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Semiclassical analysis of Dirac fields on curved spacetime
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We present a semiclassical analysis for Dirac fields on an arbitrary spacetime background and in the
presence of a fixed electromagnetic field. Our approach is based on a Wentzel-Kramers-Brillouin
approximation, and the results are analyzed at leading and next-to-leading order in the small expansion
parameter 7. Taking into account the spin-orbit coupling between the internal and external degrees of
freedom of wave packets, we derive effective ray equations with spin-dependent terms. These equations
describe the gravitational spin Hall effect of localized Dirac wave packets. We treat both massive and
massless Dirac fields and show how a covariantly defined Berry connection and the associated Berry
curvature govern the semiclassical dynamics. The gravitational spin Hall equations are shown to be
particular cases of the Mathisson-Papapetrou equations for spinning objects.
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I. INTRODUCTION

Semiclassical dynamics represents an intermediate
regime between classical and quantum mechanics, where
wave effects such as diffraction and interference can be
ignored and the average dynamics of wave packets can be
well approximated by point particles [1,2]. While wave
dynamics is generally described by partial differential
equations, semiclassical approximations can be used to
obtain an effective description in terms of point particles
with dynamics governed by ordinary differential equations.

It is well known from optics and condensed matter
physics that wave packets with internal degrees of freedom,
such as polarization or spin, can have nontrivial dynamics
in the semiclassical limit. In particular, spin-orbit inter-
actions between the external (average position and momen-
tum) and internal (spin or polarization) degrees of freedom
of the wave packet can lead to spin Hall effects [3-5]. In
this case, the propagation of the wave packets becomes spin
dependent. These effects have been studied theoretically
and observed in many experiments for the propagation of
polarized light beams in optical media [6-15], as well as for
electrons in condensed matter systems [16—19].

Spin Hall effects are also expected to occur for wave
packets propagating in gravitational fields, an effect known
as the gravitational spin Hall effect [20,21]. Electro-
magnetic [22-25] and linearized gravitational [26-28]
wave packets have been shown to follow frequency- and
polarization-dependent trajectories on curved spacetimes.
Similar effects have also been shown for massive Dirac
wave packets propagating on curved spacetimes [29-34]
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(see also Refs. [35-41]). Furthermore, spin-dependent
effects in curved spacetime also play an important role in
chiral kinetic theory [42-45], which is a semiclassical
approach to studying many-body effects arising from inter-
actions in dilute gases of microscopic chiral fermions. Other,
more exotic, spin Hall effects have also been recently studied
for massless particles with anyonic spin [46—48].

In this paper, we study the semiclassical dynamics of
charged Dirac fields in curved spacetime and in the
presence of a fixed electromagnetic field. We consider
both massive and massless fields and treat them separately
since their behavior is radically different. Our approach is
based on a Wentzel-Kramers-Brillouin (WKB) approxima-
tion, where the reduced Planck constant 7 is taken as the
small expansion parameter. By taking into account the spin-
orbit interactions between the external and internal degrees
of freedom of the wave packets, we derive spin-dependent
equations of motion describing the gravitational spin Hall
effect. The semiclassical dynamics we derive is based on a
covariantly defined Berry connection (which determines the
dynamics of the spin internal degree of freedom) and the
associated Berry curvature (which determines the dynamics
of the average external degrees of freedom). Furthermore, we
show that the gravitational spin Hall equations for both
massive and massless Dirac wave packets can be viewed as
particular cases of the Mathisson-Papapetrou equations for
spinning objects. We need to mention that similar results,
based on WKB approximations, have also been obtained in
Refs. [29,31-34]. However, these studies are limited to
massive Dirac fields, and no external electromagnetic field is
considered.

The paper is organized as follows. We start in Sec. II by
introducing Dirac fields, the Dirac equation on curved

© 2023 American Physical Society
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spacetime and a variational formulation of the Dirac
equation in terms of an action. In Sec. III, we define our
WKB approximation. The semiclassical expansion in
powers of 7 is performed at the level of the action, and
then the semiclassical WKB equations are derived as the
Euler-Lagrange equations. In Sec. IV, we consider the
case of massive Dirac fields and analyze the semiclassical
WKB equations. We study the algebraic properties of the
principal symbol of the Dirac operator, we introduce the
Berry connection and the Berry curvature, and then we take
into account spin-orbit interactions in order to derive the
gravitational spin Hall equations. These are shown to be a
particular case of the Mathisson-Papapetrou equations. The
same analysis is performed in Sec. V for massless Dirac
fields. In addition, here we also give a comparison with
similar known results in the context of the gravitational spin
Hall effects for electromagnetic and gravitational waves.
Finally, we present our conclusions in Sec. VI.

Notation and conventions: We consider an arbitrary
smooth Lorentzian manifold (M, g,,), where the metric
tensor g, has the signature (— + ++). The absolute value
of the metric determinant is denoted as g = | det g, |. Phase
space is defined as the cotangent bundle 7*M, with
canonical coordinates (x, p). Furthermore, on M we con-
sider a fixed electromagnetic field F,, =2V A,. The
Einstein summation convention is assumed, and we use
the notation a,b* = a-b. Greek indices, (a,fp,...), re-
present spacetime indices and run from O to 3. Latin
indices, (a, b, ...), represent tetrad indices and run from
0 to 3. The components of 3-vectors are denoted using
Latin indices from the middle of the alphabet, (i, j, ...),
which run from 1 to 3. Eigenspinors will be labeled with
capital Latin indices, (A, B, ...), which run from 0 to 1. We
also use a summation convention for repeated eigenspinor
indices.

II. THE DIRAC EQUATION

Consider a Lorentzian manifold (M, g,w), which is a
solution of the Einstein field equations, admitting a spin
structure ([49], p. 416). A Dirac field ¥ is a section of a
vector bundle with fiber C*, associated with the spin
frame principal bundle Spin; (M) via the representation
p(A)=A, where Ae€Spin(3,1)=SL(2,C) ([49], p. 418).
The Dirac field W, of charge ¢ and mass m, satisfies the
Dirac equation

(ihy*V, — ey’ A, —m)¥ =0, (2.1)
where A, is the electromagnetic vector potential and y* are
the spacetime gamma matrices. These are related to the flat
spacetime gamma matrices y* by the tetrad fields (e,)":
y* = (e,)"y". The spinor covariant derivative V,, is defined
by a spin connection on the spin frame bundle Spin; ; (M).
Given a spin structure on M, the Levi-Civita connection on

the Lorentz frame bundle L(M) determines a spin con-
nection on the spin frame bundle Spin; ; (M) ([49], p. 419).
The spinor covariant derivative V,, acts on spinor fields as

i
VY= <a,, - Za),,“”aa,,> v, (2.2)

where o, :%[ya’yh] and a)”“"

defined as

is the spin connection,

a),,“b = (e“)vvﬂ(eb)”. (2.3)

The Dirac equation can also be derived from the following
action:

J = / d*x/g¥ DY, (2.4)
M
where ¥ = ¥7y¥ and the Dirac operator is
D= ihy"V, — eA,y" —m. (2.5)

Since the action is invariant under U(1) transformations

¥ ¢/, the following Dirac vector current j* is conserved:

=Py, v, j*=0. (2.6)

In the massless case (m = 0), the action admits an additional
symmetry given by the transformation

¥ W, W Weitr (2.7)

This symmetry gives the following conserved axial vector
current:

Toxial = Yy,

vﬂjgxial =0. (2-8)

III. WKB APPROXIMATION

We assume that the Dirac field admits a WKB expansion
of the form

P(x) = y(x. V,S, h)eS/n,
W(-x, VﬂS, fl) - l//()(x, VMS) —|— hll/1(x’ vﬂS) + O(hQ)’
(3.1)

where S is a real scalar function, y is a complex amplitude
spinor, and Planck’s constant 7 represents a small expan-
sion parameter. Note that we are allowing the amplitude y
to depend on V,S. This is justified by the mathematical
formulation of the WKB approximation [50,51], where
V,S determines a Lagrangian submanifold x>
(x,V,S(x)) € T*M, and the amplitude y is defined on
this Lagrangian submanifold.
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The main assumption behind this approximation is that
the length scales of variation of the background spacetime
and background electromagnetic field are much larger than
the typical length scale of our wave packets, taken to be
proportional to 7.

The semiclassical analysis of the Dirac equation is
usually performed by inserting the WKB ansatz (3.1) into
the Dirac equation (2.1) and analyzing the results order-by-
order in A [29,31,52,53]. However, we find it more
convenient to perform the semiclassical analysis at the
level of the action (2.4). The advantages of this variational
approach are extensively discussed in Ref. [54].

A variational formulation of the WKB approximation
for the Dirac field is obtained by inserting the WKB
ansatz (3.1) into the action (2.4). We obtain

7= [ e D
M

- / dhey/Gp(D + iV )y + O(R2),  (3.2)
M
where

D = —y'k, — mly, (3.3a)

k, =V,S+ eA,. (3.3b)

The action depends on the phase function S(x) and the
amplitudes y(x, VS) and y(x, VS). Performing a variation
of the action with respect to these fields [since the
amplitude y depends on VS, the variation of the action
must be performed as in Ref. [22], (Appendix B)], we
obtain the following Euler-Lagrange equations:

Dy + ihy"V,y = O(h?), (3.4a)
7D — ih(V, )7 = O(R2), (3.4b)
V) =00, (340

Equations (3.4a) and (3.4b) can also be obtained by
directly inserting the WKB ansatz into the Dirac equation,
and Eq. (3.4c) represents the WKB approximation of the
conservation law given in Eq. (2.6).

We continue by analyzing the above equations at each
order in #. However, we have to treat the massive and
massless cases separately. The main properties of semi-
classical dynamics are governed by the null eigenspace
of the principal symbol matrix D [51], and there will be
significant differences between the massive and mass-
less case.

IV. MASSIVE DIRAC FIELDS

In this section, we present our semiclassical analysis of
massive Dirac fields. Our main goal is to understand the
behavior of the massive Dirac field beyond the leading-
order approximation and to obtain the equations of motion
describing the gravitational spin Hall effect. We start in
Sec. IVA by examining the WKB equations at the lowest
order in /. We obtain the lowest-order dispersion relation,
a transport equation for the intensity of the field, and
we analyze the null eigenspace of the principal symbol
matrix D. In Sec. IV B, we treat the dispersion relation as a
Hamilton-Jacobi equation and solve it using the method of
characteristics. We obtain that, at the leading order in the
WKB expansion, massive Dirac fields can be described by
charged massive point particles satisfying the covariant
Lorentz force law. In Sec. IV C, we analyze the WKB
equations at order 72!. We obtain a transport equation for the
amplitude v, and we show how this can be expressed in
terms of a Berry connection. In Sec. IV D, we present a
geometric discussion, showing how the Berry connection
can be viewed as a 1(2)-valued one-form on the Lagrangian
submanifold, and we calculate the associated Berry curva-
ture. In Sec. IV E, we derive an effective dispersion relation,
taking into account spin-orbit couplings, and we use this to
derive spin-dependent ray equations, representing the gravi-
tational spin Hall effect. Finally, in Sec. IV F, we compare
these ray equations with the Mathisson-Papapetrou equa-
tions and with other known results from the literature.

A. WKB equations at leading order

At the lowest order in #, the Euler-Lagrange equa-
tions (3.4) reduce to

Dy, =0, (4.1a)
oD =0, (4.1b)
Vo =0, (4.1¢)

where we introduced the notation jy* = woy*y, for the
conserved Dirac current at the lowest order in A. Using
Egs. (4.1a) and (4.1b), we can obtain an alternative expres-
sion for jy*. We start by writing the following identities:

wor' (myo) = —k,wor"r*wo, (4.2a)

wom)r*yo = —k,Wor" r"yo. (4.2b)

Adding these two equations and using the anticommu-
tation property of gamma matrices, y*y* + y*y* = —2¢"*,
we obtain

) B 1
Jo!' = wortyo = %Iok’ﬁ (4.3)
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where we defined the lowest-order intensity as Z, = .
The transport equation (4.1c) can be rewritten as

V,(Zok") = 0. (4.4)
Using Egs. (4.1a) and (4.1b), we can write
0=—-woDyy =1, (% k, k" + m) (4.5)
Thus, we obtained the dispersion relation
kk# = —m?. (4.6)
It should be noted that
2V k, = —eF,,. (4.7)

Thus, we can differentiate the dispersion relation (4.6) to
obtain the Lorentz force law
KMV k, = ek'F . (4.8)
Equations (4.1a) and (4.1b) are homogeneous systems of
linear algebraic equations for the unknowns w, and ¥,
[29,31,52]. For these systems to admit nontrivial solutions,
the determinant of the matrix D must be zero. This
condition is equivalent to the dispersion relation (4.6):
det(D) =0 & k"= —m?. (4.9)
Under the restriction k, k& = —m?, the matrix D has rank 2.
We can introduce a 4-spinor basis {X, X, 1y, IT; }, where
2y and X, are eigenspinors of D with zero eigenvalue and
Iy and II; are eigenspinors of D, with eigenvalue —2m:
DZA — O,

$.D =0, (4.10a)

DHA = —ZmHA, ﬁAD = —2ml:IA, (410b)
where A, B = 0, 1. Furthermore, the 4-spinors satisfy the

orthogonality relations

EAZB - _ﬁAHB - 5AB’ (411)
and the resolution of identity
ZAiA - HAI:IA - H4. (412)

Here and in the following, we use an additional summation
convention over repeated capital indices:

1
TpE, = Z(ZAEA) =%y + X,
4=0

(4.13)

Thus, Egs. (4.1a) and (4.1b) are satisfied if the amplitude
Y 1s an eigenspinor of D, with eigenvalue zero. The most
general form for v is

Wo(x, k) = /Zo(x)[20(x)Zo(x, k) + 21 (x) 2y (x, k)]

= Zo(x)ZAZA, (414)
where zy and z; are scalar coefficients, satisfying the
constraint

ZOZ() + Z]Z] = ZAZA =1. (415)
Note that since the matrix D explicitly depends on k,, its
eigenspinors will, in general, also depend on k,. As
mentioned in Sec. 111, this can be viewed as a consequence

of the amplitude y being defined on the Lagrangian
submanifold determined by k,,.

B. Ray equations

Equations (4.4) and (4.6) represent a system of coupled
partial differential equations

2

1
SIV(VuS + eA) (VS + edy) = —’%, (4.16a)

Vo [Zo(VES 4 eA%)] = 0, (4.16b)
where the unknowns are S and Z,. The first equation is
a Hamilton-Jacobi equation for the phase function S,
and the second equation is a transport equation for the
intensity Z,. The Hamilton-Jacobi equation can be solved
using the method of characteristics ([55], Sec. 46). This
is done by defining a Hamiltonian function H on 7*M,
such that

H(x,VS) = % 9P (VoS + eA,)(VsS + eAg) = — m;
(4.17)
In this case, the Hamiltonian is
H(x.p) = 50 (pu + eA)py +edy). (418)

and Hamilton’s equations (assuming the standard symplec-
tic form on 7°M, Q = dx* A dp,) take the following form:

oH
=2 e ean, 4.19
an, (4.19a)
. H
Pu="9m=""5 (Pa+ €Aq)(pp + eAp)
—e(p® + eA")d,A,. (4.19Db)
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Introducing a new momentum variable k, = p, + €A,,
Hamilton’s equations can be written in a more compact
form:

W=k (4.20a)

i = %"

K 2

koks + ek F . (4.20b)
Given a solution {x*(z), p,(z)} for Hamilton’s equations,
we can obtain a solution of the Hamilton-Jacobi equa-
tion (4.17) by taking the phase function S as follows [56]:

S(x(zy), pu(zy)) = /T] dtL(x,x, p,p) +const, (4.21)

70

where

L(x,x,p,p) =¥'p, — H(x, p) (4.22)
is the corresponding Lagrangian. The ray equations (4.19)
can also be obtained as the Euler-Lagrange equations
corresponding to the Lagrangian L.

Once the Hamilton-Jacobi equation is solved, the trans-
port equation (4.4) can also be analyzed (see Ref. [57]).
However, our main interest is in the ray equations governed
by the Hamiltonian (4.18) or by the Lagrangian (4.22). The
ray equations (4.20) describe the timelike worldlines of
massive charged particles. These equations can easily be
rewritten as

i 4 F’;ﬂjc“)'cﬁ —ex*F} =0, (4.23)
or in the explicitly covariant form
k*V k= X2V 3 = ex"F /. (4.24)

C. WKB equations at next-to-leading order
Taking the Euler-Lagrange equations (3.4a) and (3.4b) at

order 7! only, we obtain

Dy, = —iy"V y, (4.25a)

Given y, these are two inhomogeneous systems of linear
algebraic equations, where the unknowns are v, and ;.
For any inhomogeneous system, the general solution can be
written as the sum of the solution for the homogeneous
system, and a particular solution for the inhomogeneous
system. We can write y; as

w1 =boZo + b1 Z +y,, (4.26)

where b, are scalar coefficients and y, is a particular
solution of the inhomogeneous system. The system will
admit nontrivial solutions if and only if the right-hand
side of the inhomogeneous equation is orthogonal to all
the solutions of the transposed homogeneous equation.
Such solutions are always a linear combination of X,
and X;. Therefore, we have the following solvability
conditions [29,31,52], which impose additional constraints
on yq and yg:

i()J’”Vﬂll/o = ilV”V,ﬂ//o =0, (4.27a)

V,pror*Ee = Vo E; = 0. (4.27b)

We can rewrite these equations using the expansion of yr,
given in Eq. (4.14), and the transport equation (4.4):

KtV 24 = %ZAV,,/C” — mE\r*V, Zpzp. (4.28a)
KV, z2p = %zgvﬂkﬂ — mZyZar"V, Zp. (4.28b)
Using the identity
S, /T, = %@,Bk", (4.29)
and its derivative
SV, k= m(V, 47" Zg + 247"V, Zp). (4.30)
we obtain
KMV 24 = iM apzp, (4.31a)
KMV ,Zp = —iZaM 4, (4.31b)

where the 2 x 2 Hermitian matrix M has components

im - _
MAB = 7 (ZAWVMZB - V#ZA}/”ZB). (432)
Using the properties of the eigenspinors given in

Egs. (4.10)—(4.12), the matrix M ,p can be rewritten as

S . e -
MAB = Ek”(ZAVﬂZB - VﬂZAZB) - ZF/UJZAGWJZB'
(4.33)

Here, the first term represents the Berry connection, and the
second term represents the so-called “no-name” term. The
no-name term was first introduced in a general context by
Littlejohn and Flynn [58] (see also Ref. [51] for a geometric
discussion), and its role in the WKB approximation to the
Dirac equation was discussed in Ref. [53].
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We can write Eq. (4.31) in a more compact form by
introducing the following rwo-dimensional unit complex
vectors:

Z
= () =@ oa e
21
We also introduce the following notation:

i< -

BﬂAB(x7 k) = 5 (ZAV;JZB - vﬂZAZB)’ (4358.)
1_

s g (x, k) = 3 Za0" 2. (4.35b)

where 6#* = £ [y#,y*]. The Berry connection B, is a 2 x 2
matrix-valued one-form, while s# is a 2 x 2 matrix-valued
antisymmetric tensor. Depending on the context, we will
sometimes omit the matrix indices A, B. Then, Eq. (4.31)
can be written as

MV, = i(kﬂB,, - ;F,wsﬂv> . (436a)

WY,z = iz (k”Bﬂ - gFﬂys"”) (4.36b)

If we restrict z to a worldline x*(z), which is a solution of
the ray equations (4.20), we can write

= i<k"BM - gF,wsﬂ"> Z (4.37a)

f =iz (k”Bﬂ - gFWs/‘”> : (4.37b)

These equations describe the evolution of the spin degree
of freedom along the worldline x#(z).

It is important to emphasize how the covariant deriva-
tives act on the eigenspinors X, which are defined on
the Lagrangian submanifold. Applying the chain rule and
using the horizontal and vertical derivatives defined in
Appendix A, we obtain

BV, S = KV, [Z4 (x. K)]
v (%”2A> (x, k) + k(V ,k,) (vvva) (x, k)

h \4
— 'V, S, + ek"F,, V'S, (4.38)

The expression of the Berry connection becomes

; _h h _
KB ag = %kﬂ (zAvﬂzB _ VMZAZB)

+ % KF,, (iAvsz - vviAzB). (4.39)

D. Geometric definition of the Berry connection
and Berry curvature

A general discussion about the geometry of the transport
equation arising from the WKB approximation of multi-
component wave equations can be found in Ref. [51]
(see also Refs. [58—60]). Here, we specialize this discussion
to the case of the Dirac equation, focusing on the geometry
of the Berry connection and the corresponding Berry
curvature.

The WKB approximation of multicomponent wave
equations generally results in a Hamilton-Jacobi equation
for the phase S and a transport equation for the amplitude
. In the present case, the Hamilton-Jacobi equation for §
was discussed in Sec. IV B, and the transport equation for
Yo 1s divided into two parts. The first one describes the
evolution of the intensity 7, and is given in Eq. (4.4), while
the second one describes the evolution of the spin degree of
freedom, as presented in Eq. (4.37).

Since the amplitude v is defined on the Lagrangian
submanifold, the Berry connection must be defined as a
connection on an appropriate 4-spinor bundle with base
space the Lagrangian submanifold. Furthermore, the ampli-
tude y is an eigenspinor of D with eigenvalue 4 = 0, so
the appropriate bundle is then the A-eigenbundle of the
4-spinor bundle with base space the Lagrangian submani-
fold. Then, the Berry connection has to be a Lie algebra-
valued one-form defined on the Lagrangian submanifold.
This is clearly not the case for B,, which is written as a Lie
algebra-valued one-form on spacetime.

A connection one-form defined on the Lagrangian
submanifold should be contracted with a tangent vector
to the Lagrangian submanifold. By definition, the tangent
vectors to the Lagrangian submanifold are the Hamiltonian
vector fields. Working in the (x,k) coordinates, the
Hamiltonian vector field corresponding to the ray equa-
tions (4.20) is

d B B d
XH = kﬂw‘i‘ (Fﬁﬂkpk +€k FUM)—.

%, (4.40)

We can obtain the appropriate definition of the Berry
connection as follows. Using the definition of the horizon-
tal derivative, we can rewrite Eq. (4.39) as

044029-6
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i - _
BAB(XH) = kﬂBﬂAB = Ekﬂ(zAvuzB - VMZAEB)
+ % (D0 k¥ + ekVF )
x <2AV”ZB - VﬂiAzB), (4.41)
and we obtain
I - _
BAB == E (ZAV/JZB - V”ZAZB)dXﬂ
+ % (EAVMZB - V"EAZB)dkﬂ. (4.42)

This is the appropriately defined Berry connection that
we were looking for, which is a Lie algebra-valued one-
form defined on the Lagrangian submanifold. The corre-
sponding Lie algebra is 1(2), since the one-form i3 takes
values in the space of two-dimensional anti-Hermitian
matrices.
The curvature of the connection B can be calculated
using the standard definition ([61], Sec. 11.3.2)
F =dB-ilB, B]. (4.43)
This is the Berry curvature, and it plays an important role
in the spin Hall effect correction to the ray equations, as
we will discuss in the next sections. In coordinates, the
expression of the Berry curvature is

F = (Fue)wdxtdx’ + (Fi) , dxtdk,
+ (Fa) dk,dx” + (Fy),,dk"dk", (4.44)
where
_ 9By, 9By, .
(Fedw =g =5~ ilB), (B, (4.45)
o(B)" By .
HV — _ _ u" v
(F k) x, ok, i[(Bo). (By)Y].  (4.46)
, 0By 9B, . )
Fed = =g =g~ LB (B (447)
(ka)l/’u = _(ka)py’ (448)
and
i _
(BX)ﬂAB = E (ZAVMZB - vﬂZAZB)s (4493)
VR v
(Bi)as = 5 (EAV”EB - V”EAZB). (4.49b)

Using the properties of the eigenspinors given in
Egs. (4.10a)—(4.12), the components of the Berry curvature
can be explicitly computed, as shown in Appendix C:

1 1
(Fxx);w = _ER;waﬂsaﬂ + Wkpkgrﬁyr‘;ysaﬂ, (4508_)
v 1 v
(Fu ) = —5 5, (4.50b)
1
(ka)uy = _(ka)y” = _Wkpr‘lﬂmsay' (450C)

The components of the Berry curvature were also
calculated in Ref. [53], although only for the case of
Minkowski spacetime. Restricting to Minkowski space-
time, the only nonzero component of the Berry curvature is
(Fu)*, and in this case our result agrees with the result
presented in Ref. [53] (Eq. 30).

E. Effective dispersion relation and spin-orbit coupling

In the standard WKB treatment, the equations for each
individual order in 7 are set to zero. The resulting ray
equations (4.20) are used to determine the transport of
the spin degree of freedom, by Eq. (4.37). However, with
this approach there is no backreaction from the spin degree
of freedom, described by z(z), on the orbital degrees of
freedom, described by the rays x#(z) and k(z). To properly
take into account the spin-orbit coupling between the spin
dynamics and the ray dynamics, we derive here an effective
dispersion relation, containing O(A') corrections to the
dispersion relation given in Eq. (4.6). This represents a
weaker condition compared to the standard WKB treat-
ment, where terms of different orders in % are set to zero
individually. Instead, here we only require that the com-
bined sum of the terms of order #° and #' vanishes. The
effective dispersion relation is obtained by taking the Euler-
Lagrange equations (3.4), but without treating terms of
different orders in £ separately. The effective dispersion
relation is then treated as an effective Hamilton-Jacobi
equation, and the resulting ray equations contain spin-
dependent correction terms, describing the gravitational
spin Hall effect of Dirac particles.

Starting with Eq. (3.4), we can write

(", + m)y — iV, = O(2), (4.51a)
w(r'k, + m)y + ihV gy = O(h?). (4.51b)
By adding these two equations, we obtain
kpry'y + myry — % @V, = V,girty) = O(R?).
(4.52)
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The Dirac current j* = yy*y + O(A?) can be rewritten in a
different form. Using Eqgs. (3.4a) and (3.4b), we get
gy (my) = gyt (=y ky + ihy* V) + O(R?),

(pm)yty = (=pr’k, — ihV,gy" )r'y + O(R?).  (4.53)

Adding the above equations, we obtain

) I _
= —%kyw(y”r” + 77w

ih

+ — "'V — Vpr'r'y) + O(h?)

2m
1 ih _
=—kyy —— ¢ WV, - V,ow)
m 2m

h
ta V, (o w) + O(h?). (4.54)

Using the above result, Eq. (4.52) can be rewritten as

. in ) n o
Py =k (WoVuwo — Vawowo) + Ekﬂvp(l//oa” Wo)

ihm , _ _ _
——— Wor"Vwo = Vairor'we) = —m*iry + O(1?).

2
(4.55)
We expand the O(h) terms above using Eq. (4.14):

in i inT,
> K @V, = V,oyo) = 2

k(z'V,z = V,z'2)

+ hZok*z'B,z. (4.56)
Using Egs. (4.1a) and (4.1b), we can write
kﬂvy(l/_loo'/’wl//()) = EI()FﬂDZTS’wZ. (457)

We also have
ih _ _ ihZ
> W0V = Viporyo) = 52k (2,2 - V,272)
hZ,
+ hnd Y k”ZTB,,Z
m

ehl, )
a 2m0 Fﬂvﬂ s*z.

(4.58)

At this stage, it is also convenient to introduce the spin
tensor

h 00" o

SH = hzstz = -
Yoo

(4.59)

The role of the spin tensor is to encode the angular
momentum carried by the wave packet, and similar defi-
nitions have also been considered in Refs. [29,31,53]. Using

Eq. (4.10), it is straightforward to show that the spin tensor is
orthogonal to the momentum:
Sk, = 0. (4.60)

Combining the above equations, we obtain the effective
dispersion relation

1 in ] e
o Kk = ?k”(zv,,z - V,2z) — hk*zZB,z + S FwS”

2

—-Z 1 om).

: (4.61)

The above dispersion relation contains O(%) corrections to
the standard dispersion relation obtained in Eq. (4.6). These
additional terms describe the spin-orbit coupling.

1. Effective ray equations

Following the same method as in Refs. [22,26], we now
derive effective ray equations that contain spin-dependent
correction terms. These equations are meant to describe
the gravitational spin Hall effect of Dirac wave packets.
We start with the effective dispersion relation (4.61) and
treat it as an effective Hamilton-Jacobi equation for the
phase function S:

1 ho_ .
SV + eA)(VyS + edy) = 3 (22 -12)

2
— (VS + eA®)ZB,z + gFaﬂS”ﬂ __ ’"7 +O(R?).

(4.62)
We define the corresponding Hamiltonian function
H= %g“ﬁ(pa + eA,)(py + eAy) — % (zz2-%2)
— h(p® + eA%)ZB,z + gF,,,,saﬂ, (4.63)

and we solve for the phase function § as in Sec. IV B:

S((2), palc). 2(2). 2(2)) = / 4L + const,  (4.64)

To

where the Lagrangian is

. 1 ih,_. -
L= xapa - Eguﬁ(pa + eAa)(p/} + eAﬁ) + ? (ZZ _ZZ)

+ h(p® + eAV)ZBz — gFaﬁsaﬁ . (4.65)
Note that the Lagrangian is a scalar function defined on
T(T*M x C?), and the effective ray dynamics is given by
the Euler-Lagrange equations
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= 4.
ow drow ’ (4.66)

where w € {x*, p,,z,Z}. The Euler-Lagrange equations
are

B A
M= K= BBz — hkE ot 4 S F o (4.67a)
opu 2 op,
Py =T kok? = ek,A, + hk%(9,B,)z
_ 4 a
+ eh(0,A")2B,z = 5 0, (FoySP), (4.67b)
. Mo e ww
z=i(k'B, - EFWS 2, (4.67¢)
F— iz (k/‘B,, - gFWs/‘”> . (4.67d)

These equations contain spin-dependent correction terms
of O(h') to the ray equations obtained in Eq. (4.20). The
O(h") terms reflect the spin-orbit coupling between the
external and internal degrees of freedom, resulting in
the gravitational spin Hall effect of localized Dirac wave
packets.

2. Noncanonical coordinates

The effective ray equations (4.67) can also be formulated
as a Hamiltonian system on the symplectic manifold
T*M x C?. Using canonical coordinates (x,p,z,Z), the
corresponding Hamiltonian function is

_ 1
H(x,p,z,2) = Egaﬂ(p“ + eA,)(ps + eAy)

— h(p® + eA%)ZB,z + g FopS%.  (4.68)
and the symplectic two-form is
Q = dx* Ndp, + ihdz A dzZ. (4.69)

In this symplectic setup, Hamilton’s equations are ([62],
Sec. 1I1.3)
Q(Xy,-) = dH, (4.70)

where the Hamiltonian vector field X can be expressed in
coordinates as

o .d .0
+I -+

Xy = ¥ ==+ p,—— .
o TPy, T e

(4.71)

By solving for the components of the Hamiltonian vector
field, we obtain the effective ray equations (4.67) in the
following form:

Y OH . OH
= on Pu pard
i OH i OH
__toH . 10H 472
T T h ez ‘T hoz (472)

However, these ray equations are gauge-dependent. First of
all, they depend on the electromagnetic gauge potential A,,.
More importantly, the ray equations depend on the Berry
connection B,,, which is gauge-dependent in the sense that
it depends on the choice of eigenspinors X,. Thus, we aim
to remove both these gauge dependencies from the equa-
tions of motion by introducing noncanonical coordinates.
As a first step, we rewrite the Hamiltonian, symplectic
form, and effective ray equations in the new coordinate
system (x, k, z,Z), where k, = p, 4 eA,. In these coordi-
nates, the Hamiltonian is

1 e
H(x,k,z,7) = 3 9% koky — hk*ZB,z + 3 FopS%.  (4.73)

Applying the standard coordinate transformation rules for
two-forms, the symplectic form can be expressed in the
new coordinates (x,k, z,Z) as

Q = ¢F ydx@dx’ + dx® A dk, + ihdz A dz. (4.74)

Using Eq. (4.70), we can obtain the effective ray equations
as the components of the Hamiltonian vector field in the
new coordinates:

2in = 91 k ——ﬁﬂxw
ok, o oxt e
i 0H . ioH
iy iy 4.75
T TRz YTz (475)

These equations no longer depend on the electromagnetic
gauge potential A,. To eliminate the Berry connection
from the Hamiltonian, we perform the following coordinate
transformation:

Xt = x* + hz(B )z, (4.762)

P, =k, — hi(B,),z — ehF,Z(B)" z. (4.76b)

This type of coordinate transformation was first introduced
in Ref. [58]. It has the effect of eliminating the gauge-
dependent Berry connection from the Hamiltonian, at the
cost of introducing an additional term in the symplectic
form, represented by the gauge-independent Berry curva-
ture. A similar coordinate transformation was used in
Refs. [22,26]. The Hamiltonian function becomes
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H(X¥ = 2(By)z. Py + h2(B,), 2
+ ehF,,72(By)"2.2.2)
6H
6X”

oH
+ hﬁ [Z(Bx)ﬂz + EFﬂuZ(Bk)yZ] + O(hz)
u

H(x* k. 2, 7)=

=H(X*,P,,z,7) —

LA

2(Bi)z

(4.77)
|

A(By)g

Q = eF dX°dX" + dX® A dP, + ihdz A dZ — fzz[ X

—hz F(B o)y _ 9B ] zdPdX"’ —hz[

A(By) _a(By)*

Thus, the Hamiltonian in the noncanonical coordinates
(X,P,z,7) is

_ 1 e
H(X, P,z, Z) = Eg“/’PaP/; + EFaﬂSaﬂ + O(flz). (4.78)

Applying the same coordinate transformation to the sym-
plectic form, we obtain

(B _0(By),

9(B,)
al ;X dxP — hz
X7 }Z { oxX« 0P,

] zdX*dPy

}ZdPadPﬂ + hZ(B,),dX* A dz + h(B,),zdX* A dzZ

oP ox?# oP, 0Py
+ hZ(B)*dP, A dz + h(By)?zdP, A dZ + O(h?). (4.79)
The effective ray equations in noncanonical coordinates (X, P, z,Z) are
o OH . [d(By) d(B,) 5 - [9(By)"  9(By) . C gz
Xt =" 4 pkvz | Ty p 3| 82K A5 u u 4
aP, + hX'z { G oP, Z+hP,Z oP, oP, 2+ hz(By)*z + hz(By)tz (4.80a)
. oH a(B,) o(B,) . _[o(B,) o(By)” .
P, =———+eX'F —hX”'—”— V) —hAP,Z £ - nz : — hZ 4.80b
u ox, + [ X X }Z yz[ oP, X ]z 2(By),z — hz(B,),z, (4.80Db)
= i[Xa(Bx)a + Pa(Bk)a - %Fﬂus}w]z’ (480C)
£ = iz, + B0 - SFu]. (4.80d)

Inserting the expressmns of 7 and Z back into the
equations for X* and P we obtain

oH

X = ot hXVZ(Fro) 2 + WP 2(F )"z
ieh
=5 2B, Faps™]z, (4.81a)
: OH | oo N
P, = —67+8X — hX2(F )2
. ieh _ ;
=P E(F ) a+ 2By Faps®lz. (4.81D)

Since the ray equations are correct up to error terms
of O(?), we can replace X* = P* + O(h') and P, =
[ PP’ +eP'F,, + O(h') on the right-hand side in the
above equations. The same replacement can be made in the

equations of z and Z, which shows that Egs. (4.80c) and
(4.80d) are equivalent to Eq. (4.37). Furthermore, using the

expressions for the components of the Berry curvature
given in Eq. (4.50), we can simplify some terms:

hXYZ(F i),z + AP Z(F i)'z

e
=S PFL S+ o(n?), (4.82a)
hXVZ(F o)z + hPZ(F @) 2
1
2 /wa/iPDSaﬂ + _PaP FpﬁFaDSﬂy + O(fl2> (482]3)

Thus, the effective ray equations in noncanonical coor-
dinates can be written in the simplified form

X* = pr 4 pap,, s
m

h v
+ 5 Fug? (Vs = il(B) ) ).

5 (4.83a)
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. : 1
P, =T PP’ + eXF,, — ERWI[;P"S“/”
e e
+ ﬁP"PﬂF’;ﬁFQDSﬁ” ) Fop S

eh

- TF(I/JZ(Saﬁ,ﬂ - i[(Bx)/ﬁ Saﬂ])z’ (483b)

p=i {X‘I(Bx)a + Py (B - gFﬂbs’”’} o (4.83c)

7=-iz {X“(Bx)a + P, (By)* - gFWs/‘”] . (4.83d)

In Egs. (4.83a) and (4.83b), the terms involving the
derivatives of s% can be rewritten as in Appendix D. Then
we are left with the more compact form of the equations

X+ = pr, (4.84a)

XV, b, = eX'F

v

1 v QQ € (0]
ERﬂyaﬁP Sap _ES /}V”Faﬂ, (4.84b)
= i[XB) BB SR asie)

=iz {X“(Bx)a + P, (B —;Fm,s’”’] . (4.84d)

Note that the equation for X* is independent of the
internal degrees of freedom z and Z, while the equation for
P, depends on the internal degrees of freedom only through
the spin tensor S%. Thus, we can replace the evolution
equations for the internal degrees of freedom z and Z with
an evolution equation for the spin tensor S%. We start by
expanding the covariant derivative of the spin tensor as

X'V, 8% = §% 4 X¥(T'%,S7 +T0,87). (4.85)
Recall that S% = hzs*z, where s* depends on the
eigenspinors X, and therefore is a function of X* and P,.
Then, we have

5% = XV0,5% + P, Vs, (4.86)

and the evolution equation for the spin tensor becomes
X'V, 8% = p [Es”ﬂz + 757 + X*7(V,5%)z

. v
v Pz (vvsaﬂ) z} . (4.87)

Next, using Eqgs. (4.84c) and (4.84d), together with the
relations derived in Appendix D, we arrive at

. ie =
X”VDSaﬁ = g uyZAEA [Gﬂp, Uaﬁ]ZBZB. (488)
The commutator in the above equation can be calculated

using the properties of the gamma matrices, and we obtain

! (6", 6%] = g%t — g6 — ¢Poh + gPo*.  (4.89)
2 b

Finally, we can write the gauge-invariant gravitational spin
Hall equations in terms of the variables {X*, P,, S as

X+ = pr, (4.90a)

U I U 1 v QQ € a
X*V,P, = eX"F,, — 5R,M/,P Sab — ES PN F op.
(4.90b)

X'V, 8% = eF 28" — eF Fsva. (4.90c)
These equations describe the semiclassical motion of
massive Dirac wave packets at linear order in spin.
Compared to the lowest-order Lorentz force law derived
in Eq. (4.23), these equations contain additional spin-
dependent terms that reflect the spin-orbit coupling
between the external (represented by X* and P,) and the
internal (represented by S%) degrees of freedom of the
wave packet.

F. Comparison with other results

In this section, we compare the gravitational spin Hall
equations for massive Dirac wave packets derived above
with other related results in the literature. We start by
presenting a comparison with the Mathisson-Papapetrou
equations for spinning bodies. For a charged compact
object with conserved energy-momentum tensor, the
Mathisson-Papapetrou equations are (ignoring quadrupole
terms) [63,64]

< <2 1 vV QY 1 aff
X vuPy =eX Fu;t _ERMD(I/}X N 4 _EQ /vﬂF(l/}’
(4.91a)
X*V,8% = 2PleXP 4 200l A | (4.91b)

where Q% is the body’s electromagnetic dipole moment
tensor. Comparison of Eq. (4.90b) with Eq. (4.91a) shows
that the dipole moment tensor has to be

Q% = eSY. (4.92)
However, the Mathisson-Papapetrou equations are under-
determined and do not contain an evolution equation for

the worldline X*. This freedom can be fixed using a spin
supplementary condition [65]. In particular, the gravitational
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spin Hall equations (4.90) are equivalent (up to linear
order in spin) to the Mathisson-Papapetrou equations (4.91)
together with the Tulczyjew-Dixon spin supplementary
condition

S%Ps = 0. (4.93)
In the context of the WKB analysis for the massive Dirac
equation, this property is already satisfied by the spin
tensor defined in Eq. (4.59). The evolution equation for
the worldline X* can be obtained by taking the covariant
derivative X*V, of the spin supplementary condition and
using the Mathisson-Papapetrou equations. Ignoring terms
that are quadratic in spin, we obtain

_ X’p,
PPP,

X+ P, (4.94)
This equation is equivalent to Eq. (4.90a) after we
introduce a worldline parametrization for which

X'P, = PP, (4.95)
It follows that Pl*X”l = 0, and Eq. (4.90c) is also equiv-
alent to Eq. (4.91b). Thus, when we ignore the quadrupole
moments and terms quadratic in spin, the gravitational spin
Hall equations (4.90) are a particular case of the Mathisson-
Papapetrou equations (4.91) together with the Tulczyjew-
Dixon spin supplementary condition S“ﬂPﬁ =0 and the

electromagnetic dipole moment tensor Q% = eS%.

Similar conclusions regarding the equivalence of the
Mathisson-Papapetrou equations and the semiclassical
dynamics of massive Dirac fields have also been obtained
in Refs. [29,31,33,34]. However, these papers do not
consider an external electromagnetic field F,, .

V. MASSLESS DIRAC FIELDS

In this section, we present our semiclassical analysis of
massless Dirac fields. In this case, the principal symbol is
reduced to

D|m:0 = D() = _},ﬂkﬂ. (51)
The properties of the eigenspinors will result in a different
Berry connection. We start in Sec. VA by analyzing
the WKB equations at the lowest order. We derive the
corresponding dispersion relation, and we introduce the
eigenspinors of the principal symbol Dy. In Sec. V B, we
derive the transport equation for the amplitude (), and we
introduce the Berry connection and the Berry phase, which
are closely related to the corresponding ones for electro-
magnetic and gravitational waves. Throughout this section,
we will use the Weyl or chiral basis defined in Appendix E.

A. WKB equations at leading order

At the lowest order in 7 and setting m = 0, the Euler-
Lagrange equations (3.4) reduce to

Dol//() = O, (523)
U_IODO - O, (52b)
V,.jo" = 0. (5.2¢)

The first two equations admit nontrivial solutions s, if and
only if the principal symbol matrix D, is singular. From this
condition we obtain the dispersion relation

detDy=0 & k&' =0. (5.3)

Furthermore, y needs to be an eigenspinor of D, with
eigenvalue zero. Under the restriction given by the
dispersion relation, together with the additional require-
ment that k& is future-directed with respect to the choice of
orthonormal tetrad (e,)*, the principal symbol matrix D,
has rank 2, and there are two eigenspinors with eigenvalue
zero. Thus, we can write y as

lllo(xv k) = VIO(X)ZA(X)ZA(X’ k). (5-4)

The eigenspinors can be expressed in the Weyl basis as

0 v
Xy = , 2= , (5.3)
u 0
where u# and v are 2-spinors satisfying
k,o"u =0, k,&"v = 0. (5.6)

In the above equations, we use the spacetime Pauli
4-vectors ot = (e, )"0, 6" = (e,)*5", which are defined
with the help of the tetrad (e, )" and the flat spacetime Pauli
4-vectors 6 = (I, 6'), 6* = (I, —¢'). Since the eigens-
pinors satisfy
r°Ey =, rE ==X, (5.7)
and we have chosen & to be future-oriented, we can say
that X, represents a right-hand chiral fermion of positive
energy, while 2, represents a left-hand chiral fermion of
positive energy.
Using the above relations, together with the properties of
the eigenspinors listed in Appendix E, the current j,* can
be expressed as
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Jo" = wortwo

= IO(Z()Z()IZO'”M + 71z 1_15”11)

K
=Ty—:, (5.8)
ko t*

where we defined a timelike vector as 1* = (e()*. With this
expression, we obtain the following transport equations for
the intensity Z:

: K

Ray equations at the lowest order in # can be obtained
exactly as in Sec. IV B, either by differentiating the
dispersion relation (5.3),

k'V k, = ek'F,,, (5.10)
or by solving the Hamilton-Jacobi equation for the phase
function. The resulting ray equations are the same as in

Sec. IV B, with the only difference that & is now a null
vector.

B. WKB equations at next-to-leading order

For the massless case, the Euler-Lagrange equations (3.4a)
and (3.4b) at order A' only are

Doy = —ir"V, o, (5.11a)

l/_llDO = ileZ/O]/ﬂ. (Sllb)
We treat this inhomogeneous system of linear algebraic
equations exactly as in the massive case, and we obtain the
solvability conditions

ioyﬂvﬂlﬂo = il?’”vﬂlllo =0, (5.12a)

Vor'Zo = V,por'Z; = 0. (5.12b)

Using Eqgs. (5.4) and (5.9), the solvability conditions can
be rewritten as a transport equation for z:

k"V”zA = iMABZB’ (5133.)
k"VﬂZB - _iZAMAB’ (513b)
where the 2 x 2 Hermitian matrix M is defined as
ik, t* [ U0*V,u—V iictu 0
M = .
2 0 D&”Vﬂv - V,ﬁ)&"v
(5.14)

Note that, in contrast to the massive case, the matrix M
is diagonal. This reflects the fundamental difference from
the Berry connection obtained in the massive. Using
Egs. (ES)—(ES8), we rewrite M as

M = B, = F s, (5.15)

where we introduced the Berry connection

5 i (uvﬂu—vﬂau 0

— 5.16
o2 0 TJV”U—V”TJU> (5.16)

and

(5.17)

AP o
§H = 1 (a6t vv6”u — uc* v u)os,

where o3 is the third Pauli matrix.

Since the matrix M is diagonal, the dynamics of z, and z;
is decoupled. The transport equation (5.13) can be inte-
grated along a worldline x*(7), with ¥* = k#, and we obtain
(5.18)

20(7) = €V z4(1y), 21 (7) = ez (zy),

where

yale) = / Cdr My, (5.19)

0

is the Berry phase. It follows that Zz and Zo5z are conserved
along integral curves of k. As in the case of electro-
magnetic [22] or gravitational waves [26], the Berry phase
describes the dynamics of the internal spin degree of
freedom and represents the next-to-leading order correction
to the overall phase factor of the WKB ansatz.

The Berry connection in Eq. (5.16) can also be related to
the corresponding Berry connections for electromagnetic
and gravitational waves obtained in Refs. [22,26]. First,
notice that s*” is orthogonal to k,, due to Eq. (5.6), as well as
to the timelike covector 7, = (e)”. This last property
follows from the definition of ¢“, with ¢° = I,, and the
orthogonality of the 2-spinors given in Eq. (ES). Thus, it is
convenient to define two complex null vectors orthogonal
to k, and 17,

mt = —votu, mt = —iiotv.

V2

Using the relations satisfied by the eigenspinors u and v
given in Appendix E, it is straightforward to show that
mtm, = m'm, =0 and m"m, = 1. Thus, the covectors
{ky, 1y, Mgy, m,} form a tetrad and we can write

(5.20)

st = imlmos. (5.21)
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Note that the tensor s# is independent of the actual choice
of m, and m,, and is fully determined by k, and ¢,:

1 &P,
P — 03.

2kt (ko)

In the present case, k - k = 0 and the above relation can be
simplified, but we give the most general expression since it
will become important in the following section to consider
the possibility of a non-null k,.

Furthermore, using the relation between the eigenspinors
u and v given in Eq. (E9), we can relate the diagonal
components of the Berry connection in Eq. (5.16) as

(5.22)

uVu—V,au+iv,0 = —(vV,v =V, ov +iV,0),
(5.23)

where 6 is the phase factor introduced in Eq. (E9). Then, it
follows that the Berry connection can be expressed in terms
of the complex null vectors introduced above:

1
(mavumu - m"Vﬂma)@ + 5 (v

B, =

H 9)]12

H

(5.24)

PO~ A~

_ 1
m*V,m,c5 + > (V,0)L,.

The first term on the right-hand side has the same form as
the Berry connection for electromagnetic waves ([22],
Eq. (3.42)), except for a proportionality factor of 1, which
accounts for the fact that here we are dealing with a spin—%
field. Furthermore, remember that the eigenspinors u and v,
as well as the complex null vectors m® and m“, are
functions of x* and k,. Then, when applying the chain
rule as in Eq. (4.38), we obtain

h v
kN [my(x, k)] = KV m, + ek F,,V'm,,  (5.25a)

h v
KV, [0(x, k)] = k*V,0 + ek F, V"0, (5.25b)
and the Berry connection contracted with k* can be
written as

/ h v
k'B, = %k" (rh"’vﬂma + eF,wﬁz“V”ma) 03

h v
+ %kﬂ (V0 + eFu V). (5.26)
Although the above form of the Berry connection is similar
to the corresponding ones for electromagnetic ([22],
Eq. (3.42)) and gravitational ([26], Eq. (3.32)) waves,
there are two additional terms. The first additional term
contains a vertical derivative of m, and is present because
here we consider charged Dirac fields in an external

electromagnetic F,. The second additional term simply
encodes an additional phase degree of freedom € when
choosing the eigenspinors u and v, in comparison to the
complex null vectors m* and m* that define the circular
polarization basis in the case of electromagnetic and
gravitational waves. However, in the following we will
see that this additional phase does not contribute to the
Berry curvature or to the equations of motion.

C. Geometric definition of the Berry connection
and Berry curvature

Similar to the massive case, we can redefine the Berry
connection as a connection on the Lagrangian submanifold.
The Hamiltonian vector field Xy is the same as in
Eq. (4.40), and we can use

B(Xy) = kB, (5.27)

to obtain the Berry connection 3 defined on the Lagrangian
submanifold as

j 1
B= B m*V,m,o3 + 2 (VMG)HZ} dx*

/ \4 1 \4
+ |:é mavﬂma@ +§ (vﬂ9>]12:| dkﬂ (528)

This is a Lie algebra-valued one-form defined on the
Lagrangian submanifold, where the corresponding Lie
algebra is u(1) x u(1). The Berry curvature of this
connection can be calculated using Eq. (4.43), and we
obtain

F = (Frp)pdxdx’ + (Fi), dxtdk,

+ (ka)"bdkﬂdx" + (Fkk)wdk”dk”, (5.29)
where
(Jr:- ) a(Bx)y _ a(Bx)ﬂ (5 3021)
xx/pv OxH ox¥ s .
a(B)"  a(B)"
p — _NTRS O TNTR
(F i) %, ok (5.30b)
v v a(Bk>U a(BX)ﬂ
(Fla) = =(Fu)'u = =5 = T (5.30¢)
and
J 1
(Bx)ﬂ = %”havﬂma53 + B (V,ﬂ)ﬂz, (5.318.)
(Bt = %m”VV"maag + % (Vvﬂe)ﬂz. (5.31b)
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Note that terms that involve the phase function 0 will
not contribute to the Berry curvature. Thus, the Berry
curvature will have a form similar to that of electromagnetic
waves [22,24]:

s

2
(fxx);w = 7 |:_R;wa/5 +

kI
kek+ (k-1)? " ol
x (75K = 20k 1)V, 1)

2k - k
5 vﬂtavyzﬁ} ,

NS (5.32a)

sHY

wo_— >
(Fr) Kkt (k17

(5.32b)

(j:kx)/ = _(ka)y[l

s

(kT —(k-1)V,1).
k' k+ (k‘ t>2 (kﬂ HY ( t) ,Mt}’)

(5.32¢)

However, there are some minor differences between the
above expressions and the Berry curvature for electromag-
netic waves used in Refs. [22,24]. First of all, since here we
are working with a spin—% Dirac field, there is an additional
factor of § in the definition of s*. Second, we allow the
possibility that k, is not null, which leads to some addi-
tional terms. In fact, the calculation of the Berry connection
in Ref. [22] (Appendix C) was done without assuming k,, to
be null, and only in the final expressions was k-k =0
used. In the next section, it will become clear why we
should not restrict the discussion to a null k,.

D. Effective dispersion relation and spin-orbit coupling

In this section, we aim to derive the effective ray
equations describing the gravitational spin Hall effect of
massless Dirac wave packets. This can be achieved by
taking into account the spin-orbit coupling between the
external and the internal degrees of freedom. Given the
similarities between the Berry connection derived above
and the corresponding Berry connection for electromag-
netic waves, we will account for spin-orbit couplings by
following similar steps as in Refs. [22] (Sec. IV) and [24]
(Sec. II). The main idea behind this approach is to observe
that, because of the diagonal form of the Berry connection,
the dynamics of the massless Dirac spinors of right-handed
and left-handed chirality is decoupled, and the WKB fields
can be of the form

o\ . . .
‘I’:\/ZO< >e”’0e’5/h or ‘{‘:\/I()(g)e”"els/h.
u
(5.33)

The above fields have a total phase function S = S + #y,,,
where the Berry phase y, represents a higher-order

correction to the leading-order phase function S. Spin-orbit
couplings can be accounted for by treating S and y, on
equal footing and using the total phase function S to define
an effective dispersion relation. Using the results obtained
in the previous sections, we can write

(V8 + eA,) (V43 + eA)

| —

— (VIS + eA*)(V,y4) = O(h?). (5.34)
Using the definition of the Berry phase and introducing
the notation l~<ﬂ = V,,S' + eA,, we can rewrite the above
equation as

e

1. - s e .
Ekﬂk" - hz (k"Bﬂ - EFWS" )z = (’)(sz), (5.35)

where z = (€700)T or (0e”1)T, depending on the initial
chirality of the spinor field ¥ in Eq. (5.33). This is an
effective dispersion relation containing spin-dependent
correction terms to the leading-order dispersion relation
obtained in Eq. (5.3). Ray equations can be obtained by
treating the effective dispersion relation as a Hamilton-
Jacobi equation for the total phase function S. Using the
method of characteristics, the Hamilton-Jacobi equation
can be solved in terms of the ray equations determined by
the Hamiltonian function

H(x,p) = 3 (P -+ eA,)(p7 + o)
— hz|(p* + eA")B, -%Fﬂysﬂv z. (5.36)
Assuming the symplectic two-form
Q =dx* A dp,g, (5.37)

we can derive the corresponding Hamilton’s equations

 0H : oH

"

Pe= 5w

These equations contain spin-dependent terms and can be
viewed as a description of the gravitational spin Hall effect.
Note that, compared to the effective ray equations (4.67)
or (4.72) in the massive case, here there is no evolution
equation for the internal degree of freedom z. This is
because of the fundamental differences of the Berry
connections in the massive and massless case. Here, the
dynamics of z is trivial and, up to a phase function y 4, fixed
by the initial conditions. However, both the Hamiltonian
and the equations of motion contain gauge-dependent
terms: on the one hand, due to the presence of the
electromagnetic vector potential A,, but also due to the
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Berry connection B,, which depends on the choice of
eigenspinors u# and v. We follow similar steps as in the
massive case, and we remove the gauge-dependent terms
by a series of coordinate transformations.

We start with a first coordinate transformation
(x, p) = (x,k), with k, = p, + eA,. This has the effect
of eliminating the electromagnetic vector potential A, from
the Hamiltonian, and we obtain

1
H(x. k) = Sk, b = 12 [k”BM - ;F,wsﬂ”] . (5.39)

The symplectic two-form in the new coordinates (x, k) is

Q = eFpdx®dx’ + dx* A dk,, (5.40)
and we can write Hamilton’s equations as
. oH . oH .y

)CM:%, kﬂz—w—i—ex Fl//r (541)

"

We have successfully eliminated the gauge-dependent
vector potential A, from the Hamiltonian, and now the
effect of the external electromagnetic field is described in a
gauge-invariant way by the presence of the field strength
tensor F,; in the symplectic two-form €.

Gauge-dependent terms related to the Berry connection
B, can be eliminated by performing a second coordinate
transformation (x, k) — (X, K). This type of transforma-
tion was first introduced in Ref. [58], and in the present
case we define it as

X+ = ¥ + hz(B, )z, (5.42a)

K, =k, — hz(B,),z — ehF,z(B;)"z. (5.42b)

Following the same steps as in the massive case, the
Hamiltonian in the new coordinates (X, K) becomes

1 e
H(X,K) = EgaﬂKaK/} + EF(,,S“ﬁ +O(1?).  (5.43)

Note that the effective dispersion relation H = 0 implies
that, up to error terms of order 42, K, is generally not null.
This is why we avoided assuming null vectors in the
previous section. In the above equation, we have introduced
the spin tensor

PP 1,
VK-K+(K-1)*

where s = %ZG3Z ==+ % depending on the initial chirality of
the Dirac fields. The spin tensor encodes the intrinsic
angular momentum carried by the wave packet. The
symplectic two-form in the (X,K) coordinates can be
written as

S¥ = hzsP7 = —hs

(5.44)

Q = eF ;dX*dX” + dX* A dK,
— NZ(F 1x) qp2dX*dXP — hZ(Fy) P zdK ,dK 5
— 12(Fr) L 2(dXdK ; — dK ;dX®) + O(2). (5.45)

The above equation can be written more compactly as

Q=dX* ANdK, + eF — hzFz. (5.46)
Thus, we have arrived at a gauge-invariant description,
where the Hamiltonian does not depend on the gauge fields
A, and B,, and the symplectic two-form now includes
contributions from the electromagnetic field strength tensor
F 4 and from the Berry curvature 7. The gauge-invariant
equations of motion describing the gravitational spin Hall
effect can now be written as

. oH . .
X =—— leUZ(.;’:Xk)”UZ - fleZ(]:kk)/wZ, (547&)
oK,
2 oH U Vs - v
K, = ~ o + eX Fy, + hX Z(F )0z + 1K Z2(Fia), 2
(5.47b)

After taking the derivatives of the Hamiltonian and
inserting the expressions for the Berry curvature, we obtain

. K-t /
Xt =K'+ — S SMKV t, ———————— |5\ /K - K + (K - 1)?(xF)Ft,
KKK 17 K-K+(K-t)2[s (K- 1)7(+F)
1
+§F{,;S”ﬁ(1(ﬂ + (K- 1)t") - K”FWSW], (5.48a)
'uv <4 1 v Qaf e apy] evﬂt” / 2 ov
X UKM:eXFDﬂ_ERﬂU(I/)’KS —ES ”Faﬁ+KK+(Kt)2 fs KK+(KI) (*F) Ky
K-t p 5
+ - FapSTK - (K - 1)K°Fy,8%|. (5.48b)
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Furthermore, we can simplify the terms in square brackets. The first term can be rewritten as

e 1 eK -t
————— |as\/K- K+ (K- t)>(xF)*t, + =~ F s S”(K* + (K - t)#*) = K°F,,§" | = —————— S 1°F S",
K-K+(K't)2|:s +( )(* ) 6+2 ap ( +( ) ) ov :| K-K—i—(K‘l‘)z ov

(5.49)
and the second term can be expressed as
Vule hs\/K-K+ (K -1)*(xF)"K, + K tp swge (K - t)K°F3,S%
Mo A . . - — (K-
K-K+(K-1)? vt T o
e(K-K)V,t 1
= PO _F SP 4+ °F, 87 | = O(h?). 5.50

The above term is of order 7% since K - K = O(h) and
§% = O(h), and we can ignore it. Finally, we can write the
gravitational spin Hall equations in the compact form

. K-t
Xt =K'+ ————SH¥(K'V 1 F,1%),
+KK+(Kt)2 ( vla T €l g )
(5.51a)
'vv U 1 v Qaf ¢ (lﬂv
X'V,K, =eX FW_ERW&/}K S _ES wFap
(5.51b)

These equations are gauge-invariant and contain spin-
dependent correction terms to the geodesic equations. In
contrast to the massive case discussed in Sec. IV, these
equation explicitly depend on the choice of a timelike
vector field . This dependence is also encountered for
other massless fields [22,26] and the timelike vector field
t* has the role of fixing the energy centroid of the wave
packet [24]. Furthermore, while for the massive case we
had an additional evolution equation for the spin tensor,
here the spin tensor is already fixed (up to the choice of sign
in s = 1) by Eq. (5.44).

E. Comparison with other results

In this section, we compare the gravitational spin Hall
equations (5.51) for massless Dirac wave packets with
other known results in the literature. We start with a brief
comparison with the equations of motion for the gravita-
tional spin Hall effect of electromagnetic [22] and gravi-
tational waves [26]. Then, we show that Eq. (5.51) can be
viewed as a particular case of the Mathisson-Papapetrou
equations, together with an appropriate choice of the
supplementary spin condition.

There are two main differences between the massless
Dirac wave packets considered here and the electro-
magnetic and gravitational wave packets discussed in
Refs. [22,24,26]. First, these are fields of different spins.

The Dirac fields are spin—%, while electromagnetic and
gravitational fields have spin-1 and spin-2, respectively.
From the point of view of the gravitational spin Hall
equations, this difference is encoded in the absolute value
of the constant s entering the definition of the spin tensor
$% in Eq. (5.44). Second and more importantly, the Dirac
field has an electric charge e and the Dirac equation is
considered here in a fixed electromagnetic field Fg. This
leads to additional terms in the gravitational spin Hall
equations. If we set F,3 = 0, Eq. (5.51) reduces to

. 1
Xt = K o S KV, (5.52a)

vV 1 v Qo
XVoKy = =5 RuapK"S b, (5.52b)

These equations have the same form as those for electro-
magnetic and gravitational wave packets ([24], Eq. (2.17)),
and most of the results from Ref. [24] also apply to this
case. In particular, the above equations are a special case
of the Mathisson-Papapetrou equations, together with the
Corinaldesi-Papapetrou [65,66] spin supplementary con-
dition S% tg = 0, a particular choice for the parametrization
of the worldline and additional initial conditions.

For F,5 # 0, it can still be shown that Egs. (5.51) are
related to the Mathisson-Papapetrou equations (4.91).
Equations (4.91a) and (5.51b) are equivalent after imposing
Q% = ¢S%. An evolution equation for the worldline can
be obtained from the Mathisson-Papapetrou equations by
using a spin supplementary condition. In this case, we pick

Sa‘[}[Kﬂ + (K . l)lﬁ] - 0 (553)

Taking the covariant derivative X”VD of the spin supple-
mentary condition, using the Mathisson-Papapetrou equa-
tion (4.91b) for the spin tensor and ignoring terms quadratic
in spin, we obtain
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_ XKy + (K- 1)1]

XH KH
KP[Kj + (K - 1)t]
+ Kt Gua(giwi, +eF ). (5.54)
—_— e . .
KK"‘(Kt)z vr'a aoc

This is equivalent to Eq. (5.51a) after we chose a para-
metrization of the worldline such that

XP[Ky+ (K- t)tg] = KP[Ky + (K - 1)tg]. (5.55)
Furthermore, a direct calculation shows that the Mathisson-
Papapetrou equation (4.91b) is satisfied by the spin tensor
given in Eq. (5.44). Thus, the gravitational spin Hall
equations (5.51) can be viewed as a particular case of
the Mathisson-Papapetrou equations (4.91).

It should be noted here that the gravitational spin Hall
equations (5.51), as well as their relation to the Mathisson-
Papapetrou equations, break down when K, + (K - 1)t, is
null. In this case, we have

K-K+(K-1)?=0, (5.56)
and the second term in Eq. (5.51a) blows up. However, this
happens only when there is a fine balance between the
external electromagnetic field F,; and the choice of a
timelike vector field #*. Such blowups can always be
avoided by defining the centroid of the wave packet with
respect to a different timelike vector field 7%.

More intuition about the gravitational spin Hall effect
can be gained by looking at numerical examples of spin-
dependent trajectories in various spacetimes. For the
F .3 = 0 case, numerical examples of spin Hall trajectories
in Schwarzschild and Kerr spacetimes can be found in
Refs. [21,22,27]. Furthermore, the Mathematica notebook
given in Ref. [21] (Appendix A.7) can be used to obtain
spin Hall trajectories in arbitrary spacetimes. However, that
only works for F,; = 0, and the notebook would need to be

extended to take into account a nonzero electromagnetic
field F .

VI. CONCLUSIONS

We presented a semiclassical analysis for massive and
massless Dirac fields on arbitrary background spacetimes
and in the presence of a fixed electromagnetic field. Our
approach is based on a WKB approximation, and the
resulting equations have been investigated at the leading
and next-to-leading order in the expansion parameter 7.
The semiclassical dynamics is expressed in terms of a
Berry connection, which governs the dynamics of the spin
internal degree of freedom of the wave packet and the
associated Berry curvature, which determines corrections
to the motion of the wave packet. This results in a
gravitational spin Hall effect, meaning that wave packets
will generally follow spin-dependent trajectories when

propagating in inhomogeneous gravitational and electro-
magnetic fields.

In the massive case, we have shown that the gravita-
tional spin Hall equations (4.90) are a particular case of
the Mathisson-Papapetrou equations, together with the
Tulczyjew-Dixon spin supplementary condition (4.93).
In the absence of an external electromagnetic field,
our results are in agreement with those obtained in
Refs. [29,31], where similar methods have been used.

For massless Dirac wave packets, we have also shown
that the gravitational spin Hall equations (5.51) are a
particular case of the Mathisson-Papapetrou equations,
but this time with a different spin supplementary condition
given in Eq. (5.53). Furthermore, in the absence of an
external electromagnetic field, the gravitational spin Hall
equations take the same form and share the same properties
as in the case of electromagnetic [22,24] or gravitational
waves [26].

We believe that the results derived in this paper can be
used in several applications. First, the semiclassical equa-
tions derived for massive Dirac fields could be used to
study the dynamics of electrons and protons. Gravitational
effects are expected to play an important role in scenarios
that arise in relativistic quantum information [35,67,68],
as well as in experiments involving particle accelerators
[36,69]. Second, chiral kinetic theory [70-72] is emerging
as a semiclassical method for studying many body systems
in high-energy physics [73], condensed matter physics
[70,74-78], and astrophysics [42—44,79]. Since chiral
kinetic theory is based on the semiclassical dynamics of
point particles with spin, we expect that our results can also
be used in this context. In particular, the Berry curvature
plays a central role in chiral kinetic theory, and, thus, we
expect that our covariant formulation of the Berry curvature
could be of use in studies of chiral kinetic theory in curved
spacetime.
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APPENDIX A: HORIZONTAL AND VERTICAL
DERIVATIVES

Let (x*, p,) be canonical coordinates on the cotangent
bundle T*M and considering a spinor field ¥(x, p) defined
on T*M. The horizontal and vertical derivatives of ¥(x, p)
can be defined by extending the definition presented in
Ref. [80] (Sec. IIL.5) for the horizontal and vertical
derivatives of tensor fields:

vy — Ly,

Ala
i, (Ala)
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h 0 [ - 0
V”‘P = ﬁ‘l’ —Za)ﬂ GablP +F”ppo-aipplp.

(A1b)

Note that, in contrast to Ref. [80] (Sec. III.5), we have the
opposite sign for the last term in the definition of the
horizontal derivative. This is because we are considering
fields defined on 7*M, and not on 7'M, as is the case in the
reference mentioned earlier. The horizontal and vertical
derivatives satisfy the following properties:

VA,V =0,  (A2a)

h h \4
Vﬂpa = Vﬂgaﬂ = V”gaﬂ =0. (A2b)

APPENDIX B: EIGENSPINORS—MASSIVE CASE

For the case of massive Dirac fields, one generally uses
the Dirac basis for spinors and gamma matrices. In this
case, the flat spacetime gamma matrices can be written as

—Hz 0 . O O'i
b= , = ‘ , (Bl
d <o 15) d (_0, 0) (B1)

where o', with i running from 1 to 3, are the Pauli matrices
defined as

01:<0 1> 02:(0 —i> 03:<1 o>.
1 0/)° i 0) 0 -1

(B2)

Working in the Dirac basis, one can construct eigenspinors
{Zy, %, I, I1; } of the principal symbol matrix

D = —y'k, — mly, (B3)

such that
DX, =0, £,D =0, (B4a)
DI1, = —2mlly, D = -2mIl,. (B4b)

The above equations can be used to show that the
following useful relations hold:

_ kH

Zay'Ep = —0ap. (B5a)
m

_ K+

ILy#1lp = — O3, (BSb)
m

_ k, <

ZAy”HB = —I*ZAG”DHB, (BSC)

m

_ k _
'S, = i 2,05, (B5d)
m

As a concrete example, we present here one possible
choice of eigenspinors:

m—ko
Xy = , B6
0 2m ml?ko ( a)
ki+ik,
m—k
0
1
m—ko
2= =ik, |, B6b
| o | i (B6b)
ks
m—kg
k3
m—kg
—k ky+iky
= /220 e |, (B6c)
2m 1
0
ky—ik,
m—kg
—k —k3
m, = /250 kg (B6d)
2m O
1

In the above equations, all vector components are tetrad
components k, = (e,)'k,. Furthermore, the eigenspinors
were derived under the restriction that the dispersion
relation k k* = —m? is satisfied and k* is future-directed
with respect to (ep)¥. This means that we have
ko = —v/m? + (k;)> + (kp)*> + (k3)>. Tt can easily be
checked that these eigenspinors satisfy the orthogonality
relations £,X; = —II4I1; = 8,45, 24115 = 0, and the com-
pleteness relation ,%, — 1,11, = 1,.

Note that, except for equations involving the Berry
connection, the results presented in Sec. IV do not depend
on a particular choice of eigenspinors.

APPENDIX C: BERRY CURVATURE—
MASSIVE CASE

We use the definition of the covariant derivative for
spinor fields given in Eq. (2.2), and we can rewrite the
components of the Berry curvature as

(fxx)yu = vﬂ(Bx)y - vv(Bx)y - i[(Bx)/p (Bx)y]’ (Cla)
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(Fa)™ = VH(B)” = V*(Bo) — il(B). (By)).  (Clb)

(]:kx)ﬂb = vﬂ(Bk)y - vy(Bx)p - i[(Bx)w (Bk)y] (CIC)
We insert into the above equations the definition of the
components of the Berry connection

i

(Bx)y ) (iAvyzB - VyiAZB)» (C2a)

(B = % (iﬁﬂzg - %/'EAZB), (C2b)

and we use the orthogonality properties of the eigenspinors:

_ V”EAZB + iAV”ZB = 0,
X =6 =>4 v _ oy (C3)
V”ZAZB + ZAV”ZB == 0
We obtain
(fxx)/uz = l(iAvLuvzz]zB - v[;lvp]iAzB)
+ 2i(VZ0) Iy — ZcE0)(V,Zg).  (C4a)
(Fu) = 2i(VHE)) (I, — ZcEc) (VVZp), (C4b)
(]:kx),f = Zi(vmi/&)(h - Zcic)(vy]23)~ (C4c)

Furthermore, we use the resolution of identity given in
Eq. (4.12), and we obtain

(fxx)/u/ = l(iAv[ﬂvv]zB - v[}zvu]iAZB) (CSa)

—2i(V[ﬂiA)HCI:IC(V,,]ZB), (C5b)
(Fu) = —21'(6[”2A)Hcﬁc(%b]23)v (C5¢)
(Fro) = =2i(V, Za) Mo (VIZy). (C5d)

The commutator of spinor covariant derivatives can be
expressed in terms of the Riemann tensor as

1
(vyvu - vuvy)qj = ZR;tu/mprﬂP’

_ 1 _
(V,V,-V,V,)¥ = ZRWM‘I‘}//’}/". (C6)
Using these relations, we can write
l(iAV[#VZ,]ZB - v[pvu]iAzB) = _ER;U/(lﬂsaﬂ‘ (C7)

The remaining terms that need to be computed are of the

\
form I1cV, 2 or [1V#Zp. For this purpose, we can use the
fact that X, is an eigenspinor of D, with eigenvalue zero,
while I1, is an eigenspinor of D, with eigenvalue —2m.
We start with

Taking a vertical derivative of this expression, we obtain
0 - (V”ﬁA)DzB + I:IA(V”D)ZB + ﬁAD(V'uZB)

= ﬁA(%ﬂD)ZB - 2mfIA(%”ZB)

= —f[Ay”ZB - ZmﬁA(V"ZB), (C9)
and we can finally write
_ v 1 =
M, ViEp = ——TI, " Z;. (C10)
2m

Similarly, taking a covariant derivative of I1,DXgz = 0,
we obtain

0 = (V,I1,)DZg + [1,(V,D)Zp + 1,D(V,Zp)
= ﬁA (VMD)ZB - 2mfIA (VMZB)

However, since we are working on 7*M, with coordinates
(x#,k,), we have

Viko = ke~ Tuky = Tiuky (C12)
Thus, we can write
I:[AvﬂZB = —L(Vﬂk{z)ﬁﬂazs
2m
= ﬁ ko6 I147"Zp. (C13)

Using Egs. (C10) and (C13), we arrive at the final form for
the components of the Berry curvature:

1 1
(fxx);u/ = _ER/waﬂsaﬂ =+ Wkpkar"(olllrzusaﬂv (Cl4)
v 1 v
(F ) :WSM ; (C15)
v v 1 P v
(Frt = =(Fuy = =k, Tlas™. (C16)
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APPENDIX D: OTHER CALCULATIONS—MASSIVE CASE

Using the definitions of s% and (B;)*, we can rewrite the last term in Eq. (4.83a) as

e 5] = L [(995) 955 + 5107 (99, + L[5, (972) - (995, ) o,

s (i) - ()]

1

4
1-
4

TS g [2 (%ﬂzg) _3 e (%ﬂzg) 3 (%ﬂic) 23} .

! [2 (%ﬂiA) 435, (%zc)ic - (%uiA)zCiC] P,

Using Egs. (C3) and (4.12), the above expression simplifies to

Inserting Eq. (C10) and its complex conjugate into the above expression, we obtain

v 1 - . l o A
Vst —i[(B), 5] = Ly T clleoZg +——E4 0Tl g
4dm 4m

1

The anticommutator y#6*’ + 6*y# can be rewritten in a
different form by using the properties of the gamma

(D1)
\% 1 v Voo _ 1 _ v _ \%
V"s“ﬁ - l.[(Bk)”, Saﬁ] = E [(V“ZA) - (V”ZA)ZCZC} GaﬂZB + EZAO'aﬂ [(V”ZB) - Zczc <V“23)]
1 /Y - - 1- - v
=3 (V”ZA> (Iy = ZcEc)o?Zp + EEAO-aﬁ(h - ZcXc) (V”EB)
1 /Y _ 1. _ Y
= —5 (V”ZA)HCHCGD‘/}ZB — EZAG(X/}HCHC (V”23> (D2)
= LiAJ’”(ZCEC —14)0"Zp + LiA"aﬂ(zcic —L)r'Zp
4dm 4m
| - 1 - -
= EZA}’”(ECZC ~1y)0"Zp + EZAU{Z/}(ZCEC —L)r"Zs
1 -
= WP”Sa/j - EZAOA‘GGﬂ + Ua/j}/#)zB. (D3)
7o + oyt = 2e,)(ep) (e ey’
= 2(eq) (ep) (ec) (ea) €™ y,y’.  (DO)

matrices. We consider the flat spacetime gamma matrices
y“, which are related to the spacetime gamma matrices
by the orthonormal tetrad as y* = (e,)*y“. For the flat
spacetime gamma matrices, we can write the following
relation:

},a},byc — _nah},c _ ,,lbcya + ,,Iac},b + i€dabcj/d}/5, (D4)

where 7 is the Minkowski metric tensor, with signature
(= + ++), and y° = iy’y'y*y3. Using this relation, we
obtain (this is the spin density tensor; see Refs. [81,82])

7/co.ab + Gabyc — 2€dabc},dy5 (DS)

and

Furthermore, it can be shown that [30] (Eq. (4.12))

_ 1 _ 1
ZA}’aJ/SzB = _%eabcdzAGbczBPd = _Eeabcdsbcpd'

(D7)

This relation can be inverted by using the properties of the
Levi-Civita tensor:

_ 2
€dab£2A7d7523 = (sach + Scan + SbCPa). (Dg)
m

Thus, we can finally write
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v 1
Vﬂs{lﬂ _ i[(Bk)”, S"ﬁ] — _W (Sﬂapﬁ + s/"ﬂpa)‘ (Dg)

We can perform a similar calculation for the last term in
Eq. (4.83b). First, note that by using the properties of the
covariant derivative, we can write

. 1 - _ 1- _
vusaﬂ - l[(Bx),,, Saﬂ] = ) (vyZA)HCHCGGﬂZB - EZAGH'HHCHC<V”ZB)'

Using Eq. (C13) and its complex conjugate, we obtain

Fop 252+ Fopzs® 2= (V,F )28 7 + F 57V ;5% 2.
(D10)

The last term in Eq. (4.83b) becomes Vs — i[(B,),. /],
and we can apply the same steps as before. We obtain

(D11)

1 B _ _ _
Vus? —i[(By),, 57 = _EPGFZP(ZAYPHCHCUWZB + 20T Ty Eg)

1 1 _
= = P PPTs PTG S (170 + o) 2.

APPENDIX E: EIGENSPINORS—
MASSLESS CASE

In this section, we discuss the properties of the eigens-
pinors of the principal symbol matrix D,, and we derive
some useful relations. As an example, we also give a
particular choice of eigenspinors.

For massless Dirac fields, it is more convenient to work
in the Weyl (or chiral) basis. One advantage is that the
transition between 4-spinors and 2-spinors is more trans-
parent. The gamma matrices are defined as

Jf“:(; 2) (E1)

where 6% = (I,,6'), 5% = (I, —6'), and ¢’ are the Pauli
matrices. Note that the bar in 6¢ is used only for notation
and does not represent complex conjugation.

Under the restrictions of the dispersion relation
k,k* =0 and k* future-directed, meaning that k, =

—+/(k)? + (ky)? + (k3)?, the principal symbol matrix

Dy = ="k, (E2)

admits two eigenspinors of eigenvalue zero, which we can

write as
20:(2), 21:(3). (E3)

The 2-spinors u and » must satisfy the following relations:

k,o'u =0, k,ot'v = 2kyv, (E4a)

k,6'v =0, k

" " (E4b)

o"'u = 2kgu.

am oL (D12)

|
The 2-spinors also satisfy the orthogonality relations

n-u=7v-v=1, n-v=7v-u=0, (ES)
and the completeness relation

The following relations will also be used:

k.ot
kou=0 = wu=--22 (E7a)
ko
ki i
kyiic" =0 = @=—- (E7b)
ko
ko'
k,0'v=0 = =27 U, (E7¢)
ko
kivo'
k5t =0 = §=-0 (E7d)
ko
Using the above equations, one can show that
s E8
oty = votv = .
iotu = vo'v T (E8)

In general, two eigenspinors u# and v satisfying the above
relations can always be related as

u=ec,0*, (E9)

for some choice of @ € R. This relation is related to charge
conjugation.

As an example, here we give a particular choice of u
and v. One possibility is
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1 ky —k
" ( ; '0>’ (E10a)
2[(ko)* = koks] \ ki + ik,
1 ks + k
2[(ko)* + koks] \ k1 + ik,

It can be checked that the above relations are satisfied with this particular choice of eigenspinors.
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