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Detecting gravitational waves from coalescing compact binaries allows us to explore the dynamical,
nonlinear regime of general relativity and constrain modifications to it. Some of the gravitational-wave
events observed by the LIGO-Virgo Collaboration have sufficiently high signal-to-noise ratio in the merger,
allowing us to probe the relaxation of the remnant black hole to its final, stationary state—the so-called
black-hole ringdown, which is characterized by a set of quasinormal modes. Can we use the ringdown to
constrain deviations from general relativity, as predicted by several of its contenders? Here, we address this
question by using an inspiral-merger-ringdown waveform model in the effective-one-body formalism,
augmented with a parametrization of the ringdown based on an expansion in the final black hole’s spin. We
give a prescription on how to include in this waveform model, the quasinormal mode frequencies calculated
on a theory-by-theory basis. In particular, we focus on theories that modify general relativity by higher-
order curvature corrections, namely, Einstein-dilaton-Gauss-Bonnet, dynamical Chern-Simons theories,
and cubic- and quartic-order effective-field-theories of general relativity. We use this parametrized
waveform model to measure the ringdown properties of the two loudest ringdown signals observed so far,
GW150914 and GW200129. We find that while the Einstein-dilaton-Gauss-Bonnet theory cannot be
constrained with these events, we can place upper bounds on the fundamental lengthscale of cubic-
(lcEFT ≤ 38.2 km) and quartic-order (lqEFT ≤ 51.3 km) effective-field-theories of general relativity, and of
dynamical Chern-Simons gravity (ldCS ≤ 38.7 km). The latter result is a concrete example of a theory
presently unconstrained by inspiral-only analyses which, however, can be constrained by merger-ringdown
studies with current gravitational-wave data.
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I. INTRODUCTION

Since the first detection of gravitational waves (GWs)
from a binary black-hole (BBH) merger in 2015 [1],
the LIGO [2] and Virgo [3] detectors have observed about
90 GW events [4] from mergers of BHs, neutron stars
(NSs) [5–7] and their mixture [8]. These results have been
confirmed by independent analyses, which have also
identified a few new GW signals [9–14].
The large number of GWobservations has allowed us to

infer relevant astrophysical [15] and cosmological [16]
information on the compact-object population in our
local Universe, and also to probe general relativity (GR)
in the high-velocity, dynamical and strong-field regime of
gravity [17,18]. The latter complement tests of GR in the

low-velocity, quasistatic, or linear regimes available with
Solar-System experiments [19], binary-pulsar [20,21] and
galactic-center [22–24] observations, and cosmological
measurements [25].
The coalescence of two BHs in GR is characterized by a

long inspiral stage, during which the holes adiabatically
and steadily come closer and closer to each other, losing
energy because of the emission of GWs. Then, they merge,
forming a common apparent horizon. Subsequently, during
the ringdown stage, the newly formed remnant object
settles down to a Kerr BH emitting quasinormal modes
(QNMs) [26–28]. Because of the no-hair conjecture in
GR [29–32], the QNM (complex) frequencies of (electri-
cally neutral) astrophysical BHs are only described by the
BH’s mass and spin. In GR, the QNM frequencies are
labeled by the harmonic indices ðl; mÞ and the overtone
number n.
Several null tests have been proposed to probe the nature

of gravity with GW signals [17,18,33–38]. They include
tests of GW generation [39–43], where deviations in the
post-Newtonian (PN) coefficients in the inspiral, and
phenomenological coefficients in the plunge and merger
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stages can be bounded; tests of GW propagation [44,45],
which allow us to set upper limits on coefficients entering
generalized dispersion relations, including the Compton
wavelength associated to the mass of the graviton; tests
of the polarization of gravitational radiation [19,46–50],
for which more than two GW detectors are needed to set
statistically significant bounds, and tests of the remnant
properties [51–57] in the postmerger stage. So far, none of
these null tests have reported any deviation from GR.
Probing the gravitational properties of the remnant object

during the ringdown, has attracted a lot of attention in the last
twenty years. Reference [58] proposed the idea of employing
BH spectroscopy [59] of the ringdown stage to rule out
(or constrain) either modified theories of gravity or exotic
compact objects (in GR) rather than BHs, thus testing the
no-hair conjecture. Since then, many studies have quantified
the accuracy with which the QNM frequencies can be
measured for GW sources detectable with ground- and
space-based detectors (see, e.g., Refs. [60–63]). Several
analyses [52–57] have used the GW observations of the
LIGO-Virgo-KAGRA (LVK) collaboration to set upper
limits on deviations in the QNM frequencies of BHs in
GR. Others have claimed the measurements of QNMs
beyond the dominant (2,2,0) mode [64], or overtones—
for example the (2,2,1) mode [55,65,66], although the
evidence for overtones can also be due to noise [67].
These studies have been pursued either using a superposition
of damped sinusoids [54,68], in some cases augmented
with QNM amplitudes calibrated to numerical-relativity
(NR) simulations, or with parametrized inspiral-merger-
ringdown (IMR) waveform models, where the QNM
frequencies are not necessarily fixed to the GR values for
BHs, but kept free [53,56].
Here, we will employ the parametrized IMR model of

Ref. [56], constructed from a nonprecessing-spin effective-
one-body (EOB) waveform model [69–71], to carry out
theory-specific tests of the ringdown using four high-
curvature gravity theories. Previously, such parametrized
waveform model was employed in Refs. [18,38] for theory-
independent tests of the ringdown. More specifically, here
we will focus on four modified gravity theories, Einstein-
dilaton-Gauss-Bonnet gravity, dynamical Chern-Simon
gravity, cubic and quartic effective-field theories (EFTs)
of GR, and express the QNM frequencies using the para-
metrized ringdown spin-expansion coefficients (ParSpec) of
Ref. [72]. In this framework, the non-GR QNM frequencies
are recast as deviations from the GR QNM values, and are
expressed in terms of a single free parameter, the funda-
mental lengthscale lth of the gravity theory under consid-
eration, the GR limit corresponding to lth → 0.
With this formulation of the ringdown, we use the

two loudest merger-ringdown GW events, so far observed
by the LVK collaboration, notably GW150914 and
GW200129, and use Bayesian-inference techniques to
perform null tests. We find no indication that GR is

violated and, when possible, we place upper limits, at
90% credible level, on the lengthscale lth of each theory. In
Table I, we summarize our results, and compare them with
existing constraints.
The paper is organized as follows. In Sec. II, we briefly

describe the four higher-curvature modified gravity theories
for which we perform the ringdown test. In Sec. III we build
our parametrized IMR model for nonprecessing-spin
compact-object binaries making use of the ParSpec frame-
work. After reviewing the Bayesian inference method, in
Sec. IV, we motivate our selection of GW events from the
LVK catalog, and also discuss the range of validity of our
analyses. In particular, we discuss the impact on our results
of the assumptions underlying the ParSpec framework,
and the fact that our modified gravity theories have to be
interpreted as EFTs. In Sec. V, we present our results
obtained by applying Bayesian analysis on the LVK data of
GW150914 and GW1200129, and discuss how we set the
upper limits on the fundamental lengthscales lth. Finally, in
Sec. VI we summarize our findings, and discuss how to
make our framework more robust, in view of stronger GW
events in upcoming GW observational runs, by including
physical effects currently absent in our study (e.g., pre-
cessing-spins and eccentricity). In the Appendix A we
provide details in calculating the non-GR QNM frequen-
cies, when using ParSpec, for the modified gravity theories
under consideration. Henceforth, unless otherwise speci-
fied, we work in geometric units G ¼ 1 ¼ c.

II. OVERVIEW OF MODIFIED
GRAVITY THEORIES

We will treat the modified theories of gravity as EFTs,
and focus on finite-size effects (see, e.g., Ref. [75]). Thus,
for each gravity theory we impose that the fundamental
lengthscale lth ≲ GM=c2, where M is the mass of the BH.
This implies that observable deviations from GR present in
those theories arise from modifications to the Kerr geom-
etry of each individual BH. Those finite-size effects can

TABLE I. Summary of the upper limits, at 90% credible level,
on the lengthscale of the modified gravity theories under
investigation. They were obtained combining Bayesian-inference
results from GW150914 and GW200129. Current constraints on
lth are also listed.

Theory Constraint This work

EdGB lEdGB ≤ 1.18 km (GW) [73] ...
dCS ldCS ≤ 8.5 km

(EMþ GW) [74]
ldCS ≤ 38.7 km

Cubic EFT ... lcEFT ≤ 38.2 km
Quartic EFT lqEFT ≤ 150 km [75] lqEFT ≤ 51.3 kma

aWe notice that our result for the quartic EFT of GR is only in
marginal tension with our hard cutoff scale for the validity
of the theory, and hence we do still quote it here (see Secs. IV D
and V D for details).
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manifest themselves in the QNMs of the remnant produced
by the merger, but also in the GW phasing of the inspiral
through corrections to the GR spin-induced quadrupole and
Love numbers. However, here we will not consider the
latter, instead, we will only study the impact of finite-size
effects on the QNMs of the remnant.
We start by briefly reviewing the modified gravity

theories we consider in this paper, what the current
observational constraints are and what we know about
BH QNMs in each of these theories.

A. Einstein-dilaton-Gauss-Bonnet gravity

This theory belongs to the class of scalar-Gauss-Bonnet
theories, which are described by the action

SEdGB ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂φÞ2 þ 1

4
l2
EdGBfðφÞG

�
;

ð2:1Þ

where g≡ detðgμνÞ is the metric determinant, R is the Ricci
scalar, φ is a dynamical scalar field, with kinetic term
ð∂φÞ2 ¼ gμν∂μφ∂νφ, which couples to the Gauss-Bonnet
invariant G ¼ RμνρσRμνρσ − 4RμνRμν þ R2, and Rμνρσ and
Rμν are the Riemann and Ricci tensors respectively. By
itself,

R
d4x

ffiffiffiffiffiffi−gp
G is a boundary term in four dimensions

and hence does not contribute to the field equations [76].
However, when coupled to φ, it can contribute to the field
equation through the coupling function fðφÞ. The strength
of the coupling is set by lGB, with dimensions of length.
Different subclasses of this theory are determined by the

function fðφÞ and can be divided into two classes based on
the properties of their BH solutions. In the first class, the
first derivative of the coupling function f0ðφÞ≡ df=dφ is
always nonzero and BHs are known to always support
scalar hair. This is the case of Einstein-dilaton-Gauss-
Bonnet (EdGB) gravity, for which fðφÞ ¼ expðφÞ [77]. In
the second class, f0ðφÞ ¼ 0 can vanish for some constant
φ0. In this case, the theory admits the same stationary,
asymptotically flat BH solutions as GR [78] and those of
scalarized BHs [78–83]. Examples include Gaussian
fðφÞ ∝ expð−φ2Þ [79] and the quadratic fðφÞ ∝ φ2 [78]
coupling functions.
BHs in EdGB gravity have scalar hair, to which we can

associate a monopole scalar charge, related to the asymp-
totic r−1 fall-off of the scalar field, where r is the distance
from the BH. This charge is not an independent parameter,
and depends on the BH’s mass and spin, thus being a
“secondary hair” [77,84,85]. Since the scalar field is
sourced by a curvature scalar, the scalar charge is larger
(smaller), the smaller (larger) the BH mass is.
These properties are not mere theoretical curiosities;

they have important observational consequences. First,
the presence of the scalar charge implies that when in
binaries, BHs can source scalar-dipole radiation (see, e.g.,

Refs. [86–90]) which affects the GW phase at −1PN order
(relative to the dominant quadrupolar GR contribution),
with magnitude proportional to the difference between the
charges of binary components. This makes EdGB gravity
testable with GW observations of compact binaries where
at least one component is a BH. Indeed, Ref. [73] placed
the bound lEdGB ≤ 7.1 km using the NSBH binaries
GW200105 and GW200115 [8] while Refs. [91,92],
obtained lEdGB ≤ 9.1 km, by stacking the posteriors of
lEdGB from a selection of BBHs from the GWTC-1 and
GWTC-2 catalogs [93,94].1 Second, the scalar field
influences the response of BHs to linearized perturbations
and thus affects the BH’s QNM spectra. The coupling
between scalar field and the Gauss-Bonnet invariant, results
in a coupling between scalar perturbations and gravitational
perturbations of polar parity which, for instance, breaks
the equivalence between the QNM spectra of polar and
axial gravitational perturbations [99,100] (i.e., the isospec-
trality [101]) of Schwarzschild BHs in GR.
Using BH perturbation theory, the QNMs for non-

rotating BHs in EdGB gravity were first computed in
Refs. [102,103] and were extended (in the polar sector)
to leading-order in BH spin in Ref. [104]. See Ref. [105]
for a study in the geometrical optics limit (l ≫ 1) and
Refs. [106,107] for NR studies.

B. Dynamical Chern-Simons gravity

This theory is described by the action [108,109],

SdCS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16π
R −

1

2
ð∂ϑÞ2 þ 1

4
l2
dCSϑ

�RR
�
;

ð2:2Þ

where ϑ is a pseudoscalar field which couples to the
Pontryagin density �RR ¼ �Rμν

ρσRνμ
ρσ, where �Rμνρσ is

the dual of the Riemann tensor defined as �Rμνρσ ¼
ϵμνγδRγδρσ=2, and ϵμνγδ is the Levi-Civita tensor. The
variation of the Pontryagin density is a boundary term
that does not contribute to the field equations in four-
dimensions [108]. However, the Pontryagin density can
modify the field equations when coupled to ϑ; the strength
of the coupling set by ldCS, with dimensions of length.
The theory admits as a solution the garden-variety

Schwarzschild BH of GR. This is not the case when
rotation is included and the Kerr metric is not a solution

1These bounds are, strictly speaking, valid only when the
scalar field φ is small (i.e., φ ≪ 1), and they take into account
only the leading-order scalar field interaction arising from the
original dilatonic coupling [i.e., fðφÞ ≈ φ in Eq. (2.1)]. This
results in what is often referred to as shift-symmetric scalar-
Gauss-Bonnet theory. In this theory, NSs do not have scalar
monopole charge [95], while BHs do [96–98]. Finally, we note
that the constant αEdGB used in Refs. [73,86,91,92] is related to
lEdGB as lEdGB ¼ 4π1=4jαEdGBj1=2.
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of the theory [108]. These rotating BHs support a scalar
field which falls off as r−2 asymptotically, to which we can
associate a scalar dipole charge [110,111] and the leading-
order modification to the GW phase enters at 2PN [86].
Deviations from GR at this PN order are constrained with
present GW observations [18] only at the level of ∼ 50%
(see the constraint on the 2PN parameter φ4 in Fig. 6 of
Ref. [18]). So far, analyses that used only the inspiral
portion of the BBH GW signals were not able to set
meaningful bounds on such deviation at 2PN order [91,92].
These works, as well as the analysis we do here, probe
the effects of dCS in the generation of GWs. Weak
constraints of order ∼ 103 km were obtained on this theory
by considering parity-violation propagation effects in
GWs [112–114], which show up as an amplitude birefrin-
gence between different GW polarizations [108,115].
Nonetheless, the theory has been constrained in Ref. [74],
which found ldCS ≤ 8.5 km, by folding data from the x-ray
observations of the pulsar PSR J0030+0451 [116,117] by
NICER [118,119] and from the GW observation of the
binary NS GW170817 [5,6], using equation-of-state inde-
pendent relations between NS moment of inertia and tidal
deformability [120–122].
The QNMs of the Schwarzschild BH in dCS gravity

were studied in Refs. [123–125], which found that scalar
perturbations couple to gravitational perturbations of axial
parity, in contrast with EdGB gravity, resulting in a
breakdown of isospectrality. The QNM spectra of slowly
rotating BHs in dCS gravity was studied in Refs. [126,127].
They were also extracted from NR simulations of BH head-
on collisions in Ref. [128].

C. Effective-field-theory of general relativity

Our last example of modified gravity theories are the
so-called EFTs of GR [75,129–135]. They are described
by the action

SEFT ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ

X
n≥2

l2n−2
EFT Lð2nÞ

�
; ð2:3Þ

where lEFT is a lengthscale assumed to be small compared
to the lengthscale M associated with a BH (i.e.,
lEFT=M ≪ 1), and Lð2nÞ are corrections that introduce
higher-order curvature tensors (with 2n metric derivatives).
More specifically, we follow the notation of

Refs. [134,135] and consider up to dimension-eight
operators (n ¼ 4),

Lð6Þ ¼ λeRμν
ρσRρσ

γδRγδ
μν þ λoRμν

ρσRρσ
γδR̃γδ

μν; ð2:4aÞ

Lð8Þ ¼ ε1C2 þ ε2C̃
2 þ ε3CC̃; ð2:4bÞ

where C ¼ RμνρσRμνρσ , C̃ ¼ Rμνγδϵ
μν

ρσRρσγδ, and both λo; e
and εi (with i ¼ 1, 2, 3) are dimensionless parameters.

Due to the large number of free parameters in this theory,
we focus on a subset of the parameter space. In particular,
we consider dimension-six and dimension-eight operators
separately. In addition, in the dimension-six case we further
assume that λe ¼ λo ¼ 1, leaving us with lcEFT as our
single free parameter. Similarly, in the dimension-eight
case, we set ε1 ¼ 1 and ε2 ¼ ε3 ¼ 0, as done in Ref. [75].
This leaves us with lqEFT as our single free parameter.
For the EFT of GR with dimension-eight operators,

Ref. [75] focused on the orbital effects (i.e., instead of
finite-size effects) and performed Bayesian model selection
using the two lowest-mass BBHs events of the second-
observing run of the LIGO-Virgo Collaboration, notably
GW151226 and GW170608. They found that the data
disfavor the appearance of new physics on distance scales
around lqEFT ∼ 150 km.
The QNMs of nonrotating BHs where calculated

in Refs. [133,134] in the dimension-six EFT and
in Refs. [134,136] in the dimension-eight EFT.
Reference [134] calculated the leading-order BH spin
corrections to the QNM spectra.

III. METHODS

Having reviewed the modified gravity theories that
we will consider, we now present the sequential building
blocks for the waveform model we use to test these theories
against GW observations. We start by reviewing the para-
metrized ringdown spin-expansion coefficients (ParSpec)
framework [72] in Sec. III A. Next, in Sec. III B, we review
our baseline parametrized IMR waveform model [53,56],
and explain how we extend it to include the ParSpec.
Finally, in Sec. III C, we show how we can map theory-
specific QNM calculations in modified gravity theories
onto the free coefficients in the ParSpec framework.
Ultimately, this provides us with an IMR waveform model,
with the ringdown portion of the model informed by QNM
calculations in specific beyond-GR theories.

A. The parametrized ringdown spin expansion
coefficients framework

A general procedure to describe deviations to the QNM
frequencies ωGR

lmn and damping times τGRlmn of BHs of GR is
to write,

ωlmn ¼ ωGR
lmnð1þ δωlmnÞ; ð3:1aÞ

τlmn ¼ τGRlmnð1þ δτlmnÞ; ð3:1bÞ
where δωlmn and δτlmn are the fractional deformation
parameters, l and m are the multipole indices, and n the
overtone number. This type of parametrization2 was
adopted, for instance, in Refs. [51–53,56,68,143].

2See also Refs. [137–139] and Refs. [140–142] for alternative
parametrizations.

SILVA, GHOSH, and BUONANNO PHYS. REV. D 107, 044030 (2023)

044030-4



The current LVK tests of BH ringdown (see Sec. VII.A
of Ref. [144] or Sec. VIII.A of Ref. [18]) take a flexible
theory-independent approach toward the inference of
δωlmn and δτlmn. These deviations are either assumed to
occur identically across all observed sources or belong
to a generic underlying Gaussian population. However, in
reality, these parameters depend on the source BH’s mass
and spin. Ideally, one would like to explicitly reinstate this
dependence, by (i) introducing deformation parameters
which can be determined, once and for all, from a specific
gravity theory (GR included) and (ii) making it simpler to
combine constraints coming from multiple (independently
observed) sources.
The ParSpec framework was introduced in Ref. [72]

and can be used to our purpose. It is an observable-based
bivariate expansion of Eq. (3.1), given by

ωlmn ¼
1

Mf

XNmax

j¼0

χjfω
ðjÞ
lmnð1þ γδωðjÞ

lmnÞ; ð3:2aÞ

τlmn ¼ Mf

XNmax

j¼0

χjfτ
ðjÞ
lmnð1þ γδτðjÞlmnÞ; ð3:2bÞ

whereMf and χf are the detector-frame final mass and spin,

respectively; the quantities ωðjÞ
lmn and τðjÞlmn are dimension-

less coefficients of the expansion in spin for the QNMs of

BHs in GR, while δωðjÞ
lmn and δτ

ðjÞ
lmn are source-independent

dimensionless coefficients that characterize the corrections
to the GR QNM at each spin-order, and Nmax is the order of
the spin expansion. All source dependence due to a given
modified gravity theory is contained in the dimensionless
parameter γ, which reads

γ ¼
�
lth

Ms
f

�
p
¼

�
lthc2ð1þ zÞ

GMf

�
p

; ð3:3Þ

which depends on the lengthscale parameter lth of the
specific gravity theory (non-GR modifications become
important at distances ≲lth), and the exponent p is related
to how the non-GR modifications are added to the Einstein-
Hilbert action. In Eq. (3.3) we made γ dimensionless by the
lengthscale associated with the remnant BH (i.e., its source-
frame mass Ms

f
3), which we can also write in terms of the

detector-frame mass Mf through the redshift z [145]. Also,
dividing by the factor G=c2 allows us to express lth in
physically intuitive metric units.
In principle, a modification to GR would also affect Mf

and χf and the expansion should be written in terms of the
non-GR mass and spin, say M̄f and χ̄f . If we assume that

the non-GR corrections are included perturbatively (as it is
the case with all the theories described in Sec. II), the
modifications to the BHmass and spin can be absorbed into

the deviations parameters δωðjÞ
lmn and δτ

ðjÞ
lmn. This means we

can identify the Mf and χf with their corresponding GR
values.4 We will see in Sec. IV that this assumption is
indeed satisfied in our parameter estimation studies (see,
for instance, Fig. 7).
Finally, we remark that in the GR limit (γ → 0) the

series (3.2) truncated at Nmax ¼ 4, reproduces with 1%
accuracy the GRQNMs for BH’s spins χf ≲ 0.7. The values

of the fitting coefficients ωðjÞ
lmn and τðjÞlmn can be found in

Ref. [72]. In Ref. [57], the fitting coefficients were
calculated up to Nmax ¼ 9, which extend the validity of
the spin-expansion up to χf ≲ 0.99. As we will discuss in
Sec. IV, the expansion to Nmax ¼ 4 is sufficient for our
purposes. For convenience we list the coefficients in the
case of GR in Table II.

B. The parametrized waveform model

We now describe the waveform model used in our paper
to infer properties of a BBH ringdown. As in Refs. [53,56],
we use an IMR BBH waveform model where the complex-
valued frequencies describing the remnant object are left
additionally free and estimated directly from the data.

TABLE II. Summary of theory-specific QNM calculations. We
summarize each theory we consider together with: the exponent p
at which their QNM-modification enters, the corresponding

modifications to the oscillation frequency δωðnÞ
220 and decay time

δτðnÞ220, and the references from which we used the results from. We
also include for comparison the GR coefficients, up to j ¼ 1,
obtained in Ref. [72]. The remaining GR coefficients for
1 < j ≤ 4, for which their non-GR counterpart cannot be
determined as of yet for the theories under consideration, can
be found in Table I of Ref. [72].

GR [72]

ωð0Þ 0.3737

τð0Þ 11.2407

ωð1Þ 0.1258

τð1Þ 0.2522

EdGB (p ¼ 4)
[103,104]

dCS
(p ¼ 4)
[127]

cubic EFT
(p ¼ 4) [135]

quartic EFT
(p ¼ 6) [135]

δωð0Þ 0.0107 3.1964 −0.5813 −0.2114
δτð0Þ 0.0044 6.3619 −0.2114 −0.6070
δωð1Þ −0.2480 41.199 6.4439 −1.5263
δτð1Þ −1.1014 794.66 265.12 171.35

3Throughout this paper, we maintain the convention of using
the upperscript “s” to denote source-frame quantities and plain
baseline symbols for detector-frame measurements. 4For a more detailed discussion, see Appendix A in Ref. [72].
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The GW signal from a quasicircular BBH can be
described in GR by a unique set of parameters θ,
that includes the masses and spins of the two BHs,
ðm1; m2;S1;S2Þ, the sky location determined by the lumi-
nosity distanceDL, right ascension α and declination δ, and
the orientation of the binary given by the inclination ι and
polarization ψ angles. The set is completed by the choice
of a reference time t0 and phase ϕ0. If we further assume
that the spins of the individual BHs are restricted to be
aligned or antialigned (for short, aligned) to the unit vector
perpendicular to the orbital plane (L̂), we reduce the six
components of the spins to just two, χi ≡ Si · L̂=m2

i with
i ¼ 1, 2, and our entire parameter set from 15 to 11. Let us
also define some additional parameters and set some
conventions that will be useful in our analysis later,
namely, the total mass M ¼ m1 þm2, the chirp mass
M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5, the asymmetric mass ratio
q ¼ m1=m2, with the convention m1 ≥ m2 (and thus
q ≥ 1), and the symmetric mass ratio of the binary,
ν ¼ m1m2=ðm1 þm2Þ2. Note that for BHs − 1 ≤ χi ≤ 1.
For the polarizations of the GW signal (in the observer’s

frame) we have

hþðι;φ0;tÞ− ih×ðι;φ0;tÞ¼
X
l;m

−2Ylmðι;φ0ÞhlmðtÞ; ð3:4Þ

where −2Ylmðι;φ0Þ are the −2 spin-weighted spherical
harmonics. As our baseline model, that is, the GR model
upon which non-GR modifications are added, we use
the computationally efficient (time-domain) multipolar
waveform model for quasicircular spin-aligned BBHs
described in Ref. [71], which contains the modes,
ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ, (3,3), (4,4), and (5,5). Such a
model was built by applying the postadiabatic approxima-
tion [146] to the multipolar spin-aligned EOB waveform
model of Refs. [69,70] (henceforth we refer to our baseline
model as SEOBNR5).
An accurate description of the merger is incorporated

through calibration with NR simulations, as described in
Refs. [69,70], along with information for the merger and
ringdown phases, from BH perturbation theory. The
merger-ringdown waveform, hmerger-RD

lm , is then stitched

to inspiral-plunge waveform, hinsp-plungelm at a certain time
t ¼ tmatch

lm , as

hlmðtÞ ¼ hinsp-plungelm Θðtlmmatch − tÞ þ hmerger-RD
lm Θðt − tlmmatchÞ;

ð3:5Þ

where ΘðtÞ is the Heaviside step function. The merger-
ringdown waveform is expressed as an exponentially
damped sinusoid [69,70]

hmerger-RD
lm ðtÞ ¼ νÃlmðtÞeiϕ̃lmðtÞe−iσlm0ðt−tmatch

lm Þ; ð3:6Þ

where

σlm0 ≡ Reðσlm0Þ þ iImðσlm0Þ ¼ ωlm0 −
i

τlm0

; ð3:7Þ

are the complex frequencies of the fundamental (0th
overtone) QNMs of the remnant BH. The functions
ÃlmðtÞ and ϕ̃lmðtÞ are defined in Ref. [69,70].
In the SEOBNR model [69,70], the complex frequencies

σlm0 are computed by first determining the final mass and
spin from estimates of the initial masses and spins through
NR-fitting-formulas [148,149], and then converting them to
the complex frequencies using BH perturbation theory-
inspired analytical fits [60,150]. Hence,

ωGR
lm0 ≡ ωGR

lm0ðm1; m2; χ1; χ2Þ; ð3:8aÞ

τGRlm0 ≡ τGRlm0ðm1; m2; χ1; χ2Þ; ð3:8bÞ

where ðωGR
lm0; τ

GR
lm0Þ refer to the GR QNM predictions in the

baseline SEOBNR model. In this paper, we replace these
GR predictions with QNM frequencies defined through
the ParSpec framework introduced in Sec. III A [see
Eqs. (3.2)]. Hence,

ωlm0 ≡ ωlm0ðm1; m2; χ1; χ2;lth; fδωðjÞ
lm0gÞ; ð3:9aÞ

τlm0 ≡ τlm0ðm1; m2; χ1; χ2;lth; fδτðjÞlm0gÞ; ð3:9bÞ

where the mass and spin of the remnant object ðMf ; χfÞ
are themselves functions of ðm1; m2; χ1; χ2Þ [148,149], and
we fix p to a certain theory-specific value. Additionally,
the frequencies depend on the ParSpec coefficients

fδωðjÞ
lm0; δτ

ðjÞ
lm0g, and the lengthscale lth.

Using this parametrized waveform model, which we call
pSEOBNR, we infer bounds on our non-GR parameter lth
for the specific cases of modified gravity theories presented
Sec. II. We detail our results in Sec. V.

C. From theory-independent
to theory-specific QNM results

Let us now establish the connection between the theory-
independent framework of the pSEOBNRwaveform model
and the theory-specific QNM calculations. In this paper we
restrict ourselves to the leading and next-to-leading order
terms in the ParSpec expansion, as well as to the funda-
mental QNM ðl; m; nÞ ¼ ð2; 2; 0Þ. For this reason, for
simplicity, we omit the subscripts hereafter and rewrite
ωlmn and τlmn, given by Eqs. (3.2) as,

5This waveform model is available in LALSuite [147] as the
SEOBNRv4HM_PA waveform approximant.
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Mfω ¼ γ½δωð0Þωð0Þ þ χfδω
ð1Þωð1Þ� þ

XNmax

j¼0

χjfω
ðjÞ; ð3:10aÞ

τ

Mf
¼ γ½δτð0Þτð0Þ þ χfδτ

ð1Þτð1Þ� þ
XNmax

j¼0

χnf τ
ðjÞ; ð3:10bÞ

where we pull out from the sum all non-GR corrections,
restricting ourselves to the nonspinning (j ¼ 0) and linear-
order in spin (j ¼ 1) corrections to the GR QNMs. The
QNMs associated to the higher (l; jmj)-modes listed in
Sec. III B are kept with their GR values.
How can we determine the beyond-GR corrections?

In GR, comparison between the numerically determined
Kerr QNMs against the fitting formula (3.10) fixes the GR
expansion coefficients ωðjÞ and τðjÞ. We can proceed in a
similar way with QNMs calculated in the context of a non-
GR theory. In particular, in the literature, we can already
find fitting formulas relating the QNMs to the BHs mass,
spin and lengthscale lth, the latter being specific to each
theory, up to j ¼ 1 in the spin expansion (see Table II). The
idea is then to compare these formulas against Eq. (3.10) to
fix p, δωðjÞ, and δτðjÞ. Because QNMs of rotating BHs in
modified gravity theories are not known to all spin values,
we can expect that the j ¼ 1 coefficients to change
as calculations beyond-leading order in spin are accom-
plished in the future. That is not the case for the j ¼ 0
coefficients and the situation is the same as in GR, in which
the j ¼ 0 coefficients are simply the QNMs of the
Schwarzschild BH.
In the end, the pSEOBNR waveform model with theory-

specific QNMs has only lth as a free beyond-GR parameter.
We emphasize that our procedure is different from that of
Ref. [57] which, for a given value of p, varied all lth, δωðjÞ,
and δτðjÞ parameters, and then proceeded to use the
posteriors on lth, considering up to j ¼ 2 in the GR
deformation coefficients, and remaining agnostic about
the underlying theory which would predict the modifica-
tions to the QNMs. We will see in Sec. V that adding
theory-specific information to the ParSpec coefficients
can lead to different interpretations of the bounds on
lth, even for different theories that predict the same value
of the exponent p.
As we have seen in Sec. II, QNMs of slowly rotating

BHs in modified gravity theories can belong to two families
depending on how they behave under a parity transforma-
tion: axial and polar. Which one do we use to match with
Eqs. (3.10)? To answer this question one has to work with
a chosen theory and perform a translation between the
metric perturbations hμν in the Regge-Wheeler-Zerilli
gauge [151,152] and connect it with the transverse-
traceless gauge used to described GWs (see, for instance,
Ref. [153], Chapter 12), In GR, both axial and polar QNMs
are isospectral and hence which QNM we use to model the

ringdown makes no difference. In beyond-GR theories,
isospectrality is in general broken (see in Ref. [154] for a
counterexample). Thus, how axial and polar gravitational
QNMs appear in the GW signal has to be answered on a
theory-by-theory basis. This is outside the scope of this
paper and here we take the more pragmatic approach of
simply choosing the least damped gravitational mode
between the two parities. Underlying this choice, are the
assumptions that either (i) the least-damped QNM is also
the one excited with largest amplitude or (ii) that QNMs of
both parities are excited with comparable amplitudes, and
one of the modes decays sufficiently fast to not appear in
the ringdown. We performed the mapping between theory-
specific QNM calculations and the ParSpec framework
under the hypothesis above, for the theories listed in Sec. II.
We summarize our results in Table II and leave the details
of our calculations to Appendix A.
In Fig. 1 we show an illustrative waveform for GR (solid

line; using the SEOBNR model) and in the cubic EFT of
gravity (dashed line; using the pSEOBNR model), including
the leading-order j ¼ 0 deformations to the fundamental
QNM (see Table II). We choose binary parameters similar to
GW150914, but nonspinning, with detector-frame masses
m1 ¼ 39 M⊙ and m2 ¼ 31 M⊙. The top panel shows the
þGW polarization hþ in both theories, while the bottom
panel shows the amplitude jhj ¼ ðh2þ þ h2×Þ1=2 and instanta-
neous frequency f, all as functions of time t. The signals are
identical up to the merger, specifically, the time tmatch defined
in Sec. III B, after which they differ during the ringdown.

FIG. 1. Gravitational-wave signal with GW150914-like param-
eters for both GR (solid line) and cubic EFT of GR (dashed line)
with the leading-order n ¼ 0 modifications to the fundamental
QNM, for lcEFT ¼ 65 km. The former is computed with the
SEOBNR model, while the latter with the pSEOBNR model,
with ringdown modifications according to the results in Table II.
Top panel: the þ polarization hþðtÞ. Bottom panel: the GW
amplitude jh̃ðtÞj (left axes) and the instantaneous frequency fðtÞ
(right axes).
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By construction, the ringdown lasts longer for the cubic EFT
of GR waveform and with a smaller instantaneous frequency
(see the bottom panel) due to the negative value of the δωð0Þ
coefficient in this theory.

IV. PARAMETER INFERENCE AND VALIDITY
OF OUR BOUNDS

In this section, we first provide a basic outline of the
Bayesian formalism that we use to infer the properties of
the underlying GW signal; then, we identify the most
promising events from the catalog of LVK GW observa-
tions to base our analyses on. Finally, we discuss how we
can interpret our results after taking into account the region
of validity of the non-GR theories that we are considering,
which are EFTs.

A. Bayesian formalism

If we assume that a GW signal observed in detector
data d is accurately described by our waveform model
pSEOBNR, we can infer the parameters of the model, λ,
given the hypothesis H, using Bayes’ theorem,

Pðλjd;HÞ ¼ pðλjHÞLðdjλ;HÞ
EðdjHÞ ; ð4:1Þ

where Pðλjd;HÞ is the posterior probability distribution,
pðλjHÞ the prior, Lðdjλ;HÞ the likelihood, and EðdjHÞ the
evidence. The set of parameters, λ is a union of the GR
waveform model parameters θ (see Sec. III B) and lth, the
only non-GR parameter in this problem which, we recall,
sets the characteristic lengthscale in which deviations from
GR become relevant in each of the theories described
in Sec. II.
Assuming stationary Gaussian noise, we can write the

(log) likelihood function as,

lnLðdjλ;HÞ ∝ −
1

2
hd − hðλÞjd − hðλÞi; ð4:2Þ

with the noise-weighted inner product h·j·i defined as,

hAjBi ¼ 2

Z
fhigh

flow

df
Ã�ðfÞB̃ðfÞ þ ÃðfÞB̃�ðfÞ

SnðfÞ
; ð4:3Þ

where ÃðfÞ is the Fourier transform of AðtÞ, the asterisk
denotes complex conjugation, SnðfÞ is the power spectrum
density of the detector, and ½flow; fhigh� span the detector
sensitivity frequency band. Assuming a specific prior
distribution for our parameters (discussed further in the
next section), we stochastically sample over the parameter
space using a Markov-Chain Monte Carlo algorithm as
implemented in LALInferenceMCMC [155,156], as part of the
LALInference software suite [147,157]. We subsequently
marginalize over the remaining parameters to obtain the

posterior probability distribution function (PDF) on lth
[i.e., Pðlthjd;HÞ], our main parameter of interest.
For N independent GWobservations fdjg, j ¼ 1;…; N,

each characterized by a PDF Pjðlthjdj;HÞ, the joint
posterior can be written as:

Pðlthjfdjg;HÞ ¼ pðlthÞ
YN
j¼1

Pjðlthjdj;HÞ
pjðlthjHÞ : ð4:4Þ

where pjðlthjHÞ are the priors used for each observation,
pðlthÞ is an overall prior, and we assume that the value of
lth is shared among all events. Since we assume a uniform
prior on lth, the joint posterior is equal to the joint
likelihood. Hereafter, we will drop the explicit usage of H.

B. Priors

The prior distribution functions on the GR parameters
are assumed to be uniform over the component masses,
ðm1; m2Þ, isotropically distributed on a sphere in the sky
for the source location with pðDLÞ ∝ D2

L, and isotropic on
the binary orientation, pðι;ψ ;ϕ0Þ ∝ sin ι. For the spins
ðχ1; χ2Þ, we assume a prior uniform and isotropic in the
spin magnitudes.6

Among our non-GR parameters flth; δωðjÞδτðjÞg, as
already mentioned in the previous section, we hold
fδωðjÞ; δτðjÞg fixed to theory-specific predictions, and only
allow lth to vary freely. We assume a uniform prior on lth,
which ranges between lth ¼ 0 km and lth ∼ 100–300 km,
the specific value chosen to ensure that the marginalized
posterior distributions on this parameter do not rail against
the prior’s maximum value. The lower limit is set by
the fact that the modified gravity theories we consider all
have p even and hence we can assume lth > 0without loss
of generality.

C. Events selection

The pSEOBNR model, as described in Sec. III B, is an
IMR model that infers the properties of the underlying GW
signal, including (independently) its ringdown properties,
using the Bayesian formalism above. Naturally, the most
promising candidates for our analyses are high-mass and
loud GW observations with a significant signal-to-noise
ratio (SNR) in the inspiral and postmerger stages to break
the degeneracy between the total mass and the QNM
frequencies. The latest LVK GW catalog [4] reported 90
observed signals not all of which are relevant for our BH
ringdown analysis. In fact, in the accompanying paper [18]
on tests of GR, the pSEOBNRv4HM [53,56] analysis,7

which is most similar to the pSEOBNR model presented
in this paper, identified two events which provided the

6This spin-prior choice can be specified in LALInference using
the option alignedspin-zprior.

7See, in particular, Sec. VIII A.2 in Ref. [18]
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strongest bounds on the measurements of the dominant
(220) QNM: GW150914 [1] and GW200129 [4]. These
two events, with a total (source-frame) mass of 65 M⊙ and
63.4 M⊙ respectively, are extremely similar in their source
properties. These are also two of the loudest BBH signals
observed to date with a total network SNR of 24 and 26.8,
respectively. Moreover, and what is more relevant for our
analysis, are their postinspiral (merger-ringdown) SNRs
which are both ≈ 16 (see the columns for ρpostinsp in
Table III of Ref. [37] and Table IV of Ref. [18]). In this
paper, we are going to focus on these two GWevents as our
probes of the BH ringdown in modified theories of gravity.
The parameter inference in this paper follows configu-

rations identical to the ones used on these events for the
pSEOBNRv4HM analysis in Ref. [18]. GW150914 was a
2-detector (Hanford-Livingston) event while GW200129
was 3-detector (Hanford-Livingston-Virgo). We conse-
quently use the same strain data hðtÞ, detector power-
spectral-densities SnðfÞ and calibration envelopes as were
used for the analyses in Ref. [18].
In Sec. V, we enumerate through the different theories

and outline the main results. Whenever possible, we also
combine results from both events to obtain the strongest
possible bound on lth.

D. EFT interpretation of our results

There are two conditions that we must verify before we
can confidently claim to have placed a constraint on lth.
First, as we have explained in Sec. II, all theories that we
consider must be interpreted as an EFT, meaning that they
should be considered valid only below an energy scale, or
equivalently, above a lengthscale. As a cutoff lengthscale
for the validity of the EFT we use,

ΛEFTðε;mÞ ¼ ε
Gm
c2

; ð4:5Þ

where ε is a dimensionless number and m is the median
value of one of the mass scales involved in the problem. We
note that ΛEFT has dimensions of length and hence can
be compared to each theory’s fundamental lengthscale lth.
Here we explore the range ε ∈ ½0; 1�, but following
Refs. [73,91,92] we quote our final results using ε ¼ 1=2,
but we stress that there is no fundamental justification for
this choice.
Under these assumptions, we will say that a bound has

been placed on lth, if most of the PDF PðlthjdÞ support is
in the interval ½0;ΛEFTð1=2;mÞ�. In practice, this can be
quantified through the cumulative distribution function
(CDF) associated with the marginalized posterior distribu-
tion PðlthjdÞ, namely

Pðlth ≤ lmax
th jdÞ ¼

Z
lmax
th

0

dl0Pðl0jdÞ: ð4:6Þ

For instance, we require that for a bound at 90% credible
level to be placed on lth that

Pðlth ≤ ΛEFTjdÞ ≥ 0.9; ðEFT boundÞ; ð4:7Þ

where we let lmax
th ¼ ΛEFT in Eq. (4.6), and likewise for

other credibility percentiles.
Second, as already emphasized in Ref. [72], the

ParSpec formalism is by construction perturbative. This
means that the non-GR deformation parameters are small,
that is,

γδωðjÞ≪1; and γδτðjÞ≪1; ðParSpec boundÞ; ð4:8Þ

for all orders j in the expansion in dimensionless spin χf
and where γ was defined in Eq. (3.3). We also construct
posterior distributions for these parameters and check if
most of their support is concentrated to a domain with
values much smaller than unity.
Another question we must consider is the following:

what is the mass m that we should use in Eq. (4.5)? In
Refs. [73,91,92], which attempted to constrain dCS and
EdGB theories with the inspiral part of the GW signal
alone, it was natural to choose the secondary’s mass m2 as
the most conservative choice, since it is by definition the
smaller component mass and hence places the lowest cutoff
scale ΛEFT for the validity of either of these theories as
an EFT.
In our problem, the answer is not as clear. On the one

hand, since we are interested in the ringdown part of the
signal, it is natural to use the final mass Mf to compute
ΛEFT. On the other hand, one may argue that the modified
gravity theory under consideration should be able to predict
a full inspiral, merger, and ringdown of the BBH before
we can even make such a test, and thus the same, more
conservative choice m ¼ m2 should be used. Here we
adopt a pragmatic approach to this issue and consider both
masses, m2 and Mf , to determine ΛEFT. Specifically, we
will use the median value of the marginalized PDF of these
masses. We then compare how different assumptions yield
to different interpretations of the results of our parameter
estimation.

V. RESULTS USING LIGO-VIRGO EVENTS

A. Einstein-dilaton-Gauss-Bonnet gravity

We start with EdGB gravity. In Fig. 2 we show the
marginalized PDFs of the coupling constant lGB, for
GW150914 (top panel) and GW200129 (middle panel),
with and without the spin corrections to the (2,2,0) QNM.
The bottom panel shows the joint posterior obtained
by combining both events. We see, for both events, the
Nmax ¼ 0 posteriors are characterized by a peak away from
zero. This does not mean that we are inferring a deviation
from GR. We recall that the deviations from GR in the

BLACK-HOLE RINGDOWN AS A PROBE OF HIGHER- … PHYS. REV. D 107, 044030 (2023)

044030-9



ParSpec framework are controlled by the dimensionless
parameter γ, which here reads,

γEdGB ¼
�
c2lEdGB

GMs
f

�
4

: ð5:1Þ

As shown in Fig. 3, γEdGB does indeed have a posterior
distribution with largest support at zero, indicating con-
sistency between the underlying signal and GR. We also
observe that the inclusion of the spin corrections (i.e., the
curves withNmax ¼ 1) displaces the posteriors distributions
toward smaller values of lEdGB (see Fig. 2), and larger
values of γEdGB (see Fig. 3).
As we have emphasized in Sec. IV D, we must first

check whether the “EFT” (4.7) and “ParSpec” (4.8) bounds
are satisfied, before drawing any conclusions on the
allowed values for lEdGB from our parameter estimations.
We check the validity of the EFT bound in Fig. 4. In the top
(bottom) panel we show the CDF of the lEdGB posteriors
for GW150914 (GW200129), obtained by evaluating the
integral (4.6) with lmax

th ¼ ΛEFTðε;mÞ, with the mass scale
set by the secondary’s mass (i.e.,m ¼ m2, dashed lines) or

the remnant’s mass (m ¼ Mf , solid lines), while varying ε
between 0 and 1. For GW150914, we see that for the
Nmax ¼ 0 curves, that the CDF never goes past 0.2,
regardless of the mass scale m used and even at ε ¼ 1,
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FIG. 3. Posterior distribution function on the dimensionless
parameter γEdGB, defined in Eq. (5.1). Different line colors
distinguish between events, while different line styles distinguish
between differentNmax. We see that this parameter which controls
the ParSpec expansion in EdGB gravity does have maximum
support at γEdGB ¼ 0. This shows that our model is consistent
with GR. The right panel shows the PDFs in the range
0 ≤ γEdGB ≤ 1. Note how the curves are flat in this range for
both events and when Nmax ¼ 1.

FIG. 4. The CDF evaluated at the cutoff ΛEFTðε;mÞ for EdGB
gravity as a function of the parameter ε for both (dashed
curves)m ¼ m2, the secondary’s source mass, and (solid curves)
m ¼ Mf , the remnant’s source mass, without (black curves) and
with (purple curves) linear in spin QNM corrections. The
horizontal lines mark the 90% credible levels. Having set the
maximum value of ε to be 1=2, we see that in no situation
the curves pass through the 0.90 lines. This means that no bound
on lEdGB can be placed with the events we analyzed.

FIG. 2. Posterior distribution function on coupling constant
lEdGB in EdGB gravity for GW150914 (top panel), GW200129
(middle panel) and from combining results (bottom panel).
In all panels, different line colors correspond to the inclusion
(Nmax ¼ 1) or not (Nmax ¼ 0) of the linear-in-spin QNM cor-
rection. The joint posteriors are shown for illustrative purposes
only. As we explain in Fig. 4 and in the main text, our analysis of
these events fails to satisfy the EFT bound (4.7). We mark with
solid vertical lines the 90% upper credible intervals, while the
dashed and dot-dashed lines correspond to the EFT bound,
ΛEFTð0.5; m2Þ and ΛEFTð0.5;MfÞ, respectively. We see that the
90% upper credible level lines are located to right of the EFT
cutoffs. This means that the EFT bound is not satisfied.
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at which the EFT description of the theory would not be
valid anyway. This shows that the “EFT bound” given by
Eq. (4.7) is never met to a significant credible level and thus
that we cannot place a bound on lEdGB. The situation is
similar for GW200129 with Nmax ¼ 0 and does not change
for either event when we add spin corrections to the EdGB
QNM. For the case with Nmax ¼ 1, we find that the “EFT
bound” is satisfied only for ε ≈ 0.8 and ≈ 1 for GW150914
and GW200129, respectively. However, we set the maxi-
mum value of ε to be 1=2, thus, taken together we are led to
conclude that we cannot constrain EdGB gravity with our
present model. We summarize our findings in Table III.
We can compare this conclusion with that of Ref. [57],

which found that p ¼ 4 modifications (such as the case
of EdGB gravity) are constrained to l ≲ 35 km, but not
including theory-specific QNM information on δωðjÞ and
δτðjÞ. Furthermore, Ref. [57] did not impose the EFT bound
that we imposed. Our results provide a concrete example of
the importance of including theory-specific QNM calcu-
lations information into the parameter estimation and how
this can dramatically change the outcome of the results.
Let us also contrast our results with those of

Refs. [73,91,92] which relied on the BBH inspiral to
constrain lEdGB, as discussed in Sec. II A. We see that
EdGB gravity provides an example of a theory in which,
with current GW events, the inspiral portion of the signal
can be more constraining than the ringdown portion of the
signal. Two reasons together can explain our negative
results. First, as observed by Ref. [103], the QNMs of
EdGB BHs only differ slightly from their Schwarzschild
counterparts. Second, the larger mass Mf of the remnant
BH, suppresses scalar field’s charge relatively to the initial
binary components.

B. Dynamical Chern-Simons gravity

We now consider dCS gravity where the main results are
summarized in Fig. 5. As with EdGB gravity (see Sec. VA)
although the PDF of ldCS is peaked away from 0, this does
not signify a deviation from GR, as we have verified that,

γCS ¼
�
c2ldCS

GMs
f

�
4

; ð5:2Þ

does indeed peak at zero indicating consistency with GR,
similarly to what is shown in Fig. 3 for γEdGB. We also see
that in both cases the inclusion of leading-order–in-spin
correction to the QNM displaces the posteriors toward
smaller values of ldCS. This can be seen more evidently by
looking at the location of posterior peaks. Finally, in the
bottom panel, we show the combined result for both events.
In Fig. 6 we show the CDF for GW150914, we see that

withm ¼ m2, Eq. (4.7) is not satisfied unless ε ≈ 0.9 (with
only j ¼ 0 corrections) and ε ≈ 0.7 (with both j ¼ 0 and 1
corrections). The situation is different if we usem ¼ Mf . In
this case, we find that with or without spin corrections
Eq. (4.7) can be satisfied with ε ≤ 1=2 (i.e., below the
criteria used Refs. [73,91,92]). This means that with
our model’s assumptions and using the remnant’s source
mass Mf to set the cutoff scale that we can claim an upper
bound

ldCS ≤ 41.9 km at 90% credible level; ð5:3Þ

on dCS gravity. This result would constitute the strongest
bound to date on this theory with GW observations alone,
and also the first bound using GW generation effects.

TABLE III. Detailed summary of our results for EdGB gravity
for GW150914, GW200129, and combined events using
m ¼ Mf , ε ¼ 1=2 and quoting only 90% credible results. We
find that we cannot place any bound on lEdGB with our waveform
model from either GW event.

Nmax Event
EFT

bound?
ParSpec
bound?

Constraint
(m ¼ Mf )

0 GW150914 No Yes ...
GW200129 No Yes ...
Combined ... Yes ...

1 GW150914 No Yes ...
GW200129 No Yes ...
Combined ... Yes ...

FIG. 5. Similar to Fig. 2, but for dCS gravity. We stress that
posteriors obtained including n ¼ 1 corrections, violate condi-
tions (4.8) and therefore should not be used to draw meaningful
conclusions. We show them for illustrative purposes and also to
emphasize the importance of taking conditions (4.7) and (4.8)
simultaneously into consideration when analyzing the results of
the parameter estimation.
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We can draw qualitatively similar conclusions from the
GW200129 event. In particular, we find,

ldCS ≤ 35.8 km at 90% credible level: ð5:4Þ

These stronger bounds are a consequence of the larger
support for ldCS ⪅ 15 km for GW200129 (compare the top
and middle panels in Fig. 5), and in part due to the smaller
median remnant (Mf ≈ 59.5 M⊙ versus Mf ≈ 61.8 M⊙ for
GW150914). We also found for both GW events, that the
perturbative-conditions (4.8) required by the ParSpec is
violated for the γdCSδτ

ð1Þ coefficient. This means that we
cannot use this posterior to infer any meaningful bound on
dCS gravity and that is why we quoted only the Nmax ¼ 0
bound above.
Finally, since both events individually lead to a bound on

ldCS (assuming a cutoff scale for m ¼ Mf and Nmax ¼ 0),
we can combine the posteriors to obtain the cumulative
bound,

ldCS ≤ 38.7 km at 90% credible level; ð5:5Þ

which is the main result of this section. This bound is
approximately a factor of four weaker than that placed by
Ref. [74], but it (i) relies only on GW observations, and
(ii) suggests that a ringdown analysis can potentially place
constraints on theories that, with current GW events, can
evade GR tests using inspiral information alone, such as the
case of dCS gravity [73,91,92]. In Table IV we summarize
our findings of this section.

As an additional check, to verify the robustness of our
constraint, we show in Fig. 7, the final spin χf and remnant
mass Mf for GW150914 for GR and dCS gravity. We see
that our pSEOBNR waveform model does not introduce
substantial changes to the GR estimates on these param-
eters, as required by the ParSpec expansion (see discussion
in Sec. III A). In fact, we observed no bias on the estimation
of Mf and χf for all theories considered here. For com-
pleteness, in Appendix B we also show how all other
intrinsic parameters remain unbiased.

FIG. 6. Similar to Fig. 4, but for dCS gravity. We see that the
CDF curves for m ¼ Mf are above 90% for ε ¼ 1=2 for both
events, with and without including the n ¼ 1 dCS corrections to
the dominant QNM.

TABLE IV. Detailed summary of our results for dCS gravity for
GW150914, GW200129, and combined events using m ¼ Mf ,
ε ¼ 1=2 and quoting only 90% credible bounds. We found that
while our posteriors satisfy the condition (4.7) (with ε ¼ 1=2),
they do not obey the condition (4.8) for Nmax ¼ 1. This means
that our results for Nmax ¼ 0 are the only ones we can confidently
quote. The combined bound, which is also quoted in Table II, is
ldCS ≤ 38.7 km at 90% credible level.

Nmax Event
EFT

bound?
ParSpec
bound?

Constraint
(m ¼ Mf)

0 GW150914 Yes Yes ldCS ≤ 41.9 km
GW200129 Yes Yes ldCS ≤ 35.8 km
Combined ldCS ≤ 38.7 km

1 GW150914 Yes No ...
GW200129 Yes No ...
Combined ...

FIG. 7. Corner plot showing that the inferred final spin χf ,
remnant mass Mf for GW150914, using the same waveform
model, but without (purple contours) and with the non-GR
parameters different from zero (blue contours), for dCS gravity
and Nmax ¼ 0. The contours represent 90% credible levels. We
see that the introduction of the non-GR parameters does not
bias the inference on the source parameters as required by
the ParSpec.
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C. Cubic effective-field-theory of general relativity

We now consider the cubic EFT of GR. In Fig. 8 we
show the marginalized posterior distributions functions of
lcEFT for GW150914 (top panel) and GW200129 (middle
panel), with different curve colors corresponding to differ-
ent Nmax in the spin expansion. We find that in this theory,
the posterior distributions are mostly uniform for lcEFT ≲
40 km (contrast this with the EdGB and dCS gravity cases
in Figs. 2 and 5). For values lcEFT ≳ 40 km, the posteriors
smoothly approach zero.
In Fig. 9 we show the CDF for both events, calculated in

the same way as already described for the EdGB and dCS
theories. We see that curves are very similar to those of dCS
gravity for GW200129 (see bottom panel in Fig. 9).
Moreover, we find that the EFT (4.7) and ParSpec (4.8)
bounds are satisfied for both events both when m ¼ Mf ,
ε ¼ 1=2, and Nmax ¼ 0. This allows us to place the
combined bound of

lcEFT ≤ 38.2 km; at 90% credible level: ð5:6Þ

As also happened for our study for dCS, the find that,
for the cubic EFT, the ParSpec bound is violated by the
Nmax ¼ 1 corrections to the QNMs, meaning that we
cannot use this case to draw any meaningful constraint
on this parameter. We summarize our results in Table V.

D. Quartic effective-field-theory of general relativity

Let us now consider the quartic EFT of GR, as our final
example. In Fig. 10 we show the posteriors on lqEFT for
GW150914 (top panel), GW200129 (middle panel) for
Nmax ¼ 0, which are qualitatively similar to the cubic EFT
of GR. We find that while the Parspec bound is satisfied,
the EFT bound is only marginally so, As shown in Fig. 11,
the 90% credible level is reached for ε ≈ 0.58 (in the
case of GW15094) and for ε ≈ 0.64 (in the case of
GW200129). Having in mind that the cutoff ε ¼ 1=2 is
not fundamental, but to keep consistency across our
analysis, our final result

lqEFT ≤ 51.3 km; ð5:7Þ

FIG. 8. Similar to Fig. 2, but for the cubic EFTof GR. We show
our results for GW150914 (top panel), GW200129 (middle
panel) and combined events (bottom panel). The colors distin-
guish different Nmax in the spin expansion. Once again, the solid
vertical lines mark the 90% upper credible intervals, while the
dashed and dot-dashed lines correspond to the EFT bound,
ΛEFTð0.5; m2Þ and ΛEFTð0.5;MfÞ, respectively.

FIG. 9. Similar to Fig. 4, but for the cubic EFT of GR. We see
that the CDF curves for m ¼ Mf are above 90% for ε ¼ 1=2 for
both events, with and without including the j ¼ 1 corrections to
the dominant QNM.

TABLE V. Detailed summary of our results the cubic EFT of
GR for GW150914, GW200129, and combined events using
m ¼ Mf , ε ¼ 1=2 and quoting only 90% credible results.

Nmax Event
EFT

bound?
ParSpec
bound?

Constraint
(m ¼ Mf )

0 GW150914 Yes Yes lcEFT ≤ 38.2 km
GW200129 Yes Yes lcEFT ≤ 42.5 km
Combined lcEFT ≤ 38.2 km

1 GW150914 Yes No ...
GW200129 Yes No ...
Combined ...
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at 90% credible level should be taken lightly. However, we
can claim the validity of the bound above, but at a lower,
68% credible level.

In this theory, we have considered only Nmax ¼ 0. We
find that the addition of spin corrections (while maintaining
the same prior ranges on lqEFT as used in the Nmax ¼ 0

study) can result in waveforms that can have a ringdown
segment larger (sometimes seconds long) than the inspiral-
plunge segment in the detectors’ frequency band, making
the parameter estimation challenging. To overcome this
issue we have lowered the value of lmax

qEFT, but by doing so
we have obtained posteriors which were flat, just as our
prior, and were thus uninformative. Hence, we do not quote
any results forNmax ¼ 1. Table VI summarizes our findings
for the quartic EFT of GR.

VI. CONCLUSIONS

We presented an unified framework that combines
the ParSpec framework to model deviations to the GR
QNMs [72] with the pSEOBNR waveform model [53,56].
We showed with concrete examples, how theory-specific
QNM calculations of slowly rotating BHs in modified
gravity theories can be mapped onto the non-GR para-
meters of the ParSpec formalism. The resulting pSEOBNR
waveform model does not bias (relative to GR) the
inference of the intrinsic binary parameters, as required
by ParSpec (see, in particular, Fig. 7 and Fig. 12 in
Appendix B), Put together this allowed us to test four
modified gravity theories (EdGB, dCS, cubic, and quartic
EFTs of GR) using observational data from the LVK events
GW150914 and GW200129. Our results are summarized
in Table I.
In particular, we found, that within the interpretation of

these theories as EFTs and the region of validity of the
ParSpec framework, the fundamental lengthscale of dCS
gravity is bound as ldCS ≤ 34.5 km, at 90% credible
level, when stacking the posteriors of GW150914 and
GW200129. This is the strongest constrain to date on this
theory with GW observations alone. In contrast, we could
not place any bounds on the fundamental lengthscale of
EdGB gravity lEdGB. This dichotomy between the two
theories has a counterpart with works that considered the
inspiral part of the GW signal alone [73,91,92]. Using data
of the LVK BBHs, it was found that the posterior

FIG. 10. Similar to Fig. 2, but for the quartic EFT of GR. We
show our results for GW150914 (top panel), GW200129 (middle
panel) and combined events (bottom panel). As in Fig. 2, we
mark with the solid vertical lines the 90% upper credible
intervals. Here we calculated the values of ΛEFTðε;mÞ using
ε ¼ 0.58 (for GW150914) and ε ¼ 0.64 (for GW200129) as
discussed in the main text.

FIG. 11. Similar to Fig. 4, but for the quartic EFT of GR. We
find that similarly to what happens in dCS gravity and the cubic
EFTof GR, we can place a constraint on lqEFT whenm ¼ Mf for
both events at 68% credibility.

TABLE VI. Detailed summary of our results the quartic EFT of
GR for GW150914, GW200129, and combined events using
m ¼ Mf , ε ¼ 1=2, and Nmax ¼ 0. The quoted result correspond
to 90% credible values if we allow for a more flexible cutoff
ε≲ 0.65. However, the result is robust for the cutoff ε ¼ 1=2, at
65% credible level.

Nmax Event
EFT

bound?
ParSpec
bound?

Constraint
(m ¼ Mf )

0 GW150914 Yes Yes lqEFT ≤ 51.7 km
GW200129 Yes Yes lqEFT ≤ 54.8 km
Combined lqEFT ≤ 51.3 km
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distributions for deviations from GR were uninformative in
dCS gravity, but not in EdGB gravity. We emphasize that
both those theories (and the cubic EFT of GR also studied
here) all predict the same exponent p in ParSpec. Hence,
our results show how the inclusion of theory-specific
information into the ParSpec framework can result in
different outcomes for different theories, even if they
predict the same value of p.
Let us discuss some avenues for future work. First, we

could implement a high-spin version of the GR fitting
coefficients to the ParSpec formulas. This has already been
done in Ref. [57] extending the validity of the ParSpec
formulas up to spins of χf ≈ 0.99. For the events analyzed
here, the original fit by Ref. [72] was sufficient, but it might
not be the case with upcoming GWobservation campaigns.
Second, it would be important to incorporate additional
effects, such as spin-precession and eccentricity to
pSEOBNR (see, for instance, Refs. [158,159]). Third, it
will be interesting, to perform tests of modified theories of
gravity using IMR waveformmodels that include, during the
inspiral stage, finite-size effects induced by the non-GR
geometry around the BHs—for example the ones due to
spin-induced quadrupole, tidal deformability and absorption,
and also orbital effects due to non-GR gravitational inter-
actions between the BHs. Those effects could be included
using the flexible theory-independent method [43], as done
in Ref. [75] or the TIGER code [41,42]. However, setting
bounds on deviations from GR caused by orbital effects
requires a different EFT interpretation than what we adopted
in Sec. IVD (see also Sec. II C in Ref. [75]). Indeed, in this
case one would need to analyze the data considering that the
modified theory of gravity is valid for lth ≳M, but lth ≲R,
being R the binary’s separation. Fourth, to test the robust-
ness of the results obtained in this paper, it will be very useful
to employ NR waveforms produced in some of the non-GR
theories under consideration, as synthetic signals, and carry
out Bayesian analysis to recover the binary’s parameters,
including the non-GR ones during the ringdown. As today,
there are only a small number of such BBH NR simulations,
for a given theory [106,160–167]. Last, but not least, it will
be very beneficial to calculate the QNMs (complex)
frequencies of rapidly rotating BHs in modified gravity
theories (with BH perturbation theory). This is a challenging
problem, but certainly necessary, also in the context of
ParSpec, if higher spin corrections would need to be
included to make the framework robust.
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APPENDIX A: DETAILS OF THE
DETERMINATION OF THE THEORY-SPECIFIC

PARSPEC COEFFICIENTS

Here, for the theories described in Sec. II, we use QNM
calculations from the literature and determine the coeffi-
cients in the ParSpec, which we have summarized in
Table II. We consider only the fundamental QNM
ðl; m; nÞ ¼ ð2; 2; 0Þ, hence we omit the QNM subscript
“(2,2,0)” for brevity and, likewise, the subscript “f” for final
BH’s spin and mass.

1. Einstein-dilaton-Gauss-Bonnet gravity

We start by considering EdGB gravity and focus on
Refs. [103,104] to determine the ParSpec coefficients for
this theory. In particular, Ref. [103] found that the damping
time of the dominant axial gravitational-led mode increases
as the lengthscale lEdGB is increased. The leading-order
spin corrections to the polar-parity QNMs was studied in
Ref. [104]. Hence, according to the prescription of
Sec. III C, we select the axial-parity branch of QNMs.
For the nonrotating QNMs we use the numerical data of
Ref. [103] and generate a new linear fit in γEdGB using
numerical QNM data valid for small values of the γEdGB
(see, in particular, Eq. (27) and Fig. 1 of Ref. [103]). We
find,

MReðσÞEdGB ¼ MReðσÞGRð1þ 0.0107γEdGBÞ; ðA1aÞ

MImðσÞEdGB ¼ MImðσÞGRð1 − 0.0044γEdGBÞ: ðA1bÞ

The small values of the numerical prefactors of γEdGB are a
consequence of the how weakly the QNMs of BHs in
EdGB gravity deviate from their GR counterparts, even at
moderately large values of γEdGB ≈ 0.3.
The spin-corrections to the polar gravitational-led modes

were calculated in Ref. [104] [see, in particular, their
Eqs. (51) and (52)]. For consistency with our previous
discussion, we truncate these equations at leading-order in
γEdGB, but we emphasize that we are being inconsistent in
mixing results valid for modes of different parities. We still
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do so, simply to explore what the rotational corrections to
EdGB gravity QNMs might tells us in our ringdown
analysis and the results of Ref. [104] are our best presently
available guide.
We can expand the resulting formula in γEdGB and the

coefficients δωðiÞ and δτðiÞ, i ¼ 1, 2 can be read-off by
comparison against Eqs. (3.10), where for the damping
time we use the relation ImðσÞEdGB ¼ −1=τEdGB and
reexpand in lEdGB and χ. These steps yield for pEdGB ¼ 4,

δωð0Þ
EdGB ¼ 0.0107; δτð0ÞEdGB ¼ −0.2480; ðA2Þ

for the j ¼ 0 coefficients and

δωð1Þ
EdGB ¼ −0.2480; δτð1ÞEdGB ¼ −1.1014: ðA3Þ

for the j ¼ 1 coefficients.

2. Dynamical Chern-Simons gravity

For dCS gravity, we follow Ref. [127], which numeri-
cally calculated the QNMs of slowly rotating BHs, and
found that for the axial gravitational-led modes the damp-
ing time increases, as we increase ldCS, at constant, small
BH spin. Hence, according to the prescription of Sec. III C,
this is the branch of QNMs we choose to work with.
We then proceed to determine δωðjÞ and δτðjÞ as follows.

Using the fitting formula Eq. (54a) of Ref. [127], namely,

MReðσÞdCS ¼ c1 þ c2κζ þ ðc3 þ c4κζÞð1 − χfÞc5þc6κζ;

ðA4Þ

and similarly for the imaginary part, ImðσÞdCS ¼ −1=τdCS.
Here κ ¼ 1=ð16πÞ, ζ ¼ l4

dCS=ðM4
sκÞ, thus κζ ¼ γdCS and

where ci (with i ¼ 1;…; 6) are fitting coefficients which
can be found in Table II of Ref. [127],
We now expand Eq. (A4) to leading orders in χ and γdCS,

and gather the terms proportional to γdCS. We obtain

MωdCS ¼ ð0.3722þ 1.1945γdCSÞ
þ ð0.1861þ 5.1828γdCSÞχ; ðA5Þ

where we make use of the numerical values of the
coefficients ci. We find (reassuringly) that the nonrotating
GR part of the expression above agrees with ωð0Þ of
Ref. [72] to 0.5% relative error. The same estimate leads
to a larger relative error (≈20%) for the linear-in-spin
coefficient (i.e., 0.1861 in comparison to 0.1258 of
Ref. [72]). We attribute this difference to Ref. [127] having
fitted Eq. (A4) to QNM data computed to linear-order in
spin, whereas [72] fitted Eq. (3.2) to Kerr QNM valid to all
orders in spin.
We can now isolate the dCS corrections from Eq. (A5)

and compare against Eq. (3.10), to find pdCS ¼ 4,

δωð0Þ
dCS ¼ 3.1964; δωð1Þ

dCS ¼ 41.199: ðA6Þ

We can carry the same steps for τdCS ¼ −1=ImðσÞdCS
and find

δτð0ÞdCS ¼ 6.3619; δτð1ÞdCS ¼ 794.66; ðA7Þ

which completes the set of fixed non-GR parameters in the
ringdown of the pSEOBNR waveform model for this
theory. We remark that the alarmingly large values of

δωð1Þ
dCS and δτð1ÞdCS are compensated by the assumptions that

γdCS and χ are much less than unity, which are indeed the
assumptions used in Ref. [127] to compute the QNMs.

3. Effective-field-theory of general relativity

The QNMs of slowly rotating BHs in both cubic and
quartic EFT of GR where calculated in Ref. [135]. For the
cubic EFT, we use their Eq. (67), in the particular case of
λe ¼ λo ¼ 1. We then linearize the resulting expression in χ
and consider m ¼ 2 the harmonic. As an outcome, we find
that the fundamental axial-parity QNM is the least damped
one, and it is the one we use. Direct comparison with
Eqs. (3.10) results in pcEFT ¼ 4,

δωð0Þ
cEFT ¼ −0.5813; δτð0ÞcEFT ¼ 2.6469;

δωð1Þ
cEFT ¼ −3.8620; δτð1ÞcEFT ¼ 265.12; ðA8Þ

for this theory.
We proceed in the same away for the quartic EFT. Here

we use Eq. (68) (with ϵ1 ¼ 1 and ϵ2 ¼ 0) and Eq. (70) of
Ref. [135], In this case we find that both axial and polar
modes reduce the damping time of the fundamental
QNM mode relative to GR. Hence, we choose the axial-
parity mode for this which reduction is the smallest. This
time we then find that pqEFT ¼ 6,

δωð0Þ
qEFT ¼ −0.2114; δτð0ÞqEFT ¼ −0.6070;

δωð1Þ
qEFT ¼ −1.5263; δτð1ÞqEFT ¼ 171.35; ðA9Þ

for this theory. As in the case of the previous theories, the
large values of some of these coefficients are compensated
by the assumptions of weak coupling and small spin used to
calculate the QNM frequencies.

APPENDIX B: THE ESTIMATION OF INTRINSIC
BINARY PARAMETERS IN GENERAL

RELATIVITY AND MODIFIED THEORIES
OF GRAVITY

We show in Fig. 12 a corner plot for all the intrinsic
binary parameters from our parameter-estimation study of
GW150914, using the pSEOBNR waveform models for
GR and dCS. We also included ldCS in the latter case.
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We see that the medians of the posterior distributions are
not affected substantially by the inclusion of the non-GR
parameters. This is particularly important for theMf and χf
parameters, since the ParSpec framework assumes that the
non-GR theory induces small deviations from GR. Indeed,
since pSEOBNR introduces only minimal modifications to
the plunge-merger and because the remnant BH parameters
are estimated according to GR predictions using the

binary’s component masses and spins, the fact that only
small biases are introduced onMf and χf is, to some extend,
expected. We obtain qualitative similar results for
GW200129 and the other modified gravity theories con-
sidered in our work. We also remark that the fact that the
posterior on χf has most support around ≈ 0.7 justifies our
use of the fitting coefficients in the ParSpec formulas
of Ref. [72].

FIG. 12. Corner plot showing that the inferred source binary parameters and ldCS for GW150914. We used the same waveform model
pSEOBNR setting (purple contours) or not (blue contours) the non-GR parameters different from zero. In the latter case, we considered
dCS gravity and Nmax ¼ 0 as an example. Here, χeff is the dimensionless effective-spin parameter, related to the individual spins χi and
masses mi of each binary component as χeff ≡ ðm1χ1 þm2χ2Þ=ðm1 þm2Þ. All contours correspond to 90% credible levels. We see that
the addition of the non-GR parameters does not introduce biases in the inference of the source parameters. We found the same qualitative
behavior in the posteriors distributions of the source binary parameters for the other modified gravity theories studied in the main text.
The same conclusions apply for the other GW event studied here, GW200129.
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