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We present a semiclassical analysis for Dirac fields on an arbitrary spacetime background and in the
presence of a fixed electromagnetic field. Our approach is based on a Wentzel-Kramers-Brillouin
approximation, and the results are analyzed at leading and next-to-leading order in the small expansion
parameter ℏ. Taking into account the spin-orbit coupling between the internal and external degrees of
freedom of wave packets, we derive effective ray equations with spin-dependent terms. These equations
describe the gravitational spin Hall effect of localized Dirac wave packets. We treat both massive and
massless Dirac fields and show how a covariantly defined Berry connection and the associated Berry
curvature govern the semiclassical dynamics. The gravitational spin Hall equations are shown to be
particular cases of the Mathisson-Papapetrou equations for spinning objects.
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I. INTRODUCTION

Semiclassical dynamics represents an intermediate
regime between classical and quantum mechanics, where
wave effects such as diffraction and interference can be
ignored and the average dynamics of wave packets can be
well approximated by point particles [1,2]. While wave
dynamics is generally described by partial differential
equations, semiclassical approximations can be used to
obtain an effective description in terms of point particles
with dynamics governed by ordinary differential equations.
It is well known from optics and condensed matter

physics that wave packets with internal degrees of freedom,
such as polarization or spin, can have nontrivial dynamics
in the semiclassical limit. In particular, spin-orbit inter-
actions between the external (average position and momen-
tum) and internal (spin or polarization) degrees of freedom
of the wave packet can lead to spin Hall effects [3–5]. In
this case, the propagation of the wave packets becomes spin
dependent. These effects have been studied theoretically
and observed in many experiments for the propagation of
polarized light beams in optical media [6–15], as well as for
electrons in condensed matter systems [16–19].
Spin Hall effects are also expected to occur for wave

packets propagating in gravitational fields, an effect known
as the gravitational spin Hall effect [20,21]. Electro-
magnetic [22–25] and linearized gravitational [26–28]
wave packets have been shown to follow frequency- and
polarization-dependent trajectories on curved spacetimes.
Similar effects have also been shown for massive Dirac
wave packets propagating on curved spacetimes [29–34]

(see also Refs. [35–41]). Furthermore, spin-dependent
effects in curved spacetime also play an important role in
chiral kinetic theory [42–45], which is a semiclassical
approach to studying many-body effects arising from inter-
actions in dilute gases of microscopic chiral fermions. Other,
more exotic, spin Hall effects have also been recently studied
for massless particles with anyonic spin [46–48].
In this paper, we study the semiclassical dynamics of

charged Dirac fields in curved spacetime and in the
presence of a fixed electromagnetic field. We consider
both massive and massless fields and treat them separately
since their behavior is radically different. Our approach is
based on a Wentzel-Kramers-Brillouin (WKB) approxima-
tion, where the reduced Planck constant ℏ is taken as the
small expansion parameter. By taking into account the spin-
orbit interactions between the external and internal degrees
of freedom of the wave packets, we derive spin-dependent
equations of motion describing the gravitational spin Hall
effect. The semiclassical dynamics we derive is based on a
covariantly defined Berry connection (which determines the
dynamics of the spin internal degree of freedom) and the
associated Berry curvature (which determines the dynamics
of the average external degrees of freedom). Furthermore, we
show that the gravitational spin Hall equations for both
massive and massless Dirac wave packets can be viewed as
particular cases of the Mathisson-Papapetrou equations for
spinning objects. We need to mention that similar results,
based on WKB approximations, have also been obtained in
Refs. [29,31–34]. However, these studies are limited to
massive Dirac fields, and no external electromagnetic field is
considered.
The paper is organized as follows. We start in Sec. II by

introducing Dirac fields, the Dirac equation on curved*marius.oancea@univie.ac.at
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spacetime and a variational formulation of the Dirac
equation in terms of an action. In Sec. III, we define our
WKB approximation. The semiclassical expansion in
powers of ℏ is performed at the level of the action, and
then the semiclassical WKB equations are derived as the
Euler-Lagrange equations. In Sec. IV, we consider the
case of massive Dirac fields and analyze the semiclassical
WKB equations. We study the algebraic properties of the
principal symbol of the Dirac operator, we introduce the
Berry connection and the Berry curvature, and then we take
into account spin-orbit interactions in order to derive the
gravitational spin Hall equations. These are shown to be a
particular case of the Mathisson-Papapetrou equations. The
same analysis is performed in Sec. V for massless Dirac
fields. In addition, here we also give a comparison with
similar known results in the context of the gravitational spin
Hall effects for electromagnetic and gravitational waves.
Finally, we present our conclusions in Sec. VI.
Notation and conventions: We consider an arbitrary

smooth Lorentzian manifold ðM; gμνÞ, where the metric
tensor gμν has the signature ð−þþþÞ. The absolute value
of the metric determinant is denoted as g ¼ j det gμνj. Phase
space is defined as the cotangent bundle T�M, with
canonical coordinates ðx; pÞ. Furthermore, on M we con-
sider a fixed electromagnetic field Fμν ¼ 2∇½μAν�. The
Einstein summation convention is assumed, and we use
the notation aαbα ¼ a · b. Greek indices, ðα; β;…Þ, re-
present spacetime indices and run from 0 to 3. Latin
indices, ða; b;…Þ, represent tetrad indices and run from
0 to 3. The components of 3-vectors are denoted using
Latin indices from the middle of the alphabet, ði; j;…Þ,
which run from 1 to 3. Eigenspinors will be labeled with
capital Latin indices, ðA;B;…Þ, which run from 0 to 1. We
also use a summation convention for repeated eigenspinor
indices.

II. THE DIRAC EQUATION

Consider a Lorentzian manifold ðM; gμνÞ, which is a
solution of the Einstein field equations, admitting a spin
structure ([49], p. 416). A Dirac field Ψ is a section of a
vector bundle with fiber C4, associated with the spin
frame principal bundle Spin3;1ðMÞ via the representation
ρðΛÞ¼Λ, where Λ∈Spinð3;1Þ¼SLð2;CÞ ([49], p. 418).
The Dirac field Ψ, of charge e and mass m, satisfies the
Dirac equation

ðiℏγμ∇μ − eγμAμ −mÞΨ ¼ 0; ð2:1Þ

where Aμ is the electromagnetic vector potential and γμ are
the spacetime gamma matrices. These are related to the flat
spacetime gamma matrices γa by the tetrad fields ðeaÞμ:
γμ ¼ ðeaÞμγa. The spinor covariant derivative∇μ is defined
by a spin connection on the spin frame bundle Spin3;1ðMÞ.
Given a spin structure onM, the Levi-Civita connection on

the Lorentz frame bundle LðMÞ determines a spin con-
nection on the spin frame bundle Spin3;1ðMÞ ([49], p. 419).
The spinor covariant derivative ∇μ acts on spinor fields as

∇μΨ ¼
�
∂μ −

i
4
ωμ

abσab

�
Ψ; ð2:2Þ

where σab ¼ i
2
½γa; γb� and ωμ

ab is the spin connection,
defined as

ωμ
ab ¼ ðeaÞν∇μðebÞν: ð2:3Þ

The Dirac equation can also be derived from the following
action:

J ¼
Z
M
d4x

ffiffiffi
g

p
Ψ̄ D̂Ψ; ð2:4Þ

where Ψ̄ ¼ Ψ†γ0 and the Dirac operator is

D̂ ¼ iℏγμ∇μ − eAμγ
μ −m: ð2:5Þ

Since the action is invariant under Uð1Þ transformations
Ψ↦eiθΨ, the following Dirac vector current jμ is conserved:

jμ ¼ Ψ̄γμΨ; ∇μjμ ¼ 0: ð2:6Þ

In the massless case (m ¼ 0), the action admits an additional
symmetry given by the transformation

Ψ ↦ eiϕγ
5Ψ; Ψ̄ ↦ Ψ̄eiϕγ5 : ð2:7Þ

This symmetry gives the following conserved axial vector
current:

jμaxial ¼ Ψ̄γμγ5Ψ; ∇μj
μ
axial ¼ 0: ð2:8Þ

III. WKB APPROXIMATION

We assume that the Dirac field admits a WKB expansion
of the form

ΨðxÞ ¼ ψðx;∇μS;ℏÞeiSðxÞ=ℏ;
ψðx;∇μS;ℏÞ ¼ ψ0ðx;∇μSÞ þ ℏψ1ðx;∇μSÞ þOðℏ2Þ;

ð3:1Þ

where S is a real scalar function, ψ is a complex amplitude
spinor, and Planck’s constant ℏ represents a small expan-
sion parameter. Note that we are allowing the amplitude ψ
to depend on ∇μS. This is justified by the mathematical
formulation of the WKB approximation [50,51], where
∇μS determines a Lagrangian submanifold x ↦
ðx;∇μSðxÞÞ ∈ T�M, and the amplitude ψ is defined on
this Lagrangian submanifold.
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The main assumption behind this approximation is that
the length scales of variation of the background spacetime
and background electromagnetic field are much larger than
the typical length scale of our wave packets, taken to be
proportional to ℏ.
The semiclassical analysis of the Dirac equation is

usually performed by inserting the WKB ansatz (3.1) into
the Dirac equation (2.1) and analyzing the results order-by-
order in ℏ [29,31,52,53]. However, we find it more
convenient to perform the semiclassical analysis at the
level of the action (2.4). The advantages of this variational
approach are extensively discussed in Ref. [54].
A variational formulation of the WKB approximation

for the Dirac field is obtained by inserting the WKB
ansatz (3.1) into the action (2.4). We obtain

J ¼
Z
M
d4x

ffiffiffi
g

p ðψ̄e−iS=ℏÞD̂ðψeiS=ℏÞ

¼
Z
M
d4x

ffiffiffi
g

p
ψ̄ðDþ iℏγμ∇μÞψ þOðℏ2Þ; ð3:2Þ

where

D ¼ −γμkμ −mI4; ð3:3aÞ

kμ ¼ ∇μSþ eAμ: ð3:3bÞ

The action depends on the phase function SðxÞ and the
amplitudes ψðx;∇SÞ and ψ̄ðx;∇SÞ. Performing a variation
of the action with respect to these fields [since the
amplitude ψ depends on ∇S, the variation of the action
must be performed as in Ref. [22], (Appendix B)], we
obtain the following Euler-Lagrange equations:

Dψ þ iℏγμ∇μψ ¼ Oðℏ2Þ; ð3:4aÞ

ψ̄D − iℏð∇μψ̄Þγμ ¼ Oðℏ2Þ; ð3:4bÞ

∇μðψ̄γμψÞ ¼ Oðℏ2Þ: ð3:4cÞ

Equations (3.4a) and (3.4b) can also be obtained by
directly inserting the WKB ansatz into the Dirac equation,
and Eq. (3.4c) represents the WKB approximation of the
conservation law given in Eq. (2.6).
We continue by analyzing the above equations at each

order in ℏ. However, we have to treat the massive and
massless cases separately. The main properties of semi-
classical dynamics are governed by the null eigenspace
of the principal symbol matrix D [51], and there will be
significant differences between the massive and mass-
less case.

IV. MASSIVE DIRAC FIELDS

In this section, we present our semiclassical analysis of
massive Dirac fields. Our main goal is to understand the
behavior of the massive Dirac field beyond the leading-
order approximation and to obtain the equations of motion
describing the gravitational spin Hall effect. We start in
Sec. IVA by examining the WKB equations at the lowest
order in ℏ. We obtain the lowest-order dispersion relation,
a transport equation for the intensity of the field, and
we analyze the null eigenspace of the principal symbol
matrix D. In Sec. IV B, we treat the dispersion relation as a
Hamilton-Jacobi equation and solve it using the method of
characteristics. We obtain that, at the leading order in the
WKB expansion, massive Dirac fields can be described by
charged massive point particles satisfying the covariant
Lorentz force law. In Sec. IV C, we analyze the WKB
equations at order ℏ1. We obtain a transport equation for the
amplitude ψ0, and we show how this can be expressed in
terms of a Berry connection. In Sec. IV D, we present a
geometric discussion, showing how the Berry connection
can be viewed as a uð2Þ-valued one-form on the Lagrangian
submanifold, and we calculate the associated Berry curva-
ture. In Sec. IV E, we derive an effective dispersion relation,
taking into account spin-orbit couplings, and we use this to
derive spin-dependent ray equations, representing the gravi-
tational spin Hall effect. Finally, in Sec. IV F, we compare
these ray equations with the Mathisson-Papapetrou equa-
tions and with other known results from the literature.

A. WKB equations at leading order

At the lowest order in ℏ, the Euler-Lagrange equa-
tions (3.4) reduce to

Dψ0 ¼ 0; ð4:1aÞ

ψ̄0D ¼ 0; ð4:1bÞ

∇μj0μ ¼ 0; ð4:1cÞ

where we introduced the notation j0μ ¼ ψ̄0γ
μψ0 for the

conserved Dirac current at the lowest order in ℏ. Using
Eqs. (4.1a) and (4.1b), we can obtain an alternative expres-
sion for j0μ. We start by writing the following identities:

ψ̄0γ
μðmψ0Þ ¼ −kνψ̄0γ

μγνψ0; ð4:2aÞ

ðψ̄0mÞγμψ0 ¼ −kνψ̄0γ
νγμψ0: ð4:2bÞ

Adding these two equations and using the anticommu-
tation property of gamma matrices, γμγν þ γνγμ ¼ −2gμν,
we obtain

j0μ ¼ ψ̄0γ
μψ0 ¼

1

m
I0kμ; ð4:3Þ
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where we defined the lowest-order intensity as I0 ¼ ψ̄0ψ0.
The transport equation (4.1c) can be rewritten as

∇μðI0kμÞ ¼ 0: ð4:4Þ

Using Eqs. (4.1a) and (4.1b), we can write

0 ¼ −ψ̄0Dψ0 ¼ I0

�
1

m
kμkμ þm

�
: ð4:5Þ

Thus, we obtained the dispersion relation

kμkμ ¼ −m2: ð4:6Þ

It should be noted that

2∇½νkμ� ¼ −eFμν: ð4:7Þ

Thus, we can differentiate the dispersion relation (4.6) to
obtain the Lorentz force law

kμ∇μkν ¼ ekμFμν: ð4:8Þ

Equations (4.1a) and (4.1b) are homogeneous systems of
linear algebraic equations for the unknowns ψ0 and ψ̄0

[29,31,52]. For these systems to admit nontrivial solutions,
the determinant of the matrix D must be zero. This
condition is equivalent to the dispersion relation (4.6):

detðDÞ ¼ 0 ⇔ kμkμ ¼ −m2: ð4:9Þ

Under the restriction kμkμ ¼ −m2, the matrixD has rank 2.
We can introduce a 4-spinor basis fΣ0;Σ1;Π0;Π1g, where
Σ0 and Σ1 are eigenspinors of D with zero eigenvalue and
Π0 and Π1 are eigenspinors of D, with eigenvalue −2m:

DΣA ¼ 0; Σ̄AD ¼ 0; ð4:10aÞ

DΠA ¼ −2mΠA; Π̄AD ¼ −2mΠ̄A; ð4:10bÞ

where A;B ¼ 0; 1. Furthermore, the 4-spinors satisfy the
orthogonality relations

Σ̄AΣB ¼ −Π̄AΠB ¼ δAB; ð4:11Þ

and the resolution of identity

ΣAΣ̄A − ΠAΠ̄A ¼ I4: ð4:12Þ

Here and in the following, we use an additional summation
convention over repeated capital indices:

ΣAΣ̄A ¼
X1
A¼0

ðΣAΣ̄AÞ ¼ Σ0Σ̄0 þ Σ1Σ̄1: ð4:13Þ

Thus, Eqs. (4.1a) and (4.1b) are satisfied if the amplitude
ψ0 is an eigenspinor of D, with eigenvalue zero. The most
general form for ψ0 is

ψ0ðx; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
I0ðxÞ

p
½z0ðxÞΣ0ðx; kÞ þ z1ðxÞΣ1ðx; kÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
I0ðxÞ

p
zAΣA; ð4:14Þ

where z0 and z1 are scalar coefficients, satisfying the
constraint

z̄0z0 þ z̄1z1 ¼ z̄AzA ¼ 1: ð4:15Þ

Note that since the matrix D explicitly depends on kμ, its
eigenspinors will, in general, also depend on kμ. As
mentioned in Sec. III, this can be viewed as a consequence
of the amplitude ψ being defined on the Lagrangian
submanifold determined by kμ.

B. Ray equations

Equations (4.4) and (4.6) represent a system of coupled
partial differential equations

1

2
gαβð∇αSþ eAαÞð∇βSþ eAβÞ ¼ −

m2

2
; ð4:16aÞ

∇α½I0ð∇αSþ eAαÞ� ¼ 0; ð4:16bÞ

where the unknowns are S and I0. The first equation is
a Hamilton-Jacobi equation for the phase function S,
and the second equation is a transport equation for the
intensity I0. The Hamilton-Jacobi equation can be solved
using the method of characteristics ([55], Sec. 46). This
is done by defining a Hamiltonian function H on T�M,
such that

Hðx;∇SÞ ¼ 1

2
gαβð∇αSþ eAαÞð∇βSþ eAβÞ ¼ −

m2

2
:

ð4:17Þ

In this case, the Hamiltonian is

Hðx; pÞ ¼ 1

2
gαβðpα þ eAαÞðpβ þ eAβÞ; ð4:18Þ

and Hamilton’s equations (assuming the standard symplec-
tic form on T�M,Ω ¼ dxμ ∧ dpμ) take the following form:

_xμ ¼ ∂H
∂pμ

¼ pμ þ eAμ; ð4:19aÞ

_pμ ¼ −
∂H
∂xμ

¼ −
∂μgαβ

2
ðpα þ eAαÞðpβ þ eAβÞ

− eðpα þ eAαÞ∂μAα: ð4:19bÞ

MARIUS A. OANCEA and ACHAL KUMAR PHYS. REV. D 107, 044029 (2023)

044029-4



Introducing a new momentum variable kα ¼ pα þ eAα,
Hamilton’s equations can be written in a more compact
form:

_xμ ¼ kμ; ð4:20aÞ

_kμ ¼ −
∂μgαβ

2
kαkβ þ ekαFαμ: ð4:20bÞ

Given a solution fxμðτÞ; pμðτÞg for Hamilton’s equations,
we can obtain a solution of the Hamilton-Jacobi equa-
tion (4.17) by taking the phase function S as follows [56]:

Sðxμðτ1Þ; pμðτ1ÞÞ ¼
Z

τ1

τ0

dτLðx; _x; p; _pÞ þ const; ð4:21Þ

where

Lðx; _x; p; _pÞ ¼ _xμpμ −Hðx; pÞ ð4:22Þ

is the corresponding Lagrangian. The ray equations (4.19)
can also be obtained as the Euler-Lagrange equations
corresponding to the Lagrangian L.
Once the Hamilton-Jacobi equation is solved, the trans-

port equation (4.4) can also be analyzed (see Ref. [57]).
However, our main interest is in the ray equations governed
by the Hamiltonian (4.18) or by the Lagrangian (4.22). The
ray equations (4.20) describe the timelike worldlines of
massive charged particles. These equations can easily be
rewritten as

ẍμ þ Γμ
αβ _x

α _xβ − e_xαFα
μ ¼ 0; ð4:23Þ

or in the explicitly covariant form

kα∇αkμ ¼ _xα∇α _xμ ¼ e_xαFα
μ: ð4:24Þ

C. WKB equations at next-to-leading order

Taking the Euler-Lagrange equations (3.4a) and (3.4b) at
order ℏ1 only, we obtain

Dψ1 ¼ −iγμ∇μψ0; ð4:25aÞ

ψ̄1D ¼ i∇μψ̄0γ
μ: ð4:25bÞ

Given ψ0, these are two inhomogeneous systems of linear
algebraic equations, where the unknowns are ψ1 and ψ̄1.
For any inhomogeneous system, the general solution can be
written as the sum of the solution for the homogeneous
system, and a particular solution for the inhomogeneous
system. We can write ψ1 as

ψ1 ¼ b0Σ0 þ b1Σ1 þ ψp; ð4:26Þ

where b0;1 are scalar coefficients and ψp is a particular
solution of the inhomogeneous system. The system will
admit nontrivial solutions if and only if the right-hand
side of the inhomogeneous equation is orthogonal to all
the solutions of the transposed homogeneous equation.
Such solutions are always a linear combination of Σ0

and Σ1. Therefore, we have the following solvability
conditions [29,31,52], which impose additional constraints
on ψ0 and ψ̄0:

Σ̄0γ
μ∇μψ0 ¼ Σ̄1γ

μ∇μψ0 ¼ 0; ð4:27aÞ

∇μψ̄0γ
μΣ0 ¼ ∇μψ̄0γ

μΣ1 ¼ 0: ð4:27bÞ

We can rewrite these equations using the expansion of ψ0

given in Eq. (4.14), and the transport equation (4.4):

kμ∇μzA ¼ 1

2
zA∇μkμ −mΣ̄Aγ

μ∇μΣBzB; ð4:28aÞ

kμ∇μz̄B ¼ 1

2
z̄B∇μkμ −mz̄AΣ̄Aγ

μ∇μΣB: ð4:28bÞ

Using the identity

Σ̄Aγ
μΣB ¼ 1

m
δABkμ; ð4:29Þ

and its derivative

δAB∇μkμ ¼ mð∇μΣ̄Aγ
μΣB þ Σ̄Aγ

μ∇μΣBÞ; ð4:30Þ

we obtain

kμ∇μzA ¼ iMABzB; ð4:31aÞ

kμ∇μz̄B ¼ −iz̄AMAB; ð4:31bÞ

where the 2 × 2 Hermitian matrix M has components

MAB ¼ im
2
ðΣ̄Aγ

μ∇μΣB −∇μΣ̄Aγ
μΣBÞ: ð4:32Þ

Using the properties of the eigenspinors given in
Eqs. (4.10)–(4.12), the matrix MAB can be rewritten as

MAB ¼ i
2
kμðΣ̄A∇μΣB −∇μΣ̄AΣBÞ −

e
4
FμνΣ̄Aσ

μνΣB:

ð4:33Þ

Here, the first term represents the Berry connection, and the
second term represents the so-called “no-name” term. The
no-name term was first introduced in a general context by
Littlejohn and Flynn [58] (see also Ref. [51] for a geometric
discussion), and its role in the WKB approximation to the
Dirac equation was discussed in Ref. [53].
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We can write Eq. (4.31) in a more compact form by
introducing the following two-dimensional unit complex
vectors:

z ¼
�
z0
z1

�
; z̄ ¼ ð z̄0 z̄1 Þ: ð4:34Þ

We also introduce the following notation:

BμABðx; kÞ ¼
i
2
ðΣ̄A∇μΣB −∇μΣ̄AΣBÞ; ð4:35aÞ

sμνABðx; kÞ ¼
1

2
Σ̄Aσ

μνΣB; ð4:35bÞ

where σμν ¼ i
2
½γμ; γν�. The Berry connection Bμ is a 2 × 2

matrix-valued one-form, while sμν is a 2 × 2 matrix-valued
antisymmetric tensor. Depending on the context, we will
sometimes omit the matrix indices A, B. Then, Eq. (4.31)
can be written as

kμ∇μz ¼ i

�
kμBμ −

e
2
Fμνsμν

�
z; ð4:36aÞ

kμ∇μz̄ ¼ −iz̄
�
kμBμ −

e
2
Fμνsμν

�
: ð4:36bÞ

If we restrict z to a worldline xμðτÞ, which is a solution of
the ray equations (4.20), we can write

_z ¼ i

�
kμBμ −

e
2
Fμνsμν

�
z; ð4:37aÞ

_̄z ¼ −iz̄
�
kμBμ −

e
2
Fμνsμν

�
: ð4:37bÞ

These equations describe the evolution of the spin degree
of freedom along the worldline xμðτÞ.
It is important to emphasize how the covariant deriva-

tives act on the eigenspinors ΣA, which are defined on
the Lagrangian submanifold. Applying the chain rule and
using the horizontal and vertical derivatives defined in
Appendix A, we obtain

kμ∇μΣA ¼ kμ∇μ½ΣAðx; kÞ�

¼ kμ
�
∇h μΣA

�
ðx; kÞ þ kμð∇μkνÞ

�
∇ν
v
ΣA

�
ðx; kÞ

¼ kμ∇h μΣA þ ekμFμν∇ν
v
ΣA: ð4:38Þ

The expression of the Berry connection becomes

kμBμAB ¼ i
2
kμ
�
Σ̄A∇

h

μΣB −∇h μΣ̄AΣB

�
þ ie

2
kμFμν

�
Σ̄A∇ν

v
ΣB −∇ν

v
Σ̄AΣB

�
: ð4:39Þ

D. Geometric definition of the Berry connection
and Berry curvature

A general discussion about the geometry of the transport
equation arising from the WKB approximation of multi-
component wave equations can be found in Ref. [51]
(see also Refs. [58–60]). Here, we specialize this discussion
to the case of the Dirac equation, focusing on the geometry
of the Berry connection and the corresponding Berry
curvature.
The WKB approximation of multicomponent wave

equations generally results in a Hamilton-Jacobi equation
for the phase S and a transport equation for the amplitude
ψ0. In the present case, the Hamilton-Jacobi equation for S
was discussed in Sec. IV B, and the transport equation for
ψ0 is divided into two parts. The first one describes the
evolution of the intensity I0 and is given in Eq. (4.4), while
the second one describes the evolution of the spin degree of
freedom, as presented in Eq. (4.37).
Since the amplitude ψ0 is defined on the Lagrangian

submanifold, the Berry connection must be defined as a
connection on an appropriate 4-spinor bundle with base
space the Lagrangian submanifold. Furthermore, the ampli-
tude ψ0 is an eigenspinor of D with eigenvalue λ ¼ 0, so
the appropriate bundle is then the λ-eigenbundle of the
4-spinor bundle with base space the Lagrangian submani-
fold. Then, the Berry connection has to be a Lie algebra-
valued one-form defined on the Lagrangian submanifold.
This is clearly not the case for Bμ, which is written as a Lie
algebra-valued one-form on spacetime.
A connection one-form defined on the Lagrangian

submanifold should be contracted with a tangent vector
to the Lagrangian submanifold. By definition, the tangent
vectors to the Lagrangian submanifold are the Hamiltonian
vector fields. Working in the ðx; kÞ coordinates, the
Hamiltonian vector field corresponding to the ray equa-
tions (4.20) is

XH ¼ kμ
∂

∂xμ
þ ðΓρ

νμkρkν þ ekνFνμÞ
∂

∂kμ
: ð4:40Þ

We can obtain the appropriate definition of the Berry
connection as follows. Using the definition of the horizon-
tal derivative, we can rewrite Eq. (4.39) as
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BABðXHÞ ¼ kμBμAB ¼ i
2
kμðΣ̄A∇μΣB −∇μΣ̄AΣBÞ

þ i
2
ðΓρ

νμkρkν þ ekνFνμÞ

×
�
Σ̄A∇μ

v
ΣB −∇μ

v
Σ̄AΣB

�
; ð4:41Þ

and we obtain

BAB ¼ i
2
ðΣ̄A∇μΣB −∇μΣ̄AΣBÞdxμ

þ i
2

�
Σ̄A∇μ

v
ΣB −∇μ

v
Σ̄AΣB

�
dkμ: ð4:42Þ

This is the appropriately defined Berry connection that
we were looking for, which is a Lie algebra-valued one-
form defined on the Lagrangian submanifold. The corre-
sponding Lie algebra is uð2Þ, since the one-form iB takes
values in the space of two-dimensional anti-Hermitian
matrices.
The curvature of the connection B can be calculated

using the standard definition ([61], Sec. II.3.2)

F ¼ dB − i½B;B�: ð4:43Þ

This is the Berry curvature, and it plays an important role
in the spin Hall effect correction to the ray equations, as
we will discuss in the next sections. In coordinates, the
expression of the Berry curvature is

F ¼ ðF xxÞμνdxμdxν þ ðF kxÞμνdxμdkν
þ ðF xkÞμνdkμdxν þ ðF kkÞμνdkμdkν; ð4:44Þ

where

ðF xxÞμν ¼
∂ðBxÞν
∂xμ

−
∂ðBxÞμ
∂xν

− i½ðBxÞμ; ðBxÞν�; ð4:45Þ

ðF kkÞμν ¼
∂ðBkÞν
∂kμ

−
∂ðBkÞμ
∂kν

− i½ðBkÞμ; ðBkÞν�; ð4:46Þ

ðF kxÞμν ¼
∂ðBkÞν
∂xμ

−
∂ðBxÞμ
∂kν

− i½ðBxÞμ; ðBkÞν�; ð4:47Þ

ðF xkÞνμ ¼ −ðF kxÞμν; ð4:48Þ

and

ðBxÞμAB ¼ i
2
ðΣ̄A∇μΣB −∇μΣ̄AΣBÞ; ð4:49aÞ

ðBkÞμAB ¼ i
2

�
Σ̄A∇μ

v
ΣB −∇μ

v
Σ̄AΣB

�
: ð4:49bÞ

Using the properties of the eigenspinors given in
Eqs. (4.10a)–(4.12), the components of the Berry curvature
can be explicitly computed, as shown in Appendix C:

ðF xxÞμν ¼ −
1

2
Rμναβsαβ þ

1

m2
kρkσΓ

ρ
αμΓσ

βνs
αβ; ð4:50aÞ

ðF kkÞμν ¼
1

m2
sμν; ð4:50bÞ

ðF kxÞμν ¼ −ðF xkÞνμ ¼ −
1

m2
kρΓ

ρ
μαsαν: ð4:50cÞ

The components of the Berry curvature were also
calculated in Ref. [53], although only for the case of
Minkowski spacetime. Restricting to Minkowski space-
time, the only nonzero component of the Berry curvature is
ðF kkÞμν, and in this case our result agrees with the result
presented in Ref. [53] (Eq. 30).

E. Effective dispersion relation and spin-orbit coupling

In the standard WKB treatment, the equations for each
individual order in ℏ are set to zero. The resulting ray
equations (4.20) are used to determine the transport of
the spin degree of freedom, by Eq. (4.37). However, with
this approach there is no backreaction from the spin degree
of freedom, described by zðτÞ, on the orbital degrees of
freedom, described by the rays xμðτÞ and kðτÞ. To properly
take into account the spin-orbit coupling between the spin
dynamics and the ray dynamics, we derive here an effective
dispersion relation, containing Oðℏ1Þ corrections to the
dispersion relation given in Eq. (4.6). This represents a
weaker condition compared to the standard WKB treat-
ment, where terms of different orders in ℏ are set to zero
individually. Instead, here we only require that the com-
bined sum of the terms of order ℏ0 and ℏ1 vanishes. The
effective dispersion relation is obtained by taking the Euler-
Lagrange equations (3.4), but without treating terms of
different orders in ℏ separately. The effective dispersion
relation is then treated as an effective Hamilton-Jacobi
equation, and the resulting ray equations contain spin-
dependent correction terms, describing the gravitational
spin Hall effect of Dirac particles.
Starting with Eq. (3.4), we can write

ψ̄ðγμkμ þmÞψ − iℏψ̄γμ∇μψ ¼ Oðℏ2Þ; ð4:51aÞ

ψ̄ðγμkμ þmÞψ þ iℏ∇μψ̄γ
μψ ¼ Oðℏ2Þ: ð4:51bÞ

By adding these two equations, we obtain

kμψ̄γμψ þmψ̄ψ −
iℏ
2
ðψ̄γμ∇μψ −∇μψ̄γ

μψÞ ¼ Oðℏ2Þ:
ð4:52Þ
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The Dirac current jμ ¼ ψ̄γμψ þOðℏ2Þ can be rewritten in a
different form. Using Eqs. (3.4a) and (3.4b), we get

ψ̄γμðmψÞ ¼ ψ̄γμð−γνkνψ þ iℏγν∇νψÞ þOðℏ2Þ;
ðψ̄mÞγμψ ¼ ð−ψ̄γνkν − iℏ∇νψ̄γ

νÞγμψ þOðℏ2Þ: ð4:53Þ

Adding the above equations, we obtain

jμ ¼ −
1

2m
kνψ̄ðγμγν þ γνγμÞψ

þ iℏ
2m

ðψ̄γμγν∇νψ −∇νψ̄γ
νγμψÞ þOðℏ2Þ

¼ 1

m
kμψ̄ψ −

iℏ
2m

gμνðψ̄∇νψ −∇νψ̄ψÞ

þ ℏ
2m

∇νðψ̄σμνψÞ þOðℏ2Þ: ð4:54Þ

Using the above result, Eq. (4.52) can be rewritten as

ψ̄ψkμkμ −
iℏ
2
kμðψ̄0∇μψ0 −∇μψ̄0ψ0Þ þ

ℏ
2
kμ∇νðψ̄0σ

μνψ0Þ

−
iℏm
2

ðψ̄0γ
μ∇μψ0 −∇μψ̄0γ

μψ0Þ ¼ −m2ψ̄ψ þOðℏ2Þ:
ð4:55Þ

We expand the OðℏÞ terms above using Eq. (4.14):

iℏ
2
kμðψ̄0∇μψ0 −∇μψ̄0ψ0Þ ¼

iℏI0

2
kμðz†∇μz −∇μz†zÞ

þ ℏI0kμz†Bμz: ð4:56Þ

Using Eqs. (4.1a) and (4.1b), we can write

kμ∇νðψ̄0σ
μνψ0Þ ¼ eI0Fμνz†sμνz: ð4:57Þ

We also have

iℏ
2
ðψ̄0γ

μ∇μψ0 −∇μψ̄0γ
μψ0Þ ¼

iℏI0

2m
kμðz†∇μz −∇μz†zÞ

þ ℏI0

m
kμz†Bμz

−
eℏI0

2m
Fμνz†sμνz: ð4:58Þ

At this stage, it is also convenient to introduce the spin
tensor

Sμν ¼ ℏz̄sμνz ¼ ℏ
2

ψ̄0σ
μνψ0

ψ̄0ψ0

: ð4:59Þ

The role of the spin tensor is to encode the angular
momentum carried by the wave packet, and similar defi-
nitions have also been considered in Refs. [29,31,53]. Using

Eq. (4.10), it is straightforward to show that the spin tensor is
orthogonal to the momentum:

Sμνkν ¼ 0: ð4:60Þ

Combining the above equations, we obtain the effective
dispersion relation

1

2
kμkμ −

iℏ
2
kμðz̄∇μz −∇μz̄zÞ − ℏkμz̄Bμzþ

e
2
FμνSμν

¼ −
m2

2
þOðℏ2Þ: ð4:61Þ

The above dispersion relation contains OðℏÞ corrections to
the standard dispersion relation obtained in Eq. (4.6). These
additional terms describe the spin-orbit coupling.

1. Effective ray equations

Following the same method as in Refs. [22,26], we now
derive effective ray equations that contain spin-dependent
correction terms. These equations are meant to describe
the gravitational spin Hall effect of Dirac wave packets.
We start with the effective dispersion relation (4.61) and
treat it as an effective Hamilton-Jacobi equation for the
phase function S:

1

2
gαβð∇αSþ eAαÞð∇βSþ eAβÞ −

iℏ
2
ðz̄ _z− _̄zzÞ

− ℏð∇αSþ eAαÞz̄Bαzþ
e
2
FαβSαβ ¼ −

m2

2
þOðℏ2Þ:

ð4:62Þ

We define the corresponding Hamiltonian function

H ¼ 1

2
gαβðpα þ eAαÞðpβ þ eAβÞ −

iℏ
2
ðz̄ _z− _̄zzÞ

− ℏðpα þ eAαÞz̄Bαzþ
e
2
FαβSαβ; ð4:63Þ

and we solve for the phase function S as in Sec. IV B:

SðxαðτÞ; pαðτÞ; zðτÞ; z̄ðτÞÞ ¼
Z

τ

τ0

dτ0Lþ const; ð4:64Þ

where the Lagrangian is

L ¼ _xαpα −
1

2
gαβðpα þ eAαÞðpβ þ eAβÞ þ

iℏ
2
ðz̄ _z− _̄zzÞ

þ ℏðpα þ eAαÞz̄Bαz −
e
2
FαβSαβ: ð4:65Þ

Note that the Lagrangian is a scalar function defined on
TðT�M × C2Þ, and the effective ray dynamics is given by
the Euler-Lagrange equations
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∂L
∂w

−
d
dτ

∂L
∂ _w

¼ 0; ð4:66Þ

where w ∈ fxμ; pμ; z; z̄g. The Euler-Lagrange equations
are

_xμ ¼ kμ − ℏz̄Bμz − ℏkαz̄
∂Bα

∂pμ
zþ e

2
Fαβ

∂Sαβ

∂pμ
; ð4:67aÞ

_pμ ¼ Γα
βμkαk

β − ekα∂μAα þ ℏkαz̄ð∂μBαÞz
þ eℏð∂μAαÞz̄Bαz −

e
2
∂μðFαβSαβÞ; ð4:67bÞ

_z ¼ i

�
kμBμ −

e
2
Fμνsμν

�
z; ð4:67cÞ

_̄z ¼ −iz̄
�
kμBμ −

e
2
Fμνsμν

�
: ð4:67dÞ

These equations contain spin-dependent correction terms
of Oðh1Þ to the ray equations obtained in Eq. (4.20). The
Oðh1Þ terms reflect the spin-orbit coupling between the
external and internal degrees of freedom, resulting in
the gravitational spin Hall effect of localized Dirac wave
packets.

2. Noncanonical coordinates

The effective ray equations (4.67) can also be formulated
as a Hamiltonian system on the symplectic manifold
T�M × C2. Using canonical coordinates ðx; p; z; z̄Þ, the
corresponding Hamiltonian function is

Hðx; p; z; z̄Þ ¼ 1

2
gαβðpα þ eAαÞðpβ þ eAβÞ

− ℏðpα þ eAαÞz̄Bαzþ
e
2
FαβSαβ; ð4:68Þ

and the symplectic two-form is

Ω ¼ dxα ∧ dpα þ iℏdz ∧ dz̄: ð4:69Þ

In this symplectic setup, Hamilton’s equations are ([62],
Sec. III.3)

ΩðXH; ·Þ ¼ dH; ð4:70Þ

where the Hamiltonian vector field XH can be expressed in
coordinates as

XH ¼ _xμ
∂

∂xμ
þ _pμ

∂

∂pμ
þ _z

∂

∂z
þ _̄z

∂

∂z̄
: ð4:71Þ

By solving for the components of the Hamiltonian vector
field, we obtain the effective ray equations (4.67) in the
following form:

2_xμ ¼ ∂H
∂pμ

; _pμ ¼ −
∂H
∂xμ

;

_z ¼ −
i
ℏ
∂H
∂z̄

; _̄z ¼ i
ℏ
∂H
∂z

: ð4:72Þ

However, these ray equations are gauge-dependent. First of
all, they depend on the electromagnetic gauge potential Aμ.
More importantly, the ray equations depend on the Berry
connection Bμ, which is gauge-dependent in the sense that
it depends on the choice of eigenspinors ΣA. Thus, we aim
to remove both these gauge dependencies from the equa-
tions of motion by introducing noncanonical coordinates.
As a first step, we rewrite the Hamiltonian, symplectic
form, and effective ray equations in the new coordinate
system ðx; k; z; z̄Þ, where kμ ¼ pμ þ eAμ. In these coordi-
nates, the Hamiltonian is

Hðx; k; z; z̄Þ ¼ 1

2
gαβkαkβ − ℏkαz̄Bαzþ

e
2
FαβSαβ: ð4:73Þ

Applying the standard coordinate transformation rules for
two-forms, the symplectic form can be expressed in the
new coordinates ðx; k; z; z̄Þ as

Ω ¼ eFαβdxαdxβ þ dxα ∧ dkα þ iℏdz ∧ dz̄: ð4:74Þ

Using Eq. (4.70), we can obtain the effective ray equations
as the components of the Hamiltonian vector field in the
new coordinates:

2_xμ ¼ ∂H
∂kμ

; _kμ ¼ −
∂H
∂xμ

þ e_xνFνμ;

_z ¼ −
i
ℏ
∂H
∂z̄

; _̄z ¼ i
ℏ
∂H
∂z

: ð4:75Þ

These equations no longer depend on the electromagnetic
gauge potential Aμ. To eliminate the Berry connection
from the Hamiltonian, we perform the following coordinate
transformation:

Xμ ¼ xμ þ ℏz̄ðBkÞμz; ð4:76aÞ

Pμ ¼ kμ − ℏz̄ðBxÞμz − eℏFμνz̄ðBkÞνz: ð4:76bÞ

This type of coordinate transformation was first introduced
in Ref. [58]. It has the effect of eliminating the gauge-
dependent Berry connection from the Hamiltonian, at the
cost of introducing an additional term in the symplectic
form, represented by the gauge-independent Berry curva-
ture. A similar coordinate transformation was used in
Refs. [22,26]. The Hamiltonian function becomes
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Hðxμ; kμ; z; z̄Þ ¼HðXμ − ℏz̄ðBkÞμz;Pμ þ ℏz̄ðBxÞμz
þ eℏFμνz̄ðBkÞνz; z; z̄Þ

¼HðXμ;Pμ; z; z̄Þ− ℏ
∂H
∂Xμ z̄ðBkÞμz

þ ℏ
∂H
∂Pμ

½z̄ðBxÞμzþ eFμνz̄ðBkÞνz� þOðℏ2Þ:

ð4:77Þ

Thus, the Hamiltonian in the noncanonical coordinates
ðX;P; z; z̄Þ is

HðX;P; z; z̄Þ ¼ 1

2
gαβPαPβ þ

e
2
FαβSαβ þOðℏ2Þ: ð4:78Þ

Applying the same coordinate transformation to the sym-
plectic form, we obtain

Ω ¼ eFαβdXαdXβ þ dXα ∧ dPα þ iℏdz ∧ dz̄ − ℏz̄

�
∂ðBxÞβ
∂Xα −

∂ðBxÞα
∂Xβ

�
zdXαdXβ − ℏz̄

�
∂ðBkÞβ
∂Xα −

∂ðBxÞα
∂Pβ

�
zdXαdPβ

− ℏz̄

�
∂ðBxÞβ
∂Pα

−
∂ðBkÞα
∂Xβ

�
zdPαdXβ − ℏz̄

�
∂ðBkÞβ
∂Pα

−
∂ðBkÞα
∂Pβ

�
zdPαdPβ þ ℏz̄ðBxÞαdXα ∧ dzþ ℏðBxÞαzdXα ∧ dz̄

þ ℏz̄ðBkÞαdPα ∧ dzþ ℏðBkÞαzdPα ∧ dz̄þOðℏ2Þ: ð4:79Þ

The effective ray equations in noncanonical coordinates ðX;P; z; z̄Þ are

_Xμ ¼ ∂H
∂Pμ

þ ℏ _Xνz̄

�
∂ðBkÞμ
∂Xν −

∂ðBxÞν
∂Pμ

�
zþ ℏ _Pνz̄

�
∂ðBkÞμ
∂Pν

−
∂ðBkÞν
∂Pμ

�
zþ ℏz̄ðBkÞμ _zþ ℏ _̄zðBkÞμz; ð4:80aÞ

_Pμ ¼ −
∂H
∂Xμ

þ e _XνFνμ − ℏ _Xνz̄

�
∂ðBxÞμ
∂Xν −

∂ðBxÞν
∂Xμ

�
z − ℏ _Pνz̄

�
∂ðBxÞμ
∂Pν

−
∂ðBkÞν
∂Xμ

�
z − ℏz̄ðBxÞμ _z − ℏ _̄zðBxÞμz; ð4:80bÞ

_z ¼ i½ _XαðBxÞα þ _PαðBkÞα −
e
2
Fμνsμν�z; ð4:80cÞ

_̄z ¼ −iz̄
�
_XαðBxÞα þ _PαðBkÞα −

e
2
Fμνsμν

�
: ð4:80dÞ

Inserting the expressions of _z and _̄z back into the
equations for _Xμ and _Pμ, we obtain

_Xμ ¼ ∂H
∂Pμ

þ ℏ _Xνz̄ðF kxÞνμzþ ℏ _Pνz̄ðF kkÞνμz

−
ieℏ
2

z̄½ðBkÞμ; Fαβsαβ�z; ð4:81aÞ

_Pμ ¼ −
∂H
∂Xμ

þ e _XνFνμ − ℏ _Xνz̄ðF xxÞνμz

− ℏ _Pνz̄ðF xkÞνμzþ
ieℏ
2

z̄½ðBxÞμ; Fαβsαβ�z: ð4:81bÞ

Since the ray equations are correct up to error terms
of Oðℏ2Þ, we can replace _Xμ ¼ Pμ þOðℏ1Þ and _Pμ ¼
Γα
βμPαPβ þ ePνFνμ þOðℏ1Þ on the right-hand side in the

above equations. The same replacement can be made in the
equations of z and z̄, which shows that Eqs. (4.80c) and
(4.80d) are equivalent to Eq. (4.37). Furthermore, using the

expressions for the components of the Berry curvature
given in Eq. (4.50), we can simplify some terms:

ℏ _Xνz̄ðF kxÞνμzþ ℏ _Pνz̄ðF kkÞνμz
¼ e

m2
PαFανSνμ þOðℏ2Þ; ð4:82aÞ

ℏ _Xνz̄ðF xxÞνμzþ ℏ _Pνz̄ðF xkÞνμz

¼ 1

2
RμναβPνSαβ þ e

m2
PαPρΓ

ρ
μβFανSβν þOðℏ2Þ: ð4:82bÞ

Thus, the effective ray equations in noncanonical coor-
dinates can be written in the simplified form

_Xμ ¼ Pμ þ e
m2

PαFανSνμ

þ eℏ
2
Fαβz̄

�
∇μ
v
sαβ − i½ðBkÞμ; sαβ�

�
z; ð4:83aÞ
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_Pμ ¼ Γα
βμPαPβ þ e _XνFνμ −

1

2
RμναβPνSαβ

þ e
m2

PαPρΓ
ρ
μβFανSβν −

e
2
Fαβ;μSαβ

−
eℏ
2
Fαβz̄ðsαβ ;μ − i½ðBxÞμ; sαβ�Þz; ð4:83bÞ

_z ¼ i
�
_XαðBxÞα þ _PαðBkÞα −

e
2
Fμνsμν

�
z; ð4:83cÞ

_̄z ¼ −iz̄
�
_XαðBxÞα þ _PαðBkÞα −

e
2
Fμνsμν

�
: ð4:83dÞ

In Eqs. (4.83a) and (4.83b), the terms involving the
derivatives of sαβ can be rewritten as in Appendix D. Then
we are left with the more compact form of the equations

_Xμ ¼ Pμ; ð4:84aÞ

_Xν∇ν
_Pμ ¼ e _XνFνμ −

1

2
RμναβPνSαβ −

e
2
Sαβ∇μFαβ; ð4:84bÞ

_z ¼ i
�
_XαðBxÞα þ _PαðBkÞα −

e
2
Fμνsμν

�
z; ð4:84cÞ

_̄z ¼ −iz̄
�
_XαðBxÞα þ _PαðBkÞα −

e
2
Fμνsμν

�
: ð4:84dÞ

Note that the equation for Xμ is independent of the
internal degrees of freedom z and z̄, while the equation for
Pμ depends on the internal degrees of freedom only through
the spin tensor Sαβ. Thus, we can replace the evolution
equations for the internal degrees of freedom z and z̄ with
an evolution equation for the spin tensor Sαβ. We start by
expanding the covariant derivative of the spin tensor as

_Xν∇νSαβ ¼ _Sαβ þ _XνðΓα
νγSγβ þ Γβ

νγSαγÞ: ð4:85Þ

Recall that Sαβ ¼ ℏz̄sαβz, where sαβ depends on the
eigenspinors ΣA and therefore is a function of Xμ and Pμ.
Then, we have

_sαβ ¼ _Xν
∂νsαβ þ _Pν∇ν

v
sαβ; ð4:86Þ

and the evolution equation for the spin tensor becomes

_Xν∇νSαβ ¼ ℏ
h
_̄zsαβzþ z̄sαβ _zþ _Xνz̄ð∇νsαβÞz

þ _Pνz̄
�
∇ν
v
sαβ

�
z
i
: ð4:87Þ

Next, using Eqs. (4.84c) and (4.84d), together with the
relations derived in Appendix D, we arrive at

_Xν∇νSαβ ¼
ie
8
Fμνz̄AΣ̄A½σμν; σαβ�ΣBzB: ð4:88Þ

The commutator in the above equation can be calculated
using the properties of the gamma matrices, and we obtain

i
2
½σμν; σαβ� ¼ gνασμβ − gμασνβ − gνβσμα þ gμβσνα: ð4:89Þ

Finally, we can write the gauge-invariant gravitational spin
Hall equations in terms of the variables fXμ; Pμ; Sαβg as

_Xμ ¼ Pμ; ð4:90aÞ

_Xν∇ν
_Pμ ¼ e _XνFνμ −

1

2
RμναβPνSαβ −

e
2
Sαβ∇μFαβ;

ð4:90bÞ

_Xν∇νSαβ ¼ eFν
αSνβ − eFν

βSνα: ð4:90cÞ

These equations describe the semiclassical motion of
massive Dirac wave packets at linear order in spin.
Compared to the lowest-order Lorentz force law derived
in Eq. (4.23), these equations contain additional spin-
dependent terms that reflect the spin-orbit coupling
between the external (represented by Xμ and Pμ) and the
internal (represented by Sαβ) degrees of freedom of the
wave packet.

F. Comparison with other results

In this section, we compare the gravitational spin Hall
equations for massive Dirac wave packets derived above
with other related results in the literature. We start by
presenting a comparison with the Mathisson-Papapetrou
equations for spinning bodies. For a charged compact
object with conserved energy-momentum tensor, the
Mathisson-Papapetrou equations are (ignoring quadrupole
terms) [63,64]

_Xν∇νPμ ¼ e _XνFνμ −
1

2
Rμναβ

_XνSαβ −
1

2
Qαβ∇μFαβ;

ð4:91aÞ

_Xν∇νSαβ ¼ 2P½α _Xβ� þ 2Qμ½αFβ�
μ; ð4:91bÞ

where Qαβ is the body’s electromagnetic dipole moment
tensor. Comparison of Eq. (4.90b) with Eq. (4.91a) shows
that the dipole moment tensor has to be

Qαβ ¼ eSαβ: ð4:92Þ

However, the Mathisson-Papapetrou equations are under-
determined and do not contain an evolution equation for
the worldline Xμ. This freedom can be fixed using a spin
supplementary condition [65]. In particular, the gravitational
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spin Hall equations (4.90) are equivalent (up to linear
order in spin) to the Mathisson-Papapetrou equations (4.91)
together with the Tulczyjew-Dixon spin supplementary
condition

SαβPβ ¼ 0: ð4:93Þ

In the context of the WKB analysis for the massive Dirac
equation, this property is already satisfied by the spin
tensor defined in Eq. (4.59). The evolution equation for
the worldline Xμ can be obtained by taking the covariant
derivative _Xν∇ν of the spin supplementary condition and
using the Mathisson-Papapetrou equations. Ignoring terms
that are quadratic in spin, we obtain

_Xμ ¼
_XβPβ

PβPβ
Pμ: ð4:94Þ

This equation is equivalent to Eq. (4.90a) after we
introduce a worldline parametrization for which

_XβPβ ¼ PβPβ: ð4:95Þ

It follows that P½α _Xβ� ¼ 0, and Eq. (4.90c) is also equiv-
alent to Eq. (4.91b). Thus, when we ignore the quadrupole
moments and terms quadratic in spin, the gravitational spin
Hall equations (4.90) are a particular case of the Mathisson-
Papapetrou equations (4.91) together with the Tulczyjew-
Dixon spin supplementary condition SαβPβ ¼ 0 and the
electromagnetic dipole moment tensor Qαβ ¼ eSαβ.
Similar conclusions regarding the equivalence of the

Mathisson-Papapetrou equations and the semiclassical
dynamics of massive Dirac fields have also been obtained
in Refs. [29,31,33,34]. However, these papers do not
consider an external electromagnetic field Fμν.

V. MASSLESS DIRAC FIELDS

In this section, we present our semiclassical analysis of
massless Dirac fields. In this case, the principal symbol is
reduced to

Djm¼0 ¼ D0 ¼ −γμkμ: ð5:1Þ

The properties of the eigenspinors will result in a different
Berry connection. We start in Sec. VA by analyzing
the WKB equations at the lowest order. We derive the
corresponding dispersion relation, and we introduce the
eigenspinors of the principal symbol D0. In Sec. V B, we
derive the transport equation for the amplitude ψ0, and we
introduce the Berry connection and the Berry phase, which
are closely related to the corresponding ones for electro-
magnetic and gravitational waves. Throughout this section,
we will use the Weyl or chiral basis defined in Appendix E.

A. WKB equations at leading order

At the lowest order in ℏ and setting m ¼ 0, the Euler-
Lagrange equations (3.4) reduce to

D0ψ0 ¼ 0; ð5:2aÞ

ψ̄0D0 ¼ 0; ð5:2bÞ

∇μj0μ ¼ 0: ð5:2cÞ

The first two equations admit nontrivial solutions ψ0 if and
only if the principal symbol matrixD0 is singular. From this
condition we obtain the dispersion relation

detD0 ¼ 0 ⇔ kμkμ ¼ 0: ð5:3Þ

Furthermore, ψ0 needs to be an eigenspinor of D0 with
eigenvalue zero. Under the restriction given by the
dispersion relation, together with the additional require-
ment that kμ is future-directed with respect to the choice of
orthonormal tetrad ðeaÞμ, the principal symbol matrix D0

has rank 2, and there are two eigenspinors with eigenvalue
zero. Thus, we can write ψ0 as

ψ0ðx; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
I0ðxÞ

p
zAðxÞΣAðx; kÞ: ð5:4Þ

The eigenspinors can be expressed in the Weyl basis as

Σ0 ¼
�
0

u

�
; Σ1 ¼

�
v

0

�
; ð5:5Þ

where u and v are 2-spinors satisfying

kμσμu ¼ 0; kμσ̄μv ¼ 0: ð5:6Þ

In the above equations, we use the spacetime Pauli
4-vectors σμ ¼ ðeaÞμσa, σ̄μ ¼ ðeaÞμσ̄a, which are defined
with the help of the tetrad ðeaÞμ and the flat spacetime Pauli
4-vectors σa ¼ ðI2; σiÞ, σ̄a ¼ ðI2;−σiÞ. Since the eigens-
pinors satisfy

γ5Σ0 ¼ Σ0; γ5Σ1 ¼ −Σ1; ð5:7Þ

and we have chosen kμ to be future-oriented, we can say
that Σ0 represents a right-hand chiral fermion of positive
energy, while Σ1 represents a left-hand chiral fermion of
positive energy.
Using the above relations, together with the properties of

the eigenspinors listed in Appendix E, the current j0μ can
be expressed as
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j0μ ¼ ψ̄0γ
μψ0

¼ I0ðz̄0z0ūσμuþ z̄1z1v̄σ̄μvÞ

¼ I0

kμ

kαtα
; ð5:8Þ

where we defined a timelike vector as tα ¼ ðe0Þα. With this
expression, we obtain the following transport equations for
the intensity I0:

∇μj
μ
0 ¼ ∇μ

�
I0

kμ

kαtα

�
¼ 0: ð5:9Þ

Ray equations at the lowest order in ℏ can be obtained
exactly as in Sec. IV B, either by differentiating the
dispersion relation (5.3),

kμ∇μkν ¼ ekμFμν; ð5:10Þ

or by solving the Hamilton-Jacobi equation for the phase
function. The resulting ray equations are the same as in
Sec. IV B, with the only difference that kμ is now a null
vector.

B. WKB equations at next-to-leading order

For themassless case, the Euler-Lagrange equations (3.4a)
and (3.4b) at order ℏ1 only are

D0ψ1 ¼ −iγμ∇μψ0; ð5:11aÞ

ψ̄1D0 ¼ i∇μψ̄0γ
μ: ð5:11bÞ

We treat this inhomogeneous system of linear algebraic
equations exactly as in the massive case, and we obtain the
solvability conditions

Σ̄0γ
μ∇μψ0 ¼ Σ̄1γ

μ∇μψ0 ¼ 0; ð5:12aÞ

∇μψ̄0γ
μΣ0 ¼ ∇μψ̄0γ

μΣ1 ¼ 0: ð5:12bÞ

Using Eqs. (5.4) and (5.9), the solvability conditions can
be rewritten as a transport equation for z:

kμ∇μzA ¼ iMABzB; ð5:13aÞ

kμ∇μz̄B ¼ −iz̄AMAB; ð5:13bÞ

where the 2 × 2 Hermitian matrix M is defined as

M ¼ ikαtα

2

�
ūσμ∇μu −∇μūσμu 0

0 v̄σ̄μ∇μv −∇μv̄σ̄μv

�
:

ð5:14Þ

Note that, in contrast to the massive case, the matrix M
is diagonal. This reflects the fundamental difference from
the Berry connection obtained in the massive. Using
Eqs. (E5)–(E8), we rewrite M as

M ¼ kμBμ −
e
2
Fμνsμν; ð5:15Þ

where we introduced the Berry connection

Bμ ¼
i
2

�
ū∇μu −∇μūu 0

0 v̄∇μv −∇μv̄v

�
ð5:16Þ

and

sμν ¼ i
4
ðūσμvv̄σνu − ūσνvv̄σμuÞσ3; ð5:17Þ

where σ3 is the third Pauli matrix.
Since the matrixM is diagonal, the dynamics of z0 and z1

is decoupled. The transport equation (5.13) can be inte-
grated along a worldline xμðτÞ, with _xμ ¼ kμ, and we obtain

z0ðτÞ ¼ eiγ0ðτÞz0ðτ0Þ; z1ðτÞ ¼ eiγ1ðτÞz1ðτ0Þ; ð5:18Þ

where

γAðτÞ ¼
Z

τ

τ0

dτ0MAA ð5:19Þ

is the Berry phase. It follows that z̄z and z̄σ3z are conserved
along integral curves of kμ. As in the case of electro-
magnetic [22] or gravitational waves [26], the Berry phase
describes the dynamics of the internal spin degree of
freedom and represents the next-to-leading order correction
to the overall phase factor of the WKB ansatz.
The Berry connection in Eq. (5.16) can also be related to

the corresponding Berry connections for electromagnetic
and gravitational waves obtained in Refs. [22,26]. First,
notice that sμν is orthogonal to kμ due to Eq. (5.6), as well as
to the timelike covector tμ ¼ ðe0Þμ. This last property
follows from the definition of σa, with σ0 ¼ I2, and the
orthogonality of the 2-spinors given in Eq. (E5). Thus, it is
convenient to define two complex null vectors orthogonal
to kμ and tμ:

mμ ¼ 1ffiffiffi
2

p v̄σμu; m̄μ ¼ 1ffiffiffi
2

p ūσμv: ð5:20Þ

Using the relations satisfied by the eigenspinors u and v
given in Appendix E, it is straightforward to show that
mμmμ ¼ m̄μm̄μ ¼ 0 and mμm̄μ ¼ 1. Thus, the covectors
fkα; tα; mα; m̄αg form a tetrad and we can write

sμν ¼ im̄½μmν�σ3: ð5:21Þ
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Note that the tensor sμν is independent of the actual choice
of mα and m̄α, and is fully determined by kα and tα:

sμν ¼ −
1

2

εαβγλkγtλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k · kþ ðk · tÞ2

p σ3: ð5:22Þ

In the present case, k · k ¼ 0 and the above relation can be
simplified, but we give the most general expression since it
will become important in the following section to consider
the possibility of a non-null kα.
Furthermore, using the relation between the eigenspinors

u and v given in Eq. (E9), we can relate the diagonal
components of the Berry connection in Eq. (5.16) as

ū∇μu −∇μūuþ i∇μθ ¼ −ðv̄∇μv −∇μv̄vþ i∇μθÞ;
ð5:23Þ

where θ is the phase factor introduced in Eq. (E9). Then, it
follows that the Berry connection can be expressed in terms
of the complex null vectors introduced above:

Bμ ¼
i
4
ðm̄α∇μmα −mα∇μm̄αÞσ3 þ

1

2
ð∇μθÞI2

¼ i
2
m̄α∇μmασ3 þ

1

2
ð∇μθÞI2: ð5:24Þ

The first term on the right-hand side has the same form as
the Berry connection for electromagnetic waves ([22],
Eq. (3.42)), except for a proportionality factor of 1

2
, which

accounts for the fact that here we are dealing with a spin-1
2

field. Furthermore, remember that the eigenspinors u and v,
as well as the complex null vectors mα and m̄α, are
functions of xμ and kμ. Then, when applying the chain
rule as in Eq. (4.38), we obtain

kμ∇μ½mαðx; kÞ� ¼ kμ∇h μmα þ ekμFμν∇ν
v
mα; ð5:25aÞ

kμ∇μ½θðx; kÞ� ¼ kμ∇h μθ þ ekμFμν∇ν
v
θ; ð5:25bÞ

and the Berry connection contracted with kμ can be
written as

kμBμ ¼
i
2
kμ
�
m̄α∇h μmα þ eFμνm̄α∇μ

v
mα

�
σ3

þ 1

2
kμ
�
∇h μθ þ eFμν∇ν

v
θ
�
I2: ð5:26Þ

Although the above form of the Berry connection is similar
to the corresponding ones for electromagnetic ([22],
Eq. (3.42)) and gravitational ([26], Eq. (3.32)) waves,
there are two additional terms. The first additional term
contains a vertical derivative of mα and is present because
here we consider charged Dirac fields in an external

electromagnetic Fμν. The second additional term simply
encodes an additional phase degree of freedom θ when
choosing the eigenspinors u and v, in comparison to the
complex null vectors mμ and m̄μ that define the circular
polarization basis in the case of electromagnetic and
gravitational waves. However, in the following we will
see that this additional phase does not contribute to the
Berry curvature or to the equations of motion.

C. Geometric definition of the Berry connection
and Berry curvature

Similar to the massive case, we can redefine the Berry
connection as a connection on the Lagrangian submanifold.
The Hamiltonian vector field XH is the same as in
Eq. (4.40), and we can use

BðXHÞ ¼ kμBμ ð5:27Þ

to obtain the Berry connection B defined on the Lagrangian
submanifold as

B ¼
�
i
2
m̄α∇μmασ3 þ

1

2
ð∇μθÞI2

�
dxμ

þ
�
i
2
m̄α∇μ

v
mασ3 þ

1

2
ð∇μ

v
θÞI2

�
dkμ: ð5:28Þ

This is a Lie algebra-valued one-form defined on the
Lagrangian submanifold, where the corresponding Lie
algebra is uð1Þ × uð1Þ. The Berry curvature of this
connection can be calculated using Eq. (4.43), and we
obtain

F ¼ ðF xxÞμνdxμdxν þ ðF kxÞμνdxμdkν
þ ðF xkÞμνdkμdxν þ ðF kkÞμνdkμdkν; ð5:29Þ

where

ðF xxÞμν ¼
∂ðBxÞν
∂xμ

−
∂ðBxÞμ
∂xν

; ð5:30aÞ

ðF kkÞμν ¼
∂ðBkÞν
∂kμ

−
∂ðBkÞμ
∂kν

; ð5:30bÞ

ðF kxÞμν ¼ −ðF xkÞνμ ¼
∂ðBkÞν
∂xμ

−
∂ðBxÞμ
∂kν

; ð5:30cÞ

and

ðBxÞμ ¼
i
2
m̄α∇μmασ3 þ

1

2
ð∇μθÞI2; ð5:31aÞ

ðBkÞμ ¼
i
2
m̄α∇μ

v
mασ3 þ

1

2
ð∇μ

v
θÞI2: ð5:31bÞ
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Note that terms that involve the phase function θ will
not contribute to the Berry curvature. Thus, the Berry
curvature will have a form similar to that of electromagnetic
waves [22,24]:

ðF xxÞμν ¼
sαβ

2

�
−Rμναβ þ

2

k · kþ ðk · tÞ2 kρΓ
ρ
α½ν

×
�
Γσ
μ�βkσ − 2ðk · tÞ∇μ�tβ

�
−

2k · k
k · kþ ðk · tÞ2 ∇μtα∇νtβ

�
; ð5:32aÞ

ðF kkÞμν ¼ −
sμν

k · kþ ðk · tÞ2 ; ð5:32bÞ

ðF kxÞμν ¼ −ðF xkÞνμ
¼ sγν

k · kþ ðk · tÞ2 ðkρΓ
ρ
μγ − ðk · tÞ∇μtγÞ: ð5:32cÞ

However, there are some minor differences between the
above expressions and the Berry curvature for electromag-
netic waves used in Refs. [22,24]. First of all, since here we
are working with a spin-1

2
Dirac field, there is an additional

factor of 1
2
in the definition of sαβ. Second, we allow the

possibility that kμ is not null, which leads to some addi-
tional terms. In fact, the calculation of the Berry connection
in Ref. [22] (Appendix C) was done without assuming kμ to
be null, and only in the final expressions was k · k ¼ 0
used. In the next section, it will become clear why we
should not restrict the discussion to a null kμ.

D. Effective dispersion relation and spin-orbit coupling

In this section, we aim to derive the effective ray
equations describing the gravitational spin Hall effect of
massless Dirac wave packets. This can be achieved by
taking into account the spin-orbit coupling between the
external and the internal degrees of freedom. Given the
similarities between the Berry connection derived above
and the corresponding Berry connection for electromag-
netic waves, we will account for spin-orbit couplings by
following similar steps as in Refs. [22] (Sec. IV) and [24]
(Sec. II). The main idea behind this approach is to observe
that, because of the diagonal form of the Berry connection,
the dynamics of the massless Dirac spinors of right-handed
and left-handed chirality is decoupled, and the WKB fields
can be of the form

Ψ ¼
ffiffiffiffiffi
I0

p �
0

u

�
eiγ0eiS=ℏ or Ψ ¼

ffiffiffiffiffi
I0

p �
v

0

�
eiγ1eiS=ℏ:

ð5:33Þ

The above fields have a total phase function S̃ ¼ Sþ ℏγA,
where the Berry phase γA represents a higher-order

correction to the leading-order phase function S. Spin-orbit
couplings can be accounted for by treating S and γA on
equal footing and using the total phase function S̃ to define
an effective dispersion relation. Using the results obtained
in the previous sections, we can write

1

2
ð∇μS̃þ eAμÞð∇μS̃þ eAμÞ
− ℏð∇μSþ eAμÞð∇μγAÞ ¼ Oðℏ2Þ: ð5:34Þ

Using the definition of the Berry phase and introducing
the notation k̃μ ¼ ∇μS̃þ eAμ, we can rewrite the above
equation as

1

2
k̃μk̃

μ − ℏz̄

�
k̃μBμ −

e
2
Fμνsμν

�
z ¼ Oðℏ2Þ; ð5:35Þ

where z ¼ ðeiγ00ÞT or ð0eiγ1ÞT, depending on the initial
chirality of the spinor field Ψ in Eq. (5.33). This is an
effective dispersion relation containing spin-dependent
correction terms to the leading-order dispersion relation
obtained in Eq. (5.3). Ray equations can be obtained by
treating the effective dispersion relation as a Hamilton-
Jacobi equation for the total phase function S̃. Using the
method of characteristics, the Hamilton-Jacobi equation
can be solved in terms of the ray equations determined by
the Hamiltonian function

Hðx; pÞ ¼ 1

2
ðpμ þ eAμÞðpμ þ eAμÞ

− ℏz̄

�
ðpμ þ eAμÞBμ −

e
2
Fμνsμν

�
z: ð5:36Þ

Assuming the symplectic two-form

Ω ¼ dxα ∧ dpα; ð5:37Þ

we can derive the corresponding Hamilton’s equations

_xμ ¼ ∂H
∂pμ

; _pμ ¼ −
∂H
∂xμ

: ð5:38Þ

These equations contain spin-dependent terms and can be
viewed as a description of the gravitational spin Hall effect.
Note that, compared to the effective ray equations (4.67)
or (4.72) in the massive case, here there is no evolution
equation for the internal degree of freedom z. This is
because of the fundamental differences of the Berry
connections in the massive and massless case. Here, the
dynamics of z is trivial and, up to a phase function γA, fixed
by the initial conditions. However, both the Hamiltonian
and the equations of motion contain gauge-dependent
terms: on the one hand, due to the presence of the
electromagnetic vector potential Aμ, but also due to the

SEMICLASSICAL ANALYSIS OF DIRAC FIELDS ON CURVED … PHYS. REV. D 107, 044029 (2023)

044029-15



Berry connection Bμ, which depends on the choice of
eigenspinors u and v. We follow similar steps as in the
massive case, and we remove the gauge-dependent terms
by a series of coordinate transformations.
We start with a first coordinate transformation

ðx; pÞ ↦ ðx; kÞ, with kμ ¼ pμ þ eAμ. This has the effect
of eliminating the electromagnetic vector potential Aμ from
the Hamiltonian, and we obtain

Hðx; kÞ ¼ 1

2
kμkμ − ℏz̄

�
kμBμ −

e
2
Fμνsμν

�
z: ð5:39Þ

The symplectic two-form in the new coordinates ðx; kÞ is

Ω ¼ eFαβdxαdxβ þ dxα ∧ dkα; ð5:40Þ

and we can write Hamilton’s equations as

_xμ ¼ ∂H
∂kμ

; _kμ ¼ −
∂H
∂xμ

þ e_xνFνμ: ð5:41Þ

We have successfully eliminated the gauge-dependent
vector potential Aμ from the Hamiltonian, and now the
effect of the external electromagnetic field is described in a
gauge-invariant way by the presence of the field strength
tensor Fαβ in the symplectic two-form Ω.
Gauge-dependent terms related to the Berry connection

Bμ can be eliminated by performing a second coordinate
transformation ðx; kÞ ↦ ðX;KÞ. This type of transforma-
tion was first introduced in Ref. [58], and in the present
case we define it as

Xμ ¼ xμ þ ℏz̄ðBkÞμz; ð5:42aÞ

Kμ ¼ kμ − ℏz̄ðBxÞμz − eℏFμνz̄ðBkÞνz: ð5:42bÞ

Following the same steps as in the massive case, the
Hamiltonian in the new coordinates ðX;KÞ becomes

HðX;KÞ ¼ 1

2
gαβKαKβ þ

e
2
FαβSαβ þOðℏ2Þ: ð5:43Þ

Note that the effective dispersion relation H ¼ 0 implies
that, up to error terms of order ℏ2, Kα is generally not null.
This is why we avoided assuming null vectors in the
previous section. In the above equation, we have introduced
the spin tensor

Sαβ ¼ ℏz̄sαβz ¼ −ℏs
εαβγλKγtλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K · K þ ðK · tÞ2
p ; ð5:44Þ

where s ¼ 1
2
z̄σ3z ¼ � 1

2
depending on the initial chirality of

the Dirac fields. The spin tensor encodes the intrinsic
angular momentum carried by the wave packet. The
symplectic two-form in the ðX;KÞ coordinates can be
written as

Ω ¼ eFαβdXαdXβ þ dXα ∧ dKα

− ℏz̄ðF xxÞαβzdXαdXβ − ℏz̄ðF kkÞαβzdKαdKβ

− ℏz̄ðF kxÞαβzðdXαdKβ − dKβdXαÞ þOðℏ2Þ: ð5:45Þ

The above equation can be written more compactly as

Ω ¼ dXα ∧ dKα þ eF − ℏz̄Fz: ð5:46Þ

Thus, we have arrived at a gauge-invariant description,
where the Hamiltonian does not depend on the gauge fields
Aμ and Bμ, and the symplectic two-form now includes
contributions from the electromagnetic field strength tensor
Fαβ and from the Berry curvature F . The gauge-invariant
equations of motion describing the gravitational spin Hall
effect can now be written as

_Xμ ¼ ∂H
∂Kμ

− ℏ _Xνz̄ðF xkÞμνz − ℏ _Kνz̄ðF kkÞμνz; ð5:47aÞ

_Kμ ¼ −
∂H
∂Xμ þ e _XνFνμ þ ℏ _Xνz̄ðF xxÞμνzþ ℏ _Kνz̄ðF kxÞμνz:

ð5:47bÞ

After taking the derivatives of the Hamiltonian and
inserting the expressions for the Berry curvature, we obtain

_Xμ ¼ Kμ þ K · t
K · K þ ðK · tÞ2 S

μαKν∇νtα −
e

K · K þ ðK · tÞ2
�
ℏs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K · K þ ðK · tÞ2

q
ð⋆FÞμσtσ

þ 1

2
FαβSαβðKμ þ ðK · tÞtμÞ − KσFσνSμν

�
; ð5:48aÞ

_Xν∇νKμ ¼ e _XνFνμ −
1

2
RμναβKνSαβ −

e
2
Sαβ∇μFαβ þ

e∇μtσ
K · K þ ðK · tÞ2

�
ℏs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K · K þ ðK · tÞ2

q
ð⋆FÞσνKν

þ K · t
2

FαβSαβKσ − ðK · tÞKδFδνSσν
�
: ð5:48bÞ
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Furthermore, we can simplify the terms in square brackets. The first term can be rewritten as

e
K · K þ ðK · tÞ2

�
ℏs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K · K þ ðK · tÞ2

q
ð⋆FÞμσtσ þ 1

2
FαβSαβðKμ þ ðK · tÞtμÞ − KσFσνSμν

�
¼ −

eK · t
K · K þ ðK · tÞ2 t

σFσνSνμ;

ð5:49Þ

and the second term can be expressed as

e∇μtσ
K · K þ ðK · tÞ2

�
ℏs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K · K þ ðK · tÞ2

q
ð⋆FÞσνKν þ

K · t
2

FαβSαβKσ − ðK · tÞKδFδνSσν
�

¼ −
eðK · KÞ∇μtσ
K · K þ ðK · tÞ2

�
1

2
FαβSαβtσ þ tδFδνSνσ

�
¼ Oðℏ2Þ: ð5:50Þ

The above term is of order ℏ2 since K · K ¼ OðℏÞ and
Sαβ ¼ OðℏÞ, and we can ignore it. Finally, we can write the
gravitational spin Hall equations in the compact form

_Xμ ¼ Kμ þ K · t
K · K þ ðK · tÞ2 S

μαðKν∇νtα þ eFασtσÞ;

ð5:51aÞ

_Xν∇νKμ ¼ e _XνFνμ −
1

2
RμναβKνSαβ −

e
2
Sαβ∇μFαβ:

ð5:51bÞ

These equations are gauge-invariant and contain spin-
dependent correction terms to the geodesic equations. In
contrast to the massive case discussed in Sec. IV, these
equation explicitly depend on the choice of a timelike
vector field tα. This dependence is also encountered for
other massless fields [22,26] and the timelike vector field
tα has the role of fixing the energy centroid of the wave
packet [24]. Furthermore, while for the massive case we
had an additional evolution equation for the spin tensor,
here the spin tensor is already fixed (up to the choice of sign
in s ¼ � 1

2
) by Eq. (5.44).

E. Comparison with other results

In this section, we compare the gravitational spin Hall
equations (5.51) for massless Dirac wave packets with
other known results in the literature. We start with a brief
comparison with the equations of motion for the gravita-
tional spin Hall effect of electromagnetic [22] and gravi-
tational waves [26]. Then, we show that Eq. (5.51) can be
viewed as a particular case of the Mathisson-Papapetrou
equations, together with an appropriate choice of the
supplementary spin condition.
There are two main differences between the massless

Dirac wave packets considered here and the electro-
magnetic and gravitational wave packets discussed in
Refs. [22,24,26]. First, these are fields of different spins.

The Dirac fields are spin-1
2
, while electromagnetic and

gravitational fields have spin-1 and spin-2, respectively.
From the point of view of the gravitational spin Hall
equations, this difference is encoded in the absolute value
of the constant s entering the definition of the spin tensor
Sαβ in Eq. (5.44). Second and more importantly, the Dirac
field has an electric charge e and the Dirac equation is
considered here in a fixed electromagnetic field Fαβ. This
leads to additional terms in the gravitational spin Hall
equations. If we set Fαβ ¼ 0, Eq. (5.51) reduces to

_Xμ ¼ Kμ þ 1

K · t
SμαKν∇νtα; ð5:52aÞ

_Xν∇νKμ ¼ −
1

2
RμναβKνSαβ: ð5:52bÞ

These equations have the same form as those for electro-
magnetic and gravitational wave packets ([24], Eq. (2.17)),
and most of the results from Ref. [24] also apply to this
case. In particular, the above equations are a special case
of the Mathisson-Papapetrou equations, together with the
Corinaldesi-Papapetrou [65,66] spin supplementary con-
dition Sαβtβ ¼ 0, a particular choice for the parametrization
of the worldline and additional initial conditions.
For Fαβ ≠ 0, it can still be shown that Eqs. (5.51) are

related to the Mathisson-Papapetrou equations (4.91).
Equations (4.91a) and (5.51b) are equivalent after imposing
Qαβ ¼ eSαβ. An evolution equation for the worldline can
be obtained from the Mathisson-Papapetrou equations by
using a spin supplementary condition. In this case, we pick

Sαβ½Kβ þ ðK · tÞtβ� ¼ 0: ð5:53Þ

Taking the covariant derivative _Xν∇ν of the spin supple-
mentary condition, using the Mathisson-Papapetrou equa-
tion (4.91b) for the spin tensor and ignoring terms quadratic
in spin, we obtain
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_Xμ ¼
_Xβ½Kβ þ ðK · tÞtβ�
Kβ½Kβ þ ðK · tÞtβ�

Kμ

þ K · t
K · K þ ðK · tÞ2 S

μαðKν∇νtα þ eFασtσÞ: ð5:54Þ

This is equivalent to Eq. (5.51a) after we chose a para-
metrization of the worldline such that

_Xβ½Kβ þ ðK · tÞtβ� ¼ Kβ½Kβ þ ðK · tÞtβ�: ð5:55Þ

Furthermore, a direct calculation shows that the Mathisson-
Papapetrou equation (4.91b) is satisfied by the spin tensor
given in Eq. (5.44). Thus, the gravitational spin Hall
equations (5.51) can be viewed as a particular case of
the Mathisson-Papapetrou equations (4.91).
It should be noted here that the gravitational spin Hall

equations (5.51), as well as their relation to the Mathisson-
Papapetrou equations, break down when Kα þ ðK · tÞtα is
null. In this case, we have

K · K þ ðK · tÞ2 ¼ 0; ð5:56Þ

and the second term in Eq. (5.51a) blows up. However, this
happens only when there is a fine balance between the
external electromagnetic field Fαβ and the choice of a
timelike vector field tα. Such blowups can always be
avoided by defining the centroid of the wave packet with
respect to a different timelike vector field t̃α.
More intuition about the gravitational spin Hall effect

can be gained by looking at numerical examples of spin-
dependent trajectories in various spacetimes. For the
Fαβ ¼ 0 case, numerical examples of spin Hall trajectories
in Schwarzschild and Kerr spacetimes can be found in
Refs. [21,22,27]. Furthermore, the Mathematica notebook
given in Ref. [21] (Appendix A.7) can be used to obtain
spin Hall trajectories in arbitrary spacetimes. However, that
only works for Fαβ ¼ 0, and the notebook would need to be
extended to take into account a nonzero electromagnetic
field Fαβ.

VI. CONCLUSIONS

We presented a semiclassical analysis for massive and
massless Dirac fields on arbitrary background spacetimes
and in the presence of a fixed electromagnetic field. Our
approach is based on a WKB approximation, and the
resulting equations have been investigated at the leading
and next-to-leading order in the expansion parameter ℏ.
The semiclassical dynamics is expressed in terms of a
Berry connection, which governs the dynamics of the spin
internal degree of freedom of the wave packet and the
associated Berry curvature, which determines corrections
to the motion of the wave packet. This results in a
gravitational spin Hall effect, meaning that wave packets
will generally follow spin-dependent trajectories when

propagating in inhomogeneous gravitational and electro-
magnetic fields.
In the massive case, we have shown that the gravita-

tional spin Hall equations (4.90) are a particular case of
the Mathisson-Papapetrou equations, together with the
Tulczyjew-Dixon spin supplementary condition (4.93).
In the absence of an external electromagnetic field,
our results are in agreement with those obtained in
Refs. [29,31], where similar methods have been used.
For massless Dirac wave packets, we have also shown

that the gravitational spin Hall equations (5.51) are a
particular case of the Mathisson-Papapetrou equations,
but this time with a different spin supplementary condition
given in Eq. (5.53). Furthermore, in the absence of an
external electromagnetic field, the gravitational spin Hall
equations take the same form and share the same properties
as in the case of electromagnetic [22,24] or gravitational
waves [26].
We believe that the results derived in this paper can be

used in several applications. First, the semiclassical equa-
tions derived for massive Dirac fields could be used to
study the dynamics of electrons and protons. Gravitational
effects are expected to play an important role in scenarios
that arise in relativistic quantum information [35,67,68],
as well as in experiments involving particle accelerators
[36,69]. Second, chiral kinetic theory [70–72] is emerging
as a semiclassical method for studying many body systems
in high-energy physics [73], condensed matter physics
[70,74–78], and astrophysics [42–44,79]. Since chiral
kinetic theory is based on the semiclassical dynamics of
point particles with spin, we expect that our results can also
be used in this context. In particular, the Berry curvature
plays a central role in chiral kinetic theory, and, thus, we
expect that our covariant formulation of the Berry curvature
could be of use in studies of chiral kinetic theory in curved
spacetime.
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APPENDIX A: HORIZONTAL AND VERTICAL
DERIVATIVES

Let ðxμ; pμÞ be canonical coordinates on the cotangent
bundle T�M and considering a spinor field Ψðx; pÞ defined
on T�M. The horizontal and vertical derivatives of Ψðx; pÞ
can be defined by extending the definition presented in
Ref. [80] (Sec. III.5) for the horizontal and vertical
derivatives of tensor fields:

∇v μΨ ¼ ∂

∂pμ
Ψ; ðA1aÞ
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∇h μΨ ¼ ∂

∂xμ
Ψ −

i
4
ωμ

abσabΨþ Γσ
μρpσ

∂

∂pρ
Ψ: ðA1bÞ

Note that, in contrast to Ref. [80] (Sec. III.5), we have the
opposite sign for the last term in the definition of the
horizontal derivative. This is because we are considering
fields defined on T�M, and not on TM, as is the case in the
reference mentioned earlier. The horizontal and vertical
derivatives satisfy the following properties:

½∇h μ;∇
v
ν� ¼ 0; ½∇v μ;∇v ν� ¼ 0; ðA2aÞ

∇h μpα ¼ ∇h μgαβ ¼ ∇v μgαβ ¼ 0: ðA2bÞ

APPENDIX B: EIGENSPINORS—MASSIVE CASE

For the case of massive Dirac fields, one generally uses
the Dirac basis for spinors and gamma matrices. In this
case, the flat spacetime gamma matrices can be written as

γ0 ¼
�−I2 0

0 I2

�
; γi ¼

�
0 σi

−σi 0

�
; ðB1Þ

where σi, with i running from 1 to 3, are the Pauli matrices
defined as

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
:

ðB2Þ

Working in the Dirac basis, one can construct eigenspinors
fΣ0;Σ1;Π0;Π1g of the principal symbol matrix

D ¼ −γμkμ −mI4; ðB3Þ

such that

DΣA ¼ 0; Σ̄AD ¼ 0; ðB4aÞ

DΠA ¼ −2mΠA; Π̄AD ¼ −2mΠ̄A: ðB4bÞ

The above equations can be used to show that the
following useful relations hold:

Σ̄Aγ
μΣB ¼ kμ

m
δAB; ðB5aÞ

Π̄Aγ
μΠB ¼ kμ

m
δAB; ðB5bÞ

Σ̄Aγ
μΠB ¼ −i

kν
m
Σ̄Aσ

μνΠB; ðB5cÞ

Π̄Aγ
μΣB ¼ i

kν
m
Π̄Aσ

μνΣB: ðB5dÞ

As a concrete example, we present here one possible
choice of eigenspinors:

Σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m − k0
2m

r
0
BBBBB@

1

0
k3

m−k0
k1þik2
m−k0

1
CCCCCA; ðB6aÞ

Σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m − k0
2m

r
0
BBBBB@

0

1
k1−ik2
m−k0
−k3
m−k0

1
CCCCCA; ðB6bÞ

Π0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m − k0
2m

r
0
BBBBB@

k3
m−k0
k1þik2
m−k0

1

0

1
CCCCCA; ðB6cÞ

Π1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m − k0
2m

r
0
BBBBB@

k1−ik2
m−k0
−k3
m−k0

0

1

1
CCCCCA: ðB6dÞ

In the above equations, all vector components are tetrad
components ka ¼ ðeaÞμkμ. Furthermore, the eigenspinors
were derived under the restriction that the dispersion
relation kμkμ ¼ −m2 is satisfied and kμ is future-directed
with respect to ðe0Þμ. This means that we have
k0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2

p
. It can easily be

checked that these eigenspinors satisfy the orthogonality
relations Σ̄AΣB ¼ −Π̄AΠB ¼ δAB, Σ̄AΠB ¼ 0, and the com-
pleteness relation ΣAΣ̄A − ΠAΠ̄A ¼ I4.
Note that, except for equations involving the Berry

connection, the results presented in Sec. IV do not depend
on a particular choice of eigenspinors.

APPENDIX C: BERRY CURVATURE—
MASSIVE CASE

We use the definition of the covariant derivative for
spinor fields given in Eq. (2.2), and we can rewrite the
components of the Berry curvature as

ðF xxÞμν ¼ ∇μðBxÞν −∇νðBxÞμ − i½ðBxÞμ; ðBxÞν�; ðC1aÞ
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ðF kkÞμν ¼ ∇v μðBkÞν −∇v νðBkÞμ − i½ðBkÞμ; ðBkÞν�; ðC1bÞ

ðF kxÞμν ¼ ∇μðBkÞν −∇v νðBxÞμ − i½ðBxÞμ; ðBkÞν�: ðC1cÞ

We insert into the above equations the definition of the
components of the Berry connection

ðBxÞμ ¼
i
2
ðΣ̄A∇μΣB −∇μΣ̄AΣBÞ; ðC2aÞ

ðBkÞμ ¼
i
2

�
Σ̄A∇

v
μΣB −∇v μΣ̄AΣB

�
; ðC2bÞ

and we use the orthogonality properties of the eigenspinors:

Σ̄AΣB ¼ δAB ⇒

(∇μΣ̄AΣB þ Σ̄A∇μΣB ¼ 0;

∇v μΣ̄AΣB þ Σ̄A∇
v
μΣB ¼ 0.

ðC3Þ

We obtain

ðF xxÞμν ¼ iðΣ̄A∇½μ∇ν�ΣB −∇½μ∇ν�Σ̄AΣBÞ
þ 2ið∇½μΣ̄AÞðI4 − ΣCΣ̄CÞð∇ν�ΣBÞ; ðC4aÞ

ðF kkÞμν ¼ 2ið∇v ½μΣ̄AÞðI4 − ΣCΣ̄CÞð∇
v
ν�ΣBÞ; ðC4bÞ

ðF kxÞμν ¼ 2ið∇½μΣ̄AÞðI4 − ΣCΣ̄CÞð∇
v
ν�ΣBÞ: ðC4cÞ

Furthermore, we use the resolution of identity given in
Eq. (4.12), and we obtain

ðF xxÞμν ¼ iðΣ̄A∇½μ∇ν�ΣB −∇½μ∇ν�Σ̄AΣBÞ ðC5aÞ

−2ið∇½μΣ̄AÞΠCΠ̄Cð∇ν�ΣBÞ; ðC5bÞ

ðF kkÞμν ¼ −2ið∇v ½μΣ̄AÞΠCΠ̄Cð∇
v
ν�ΣBÞ; ðC5cÞ

ðF kxÞμν ¼ −2ið∇½μΣ̄AÞΠCΠ̄Cð∇
v
ν�ΣBÞ: ðC5dÞ

The commutator of spinor covariant derivatives can be
expressed in terms of the Riemann tensor as

ð∇μ∇ν −∇ν∇μÞΨ ¼ −
1

4
Rμνρσγ

ργσΨ;

ð∇μ∇ν −∇ν∇μÞΨ̄ ¼ 1

4
RμνρσΨ̄γργσ: ðC6Þ

Using these relations, we can write

iðΣ̄A∇½μ∇ν�ΣB −∇½μ∇ν�Σ̄AΣBÞ ¼ −
1

2
Rμναβsαβ: ðC7Þ

The remaining terms that need to be computed are of the

form Π̄C∇μΣB or Π̄C∇
v
μΣB. For this purpose, we can use the

fact that ΣA is an eigenspinor of D, with eigenvalue zero,
while ΠA is an eigenspinor of D, with eigenvalue −2m.
We start with

Π̄ADΣB ¼ 0: ðC8Þ

Taking a vertical derivative of this expression, we obtain

0 ¼ ð∇v μΠ̄AÞDΣB þ Π̄Að∇
v
μDÞΣB þ Π̄ADð∇v μΣBÞ

¼ Π̄Að∇
v
μDÞΣB − 2mΠ̄Að∇

v
μΣBÞ

¼ −Π̄Aγ
μΣB − 2mΠ̄Að∇

v
μΣBÞ; ðC9Þ

and we can finally write

Π̄A∇
v
μΣB ¼ −

1

2m
Π̄Aγ

μΣB: ðC10Þ

Similarly, taking a covariant derivative of Π̄ADΣB ¼ 0,
we obtain

0 ¼ ð∇μΠ̄AÞDΣB þ Π̄Að∇μDÞΣB þ Π̄ADð∇μΣBÞ
¼ Π̄Að∇μDÞΣB − 2mΠ̄Að∇μΣBÞ
¼ −ð∇μkαÞΠ̄Aγ

αΣB − 2mΠ̄Að∇μΣBÞ: ðC11Þ

However, since we are working on T�M, with coordinates
ðxμ; kμÞ, we have

∇μkα ¼
∂

∂xμ
kα − Γσ

μαkσ ¼ −Γσ
μαkσ: ðC12Þ

Thus, we can write

Π̄A∇μΣB ¼ −
1

2m
ð∇μkαÞΠ̄Aγ

αΣB

¼ 1

2m
kσΓσ

μαΠ̄Aγ
αΣB: ðC13Þ

Using Eqs. (C10) and (C13), we arrive at the final form for
the components of the Berry curvature:

ðF xxÞμν ¼ −
1

2
Rμναβsαβ þ

1

m2
kρkσΓ

ρ
αμΓσ

βνs
αβ; ðC14Þ

ðF kkÞμν ¼
1

m2
sμν; ðC15Þ

ðF kxÞμν ¼ −ðF xkÞνμ ¼ −
1

m2
kρΓ

ρ
μαsαν: ðC16Þ
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APPENDIX D: OTHER CALCULATIONS—MASSIVE CASE

Using the definitions of sαβ and ðBkÞμ, we can rewrite the last term in Eq. (4.83a) as

∇v μsαβ − i½ðBkÞμ; sαβ� ¼
1

2

h�
∇v μΣ̄A

�
σαβΣB þ Σ̄Aσ

αβ
�
∇v μΣB

�i
þ 1

4

h
Σ̄A

�
∇v μΣC

�
−
�
∇v μΣ̄A

�
ΣC

i
Σ̄Cσ

αβΣB

−
1

4
Σ̄Aσ

αβΣC

h
Σ̄C

�
∇v μΣB

�
−
�
∇v μΣ̄C

�
ΣB

i
¼ 1

4

h
2
�
∇v μΣ̄A

�
þ Σ̄A

�
∇v μΣC

�
Σ̄C −

�
∇v μΣ̄A

�
ΣCΣ̄C

i
σαβΣB

þ 1

4
Σ̄Aσ

αβ
h
2
�
∇v μΣB

�
− ΣCΣ̄C

�
∇v μΣB

�
þ ΣC

�
∇v μΣ̄C

�
ΣB

i
: ðD1Þ

Using Eqs. (C3) and (4.12), the above expression simplifies to

∇v μsαβ − i½ðBkÞμ; sαβ� ¼
1

2

h�
∇v μΣ̄A

�
−
�
∇v μΣ̄A

�
ΣCΣ̄C

i
σαβΣB þ 1

2
Σ̄Aσ

αβ
h�

∇v μΣB

�
− ΣCΣ̄C

�
∇v μΣB

�i
¼ 1

2

�
∇v μΣ̄A

�
ðI4 − ΣCΣ̄CÞσαβΣB þ 1

2
Σ̄Aσ

αβðI4 − ΣCΣ̄CÞ
�
∇v μΣB

�
¼ −

1

2

�
∇v μΣ̄A

�
ΠCΠ̄Cσ

αβΣB −
1

2
Σ̄Aσ

αβΠCΠ̄C

�
∇v μΣB

�
: ðD2Þ

Inserting Eq. (C10) and its complex conjugate into the above expression, we obtain

∇v μsαβ − i½ðBkÞμ; sαβ� ¼
1

4m
Σ̄Aγ

μΠCΠ̄Cσ
αβΣB þ 1

4m
Σ̄Aσ

αβΠCΠ̄Cγ
μΣB

¼ 1

4m
Σ̄Aγ

μðΣCΣ̄C − I4ÞσαβΣB þ 1

4m
Σ̄Aσ

αβðΣCΣ̄C − I4ÞγμΣB

¼ 1

4m
Σ̄Aγ

μðΣCΣ̄C − I4ÞσαβΣB þ 1

4m
Σ̄Aσ

αβðΣCΣ̄C − I4ÞγμΣB

¼ 1

m2
Pμsαβ −

1

4m
Σ̄Aðγμσαβ þ σαβγμÞΣB: ðD3Þ

The anticommutator γμσαβ þ σαβγμ can be rewritten in a
different form by using the properties of the gamma
matrices. We consider the flat spacetime gamma matrices
γa, which are related to the spacetime gamma matrices
by the orthonormal tetrad as γμ ¼ ðeaÞμγa. For the flat
spacetime gamma matrices, we can write the following
relation:

γaγbγc ¼ −ηabγc − ηbcγa þ ηacγb þ iϵdabcγdγ5; ðD4Þ

where ηab is the Minkowski metric tensor, with signature
ð−þþþÞ, and γ5 ¼ iγ0γ1γ2γ3. Using this relation, we
obtain (this is the spin density tensor; see Refs. [81,82])

γcσab þ σabγc ¼ 2ϵdabcγdγ
5 ðD5Þ

and

γμσαβ þ σαβγμ ¼ 2ðeaÞαðebÞβðecÞμϵdabcγdγ5
¼ 2ðeaÞαðebÞβðecÞμðedÞνϵdabcγνγ5: ðD6Þ

Furthermore, it can be shown that [30] (Eq. (4.12))

Σ̄Aγaγ
5ΣB ¼ −

1

2m
ϵabcdΣ̄Aσ

bcΣBPd ¼ −
1

m
ϵabcdsbcPd:

ðD7Þ

This relation can be inverted by using the properties of the
Levi-Civita tensor:

ϵdabcΣ̄Aγdγ
5ΣB ¼ 2

m
ðsabPc þ scaPb þ sbcPaÞ: ðD8Þ

Thus, we can finally write
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∇v μsαβ − i½ðBkÞμ; sαβ� ¼ −
1

m2
ðsμαPβ þ sβμPαÞ: ðD9Þ

We can perform a similar calculation for the last term in
Eq. (4.83b). First, note that by using the properties of the
covariant derivative, we can write

Fαβ;μz̄sαβzþ Fαβz̄sαβ ;μz ¼ ð∇μFαβÞz̄sαβzþ Fαβz̄∇μsαβz:

ðD10Þ

The last term in Eq. (4.83b) becomes ∇μsαβ − i½ðBxÞμ; sαβ�,
and we can apply the same steps as before. We obtain

∇μsαβ − i½ðBxÞμ; sαβ� ¼ −
1

2
ð∇μΣ̄AÞΠCΠ̄Cσ

αβΣB −
1

2
Σ̄Aσ

αβΠCΠ̄Cð∇μΣBÞ: ðD11Þ

Using Eq. (C13) and its complex conjugate, we obtain

∇μsαβ − i½ðBxÞμ; sαβ� ¼ −
1

4m
PσΓσ

μρðΣ̄Aγ
ρΠCΠ̄Cσ

αβΣB þ Σ̄Aσ
αβΠCΠ̄Cγ

ρΣBÞ

¼ −
1

m2
PσPρΓσ

μρsαβ þ
1

4m
PσΓσ

μρΣ̄Aðγρσαβ þ σαβγρÞΣB: ðD12Þ

APPENDIX E: EIGENSPINORS—
MASSLESS CASE

In this section, we discuss the properties of the eigens-
pinors of the principal symbol matrix D0, and we derive
some useful relations. As an example, we also give a
particular choice of eigenspinors.
For massless Dirac fields, it is more convenient to work

in the Weyl (or chiral) basis. One advantage is that the
transition between 4-spinors and 2-spinors is more trans-
parent. The gamma matrices are defined as

γa ¼
�

0 σa

σ̄a 0

�
; ðE1Þ

where σa ¼ ðI2; σiÞ, σ̄a ¼ ðI2;−σiÞ, and σi are the Pauli
matrices. Note that the bar in σ̄a is used only for notation
and does not represent complex conjugation.
Under the restrictions of the dispersion relation

kμkμ ¼ 0 and kμ future-directed, meaning that k0 ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2

p
, the principal symbol matrix

D0 ¼ −γμkμ ðE2Þ

admits two eigenspinors of eigenvalue zero, which we can
write as

Σ0 ¼
�
0

u

�
; Σ1 ¼

�
v

0

�
: ðE3Þ

The 2-spinors u and v must satisfy the following relations:

kμσμu ¼ 0; kμσμv ¼ 2k0v; ðE4aÞ

kμσ̄μv ¼ 0; kμσ̄μu ¼ 2k0u: ðE4bÞ

The 2-spinors also satisfy the orthogonality relations

ū · u ¼ v̄ · v ¼ 1; ū · v ¼ v̄ · u ¼ 0; ðE5Þ
and the completeness relation

uūþ vv̄ ¼ I2: ðE6Þ

The following relations will also be used:

kaσau ¼ 0 ⇒ u ¼ −
kiσiu
k0

; ðE7aÞ

kaūσa ¼ 0 ⇒ ū ¼ −
kiūσi

k0
; ðE7bÞ

kaσ̄av ¼ 0 ⇒ v ¼ kiσiv
k0

; ðE7cÞ

kav̄σ̄a ¼ 0 ⇒ v̄ ¼ kiv̄σi

k0
: ðE7dÞ

Using the above equations, one can show that

ūσμu ¼ v̄σ̄μv ¼ kμ

tαkα
: ðE8Þ

In general, two eigenspinors u and v satisfying the above
relations can always be related as

u ¼ eiθσ2v�; ðE9Þ

for some choice of θ ∈ R. This relation is related to charge
conjugation.
As an example, here we give a particular choice of u

and v. One possibility is
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u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðk0Þ2 − k0k3�

p �
k3 − k0
k1 þ ik2

�
; ðE10aÞ

v ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðk0Þ2 þ k0k3�

p �
k3 þ k0
k1 þ ik2

�
: ðE10bÞ

It can be checked that the above relations are satisfied with this particular choice of eigenspinors.
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Tkachuk, and V. G. Flěısher, Observation of a surface
photocurrent caused by optical orientation of electrons in
a semiconductor, Sov. J. Exp. Theor. Phys. Lett. 40, 1293
(1984), http://jetpletters.ru/ps/1262/article_19087.shtml.

[19] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D.
Awschalom, Observation of the spin Hall effect in semi-
conductors, Science 306, 1910 (2004).

[20] M. A. Oancea, C. F. Paganini, J. Joudioux, and L.
Andersson, An overview of the gravitational spin Hall
effect, arXiv:1904.09963.

[21] M. A. Oancea, Spin Hall effects in general relativity,
Ph.D. thesis, University of Potsdam, 2021, 10.25932/
publishup-50229.

[22] M. A. Oancea, J. Joudioux, I. Y. Dodin, D. E. Ruiz, C. F.
Paganini, and L. Andersson, Gravitational spin Hall effect of
light, Phys. Rev. D 102, 024075 (2020).

[23] V. P. Frolov, Maxwell equations in a curved spacetime:
Spin optics approximation, Phys. Rev. D 102, 084013 (2020).

[24] A. I. Harte and M. A. Oancea, Spin Hall effects and the
localization of massless spinning particles, Phys. Rev. D
105, 104061 (2022).

[25] P. Gosselin, A. Bérard, and H. Mohrbach, Spin Hall effect of
photons in a static gravitational field, Phys. Rev. D 75,
084035 (2007).

[26] L. Andersson, J. Joudioux, M. A. Oancea, and A. Raj,
Propagation of polarized gravitational waves, Phys. Rev. D
103, 044053 (2021).

[27] M. A. Oancea, R. Stiskalek, and M. Zumalacárregui, From
the gates of the abyss: Frequency- and polarization-
dependent lensing of gravitational waves in strong gravita-
tional fields, arXiv:2209.06459.

[28] N. Yamamoto, Spin Hall effect of gravitational waves, Phys.
Rev. D 98, 061701 (2018).

[29] J. Audretsch, Trajectories and spin motion of massive spin-1
2

particles in gravitational fields, J. Phys. A 14, 411 (1981).
[30] J. Audretsch, Dirac electron in space-times with torsion:

Spinor propagation, spin precession, and nongeodesic
orbits, Phys. Rev. D 24, 1470 (1981).

SEMICLASSICAL ANALYSIS OF DIRAC FIELDS ON CURVED … PHYS. REV. D 107, 044029 (2023)

044029-23

https://doi.org/10.1088/0034-4885/35/1/306
https://doi.org/10.1146/annurev.pc.45.100194.000503
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1007/978-3-540-78820-1_8
https://doi.org/10.1007/978-3-540-78820-1_8
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevE.74.066610
https://doi.org/10.1103/PhysRevE.74.066610
https://doi.org/10.1103/PhysRevD.74.021701
https://doi.org/10.1016/j.geomphys.2006.07.003
https://doi.org/10.1016/j.geomphys.2006.07.003
https://doi.org/10.1126/science.1152697
https://doi.org/10.1038/nphoton.2008.229
https://doi.org/10.1088/1464-4258/11/9/094009
https://doi.org/10.1103/PhysRevA.84.043806
https://doi.org/10.1002/lpor.201600042
https://doi.org/10.1002/lpor.201600042
http://jetpletters.ru/ps/1587/article_24366.shtml
http://jetpletters.ru/ps/1587/article_24366.shtml
http://jetpletters.ru/ps/1587/article_24366.shtml
https://doi.org/10.1016/0375-9601(71)90196-4
https://doi.org/10.1016/0375-9601(71)90196-4
http://jetpletters.ru/ps/1262/article_19087.shtml
http://jetpletters.ru/ps/1262/article_19087.shtml
http://jetpletters.ru/ps/1262/article_19087.shtml
https://doi.org/10.1126/science.1105514
https://arXiv.org/abs/1904.09963
https://doi.org/10.25932/publishup-50229
https://doi.org/10.25932/publishup-50229
https://doi.org/10.1103/PhysRevD.102.024075
https://doi.org/10.1103/PhysRevD.102.084013
https://doi.org/10.1103/PhysRevD.105.104061
https://doi.org/10.1103/PhysRevD.105.104061
https://doi.org/10.1103/PhysRevD.75.084035
https://doi.org/10.1103/PhysRevD.75.084035
https://doi.org/10.1103/PhysRevD.103.044053
https://doi.org/10.1103/PhysRevD.103.044053
https://arXiv.org/abs/2209.06459
https://doi.org/10.1103/PhysRevD.98.061701
https://doi.org/10.1103/PhysRevD.98.061701
https://doi.org/10.1088/0305-4470/14/2/017
https://doi.org/10.1103/PhysRevD.24.1470


[31] R. Rüdiger, The Dirac equation and spinning particles in
general relativity, Proc. R. Soc. A 377, 417 (1981).

[32] P. Gosselin, A. Bérard, and H. Mohrbach, Semiclassical
dynamics of Dirac particles interacting with a static gravi-
tational field, Phys. Lett. A 368, 356 (2007).

[33] F. Cianfrani and G. Montani, Dirac equations in curved
space-time vs. Papapetrou spinning particles, Europhys.
Lett. 84, 30008 (2008).

[34] F. Cianfrani and G. Montani, Curvature-spin coupling from
the semi-classical limit of the Dirac equation, Int. J. Mod.
Phys. A 23, 1274 (2008).

[35] M. C. Palmer, M. Takahashi, and H. F. Westman, Localized
qubits in curved spacetimes, Ann. Phys. (Amsterdam) 327,
1078 (2012).

[36] A. László and Z. Zimborás, Quantification of GR effects in
muon g-2, EDM and other spin precession experiments,
Classical Quantum Gravity 35, 175003 (2018).

[37] Y. N. Obukhov, Spin, Gravity, and Inertia, Phys. Rev. Lett.
86, 192 (2001).

[38] Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Spin
dynamics in gravitational fields of rotating bodies and
the equivalence principle, Phys. Rev. D 80, 064044
(2009).

[39] Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Dirac
fermions in strong gravitational fields, Phys. Rev. D 84,
024025 (2011).

[40] Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Spin in an
arbitrary gravitational field, Phys. Rev. D 88, 084014
(2013).

[41] Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, General
treatment of quantum and classical spinning particles in
external fields, Phys. Rev. D 96, 105005 (2017).

[42] Y.-C. Liu, L.-L. Gao, K. Mameda, and X.-G. Huang, Chiral
kinetic theory in curved spacetime, Phys. Rev. D 99, 085014
(2019).

[43] K. Mameda, N. Yamamoto, and D.-L. Yang, Photonic spin
Hall effect from quantum kinetic theory in curved space-
time, Phys. Rev. D 105, 096019 (2022).

[44] K. Kamada, N. Yamamoto, and D.-L. Yang, Chiral effects in
astrophysics and cosmology, Prog. Part. Nucl. Phys. 129,
104016 (2022).

[45] Y.-C. Liu, K. Mameda, and X.-G. Huang, Covariant spin
kinetic theory I: Collisionless limit *, Chin. Phys. C 44,
094101 (2020).

[46] L. Marsot, P.-M. Zhang, and P. Horvathy, Anyonic spin-Hall
effect on the black hole horizon, Phys. Rev. D 106, L121503
(2022).

[47] F. Gray, D. Kubiznak, T. R. Perche, and J. Redondo-Yuste,
Carrollian motion in magnetized black hole horizons,
arXiv:2211.13695.

[48] L. Marsot, P.-M. Zhang, M. Chernodub, and P. Horvathy,
Hall effects in Carroll dynamics, arXiv:2212.02360.

[49] Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-
Bleick, Analysis, Manifolds and Physics, 2nd ed. (North-
Holland Publishing Co., Amsterdam-New York, 1982).

[50] S. Bates and A. Weinstein, Lectures on the Geometry of
Quantization, Berkeley Mathematics Lecture Notes Vol. 8
(American Mathematical Society, Providence, RI; Berkeley
Center for Pure and Applied Mathematics, Berkeley, CA,
1997).

[51] C. Emmrich and A. Weinstein, Geometry of the transport
equation in multicomponent WKB approximations,
Commun. Math. Phys. 176, 701 (1996).

[52] S. I. Rubinow and J. B. Keller, Asymptotic solution of the
dirac equation, Phys. Rev. 131, 2789 (1963).

[53] M. Stone, V. Dwivedi, and T. Zhou, Berry phase, Lorentz
covariance, and anomalous velocity for Dirac and Weyl
particles, Phys. Rev. D 91, 025004 (2015).

[54] E. R. Tracy, A. J. Brizard, A. S. Richardson, and A. N.
Kaufman, Ray Tracing and Beyond: Phase Space Methods
in Plasma Wave Theory (Cambridge University Press,
Cambridge, England, 2014), 10.1017/CBO9780511667565.

[55] V. I. Arnold, Mathematical Methods of Classical Mechan-
ics, Graduate Texts in Mathematics Vol. 60 (Springer-
Verlag, New York, 1989), 10.1007/978-1-4757-2063-1.

[56] H. Goldstein, C. P. Poole, and J. L. Safko, Classical
Mechanics (Addison Wesley, Reading, MA, 2002).

[57] B. B. Moussa and G. T. Kossioris, On the system of
Hamilton–Jacobi and transport equations arising in geo-
metrical optics, Commun. Partial Differ. Equations 28, 1085
(2003).

[58] R. G. Littlejohn and W. G. Flynn, Geometric phases in the
asymptotic theory of coupled wave equations, Phys. Rev. A
44, 5239 (1991).

[59] C. Emmrich and H. Römer, Multicomponent Wentzel-
Kramers-Brillouin approximation on arbitrary symplectic
manifolds: A star product approach, J. Math. Phys. (N.Y.)
39, 3530 (1998).

[60] J. Bolte and S. Keppeler, A semiclassical approach to the
Dirac equation, Ann. Phys. (N.Y.) 274, 125 (1999).

[61] D. Chruściński and A. Jamiołkowski, Geometric Phases in
Classical and Quantum Mechanics (Springer Science &
Business Media, Birkhäuser Boston, MA, 2012), 10.1007/
978-0-8176-8176-0.

[62] R. Abraham and J. E. Marsden, Foundations of Mechanics,
2nd ed. (Benjamin/Cummings Publishing Co., Inc., Ad-
vanced Book Program, Reading, Mass., 1978), 10.1090/
chel/364.

[63] W. G. Dixon, Dynamics of extended bodies in general
relativity. III. Equations of motion, Phil. Trans. R. Soc. A
277, 59 (1974).

[64] S. E. Gralla, A. I. Harte, and R. M. Wald, Bobbing and kicks
in electromagnetism and gravity, Phys. Rev. D 81, 104012
(2010).

[65] L. F. O. Costa and J. Natário, Center of mass, spin supple-
mentary conditions, and the momentum of spinning par-
ticles, in Equations of Motion in Relativistic Gravity, edited
by D. Puetzfeld, C. Lämmerzahl, and B. Schutz (Springer,
Cham, 2015), 10.1007/978-3-319-18335-0_6.

[66] E. Corinaldesi and A. Papapetrou, Spinning test-particles in
general relativity. II, Proc. R. Soc. A 209, 259 (1951).

[67] P. M. Alsing, G. J. Stephenson Jr, and P. Kilian, Spin-
induced non-geodesic motion, gyroscopic precession,
Wigner rotation and EPR correlations of massive spin
1=2 particles in a gravitational field, arXiv:0902.1396.

[68] H. Terashima and M. Ueda, Einstein-Podolsky-Rosen cor-
relation in a gravitational field, Phys. Rev. A 69, 032113
(2004).

[69] A. László, General relativity experiment with frozen spin
rings, Proc. Sci. SPIN2018 (2019) 182.

MARIUS A. OANCEA and ACHAL KUMAR PHYS. REV. D 107, 044029 (2023)

044029-24

https://doi.org/10.1098/rspa.1981.0132
https://doi.org/10.1016/j.physleta.2007.04.022
https://doi.org/10.1209/0295-5075/84/30008
https://doi.org/10.1209/0295-5075/84/30008
https://doi.org/10.1142/S0217751X08040214
https://doi.org/10.1142/S0217751X08040214
https://doi.org/10.1016/j.aop.2011.10.009
https://doi.org/10.1016/j.aop.2011.10.009
https://doi.org/10.1088/1361-6382/aacfee
https://doi.org/10.1103/PhysRevLett.86.192
https://doi.org/10.1103/PhysRevLett.86.192
https://doi.org/10.1103/PhysRevD.80.064044
https://doi.org/10.1103/PhysRevD.80.064044
https://doi.org/10.1103/PhysRevD.84.024025
https://doi.org/10.1103/PhysRevD.84.024025
https://doi.org/10.1103/PhysRevD.88.084014
https://doi.org/10.1103/PhysRevD.88.084014
https://doi.org/10.1103/PhysRevD.96.105005
https://doi.org/10.1103/PhysRevD.99.085014
https://doi.org/10.1103/PhysRevD.99.085014
https://doi.org/10.1103/PhysRevD.105.096019
https://doi.org/10.1016/j.ppnp.2022.104016
https://doi.org/10.1016/j.ppnp.2022.104016
https://doi.org/10.1088/1674-1137/44/9/094101
https://doi.org/10.1088/1674-1137/44/9/094101
https://doi.org/10.1103/PhysRevD.106.L121503
https://doi.org/10.1103/PhysRevD.106.L121503
https://arXiv.org/abs/2211.13695
https://arXiv.org/abs/2212.02360
https://doi.org/10.1007/BF02099256
https://doi.org/10.1103/PhysRev.131.2789
https://doi.org/10.1103/PhysRevD.91.025004
https://doi.org/10.1017/CBO9780511667565
https://doi.org/10.1007/978-1-4757-2063-1
https://doi.org/10.1081/PDE-120021187
https://doi.org/10.1081/PDE-120021187
https://doi.org/10.1103/PhysRevA.44.5239
https://doi.org/10.1103/PhysRevA.44.5239
https://doi.org/10.1063/1.532450
https://doi.org/10.1063/1.532450
https://doi.org/10.1006/aphy.1999.5912
https://doi.org/10.1007/978-0-8176-8176-0
https://doi.org/10.1007/978-0-8176-8176-0
https://doi.org/10.1090/chel/364
https://doi.org/10.1090/chel/364
https://doi.org/10.1098/rsta.1974.0046
https://doi.org/10.1098/rsta.1974.0046
https://doi.org/10.1103/PhysRevD.81.104012
https://doi.org/10.1103/PhysRevD.81.104012
https://doi.org/10.1007/978-3-319-18335-0_6
https://doi.org/10.1098/rspa.1951.0201
https://arXiv.org/abs/0902.1396
https://doi.org/10.1103/PhysRevA.69.032113
https://doi.org/10.1103/PhysRevA.69.032113
https://doi.org/10.22323/1.346.0182


[70] D. T. Son and N. Yamamoto, Berry curvature, Triangle
Anomalies, and the Chiral Magnetic Effect in Fermi
Liquids, Phys. Rev. Lett. 109, 181602 (2012).

[71] M. A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys.
Rev. Lett. 109, 162001 (2012).

[72] Y. Hidaka, S. Pu, Q. Wang, and D.-L. Yang, Foundations
and applications of quantum kinetic theory, Prog. Part. Nucl.
Phys. 127, 103989 (2022).

[73] D. Kharzeev, J. Liao, S. Voloshin, and G. Wang, Chiral
magnetic and vortical effects in high-energy nuclear colli-
sions-A status report, Prog. Part. Nucl. Phys. 88, 1 (2016).

[74] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Electronic Properties of Dirac and Weyl Semi-
metals (World Scientific, Singapore, 2021), 10.1142/11475.

[75] A. A. Burkov, Chiral anomaly and transport in Weyl metals,
J. Phys. Condens. Matter 27, 113201 (2015).

[76] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Consistent Chiral Kinetic Theory in Weyl
Materials: Chiral Magnetic Plasmons, Phys. Rev. Lett.
118, 127601 (2017).

[77] C. Duval and P. A. Horváthy, Chiral fermions as classical
massless spinning particles, Phys. Rev. D 91, 045013
(2015).

[78] C. Duval, M. Elbistan, P. Horváthy, and P.-M. Zhang,
Wigner-Souriau translations and Lorentz symmetry of chiral
fermions, Phys. Lett. B 742, 322 (2015).

[79] T. Hayata, Y. Hidaka, and K. Mameda, Second order chiral
kinetic theory under gravity and antiparallel charge-energy
flow, J. High Energy Phys. 05 (2021) 23.

[80] V. A. Sharafutdinov, Integral Geometry of Tensor
Fields, Inverse and Ill-Posed Problems Series (VSP, Utrecht,
1994), 10.1515/9783110900095.

[81] F. W. Hehl and B. K. Datta, Nonlinear spinor equation and
asymmetric connection in general relativity, J. Math. Phys.
(N.Y.) 12, 1334 (1971).

[82] R. Turcati, C. A. B. Quintero, J. A. Helayël-Neto, and
E. Arias, Spin-polarized current, spin-transfer torque, and
spin Hall effect in presence of an electromagnetic non-
minimal coupling, Ann. Phys. (Berlin) 532, 1900357
(2020).

SEMICLASSICAL ANALYSIS OF DIRAC FIELDS ON CURVED … PHYS. REV. D 107, 044029 (2023)

044029-25

https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1016/j.ppnp.2022.103989
https://doi.org/10.1016/j.ppnp.2022.103989
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1142/11475
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1103/PhysRevLett.118.127601
https://doi.org/10.1103/PhysRevLett.118.127601
https://doi.org/10.1103/PhysRevD.91.045013
https://doi.org/10.1103/PhysRevD.91.045013
https://doi.org/10.1016/j.physletb.2015.01.048
https://doi.org/10.1007/JHEP05(2021)023
https://doi.org/10.1515/9783110900095
https://doi.org/10.1063/1.1665738
https://doi.org/10.1063/1.1665738
https://doi.org/10.1002/andp.201900357
https://doi.org/10.1002/andp.201900357

