ref. [140].

Using the conservative parts of our results—already
known from Ref. [61]—we constructed a two-body
Hamiltonian mapping our unbound results to bound
motion. This Hamiltonian describes the conservative
two-body dynamics up to 3PM order and to quadratic
order in their spins—it complements the Hamiltonian of
Ref. [139] by adding the terms O(S,S,) and finite-size
effects. We note that the coefficients of the Hamiltonian are
more complicated than the scattering observables. While
the observables can easily be reduced to a number of
polynomials in y, the Hamiltonian coefficients depend on
the center-of-mass variables in a complicated manner. This
is partly due to its gauge dependence, but also the necessity
of using a canonical spin-supplementary condition. This
canonical Pryce-Newton-Wigner SSC [142-144] we
showed is related to the covariant SSC by a supersymmetry
transformation.

It is an interesting study to explore whether gauge
choices other than the isotropic gauge could lead to
simpler coefficients in the Hamiltonian. Quite intriguingly,
we found it possible to fix all coefficients of the
Hamiltonian by matching to a single scattering angle
defined for generic spins. This in turn leads to the exciting
result that the conservative dynamics for generic spins can
be described by a single scalar. The expressions for the
impulse and spin kick in terms of the scattering angle thus
obtained are gauge invariant. They deserve further study
and preferably a direct relation highlighting the gauge
invariance. Such relations are similar to the eikonal
relations explored in Ref. [127].

We also studied mappings to bound orbits. This began
with using the complete 3PM Hamiltonian to produce
numerical plots of the binding energy for circular orbits
leading up to merger, in comparison with numerical
relativity simulations [150]. We successfully reproduced
the known 4PN quadratic-in-spin binding energy, and the
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leading-PM  radiated energy for bound orbits.
Unfortunately, these plots did not show a significant
improvement of the quadratic-in-spin Hamiltonian over
its spin-orbit counterpart; however, the effect of going from
2PM to 3PM order was more significant. This calls for the
future determination of the 4PM spinning Hamiltonian,
which—similar to the nonspinning case, and due to the
presence of tails—encounters nonlocalities that distinguish
between bound and unbound dynamics [68—71,103,104].
To inform realistic waveform models, it will also be
important to incorporate knowledge of the test-body limit
by way of the EOB formalism [45,46].

Finally, we determined the energy radiated per orbit in
the CoM frame from an appropriate unbound-to-bound
mapping [37]. Current limitations in this mapping restrict
us to considering only aligned spins; furthermore, this
approach does not reproduce the full leading-PN result—
which in the nonspinning case may be derived from
Einstein’s quadrupole formula. To overcome both of these
limitations, and following the suggestion of Ref. [36], we
believe that in the future it will be more profitable to focus
on reconstructing the (gauge-dependent) instantaneous
momentum and angular momentum fluxes. In this case,
a complete 4PM result would suffice to reconstruct the
leading-PN form of the radiated energy. Alternatively, we
hope that improved unbound-to-bound mappings for spin-
ning bodies will further alleviate these issues.

A natural continuation of this work will therefore be to
progress upwards in the perturbative series—both to higher
PM orders and higher spin orders. While higher PM orders
will present a challenge for the integration step, there has
recently been a promising development in this area: the first
complete analytic result for the 4PM momentum impulse
including radiation-reaction effects [70], wherein loop
integrals with retarded propagators were also used. With
a similar basis of master integrals, it will be possible to
tackle spin effects at 4PM order. While higher PM orders
present a challenge regarding the integration steps, higher
spin orders rather challenge the construction of the inte-
grand. In this case, it will be necessary to upgrade the
spinning A =2 supersymmetric worldline action to
include more supersymmetry—a tantalizing prospect that
we leave for future work.
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APPENDIX A: CANONICAL EXPANSION
OF SCATTERING ANGLE

Here we discuss the relationship between the canonical
and covariant expansions of the conservative scattering
angle 6,,,,. As the angle is independent of the choice of
SSC, only its expansion coefficients change when we
expand in canonical rather than covariant variables. The
canonical expansion is defined analogously to the covariant
expansion in Eq. (49):

3
Ocons = <|b |> [ can Zacanl
=1 can

zcan ]can (n211]) (n:2.2,1.4) 1 v
+ E T Ocan " + Ocan bganbcan
|bcan|

can al can

| bcan |

+0£gﬂ2’%z/ AMAD+9n24l] b}ctan,\b>i|

+ O(S3,GY). (A1)

Using the definitions of the canonical variables from

Sec. II B we relate the canonical expansion coefficients,

04 to the covariant ones, 074

o) = o). (A2a)

R ) N

o0 = (o0 LD
(l’l + 1>poo H(n;l,j)

) cons

Z(El —I—m,

n(n+1)p2,

+

) 0&2#5?) (A2¢)

(n+2)po

S g

N (s

_(n+2)pe
2(E; + m;)
n(n+2)pg g(n,0)>

- cons | »

(n:1.5)
9COHS

(A2d)
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pr2did) _ r( (1) p%oZFZ g2 APPENDIX B: SCATTERING ANGLE
i 5 In this section we print the 3PM contributions to
+ 1= (D™ E\Ey — mymy + p Ui 1.12) the covariant expansion coefficients of the scattering
2 mymy angle 6 defined in Eqs. (48) and (49). First, we print
(n+1)pe pmtiy (n+1)pe pean) the congervqtive contributior}s which are used -for
- m cons m cons the Hamiltonian. Then, we print the radiative contribu-
! ! l l tions. The coefficients that we have not printed
_ n(n+1)pg, g(n;0)> (A2¢) here may be obtained by exchanging the two particles.
2(Ei+mi)(Ej+mj) om The conservative nonspinning and spin-orbit coeffi-

cients are

)

. . JA . . .
The covariant coefficients eﬁﬁns are given in Appendix B.

230 _ 2(64y° — 120p* + 60y> = 5)[*  8y(14y> +25)v  8(4y* — 12y* — 3)varccoshy

o = e 1) T By

Gy 2r(16y* =20y 4+ 5)(512 - 8)  4(44y" +100y2 +41)v  48y(y> — 6)(2y* + 1)varccoshy

Ocons ~ = (72 _ 1)5/2 T (yz — 1)3/2 (7/2 - 1)2 (BZ)

These agree with the ones in Ref. [61] as expected from the discussion beneath Eq. (48). The coefficients e,ﬁi;,zgl*"’f ) are

cons -

=1y 35(r° = 1)°
Ls(— 8(4y? =2y — 1)(4y* +2y —1)  8(214y* — 223y% + 44)Cy
(r*—1)? 35(r° — 1)
167(1487% + 37472 +383)y  8y(32447* + 7972 + 4639)Cp v
5(7 - 1) 105(y2 = 1)
192(° — 8y* =7y — )v 16(8y° — 56y* — 24y% — 3)Cy v
(yz _ 1)5/2 (},2 _ 1)5/2 ’

9(3;2.1,1,1) e (4(96}/6 — 160y4 + 707/2 - 5) 4(1772y6 — 2946},4 + 13467/2 — 137)CE,1)

-+ arccoshy <— (B3)
32112) _ 4(96y5 — 160y* + 70y = 5)I?  32y(15y* + 46y> + 47)v  48(4y® — 36y* — 35y — 5)varccoshy

cons - (72 _ 1)3 (72 _ 1)2 (7/2 _ 1)5/2 (B4)

The coefficients eﬁiff"*” are
322.10) _ 4y(9000y'° +4404y% —2152y° — 12152y* +-8379y> — 1479)v
cons ]5(7/2_1)3(27/2_])2
e <_ (572 =3)(10y* =5y +9)y*>6  (100y® —160y° + 193y* —78y% +45)y*1?

128(y> = 1)%(2y* = 1)? 128(y2 —1)%(22 =1)°

(100y° — 160y7 —60y° +193y> — 12y* =78y + 12y +45y - 36)y’v 10(4y2 =2y —1)(dy%+2y—1)
6402~ 12— 1) )”( 1)

2(1192y* —1382% + 295)CE,1) _4y(10744y° +13474y* +2665y> +-9237) Cg v

35(2—1)? 105(y2—-1)3

e <2(6568y6 —11114y* 5079y —463)Cg,; _ 2(960y'° —2560y® +2540,° - 1150y* 225/ 13))
35(7 1) (=132 =1

16y°(60y'° —600y° +551y° —63y* —63y> +15)v_ 32(8y* —56y° +26y* — 18y —3)CE’11/> (B5)

(P =1)722r = 1) (F=1)7? ’

+ arccoshy <
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32212) _ _ 2(960y"'% —2560y8 + 25407 — 1150y* +225y> — 13)I'?
cons (7/2 _ 1)3(27/2 _ 1)2
+4y(1800y'° +2020y% — 424y° —3032y* +1703y> = 231)v
3(rP =122 -1)
N 16(60y'? — 66470 +519y% — 31y° —43y* 4 7y% — 1)varccoshy
(=122 -1)?
R (3(}/2 + 1)(57* =4y +3)7°T%  (100y% —60y” — 160y° — 12y° +193y* + 12> —78y% — 36y+45)y2u)_
2(r =12 -1) 64(r* = 1)*(2r* = 1)

(B6)

. . 3;2,3,i,j
The coefficients Gﬁons £J) are

32311 _ 7(18624y% + 24848y° — 45192y* — 58631y> + 36351)v 704y° — 880y* + 312y — 23
o 15(72 = 1)*2r2 - 1) 2(2 =12y - 1)
2(1376y* — 1294y% +233)Cg;\  47(87207° + 14894y* — 22663y> — 37071)Cg v
352 -1)° 105(y% = 1)*
L 2(4064y° — 6562y* +2997y> = 359)Ce,1 1728y — 36647° +2584y" — 673y + 41
35(2 - 1)* 20y =)' 2rr = 1)
64(3y8 —35y% + 9y* +42/2 +6)v  16(8y® — 80y° + 44y* + 99y2 + 15)Cg v
(},2 _ 1)9/2 - (yz _ 1)9/2 ’

+ arccoshy < (B7)

32312) _ 4y(96y° — 148y* + 557 — 1)I*  16y(12y® = 136y° — 21y* + 210y + 88)varccoshy
o (= 1) (= 1)
(2880y'0 ++ 7712y3 — 5664y — 22688y* + 9219y% + 1197)v
B 32 - 127 - 1) '

. . 3:2.4,0,j
The coefficients 652" are

g2 _ (807" — 144y7 — 12¢° +42y° + 33y* + 32> = 21y* = 18y + 6)v  3(30y° — 157* — 6y + 1)Cg v
cons - 4(7/2 _ 1)5/2(27/2 _ 1)2 4(7/2 _ 1)3/2
L 8078 — 104y° + 12p° +20y* — 15° + 18y> + 9y =6 3(30y* + 157° — 21y* —y + 3)Cg,
8(r* = 1)°2(27* = 1)? 8(r* —1)°?
e 807 — 104y° — 12p° +20y* + 157> +-18y> =9y =6 3(30y* = 157° = 21y* +7 + 3)Cg, (BY)
8(r* = 1)2(2y* - 1)? 8(r*—1)°2 ’

g32412) _ ﬂ(_ (2077 4 12¢° = 21y° — 247* + 4y3 + 1572 + 3y — 3)I2
4y =122y = 1)
. (2077 — 12y — 21p° + 249* + 4y® — 15y + 3y +3)6
Al =122y = 1)
(120y8 — 56y7 — 194¢° + 48y + 124y* — y3 —36y> — 9y + 6)v
i WP =D A 1) )

(B10)

Let us then print the radiative contributions. All coefficients are proportional to the universal function Z(v) except
0, 3", These coefficients depend on the particle label :
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Jeo _A1=2)%

rad (}/2_1)3/2 I(”)? (Bll)

Gy _ 242 =

erad - ]/2 -1 I(U)’ (Blz)
G2.111) 160(y*(4Cg; — 6) +7*(6 —4Cg ) + Cpy — 1)
gL EEnte I(v). (B13)
(2112 _ 16(6y* —6y° + 1)v
Hrad - (7/2 _ 1)3/2 I(”)v (B14)
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(3:2,2,1,2) o 8(15]/4 — ]5]/2 + 4)1/
erad - (}/2 _ 1)3/2 I(U), (B16)
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Oa = R Z(v), (B17)
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3;2,4,1,1
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(3;:2,4,1,2)
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APPENDIX C: HAMILTONIAN COEFFICIENTS

Here we give the Hamiltonian coefficients in terms of those of the scattering angle. We do not print the expressions for the
spin-spin coefficients at 3PM order which are found in the Supplemental Material [145]. We start with the simpler spinless
and spin-orbit coefficients. At 1PM order we find

2
0(p?) = = ol

3

PPl
C(l;l,i)(pZ) _ _ P g;l,i) ) (C1)
2EE Pl
At 2PM order we find
2 ) 1 3 .
(2:0) (n2) — _P_we(g,o) D p_oo 9(1»0) 2
c (p ) TEE can +—8Poo E‘f( can ) pm_)‘p‘y
. 1 1 4 1
(1) (2 — _ Peo g(2:1) {P_oo (1:0) p(1:1.0)
c p can + D gcan 9031’1 C2
)= "k 4ps - LES Pl 2
Finally we reprint the nonspinning and spin-orbit coefficients at 3PM order from Eq. (78):
2 . 4 ' 1 4
(3:0) (p2) — — P g(3:0) D | P (10 5(2:0) | _ p2 | P (p(10))3
C (P) 4E§ can +2ﬂ'p%¢, Eﬁ can Ycan 48]7%0 E‘f( ) pm—ﬂp\’
, o 1 o (10) (21 0) (11 1 3 (1 1.0
(3:10) (pn2) — _p_°°9<3’1-’) D p_°° 9(1’0)9(2’“) 9(2,0)9(1,1,1) _ D2 p_°° Q(LO) 29(1’1” C3
Cc (p ) 4E§ can +27‘[pio E(f( can can + can can ) 16pgo Eg( can ) can pw_)‘pl ( )

The spin-spin coefficients do not seem to obey the same simplicity as the above spinless and spin-orbit coefficients. At the
first post-Minkowskian order we find

2
(12,1,iJ) (n2) = _P_oo9(1;2,1,i,j) y
C P s ’ .
v 4EL P[Pl (Cda)
[P 3p2 o 352 e(l;l’i)e(l;l’j)
(1’2’2’1'1) 2 = _ ' (1’2'2*151) poo can can C4b
c (p?) 8E¢ can + 16EZ eg;}o) pm_)‘p‘, ( )
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At second post-Minkowskian order we find
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The 3PM spin-spin coefficients are found in the Supplemental Material [145].
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