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The ensemble of unresolved compact binary coalescences is a promising source of the stochastic
gravitational-wave (GW) background. For stellar-mass black hole binaries, the astrophysical stochastic
GW background is expected to exhibit non-Gaussianity due to their intermittent features. We investigate
the application of deep learning to detect such a non-Gaussian stochastic GW background and demonstrate
it with the toy model employed by Drasco and Flanagan in 2003, in which each burst is described by a
single peak concentrated at a time bin. For the detection problem, we compare three neural networks with
different structures: a shallower convolutional neural network (CNN), a deeper CNN, and a residual
network. We show that the residual network can achieve comparable sensitivity as the conventional non-
Gaussian statistic for signals with the astrophysical duty cycle of log10 ξ ∈ ½−3;−1�. Furthermore, we apply
deep learning for parameter estimation with two approaches in which the neural network (1) directly
provides the duty cycle and the signal-to-noise ratio and (2) classifies the data into four classes depending
on the duty cycle value. This is the first step of a deep learning application for detecting a non-Gaussian
stochastic GW background and extracting information on the astrophysical duty cycle.
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I. INTRODUCTION

The astrophysical stochastic gravitational-wave (GW)
background is one of the most interesting targets for current
and future GW experiments. It originates from the ensem-
ble of many unresolved GW sources at high redshift and
contains information about the mass function and redshift
distribution of the sources.
Observations of binary black holes (BBHs) and binary

neutron stars (BNSs) indicate that distant merger events
could be detected as a stochastic GW background by the
near-future ground-based detector network [1–3]. An
estimation from the merger rate shows that the energy
density of the background spectra of BBH and BNS origins
would be similar, but the statistical behavior could be very
different [2]. While subthreshold BNS events typically
overlap and create an approximately continuous back-
ground, the time interval between BBH events is much
longer than the duration of the individual signal, and they
do not overlap. Because of this, the BBH background could
be highly nonstationary and non-Gaussian (sometimes
referred to as intermittent or popcorn signal). The infor-
mation on the non-Gaussianity could be used to disentangle
the different origins of the GW sources [4].

Detection strategies for such non-Gaussian backgrounds
have been discussed in the literature. First, Drasco and
Flanagan [5] (DF03) derived the maximum likelihood
detection statistic for the case of colocated, coaligned
interferometers characterized by stationary, Gaussian white
noise with burstlike non-Gaussian signals. Although the
computational cost is significantly larger than the standard
cross-correlation method, it has been shown that the maxi-
mum likelihood method can outperform the standard cross-
correlation search. Subsequently, Thrane [6] presented a
method that can be applied in the more realistic case of
spatially separated interferometers with colored, non-
Gaussian noise. Martellini and Regimbau [7,8] proposed
semiparametric maximum likelihood estimators.While they
are framed in the context of frequentist statistics, Cornish
and Romano [9] discussed the use of the Bayesian model
selection. Alternative methods were also discussed.
Seto [10,11] presented the use of the fourth-order correlation
between four detectors. Smith and Thrane [12] and Smith
et al. [13] proposed a method to use subthreshold BBHs in
the matched-filtering search and demonstrated a Bayesian
parameter estimation. Subsequently, Biscoveanu et al. [14]
simulated the Bayesian parameter estimation of the primor-
dial background (stationary, Gaussian) in the presence of an
astrophysical foreground (nonstationary, non-Gaussian).
Finally, Matas and Romano [15] showed that the hybrid
frequentist Bayesian analysis is equivalent to a fully*yamamoto.takahiro.u6@f.mail.nagoya-u.ac.jp
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Bayesian approach and claimed that their method can be
extended to nonstationary GW background. See also
Ref. [16] for a comprehensive review.
In the general context of GW data analysis, the appli-

cation of deep learning has been actively studied in the last
five years. George and Huerta [17,18] showed that deep
neural networks can achieve a sensitivity comparable to the
matched filtering for detection and parameter estimation of
BBH mergers. Although their neural network does not
predict the statistical error, several authors proposed a
method to predict the posterior distributions [19–23]. Also,
deep learning has been widely applied for various types of
signals (e.g., BBH mergers [24–26], black hole ringdown
GWs [27–30], continuous GWs [31–35], supernovae [36],
and hyperbolic encounters [37]).
In this work, we use deep learning to analyze a non-

Gaussian GW background. The great advantage of deep
learning is that it is computationally cheaper than the
matched-filter-based approach. This is because neural
networks learn the features of the data through a training
process before being applied to real data. The data analysis
of a stochastic background is usually performed by divid-
ing the long-duration data stream (∼years) into short time
segments (typically 192 seconds; see, e.g., [3]). If we want
to apply the non-Gaussian statistic of DF03, it will take a
much longer time to analyze each segment compared to the
standard cross-correlation statistic. On the other hand, in
the case of deep learning, once the training is completed, it
can quickly analyze each segment and repeat the same
analysis for a large number of data segments with the
similar feature of training data. In this way, it is expected to
reduce the total time for the analysis. Another advantage is
that neural networks can extract the features which are
difficult to model. Thus, it could be applied to various types
of non-Gaussian GW backgrounds even if the source
waveform is not well understood. As a first step, we
employ the toy model and the detection method proposed
by DF03. We train the neural network with the dataset that
is generated by the toy model and assess the neural
network’s performance by comparing it with their detection
method.
Finally, let us mention the work by Utina et al. [38],

which has a similar purpose and developed neural network
algorithms to detect the GW background from binary black
hole mergers. In [38], the data are split into 1 or 2 sec
segments, and the neural network is trained with the
injection of binary black hole events. On the other hand,
our method is based on the toy model in DF03, which does
not rely on a particular burst model and is designed to
analyze segments with longer duration (as long as the
computational power allows). In addition, we discuss the
estimation of the intermittency (astrophysical duty cycle),
while Utina et al. focused on the detection problem.
The paper is structured as follows. In Sec. II, we describe

the signal model and the non-Gaussian statistic proposed

by DF03, which is demonstrated for the comparison in the
result sections. Section III is dedicated to a review of the
deep learning algorithms used in this paper. Then, we show
the results of the detection problem in Sec. IV and para-
meter estimation in Sec. V. Finally, we summarize our work
in Sec. VI.

II. SIGNAL MODEL AND MAXIMUM
LIKELIHOOD STATISTIC

A. Signal model

We use the simple toy model that was used in DF03. The
assumptions are the following: two detectors that are
colocated and coaligned; the detector noises are white,
stationary, Gaussian, and statistically independent; each
astrophysical burst is represented by a sharp peak that has
support only on a discretized time grid. The methodology
could be easily extended to the case of spatially separated
interferometers by introducing the overlap reduction func-
tion [6,39]. Detector noise, in reality, is colored and highly
non-Gaussian and nonstationary, and these effects should
be taken into account before applying our method to the
real data. In this paper, however, we focus on presenting the
basic methodology of deep learning and the comparison
with DF03’s results. The assumption on the sharp peak
signal is valid if the duration of the burst is shorter than the
time resolution of the detector. In that case, the observed
GW strain at the burst arrival time is the averaged amplitude
over the time interval between the sampled time step.
However, this assumption cannot be applied to the expected
astrophysical backgrounds from BBHs and BNSs, and
again, we leave it as future work.
A strain data obtained by each detector are denoted

by hki , where i ¼ 1, 2 labels the different detectors, and
k ¼ 1; 2;…; N is a time index. We use sk to denote the GW
signal. Including detector noise data, which are denoted by
nki , we can express the strain data of the ith detector as

hki ¼ sk þ nki : ð2:1Þ

The detector noise is randomly generated from Gaussian
distribution, that is,

pðnki Þ ¼ N ðnki ; 0; σ2i Þ: ð2:2Þ

N ðx; μ; σ2Þ is a one-dimensional Gaussian distribution
with a mean μ and a variance σ2, i.e.,

N ðx; μ; σ2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ðx − μÞ2
2σ2

�
: ð2:3Þ

Because of the assumption of stationary and white noise,
the variance σ2 is constant in time. We also assume that two
detectors have noise with the same variance, and we set
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σ21 ¼ σ22 ¼ 1 ð2:4Þ

throughout this paper.
Assuming that the GW burst rate is not so high that the

bursts do not overlap, we model the probability density
function of the strain value at time k as

pðskÞ ¼ ξN ðsk; 0; α2Þ þ ð1 − ξÞδðskÞ; ð2:5Þ

where α2 is the variance of the amplitude of the bursts, and
ξ is so called the (astrophysical) duty cycle. The duty cycle
describes the probability that a burst is present in the
detector at any chosen time and takes a value in the range of
0 < ξ ≤ 1. The case of ξ ¼ 1 is equivalent to Gaussian
stochastic GWs. On the other hand, it is reduced to the
absence of the signal for ξ ¼ 0. A signal exhibits non-
Gaussianity as ξ decreases. Figure 1 shows an example of
the time-series signal generated based on Eq. (2.5).
Following DF03, we define the signal-to-noise ratio
(SNR) of the non-Gaussian stochastic background by

ρ ¼ ξα2
ffiffiffiffi
N

p

σ1σ2
; ð2:6Þ

and use it for describing the strength of the signal.

B. Non-Gaussian statistic

As proposed in DF03, the likelihood ratio can be used as
a detection statistic. Under the assumption of the noise
model Eq. (2.2) and the signal model Eq. (2.5), the
likelihood ratio can be reduced to

ΛNG
ML ¼ max

0<ξ≤1
max
α2>0

max
σ2
1
≥0

max
σ2
2
≥0

λNGMLðα2; ξ; σ21; σ22Þ; ð2:7Þ

where

λNGMLðα2; ξ; σ21; σ22Þ ≔
YN
k¼1

�
σ̄1σ̄2ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ21σ
2
2 þ σ21α

2 þ σ22α
2

p exp

� ðhk1=σ21 þ hk2=σ
2
2Þ2α2

2ðα2=σ21 þ α2=σ22 þ 1Þ −
ðhk1Þ2
2σ21

−
ðhk2Þ2
2σ22

þ 1

�

þ σ̄1σ̄2
σ1σ2

ð1 − ξÞ exp
�
−
ðhk1Þ2
2σ21

−
ðhk2Þ2
2σ22

þ 1

��
ð2:8Þ

and

σ̄2i ≔
1

N

XN
k¼1

ðhki Þ2: ð2:9Þ

More details of the non-Gaussian statistic are described in
the Appendix.
In a later section, we compare the results of the non-

Gaussian statistic and the neural networks for the detection
problem. As seen in Eq. (2.7), we need to perform the
parameter space search to find the maximum value of λNGML
in the four-dimensional space. To do that, we take the grid
points spanning over the ranges of ρ ∈ ½0.0; 4.0�,
log10 ξ ∈ ½−5.0; 0.0�, and σ21; σ

2
2 ∈ ½0.95; 1.05� with the

regular interval of Δρ ¼ 0.1, Δ log10 ξ ¼ 0.05, and
Δσ21 ¼ Δσ22 ¼ 0.05.

III. BASICS OF NEURAL NETWORK

A. Structure

The fundamental unit of a neural network is called a(n)
(artificial) neuron which is an artificial model of a nerve cell
in a brain. A neuron takes values signaled by other neurons
as inputs and returns a single value as an output. The
alignment of neurons is called a layer, and a neural network
consists of a sequence of layers. Each layer takes the output
of the previous layer and passes its own output to the next
layer. The input data of a neural network go through many
layers, and a neural network returns the output data. In the
following, we denote an input vector and an output vector
of each layer by x and y, respectively. The dimensions of
the input and the output depend on the type of layer, which
is described below.
A fully connected layer is one of the fundamental layers

of a neural network. It takes a one-dimensional real-valued
vector as an input and returns a linear transformation of the
input data. The operation can be described as

FIG. 1. Example of the signal model. We see four bursts at
times 5, 9, 13, and 18. Each burst is represented by a single peak.
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yi ¼
XN
j¼0

wijxj; ð3:1Þ

where N is the number of elements of the input vector. The
zeroth component is set to be x0 ¼ 1 and represents the
constant term of the linear transformation. The coefficients
wij are called weight, and we must appropriately tune them
before applying the neural network to real data.
A linear transformation like a fully connected layer is

usually followed by a nonlinear function which is called an
activation function. Most activation functions have no
tunable parameters. In this work, we used a rectified linear
unit (ReLU) defined by

ReLUðzÞ ≔
�
z if 0 ≤ z;

0 if z < 0:
ð3:2Þ

An activation function can take input with arbitrary size and
be applied elementwise.
For image recognition, it is important to capture the local

pattern. To do so, filters with a much smaller size than that
of the input data are used. A convolutional layer carries out
a convolution between input data and filters. A neural
network containing one or more convolutional layers is
often called a convolutional neural network (CNN). In this
work, we use a one-dimensional convolutional layer. It can
take a two-dimensional tensor as an input that is denoted by
x ¼ xc;i. This represents the situation where each grid of
the data has multiple values. The different values contained
in one pixel are called channels, which are represented by
the first index c. For example, a color image has three
channels corresponding to the primary colors, namely, red,
blue, and green. In our case, the strain data have two
channels corresponding to two different detectors. The
second index i corresponds to a pixel. Formally, we can
write a one-dimensional convolutional layer by

yc;i ¼
XC
c0¼1

XK−1
k¼0

wc0;c;kxc0;sði−1Þþk; ð3:3Þ

where the parameter wc0;c;k characterizes the filter, K is the
filter size, and C is the number of channels. The filter is
applied multiple times to the input data by sliding it over
the whole matrix. The parameter s is called stride and
controls the step width of the slide.
A pooling layer reduces the size of the data by con-

tracting several data points into one data point. There are
several variants of pooling layers depending on how to
reduce information. In the present work, we use two types
of pooling. The max pooling layer is defined by

yc;i ¼ max
j¼0;1;…;K−1

½xc;sði−1Þþj�: ð3:4Þ

Also, we use the average pooling that is defined by

yc;i ¼
1

K

XK−1
j¼0

xc;sði−1Þþj: ð3:5Þ

The last layer of a neural network is called the output
layer. It should be tailored depending on the problem to
solve. For the regression, the identity function

yi ¼ xi ð3:6Þ

is often applied. Usually, the identity function is not
explicitly applied because it is trivial. On the other hand,
the classification problem requires a trickier layer. In the
classification problem, the neural network is constructed in
a way that each element of the output corresponds to the
probability that the input is likely to belong to each class.
To interpret the output as the probabilities, they must satisfy
the following relations:

XNclass

i¼1

yi ¼ 1 ð3:7Þ

and

yi ≥ 0 for any i: ð3:8Þ

Here, Nclass is the number of target classes. A softmax layer
that is defined by

yi ¼
exp½xi�PNclass

j¼1 exp½xj�
ð3:9Þ

is suitable for the classification problem. The output of a
softmax layer (3.9) satisfies the conditions Eqs. (3.7)
and (3.8).

B. Residual block

One may naively expect that a deeper neural network
shows better performance. This expectation is valid to some
extent. However, it is empirically known that the perfor-
mance gets saturated as the network depth increases. On the
contrary, the accuracy gets worse. It is known as the
degradation problem. He et al. [40] proposed residual
learning to address the degradation problem. The idea of
the residual network is to introduce a shortcut connection,
as shown in Fig. 2, which enables us to efficiently train
deep neural networks.
Figure 3 shows another type of residual block called a

bottleneck block [40]. The main path has three convolu-
tional layers. The first convolutional layer has a kernel size
of 1 and reduces the number of channels. The second
convolutional layer plays the usual role. The third convolu-
tional layer has a kernel size of 1 and recovers the number
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of channels. Both the first and the second convolutional
layers are followed by ReLU activation (3.2). The batch
normalization [41] is located at the end of the main path,
where the average and the variance of the input data are
calculated elementwise over the batch,

μ ≔
1

Nbatch

XNbatch

n¼1

xn; ð3:10Þ

v ≔
1

Nbatch

XNbatch

n¼1

ðxn − μÞ2: ð3:11Þ

Here, a batch is a subset of the training data, and Nbatch is
the size of a batch. The use of a batch in the training is

explained in Sec. III D. Using Eqs. (3.10) and (3.11), the
batch normalization transforms the input data into

x̂n ≔
xn − μffiffiffiffiffiffiffiffiffiffiffi
vþ ϵ

p ; ð3:12Þ

y ¼ γ � x̂n þ β; ð3:13Þ

where γ and β are trainable parameters, the asterisk �
represents an elementwise multiplication, and ϵ is intro-
duced to prevent the overflow. We set ϵ ¼ 10−5.
The shortcut connection also has a convolutional layer

with a kernel size of 1 and a stride of 2. The input data are
reshaped to match the size of the output of the main path.

C. Supervised learning

Before applying the neural network to real data, we
optimize the neural network’s weights using a dataset
prepared in advance. The optimization process is called
training. To train a neural network, we prepare a dataset
consisting of many pairs of input data and target data,
which is hereafter denoted by t. In this paper, the input data
are the time-series strain data, and the target data should be
chosen appropriately depending on the problem to solve.
In this work, we treat two types of problems: regression

and classification. For the regression problem, the injected
values of the parameters can be used as the target values.
For the classification problem in which the inputs are
classified into several classes, the one-hot representation is
widely used for the target vector. When the number of the
target classes is Nclass, the target vector is an Nclass-
dimensional vector that takes 0 or 1 for each element. If
the input is assigned to the ith class, only the ith element
takes 1, and others are 0. For example, in the detection
problem presented in Sec. IV, we have two classes, that is,
the absence and the presence of the GW signal. In this case,
the target vector is chosen as

t ¼
� ð1; 0Þ in the absence of a GW signal;

ð0; 1Þ in the presence of a GW signal:
ð3:14Þ

In Sec. V, we demonstrate the estimation of the duty cycle.
We first apply the ordinary parameter estimation approach;
the injected values of the parameters (the signal amplitude
and the duty cycle) are used as the target values. In the
second approach, we reduce the parameter estimation to the
classification problem, in which the inputs are classified
into four classes of duty cycle values.

D. Training process

In the training process, we use a loss function to quantify
the deviation between the neural network predictions and
the target values. For the regression, various choices exists.
In this work, we employ the L1 loss defined by

FIG. 3. Structure of the residual block we used in this work.
The main path consists of the three convolutional layers and the
batch normalization layer. In the shortcut connection, the con-
volutional layer reshapes the data so that the size of the output
matches that of the output of the main path.

FIG. 2. Schematic picture of a residual block. A standard layer
transforms an input x into an output FðxÞ, while a shortcut
connection directly passes the input to the output. In total, the
residual block returns their sum FðxÞ þ x. If the input x and the
output FðxÞ have different shapes, the data passing through
the shortcut connection are reshaped appropriately to have the
same shape.
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LL1ðy; tÞ ¼
1

Nparam

XNparam

i¼1

jyi − tij; ð3:15Þ

where Nparam is the number of parameters to be estimated.
For the classification problem, a cross-entropy loss de-
fined by

Lcross-entropyðy; tÞ ¼ −
XNclass

i¼1

ti ln yi ð3:16Þ

is widely used.
The weights of a neural network are updated so that the

sum of the loss functions for all training data is small.
However, in general, the minimization of the loss function
cannot be done analytically. Thus, the iterative process is
employed. We divide the training data into several subsets
called a batch. In each step of the iteration, the prediction
and the loss evaluation are made for all data contained in a
given batch. The update process depends on the gradient of
the sum of the loss function over the batch, i.e.,

L ¼ 1

Nbatch

XNbatch

n¼1

Lðyn; tnÞ; ð3:17Þ

where yn and tn are the prediction of the neural network and
the target vector for the nth data, respectively.
The simplest update procedure is the stochastic gradient

descent (SGD) method. In SGD, the derivatives of the loss
function with respect to the neural network’s weights are
calculated, and the weights are updated by the procedure

w → w − η
∂L
∂w

; ð3:18Þ

where we omit all subscripts and superscripts of w just for
brevity. η is called the learning rate and characterizes how
much the update of weights is sensitive to the loss function
gradients. A batch is randomly chosen for every iteration
step. Many updated procedures have been proposed so far.
Most of them commonly exploit the gradients of the loss
function with respect to the weights. Despite the tremen-
dous number of the weights, the algorithm called back
propagation enables us to efficiently calculate all gradients
of the loss function.

IV. DETECTION OF NON-GAUSSIAN
STOCHASTIC GWs

In this section, we present the application of deep
learning to the detection problem of the non-Gaussian
stochastic GW background.

A. Setup of neural networks

We test two CNNs of different sizes (deeper and
shallower CNNs) and the residual network. The deeper
CNN has about the same number of tunable parameters as
the residual network, which is useful for making a fair
comparison with the residual network, and the shallower
CNN has fewer parameters. Two CNNs have similar
structures, which are shown in Tables I and II. Just before
the first fully connected layer, the data are reshaped into a
one-dimensional vector, which is called flattening and is
often regarded as a layer. Table III shows the structure of
the residual network.
We train the three networks in an equal manner. For the

signal and noise model applied in this paper, generating
data is not computationally costly, so we can generate data
for every iteration of the training. We set the batch size to
256 and divide the batch into two subsets. The first half is
the data containing only noise, and another half contains
the GW signal and noise. Each datum has two simulated
strain data fhk1; hk2g [see Eq. (2.1)] that are generated by
using the noise model (2.2) and the signal model (2.5).

TABLE I. Structure of the shallower CNN. The total number of
tunable parameters is 668658. The first column shows the name
of the layer. The second column is the size of the output data. The
last column is the number of the tunable parameters. The network
first has an input layer that passes the input data, and the size of
the output is equal to that of the input data. Before the flattening
layer, the output size has two dimensions corresponding to the
number of channels and the data length. The flattering layer
transforms data into a one-dimensional vector. It is followed by
three fully connected layers and two activation layers. The last
layer is the softmax layer returning the probabilities of the
absence and the presence of the signal.

Layer Output size Number of parameters

Input (2, 10000)
1D convolutional (16, 9993) 272
ReLU (16, 9993)
1D max pooling (16, 2498)
1D convolutional (32, 2491) 4128
ReLU (32, 2491)
1D max pooling (32, 622)
1D convolutional (64, 619) 8256
ReLU (64, 619)
1D max pooling (64, 154)
1D convolutional (128, 151) 32896
ReLU (128, 151)
1D max pooling (128, 37)
Flattening (4736)
Fully connected (128) 606336
ReLU (128)
Fully connected (128) 16512
ReLU (128)
Fully connected (2) 258
Softmax (2)
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We assign the target vector t ¼ ð1; 0Þ and t ¼ ð0; 1Þ for the
absence and the presence of the GW signal, respectively.
The data length is set to be N ¼ 104. For the signal
injection, the astrophysical duty cycle is sampled from a

log uniform distribution on ξ ∈ ½10−3; 10−1�. The SNR is
uniformly sampled from ½ρmin; 4.0� with

ρmin ¼ max½0.5; 3.5þ 1.3 log10 ξ�: ð4:1Þ

The lower bound ρmin is set for the following reason. The
sensitivity of the non-Gaussian statistic depends on the duty
cycle, as described in the Appendix. We expect that the
sensitivity of the neural networks also shows this trend and
does not significantly outperform the non-Gaussian statis-
tic. If we use a lower bound of the SNR that is constant with
the duty cycle, it could happen for a larger duty cycle that
we train the neural network with wrong reference data for
positive detection, which contains too small a signal to be
detected, and it can result in the degradation of the neural
network. Therefore, we manually give the lower bound
(4.1) on the SNR that is slightly below the detectable SNR
of the non-Gaussian statistic.
Before inputting the data to the neural network, we

normalize them to make the mean zero and the variance
unity. Thus, the normalized input is given by

ĥki ¼
hki − μh

σh
; ð4:2Þ

where

μh ≔
1

2N

XN
k¼1

ðhk1 þ hk2Þ ð4:3Þ

and

σ2h ≔
1

2N

XN
k¼1

fðhk1 − μhÞ2 þ ðhk2 − μhÞ2g: ð4:4Þ

We use the cross-entropy loss Eq. (3.16) with Nclass ¼ 2.
The weight update is repeated for 100000 iterations. We use
ADAM [42] as an update method. The learning rate is set at
10−5. The code is implemented with PyTorch [43], a library
for deep learning.

B. Result

Now we evaluate the detection efficiencies of the neural
networks and compare them with the non-Gaussian sta-
tistic. First, we set the thresholds of the detection statistics
by simulating noise-only data. The false alarm probability
is the fraction of false positive events over the total test
events, i.e.,

FAP ¼ NðΓ� < ΓÞ
Nnoise

; ð4:5Þ

where Nnoise is the number of the simulated noise data, Γ is
the detection statistic, Γ� is the threshold value of Γ, and

TABLE II. Structure of the deeper CNN. The total number of
tunable parameters is 10127426. The description of the table is
the same as Table I.

Layer Output size Number of parameters

Input (2, 10000)
1D convolutional (64, 9993) 1088
ReLU (64, 9993)
1D convolutional (64, 9986) 32832
ReLU (64, 9986)
1D max pooling (64, 2496)
1D convolutional (64, 2489) 32832
ReLU (64, 2489)
1D convolutional (64, 2482) 32832
ReLU (64, 2482)
1D max pooling (64, 620)
1D convolutional (64, 613) 32832
ReLU (64, 613)
1D convolutional (64, 606) 32832
ReLU (64, 606)
1D max pooling (64, 303)
Flattening (19392)
Fully connected (512) 9929216
ReLU (512)
Fully connected (64) 32832
ReLU (64)
Fully connected (2) 130
Softmax (2)

TABLE III. Structure of the residual network. Each residual
block has the structure shown in Fig. 3. The total number of the
trainable parameters is 10280546, which is comparable to that of
the deeper CNN presented in Table II.

Layer Output size Number of parameters

Input (2, 10000)
1D convolutional (64, 9993) 1088
ReLU (64, 9993)
Residual block (64, 4997) 7456
ReLU (64, 4997)
Residual block (64, 2499) 7456
ReLU (64, 2499)
Residual block (64, 1250) 7456
ReLU (64, 1250)
1D average pooling (64, 312)
Flatten (19968)
Fully connected (512) 10224128
ReLU (512)
Fully connected (64) 32832
ReLU (64)
Fully connected (2) 130
Softmax (2)
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NðΓ� < ΓÞ is the number of events that the detection
statistic exceeds the threshold. The neural network returns
the probability of each class denoted by fpigi¼1;…;N which
satisfies

P
N
i¼1 pi ¼ 1. Now we have the two classes

(N ¼ 2) corresponding to the absence and presence of a
GW signal. We set Γ ¼ p2, which is the probability that
the data contain a GW signal, for the neural networks and
Γ ¼ ΛNG

ML for the non-Gaussian statistic. We set FAP ¼
0.05 and find the value of Γ� which satisfies Eq. (4.5). To
determine the threshold, we use 500 test data of simulated
Gaussian noise.
Once we obtain the threshold, we determine the mini-

mum SNR for detection by simulating data with a GW
signal and setting the detection probability to pdet ¼ 0.9.
For signal injection, the values of the SNR and duty cycle
are taken from ρ ∈ ½0.2; 4.0� and log10 ξ ∈ ½−3.0;−1.0�
with the interval of Δρ ¼ 0.2 and Δ log10 ξ ¼ 0.2. We
prepare 500 data for each injection value, count the number
of data satisfying Γ� < Γ, and obtain the detection prob-
ability as a function of ρ for each ξ. From this, we can find
the minimum value of ρ that gives pdet ¼ 0.9. To evaluate
the statistical fluctuation due to the randomness of the
signal and the noise, we independently carry out the whole
process four times.
Figure 4 summarizes the results, showing the minimum

detectable SNRs for the four methods, i.e., the non-
Gaussian statistic based on DF03, the shallower CNN,
the deeper CNN, and the residual network. For the range of
−3.0 ≤ log10 ξ ≤ −2.0, all deep learning methods show a
comparable performance to the non-Gaussian statistic. For
−1.75 < log10 ξ, we see that the residual network performs
as well as the non-Gaussian statistic, while the performance

of the shallower and deeper CNNs gets worse. The
deviation between the residual network and the deeper
CNN, which have almost the same number of tunable
parameters, clearly shows the advantage of using the
residual blocks.

C. Computational time

At the end of this section, we list the computational times
of the neural networks and the non-Gaussian statistic. The
computational time of the non-Gaussian statistic is defined
by the time to carry out the grid search for 500 test data. For
the neural networks, we measure the time that the trained
models spend analyzing 500 test data. We use an Intel®
Xeon® CPU E5-1620 v4 at 3.50 GHz (224 GFLOPS) for
the non-Gaussian statistic and a Quadro GV100 GPU (16.6
TFLOPS in single precision) for the neural networks.
Table IV shows the comparison of the computational time
and the ratio with respect to the non-Gaussian statistic.
Note that here we performed a simple grid search to find the
maximum value of the non-Gaussian statistics, but the
computational time could be improved by applying a fast
grid search algorithm. Even considering this point and the

FIG. 4. Minimum detectable SNR with 90% detection probability for the non-Gaussian statistic, two convolutional neural networks
(shallower and deeper), and the residual network. The false alarm rate is set at 5%. The black squares are the non-Gaussian statistic, the
blue squares are the shallower CNN, the orange circles are the deeper CNN, and the green circles are the residual network. For visibility,
the dots are slightly shifted in the horizontal direction. The error bar shows the standard deviation of ρ90% evaluated by four independent
runs. The shaded area is the parameter region not used for training.

TABLE IV. Computational times of different methods for the
detection problem.

Method Time (sec) Ratio

Non-Gaussian statistic 1.13 × 104 1
Shallower CNN 2.54 × 10−2 2.25 × 10−6

Deeper CNN 7.96 × 10−2 7.04 × 10−6

Residual network 7.66 × 10−2 6.78 × 10−6
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difference in the computational power between the CPU
and the GPU, deep learning shows a clear advantage in
computational time. This can be fruitful when we apply
deep learning for longer strain data that is reasonably
expected for a realistic situation.

V. ESTIMATING DUTY CYCLE

In this section, we demonstrate neural network applica-
tions for parameter estimation. We take two approaches.
First, the neural network is trained to output the estimated
values of the duty cycle and the SNR. In the second
approach, we treat parameter estimation as a classification
problem by dividing the range of duty cycle values into four
classes. The first method is more straightforward and can
directly give the value of ξ, while we show that the
estimation gets biased when the duty cycle is relatively
small (ξ≲ 10−3). The second approach can predict only the
rough range of ξ, but it shows reasonable performance even
for smaller duty cycle ξ ∼ 10−4.

A. First approach: Direct estimation
of the duty cycle and the SNR

We train the neural network to predict the value of the
duty cycle and the SNR.We use the structure of the residual
network shown in Table III and Fig. 3 by removing the
softmax layer. The weight update is repeated 105 times. The
training data are generated by sampling the duty cycle from
the log uniform distribution on ½10−2; 100� and the SNR
from the uniform distribution on [1, 60]. To make the
training easier, the injection parameters are normalized by

Q̂ ¼ 2Q −Qmin −Qmax

Qmax −Qmin
; ð5:1Þ

where Q ¼ flog10 ξ; ρg is the injected value, and Qmin and
Qmax are the minimum value and the maximum value of the
training range, respectively. By this normalization, Q̂ has
the range ½−1; 1�. The outputs of the neural network directly
correspond to the estimated values of Q̂. We use the L1 loss
[Eq. (3.15)] as the loss function. We set the batch size to
512. The update algorithm is ADAM with the learning rate
of 10−5.
We test the trained residual network with the newly

generated data with the parameters sampled from the same
distributions as one of the training data. Figure 5 is the
scatter plot comparing the true values with the predicted
values. We can see that the neural network can recover the
true values reasonably well.
In order to evaluate the performance quantitatively, let us

define the average and standard deviations of the error as

δQ ≔
1

N

XN
n¼1

ðQpred
n −Qtrue

n Þ; ð5:2Þ

σ½δQ� ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

ðQpred
n −Qtrue

n Þ2
vuut ; ð5:3Þ

where N is the number of the test data, and Qpred
n and Qtrue

n
are, respectively, the predicted value and the true value of
the quantity Q ¼ flog10 ξ; ρg of the nth test data. Table V
shows δQ and σ½δQ� obtained by using 500 test data. The
duty cycle and SNR are randomly sampled from a uniform
distribution on log10 ξ ∈ ½−2; 0� and ρ ∈ ½1; 60�. For both
the duty cycle and the SNR, δQ is much smaller than σ½δQ�.
From this, we can conclude that the neural network predicts
the duty cycle and the SNR without bias.
To further check the performance in detail, in the left

panel of Fig. 6, we plot the average errors of log10 ξ (top)
and ρ (bottom) for different fiducial parameter values. The
error bars indicate their standard deviations. To make this
plot, we sample log10 ξ from −2 to 0 in intervals of 0.5. For
each duty cycle, we prepare datasets with SNR 10, 30, and
50. Each dataset contains 500 realizations. Note that we do
not use the relative error for log10 ξ because the target value
can be close to zero, which causes divergence in the relative
error. First, we find from both left panels that the error
variance reasonably increases as the SNR decreases. The
estimation of the duty cycle and SNR seems not to be
biased except when the fiducial value is at the border of the

FIG. 5. Parameter estimation of the duty cycle (left) and the
SNR (right) by the neural network. The scatter plot shows the true
value on the horizontal axis and the predicted value on the vertical
axis. The diagonal line represents equal values for the predicted
and true values.

TABLE V. Averages and standard deviations of errors in log10 ξ
and ρ.

δ log10 ξ σ½δ log10 ξ� δρ σ½δρ�
−1.29 × 10−5 0.11 −8.90 × 10−2 2.97
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training range (log10 ξ ¼ 0 and −2) and the SNR is
small (ρ ¼ 10).
In the right panels of Fig. 6, we show the results in which

we include lower values of the duty cycle for the training,
log10 ξ ∈ ½−4; 0�. We find that the error variances of both
the duty cycle and the SNR significantly increase as the
duty cycle decreases for log10 ξ≲ −3. For the duty cycle,
the systematic bias is smaller than the variance. On the
other hand, for the SNR, we find a clear bias that the neural
network tends to output a larger SNR than the true value
when ρ ¼ 10 and a smaller SNR when ρ ¼ 50. We find
from the test runs that such biases tend to increase when we
use a shorter data length. From this, we can infer that the
bias arises because the data length is too short. In fact, with
the data length of N ¼ 104 used throughout this paper, the
burst can be absent in the strain data for ξ ∼ 10−4.

B. Second approach: Classification problem

As a second approach, we consider the classification
problem. We divide the range of the duty cycle values into
four categories and assign the class index as the following:

class index ¼

8>>><
>>>:

1 ð−1 ≤ log10ξ < 0Þ;
2 ð−2 ≤ log10ξ < −1Þ;
3 ð−3 ≤ log10ξ < −2Þ;
4 ð−4 ≤ log10ξ < −3Þ:

ð5:4Þ

Again, we use the residual network with the structure
shown in Table III and Fig. 3, but the last fully connected

layer and the softmax layer are modified to have four-
dimensional outputs.
The training procedure is as follows. The weight update

is repeated 105 times. The input data are normalized in the
sameway as the detection problem [see Eq. (4.2)]. The duty
cycle is sampled from the log uniform distribution on
½10−4; 100�, and the SNR is sampled from the uniform
distribution on [1, 60]. The batch size is 512, and the update
algorithm is ADAM with the learning rate of 10−5. For the
loss function, we use the cross-entropy loss Eq. (3.16)
with Nclass ¼ 4.
The trained neural network is tested with four datasets;

each consists of 512 data and corresponds to the different
classes. In the same way as the training data, SNRs are
uniformly sampled from the range [1, 60] for all test
datasets. Figure 7 presents the confusion matrix of the
classification by the residual network. We find that 93.1%
of test data are successfully classified to the correct class on
average. Also, unlike the direct parameter estimation
shown in the previous subsection, we can see that the
residual neural network works well even for small values of
the duty cycle log10 ξ≲ −2. Thus, this method could be
useful for giving an order of magnitude estimation of the
duty cycle.
Now, we further investigate the misclassified cases.

Figure 8 shows the scatter plot of misclassified events in
the (log10 ξ, ρ) plane. It clearly shows that the duty cycles of
the misclassified events are located at the boundary of the
neighboring classes. As for the SNR distribution, we find
that it is almost uniform, but as expected, there is a
tendency that misclassification occurs more for ρ≲ 5.

FIG. 6. Errors in the duty cycle (top) and the SNR (bottom) for different fiducial values of the duty cycle. The blue circles, orange
squares, and green triangles, respectively, show the results of the datasets with the fiducial SNR of 10, 30, and 50. Each dot shows the
average of the error, and the error bar represents the standard deviation of the errors. The left panels show the results of the neural
network trained with log10 ξ ∈ ½−2; 0�, and the right panels are the ones trained with log10 ξ ∈ ½−4; 0�.
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The colors of the dots in the scatter plot represent the
maximum values of pi (the probability of each class),
which indicates how confidently the neural network pre-
dicts the class. We can see that most of the misclassified
events are given with low confidence.
Figure 9 shows the cumulative histograms (cumulating

in the reverse direction of pi) for correctly classified events
and misclassified events. We can see a clear difference
between them. For most of the correctly classified events,
the probability of close to 1 is assigned. On the other hand,
we can again see that misclassified events tend to have low

confidence. However, 20% of the events are misclassified
with max½pi� > 0.9. As seen from Fig. 8, they are at the
boundary of the neighboring classes, and this would be
unavoidable with the classification problem method.

VI. CONCLUSION

In this work, we studied applications of convolutional
neural networks to the detection and parameter estimation
of non-Gaussian stochastic GWs. As for the detection
problem, we compared three different configurations of
neural networks: shallower CNN, deeper CNN, and
residual network. We found that the residual network
can achieve comparable sensitivity to the maximum like-
lihood statistics. We also showed that neural networks have
an advantage in computational time compared to the non-
Gaussian statistic.
Next, we investigated the estimation of the duty cycle by

a neural network with two different approaches. In the first
approach, we trained the residual neural network to directly
estimate the values of the duty cycle and SNR. We found
that the estimation error in log10 ξ is about ≲0.2. As for
SNR, the neural network can estimate with the relative error
of 10%–20%. We found that the estimation of the duty
cycle gets biased when we include a small duty cycle for
the training log10 ξ ∈ ½−4; 0�. This could be explained by
the shortness of the data length used in this paper. In the
second approach, the parameter estimation was reduced to
the classification problem in which the neural network
classifies the data depending on the duty cycle. The
parameter range was log10 ξ ∈ ½−4; 0�, and it was divided
into four classes with the band of Δ log10 ξ ¼ 1. The neural

FIG. 9. Cumulative fraction of the maximum value of the
predicted probabilities in descending order. Blue and orange lines
correspond to the misclassified and correctly classified events,
respectively. Note that the numbers of correctly classified and
misclassified events are different: 1905 events are correctly
classified, and 143 events are misclassified.

FIG. 8. Distribution of the true values of (log10 ξ; ρ) of the
misclassified events. The color of the dots represents the
maximum value of the probability among fpigi¼1;2;3;4.

FIG. 7. Confusion matrix for the duty cycle estimation. The row
and column represent the true label and predicted label, respec-
tively. Each class is labeled by the integer f1; 2; 3; 4g and they
correspond to log10 ξ ∈ ½−1; 0Þ, ½−2;−1Þ, ½−3;−2Þ, ½−4;−3Þ,
respectively. The numbers are in units of percent and represent
the fraction of data classified from the true label to the predicted
label.
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network could classify the data with an accuracy of 93% on
average.
The present work is the first attempt to apply deep

learning to the astrophysical GW background. In this work,
we employed the toy model that is used in DF03 where
various realistic effects, such as the detector’s configura-
tion, noise properties, and waveform model of the bursts,
are neglected. In particular, detection of the astrophysical
GW background would become challenging in the pres-
ence of glitch noises and the correlated magnetic noise
from Schumann resonances. Further study of their effects
will be extremely important for applying our method to real
data. We leave it as future work with an expectation that
deep learning has a high potential to distinguish such
troublesome noises from the signal.
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APPENDIX: REVIEW OF NON-GAUSSIAN
STATISTIC

Here, we review the properties of the non-Gaussian
statistic (2.7). DF03 compared the non-Gaussian statistic
with the standard cross-correlation statistic that is
defined by

ΛCCðhÞ ≔
α̂2

σ̄1σ̄2
; ðA1Þ

where

α̂2 ≔ ᾱ2Θðᾱ2Þ; ᾱ2 ≔
1

N

XN
k¼1

hk1h
k
2; ðA2Þ

and ΘðxÞ is the Heaviside step function defined by

ΘðxÞ ¼
�
1 if x ≥ 0;

0 if x < 0:
ðA3Þ

This is obtained by assuming the Gaussian signal model,
i.e., ξ ¼ 1 in Eq. (2.5).
Here we aim to reproduce the results of DF03 and

demonstrate the performance of Eq. (2.7) by simulating
time-series strain data with the length N ¼ 104. The
maximization of λNGML in Eq. (2.7) requires us to explore
the parameter space. Here, by following DF03, we sub-
stitute the injected values into λNGML instead of maximizing
the model parameters. Note that we perform the parameter
search to simulate the non-Gaussian statistic for compari-
son purposes in the main part of the paper, but the general
behavior does not change.
Figure 10 compares the minimum detectable SNR for the

standard cross-correlation statistic and the non-Gaussian
statistic. For ξ > 0.1, their performances are comparable.
This can be interpreted as the non-Gaussianity of the signal
not being very strong, and taking into account non-
Gaussianity does not give a significant advantage. On
the other hand, for ξ < 0.1, the non-Gaussian statistic
outperforms the cross-correlation statistic. It is reasonable
because the non-Gaussian statistic is developed based on
the same signal model as the one we used for simulating the
strain data.
Next, the parameter estimation is tested. Figure 11 shows

an example of the distribution of the logarithm of λNGML in the
ξ − α2 plane. We injected a stochastic signal with ξ ¼ 0.2
and ρ ¼ 40. It is clearly seen that the duty cycle ξ and the
amplitude variance α2 of each burst is degenerate. We also
draw three dashed lines corresponding to different SNRs,
ρ ¼ 20, 40, and 60. We clearly see that the strong
degeneracy exists along the line of constant SNR. In other
words, the non-Gaussian statistic is sensitive to the differ-
ence in the SNR.

YAMAMOTO, KUROYANAGI, and LIU PHYS. REV. D 107, 044032 (2023)

044032-12



[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 131102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 120, 091101 (2018).

[3] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), Phys. Rev. D 104, 022004 (2021).

[4] M. Braglia, J. Garcia-Bellido, and S. Kuroyanagi, arXiv:
2201.13414.

[5] S. Drasco and E. E. Flanagan, Phys. Rev. D 67, 082003
(2003).

[6] E. Thrane, Phys. Rev. D 87, 043009 (2013).
[7] L. Martellini and T. Regimbau, Phys. Rev. D 89, 124009

(2014).
[8] L. Martellini and T. Regimbau, Phys. Rev. D 92, 104025

(2015); 97, 049903(E) (2018).
[9] N. J. Cornish and J. D. Romano, Phys. Rev. D 92, 042001

(2015).
[10] N. Seto, Astrophys. J. Lett. 683, L95 (2008).
[11] N. Seto, Phys. Rev. D 80, 043003 (2009).
[12] R. Smith and E. Thrane, Phys. Rev. X 8, 021019 (2018).
[13] R. J. E. Smith, C. Talbot, F. Hernandez Vivanco, and E.

Thrane, Mon. Not. R. Astron. Soc. 496, 3281 (2020).
[14] S. Biscoveanu, C. Talbot, E. Thrane, and R. Smith, Phys.

Rev. Lett. 125, 241101 (2020).
[15] A. Matas and J. D. Romano, Phys. Rev. D 103, 062003

(2021).
[16] J. D. Romano and N. J. Cornish, Living Rev. Relativity 20, 2

(2017).
[17] D. George and E. A. Huerta, Phys. Rev. D 97, 044039

(2018).

[18] D. George and E. A. Huerta, Phys. Lett. B 778, 64 (2018).
[19] H. Gabbard, C. Messenger, I. S. Heng, F. Tonolini, and R.

Murray-Smith, Nat. Phys. 18, 112 (2022).
[20] A. J. K. Chua and M. Vallisneri, Phys. Rev. Lett. 124,

041102 (2020).
[21] S. R. Green, C. Simpson, and J. Gair, Phys. Rev. D 102,

104057 (2020).
[22] M. Dax, S. R. Green, J. Gair, J. H. Macke, A. Buonanno,

and B. Schölkopf, Phys. Rev. Lett. 127, 241103 (2021).
[23] H.-S. Kuo and F.-L. Lin, Phys. Rev. D 105, 044016 (2022).
[24] H. Gabbard, M. Williams, F. Hayes, and C. Messenger,

Phys. Rev. Lett. 120, 141103 (2018).
[25] C. Chatterjee, L. Wen, F. Diakogiannis, and K. Vinsen,

Phys. Rev. D 104, 064046 (2021).
[26] T. Mishra et al., Phys. Rev. D 105, 083018 (2022).
[27] H. Nakano, T. Narikawa, K.-i. Oohara, K. Sakai, H.-a.

Shinkai, H. Takahashi, T. Tanaka, N. Uchikata, S.
Yamamoto, and T. S. Yamamoto, Phys. Rev. D 99,
124032 (2019).

[28] H. Shen, E. A. Huerta, E. O’Shea, P. Kumar, and Z. Zhao,
Mach. Learn. Sci. Tech. 3, 015007 (2022).

[29] T. S. Yamamoto and T. Tanaka, arXiv:2002.12095.
[30] S. Bhagwat and C. Pacilio, Phys. Rev. D 104, 024030

(2021).
[31] F. Morawski, M. Bejger, and P. Ciecielag, Mach. Learn. Sci.

Tech. 1, 025016 (2020).
[32] C. Dreissigacker, R. Sharma, C. Messenger, R. Zhao, and R.

Prix, Phys. Rev. D 100, 044009 (2019).
[33] B. Beheshtipour and M. A. Papa, Phys. Rev. D 101, 064009

(2020).

FIG. 10. Minimum detectable SNR as a function of the duty
cycle ξ. Both the false alarm probability and the false dismissal
probability are set to 0.1. Error bars are obtained by four
independent runs. The time-series data have the length of
N ¼ 104, and the detector’s noise variances are σ21 ¼ σ22 ¼ 1.
Note that ρ90% represents the minimum detectable SNR with 90%
detection probability and is different from that of Ωdetectable in
Fig. 1 of DF03.

FIG. 11. The color map shows the logarithm of λNGMLðα2; ξÞ. The
data length is N ¼ 104, and we set the signal parameters to ξ ¼ 0.2
and ρ ¼ 40 (indicated by the blue square). The variances of the
detector noises are σ21 ¼ σ22 ¼ 1. The red circle indicates the
parameter values of the maximum log-likelihood. Black dashed
lines indicate the constant SNRforρ ¼ 60, 40, 20 from top tobottom.
It is clearly seen that the likelihood estimator has a degeneracy along
the parameter combination that gives the same SNR value.
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