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We derive the equations of state of Fermi gas by maximizing the Fermi-Dirac entropy in modified
gravity in the relativistic and nonrelativistic case. It will be demonstrated that the microphysics must
depend on a given theory of gravity in order to consistently describe a physical system at a statistical
equilibrium state.

DOI: 10.1103/PhysRevD.107.044025

I. INTRODUCTION

Since 1998, the need for an alternative to general relativity
(GR) has been still growing as the fact of the accelerated
expansion of the Universe [1] has not been yet explained in a
satisfactory way. Many of those approaches also try to
address puzzles such as mentioned dark energy, believed to
be an agent of the accelerated expansion, as well as dark
matter [2–7] (for review, see [8]), or to understand the
problem of spacetime singularities [9]. There are also
attempts to unify physics of different scales [10,11] as well
as to propose a model explaining the existence of massive
compact objects whose masses exceed theoretical predic-
tions [12–16].On the other hand,multimessenger astronomy
[17–21] is a new tool allowing to test theories of gravity,
making that studying compact objects and their matter
properties is a very up-to-date topic. Moreover, missions
such as already lunched GAIA [22] and James Webb Space
Telescope [23], or Nancy Grace Roman Space Telescope
[24] will providemore accurate data on stellar and substellar
objects, such that studying those bodies in alternative to GR
theories of gravity is another possibility to constrain modi-
fied gravity. So far, a few such tests have been proposedwith
the use of stellar and substellar objects [25–27] (for review,
see [28]). The most common are altered limited masses, for
example, the Chandrasekhar mass of white dwarfs [29–36],
the minimum main sequence mass [37–41], Jeans [42] and
opacity mass [43], or minimum mass for deuterium burning
[44]. Modified gravity can also alter the light elements’
abundances in stellar atmospheres [45]. The Sun turn out to
be also a promising laboratory to test theories of gravity by
the mean of helioseismology [46,47]. The evolution of
nonrelativistic stars [48–52] as well as brown dwarfs
[53,54] and planets [43,55], as well as their internal proper-
ties [56–58] can also be tools to test gravitational proposals.

However, let us notice that the common approach
followed in the mentioned literature is mainly related to
obtaining some observables in a given model of gravity
when only gravitational part of the structural equations
describing stellar and substellar objects is modified. Energy
generation ratios, opacities, and equations of state (EoS’s)
are assumed to be the ones which are used in Newtonian
gravity or GR (but notice that in order to obtain values of
some microscopic variables one sometimes uses the sol-
utions of modified hydrostatic equilibrium equations). The
question we would like to answer in this paper is if we can
really follow that approach to describe physical phenomena.
The reasons why one wonders if the set of equations we

are using inmodified gravity is consistent are the indications
which have appeared in the previous studies, such as
showing that chemical potential depends on gravity [59],
therefore any change in the description of the gravitational
field should also affect it. It was also demonstrated that
modified gravity changes the geodesic deviation equation on
the star’s surface taking the form of the Hook’s law, and
consequently, introducing corrections to the polytropic
equation of state [60]. Moreover, modifications to the
gravitational interactions are alsomanifested inmicroscopic
quantities, such as for example opacity, suggesting to treat
them as effective ones [38]. Thermonuclear processes
happening in the interiors of stars may also have different
theoretical description when modified gravity is taken into
account, following the fact that one needs a theory of gravity
to compute the energy generation rate [37,39,40,44,61].
Since some theories of gravity can introduce a dependence
of the metric on the local energy-momentum distributions,
the elementary particle interactions are also affected by these
gravitational proposals [62]. Furthermore, it was shown that
specific heats of electrons and ions, Debye temperature and
crystallization processes in white dwarfs are also dependent
on a model of gravity [63]. An interesting fact that chemical
reactions rates depend on gravity [64] also suggests that any*awojnar@ucm.es
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modification to this interactionwill also have an effect on the
kinetic rate constants of chemical reactions. Apart from this,
ignoring the relativistic effects introduced by GR causes
underestimation of the limiting masses of compact stars—
but computations of equations of state in curved spacetime
provide that in the degenerated stars one deals with EoS
which depend explicitly on the metric components [65,66],
therefore one should expect similar changes in EoS derived
from different assumptions on the gravitational interaction.
It is mainly manifested by already mentioned enhanced
chemical potentials and temperatures [67]which are a part of
the equations’ set describing a statistical system. One also
alters thermodynamics quantities and EoS’s when dealing
with (pseudo-)scalar fields, for instance, axions [68].
Another manifestation of special relativity and gravity
appearing as the corrections to the EoS’s and other micro-
scopic variables is provided by the generalized uncertainty
principles which is, roughly speaking, a proposal of how the
dispersion relation between energy, mass and momentum
represented by the speed of light c, and gravity, given by the
Newtonian constant G, should be present in Heisenberg’s
uncertainty principle [34,69–73].
In what follows, we will focus on the derivation of the

Fermi gas EoS by the maximization of the Fermi entropy in
modified gravity. Although it can be done for a more
general system, Fermi gas is a model of matter with an
exceptional relevance in physics of stars and substellar
objects. It is widely used to describe some parts of the
interiors of neutron and white dwarf stars, as well as
nonrelativistic stars, such as, for instance, pre- and main
sequence ones, or substellar objects, that is, brown dwarfs
and planets. Let us notice that there were some problems
reported in the case of polytropic stars1 in Palatini-like
gravities [74,75], however, further studies have shown that
it is not the case [60,76,77]. It is so because of the wrong
assumptions—the region close to the surface of the star is
not modeled by the polytrope—as well as computational
errors [60,76]. Moreover, performing correctly the match-
ing between the interior and exterior solutions also showed
that the potentially pathological effects are shifted beyond
the domain of physical interest [78]. The numerical
analysis also do not reported any singular behavior [77].
Different forms of the polytropic equations of state were
also used in case of nonrelativistic objects [53,56], in which
again any problems appeared.
To derive the Fermi gas EoS, wewill firstly introduce one

of the simplest generalization of GR provided by Palatini
fðR̂Þ gravity in Sec. II. We will focus on the spherical-
symmetric objects andwewill provide the exact solutions of
the field equations for an arbitrary fðR̂Þ. In Sec. III we will
briefly discuss the nonrelativistic limit of the theory,
followed further by recalling the local and global variables

of a system of self-gravitating fermions restricted to a box
with a finite radius. Wewill also calculate the most probable
state of such an isolated system providing a set of equations
which describe it. Among them, the modified hydrostatic
equilibrium as well as modified EoS’s can be found. The
relativistic effects introduced to the analogous procedure are
discussed in Sec. IV. Our summary and conclusions are
given in the Sec. V. We use κ2 ¼ 8πG=c4 and the ð−þþþÞ
signature convention.

II. PALATINI GRAVITY

Palatini fðR̂Þ gravity is one of the simplest case of the so-
called metric-affine models of gravity. In such an approach,
one gives up the assumption on the Levi-Civita connection,
that is, that the connection Γ̂ is compatible with the physical
metric appearing in the gravitational as well as matter part
of the action. Therefore, we are dealing with two inde-
pendent geometric structures, with the fðRÞ gravity-like
action:

S½g; Γ̂;ψm� ¼
1

2κ2

Z ffiffiffiffiffiffi
−g

p
fðR̂Þd4xþ Smatter½g;ψm�; ð1Þ

where the Palatini curvature scalar is given by R̂ ¼
R̂μνðΓ̂Þgμν. It is a well-known fact that the Ricci-Palatini
scalar must be symmetric, since its antisymmetric part
introduces instabilities [79–81]. Let us notice that the
connection Γ̂ is not coupled to the matter fields Ψm,
therefore particles moves along the geodesics indicated
by the Levi-Civita connection Γ of the metric g. As already
mentioned, in general, Γ̂ ≠ Γ.
Since we are dealing with two independent objects, the

variation of the above action is taken with respect to the
metric g and the connection Γ̂. The first procedure gives

f0ðR̂ÞR̂μν −
1

2
fðR̂Þgμν ¼ κ2Tμν; ; ð2Þ

where the energy-momentum tensor Tμν ¼ − 2ffiffiffiffi−gp δSm
δgμν

and

prime denotes in this particular case2 differentiating with
respect to the curvature R̂. In the further part of the paper,
we will use the perfect fluid energy-momentum tensor
which has the following form:

Tμν ¼
�
ϵþ P

c2

�
uμuν þ Pgμν; ð3Þ

where uμ is a four-velocity vector field co-moving with the
fluid, with the normalization condition gμνuμuν ¼ −c2.

1Polytropic equation of state is a special case of the Fermi gas,
as we will see further.

2In further part of the paper, the prime will denote differ-
entiating with respect to the radial coordinate r; however, it will
be always clear what is the notation we are currently using.
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A very useful equation, which is the result of the
contraction of (2) with the inverse of the metric gμν, is

f0ðR̂ÞR̂ − 2fðR̂Þ ¼ κ2T ; ð4Þ

giving the algebraic relation between the scalar curvature
and the trace of the energy momentum tensor T ¼ gμνTμν

for a chosen fðR̂Þ. It is a generalization of the GR case,
in which the trace of the field equations provides
R ≔ RμνðΓðgÞÞgμν ¼ −κT . Therefore, Palatini field equa-
tions can be interpreted as GR ones with modified matter
part since all modifications turn out to be functions of
baryonic matter fields and their derivatives.3

On the other hand, the variation with respect to the
independent connection provides, after some algebraic
transformations,

∇̂βð
ffiffiffiffiffiffi
−g

p
f0ðR̂ðTÞÞgμνÞ ¼ 0; ð5Þ

where the covariant derivative is ruled by the independent
connection Γ̂. If we introduce a metric hwhich is conformal
to the metric g in the following way

hμν ¼ f0ðR̂ðTÞÞgμν; ð6Þ

it turns out that the equation for the connection (5) is
nothing else but

∇̂βð
ffiffiffiffiffiffi
−h

p
hμνÞ ¼ 0; ð7Þ

that is, Γ̂ is the Levi-Civita connection of the metric h. The
existence of the conformal structures in this model of
gravity allows us to introduce the “Einstein frame,” in
which the equations have easier forms, and hence it can
simplify rather tedious calculations [83,84]. It can be
shown that after performing the conformal transformation
one ends up with the field equations given as

R̄μν −
1

2
hμνR̄ ¼ κT̄μν −

1

2
hμνŪðϕÞ ð8aÞ

ϕR̄ − ðϕ2ŪðϕÞÞ0 ¼ 0; ð8bÞ

where prime in the above equation denotes the derivative
with respect to the nondynamical scalar field ϕ defined as

ϕ ¼ f0ðR̂Þ, with its the potential ŪðϕÞ ¼ R̂ϕ−fðR̂Þ
ϕ2 . Let us

notice that the energy-momentum tensor in the Einstein
frame is related to the physical one by T̄μν ¼ ϕ−1Tμν.
As already mentioned, it is easier to work in Einstein

frame. For example, using the procedure demonstrated in
[85,86], we can write, in the case of the perfect fluid, the

interior solutions of the above modified field equations in
the case of the spherical-symmetric spacetime

dŝ2 ¼ −B̂ðr̂Þdt2 þ Âðr̂Þdr̂2 þ r̂2dΩ2 ð9Þ

straight away as

Âðr̂Þ ¼
�
1 −

2GMðr̂Þ
r̂

�
−1
; ð10Þ

B̂ðr̂Þ ¼ exp

�
−
Z

∞

r̂

2G
r̃2

ðMðr̃Þ − 4πr̃3Π̂ðr̃ÞÞ
�
Âdr̃; ð11Þ

where the mass function is defined in the following way

Mðr̂Þ ¼ 1

c2

Z
4π0r̃2Q̂ðr̃Þdr̃ ð12Þ

while the generalized density and pressure in the Einstein
frame are, respectively,

Q̂ ¼ ϵ̂þ ŪðϕÞ
2κ2c2

; ð13Þ

Π̂ ¼ P̂ −
ŪðϕÞ
2κ2

; ð14Þ

with ϵ̂ ¼ ϵ=ϕ2 and P̂ ¼ P=ϕ2. This procedure also allows
us to write down the Tolman-Oppenheimer-Volkoff (TOV)
equation in the familiar form

dΠ̂
dr̂

¼ −
Q̂ðr̂Þ þ Π̂ðr̂Þ

c2

GMðr̂Þ
r̂2 þ 4πG

c2 Π̂ r̄

1 − 2GMðr̂Þ
r̂c2

: ð15Þ

Let us recall that in order to consider a physical spherical-
symmetric system, one must transfer the above equations
back to the Jordan frame. This provides the metric
components of gμν as (r̂2 ¼ ϕr2)

BðrÞ¼ϕ−1 exp

�
−
Z

∞

r

2G

ϕ
1
2r̃2

�
Mðr̃Þ

−4πr̃3ϕ−1
2

�
Pðr̃Þ−UðϕÞ

2κ

���
1−

r̃
2
∂r̃lnϕ

�
Aðr̃Þdr̃

�
;

ð16Þ

AðrÞ ¼
�
1 −

r
2
∂r lnϕ

�
2
�
1 −

2GMðrÞ
ϕ1=2r

�
−1

ð17Þ

where UðϕÞ ¼ R̂ϕ − fðR̂Þ, while the mass function

M ¼ 1

c2

Z
r

0

4πr2
ϵðr̃Þ þ UðϕÞ

2c2κffiffiffiffi
ϕ

p
�
1 −

r̃
2
∂r̃ lnϕ

�
−1
dr̃: ð18Þ3That is, one can rewrite the field equation (2) as

GμνðgÞ ¼ κTeff
μν , to see details in, for instance, [82].
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The variable ϕ ¼ ϕðrÞ is a function of the trace of the
energy momentum tensor T , that is, it is a function of the
energy density ϵðrÞ and pressure PðrÞ. We will need those
solutions in the further part of the paper.
Although the presented work is for the general form

of the Lagrangian fðR̂Þ, let us briefly discuss the bounds of
the theory’s parameter, given by other works. In the case of
the quadratic Lagrangian fðR̂Þ ¼ R̂þ aR̂2, the analytical
consideration in the weak field limit provided that jaj ≲
2 × 1012 cm2 [87] while when one considers that electric
and Newtonian gravitational forces are of the same order of
magnitude, gives jaj≲ 2 × 109 cm2 [88,89]. On the other
hand, further studies shown that Solar System experiments
cannot put the bound on the theory parameter because of
the microphysics uncertainties [90], while analysis with the
SPARC catalog data demonstrated that Palatini gravity,
similarly as GR, also requires some amount of dark matter
in order to explain the galaxy rotation curves [91].

III. NONRELATIVISTIC LIMIT

Let us start with the nonrelativistic case. It was demon-
strated that Palatini fðR̂Þ gravity introduces additional
terms to the Newtonian equations [77,84], which, as
already discussed, are proportional to the matter fields.
Therefore, in vacuum, one deals with the usual Newtonian
gravity. However, we are now focused on interiors of stellar
and substellar objects, in which one cannot neglect the
presence of matter. Going back to the details, we recall that
for an analytic function [90]

fðR̂Þ ¼
X
i¼0

aiR̂
i ð19Þ

the Poisson equation is given by [91]

∇2Φ ≈
κ2

2
ðρþ 2a∇2ρÞ ð20Þ

where a≡ a2 comes from the quadratic term of the
Lagrangian (we neglect the cosmological constant, repre-
sented in (19) by the parameter a0) and ρ is the mass
density explained in more detailed below. Therefore, non-
relativistic studies can only reveal some information such
as parameter’s bounds, properties of the studied objects,
etc., only for the quadratic model, since further term enters
the equations on the sixth order [90]. For a spherical-
symmetric spacetime one can rewrite the modified Poisson
equation as

1

r2
d
dr

�
r2

d
dr

ðΦðrÞ − aκ2ρðrÞÞ
�

¼ κ2

2
ρðrÞ: ð21Þ

Integrating the above equation provides

Φ0ðrÞ ¼ GMðrÞ
r2

þ aκ2ρ0ðrÞ; ð22Þ

where 0 denotes the derivative with respect to the r
coordinate. The mass function MðrÞ in the nonrelativistic
limit is defined as usually4

MðrÞ ¼
Z

4π0r̃2ρðr̃Þdr̃: ð23Þ

If rs denotes the radius of a given astrophysical object, the
boundary condition MðrsÞ ¼ M with the assumptions
ρðrsÞ ¼ 0 and ρ0ðrsÞ ¼ 0 results as

ΦðrÞ ¼ −
GM
r

for r ≥ R and ΦðrsÞ ¼ −
GM
rs

; ð24Þ

such that the gravitational potential at each point of
spacetime can be expressed as

ΦðrÞ ¼ −
GM
r

− 4πG
Z

R

r
ðρðrÞr − 2aρ0ðrÞÞdr: ð25Þ

Finally, let us recall that the hydrostatic equilibrium
equation has the well-known form,

dΦ
dr

¼ −ρ−1
dP
dr

; ð26Þ

which can be used in the modified Poisson equation

1

r2
d
dr

�
r2

ρ

dP
dr

�
¼ −4πG

�
ρþ 2a

r2
d
dr

�
r2
dρ
dr

��
: ð27Þ

For a very special EoS, called polytrope, the above equation
can be further transformed into the modified Lane-Emden
equation, often used to study nonrelativistic stellar and
substellar objects [94].

A. Fermi-Dirac entropy in a microcanonical ensemble

In what follows, we will follow the procedure excellently
presented in [95].
Before deriving the equation of state of Fermi gas and

other microscopic properties of the system of self-
gravitating fermions, let us recall the local and global
variables describing such a system. The number density of
fermions at position r with momentum p is given by
fðr;pÞdrdp, where fðr;pÞ is the distribution function.5

4Let us notice that Palatini fðR̂Þ gravity does not introduce any
extra degree of freedom as it may happen in more general
proposals of metric-affine gravity [92,93].

5Notice that it has nothing to the with the gravitational
functional fðR̂Þ in (1). It is common to use the letter f for the
distribution function and we will follow this notation, believing
that it is always clear what object we are dealing with.
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Therefore, for an arbitrary distribution function the particle
number density is given by

n ¼
Z

fdp ð28Þ

while the kinetic energy density is defined as

ϵkin ¼
Z

f
p2

2m
dp; ð29Þ

where Ekin ¼ p2=2m is the kinetic energy of a particle.
Moreover, one expresses the local pressure in the form [96]

P ¼ 1

3

Z
f
p2

m
dp; ð30Þ

such that P ¼ 2
3
ϵkin. A combinatorial analysis taking into

account the Pauli exclusion principle provides the Fermi-
Dirac entropy density [97,98]

s ¼ −kBfmax

Z
f̃ ln f̃ þ ð1 − f̃Þ lnð1 − f̃Þdp; ð31Þ

where kB is the Boltzmann constant, fmax ¼ g
h3 is the

maximum value of the distribution function with g¼2sþ1

being the spin multiplicity of quantum states,6 and h3 a
volume of a microcell with nomore than g particles [95]. We
have defined f̃ ¼ f

fmax
for simplicity. It is important to

comment that it can be demonstrated that the brief analysis
presented here is valid for a general form of a entropy density
although we focus only on the Fermi-Dirac one in this work.
Having defined the local variables, let us recall the global

ones: the particle number N, mass M, energy E, and the
Fermi-Dirac entropy S are given as follows:

N ¼
Z

n4πr2dr; ð32Þ

M ¼ Nm ¼
Z

ρ4πr2dr; ð33Þ

E ¼ Et
kin þW; ð34Þ

S ¼
Z

s4πr2dr; ð35Þ

where the mass density is ρ ¼ nm, while Et
kin is the total

kinetic energy given by

Et
kin ¼

Z
ϵkin4πr2dr ¼

Z
f
p2

2m
4πr2drdp: ð36Þ

The gravitational potential energy W, which is modified in
Palatini gravity, is given as follows

W¼−
Z

ρr ·∇Φdr¼−
Z

ρ

�
GM
r

þaκrρ0ðrÞ
�
dr; ð37Þ

where the second equality is valid only for the spherical-
symmetric case.
Let us notice that for the systems in the microcanonical

ensemble, the particle number N and the energy E are
conserved. This fact will be used in the further part of
the paper.

B. Maximization of the Fermi-Dirac entropy

Let us consider a system of particles, described by the
equations given previously, restricted to a box of radius rs
such that evaporation is prevented.7 Then, for such a case,
the most probable state of an isolated system is obtained by
the maximization of the entropy (35) at fixed energy (34)
and particle number (32)

maxfSjE;N fixedg; ð38Þ

that is, one deals with a statistical equilibrium state in the
microcanonical ensemble.
In order to obtained the exact expressions of the local and

global variables, together with the Fermi EoS and hydro-
static equilibrium equation,8 we will proceed as follows:
(1) We will obtain a local thermal equilibrium by

maximizing the entropy density (31) at fixed kinetic
energy ϵkin and particle number density nðrÞ with
respect to variations on f. This will allow us to
determine the distribution function f and by this, the
local variables.

(2) We will use the results obtained in the previous step
to express the entropy S as a function of the local
variables and then we will maximize it at fixed
energy E and particle number N with respect to
variations on ϵkin and nðrÞ. Using the resulting laws
of thermodynamics, wewill show that an equation of
state of the considered system depends on the
considered modified gravity. It will turn out that
such a dependence on a theory of gravity is also true
for the other local variables describing the statistical
equilibrium state of this system.

6g ¼ 2 for particles of spin s ¼ 1=2.

7One may study a canonical ensemble in which the thermal
bath is allowed. Then, the procedure is quite analogous—one
considers a minimization of the free energy F ¼ E − TS at fixed
particle number N instead.

8This procedure will provide equations describing a system at a
statistical equilibrium state.
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1. Local thermodynamic equilibrium

Maximizing the entropy density (31) at fixed kinetic
energy ϵkin and particle number density nðrÞ provides

δs
kB

− βðrÞδϵkin þ αðrÞδn ¼ 0; ð39Þ

where αðrÞ and βðrÞ are local, that is, position-dependent,
Lagrangian multipliers. The variation of the considered
entropy density with respect to the distribution function f is
given by

δs ¼ −kb
Z

δf̃ðln f̃ − lnð1 − f̃ÞÞdp: ð40Þ

Together with the variations of (28) and (29), this leads to
the Fermi-Dirac distribution function, having the following
form

fðr;pÞ ¼ g
h3

1

1þ exp½βðrÞp2

2m − αðrÞ�
: ð41Þ

It is the global maximum of entropy density at fixed n and
ϵkin, that is, it is a condition of local thermodynamic
equilibrium.9 The distribution function (41) can be written
in a more familiar form

fðr;pÞ ¼ g
h3

1

1þ exp½p2=2m−μðrÞ
kBTðrÞ �

; ð42Þ

if we introduce the local temperature TðrÞ and local
chemical potential μðrÞ by relating them with the multi-
pliers:

TðrÞ ¼ 1

kBβðrÞ
; μðrÞ ¼ kBTðrÞαðrÞ: ð43Þ

Therefore, the variational principle can be written as

ds ¼ dϵkin
T

−
μ

T
dn; ð44Þ

which is the well-known local first law of thermodynamics.
On the other hand, using the distribution (42) one can

finally write explicitly the local variables (28)–(31) as well
as we can determine the temperature TðrÞ and chemical
potential μðrÞ as functions of nðrÞ and ϵkin. Moreover, they
also provide an equation of state as P ¼ P½nðrÞ; TðrÞ�. But
more importantly for now, we can also derive the integrated
Gibbs-Duhem relation from (31)

sðrÞ ¼ ϵkinðrÞ þ PðrÞ − μðrÞnðrÞ
TðrÞ ; ð45Þ

which will be used in the further steps. Let us also notice
that the equation (44) can be rewritten in a more familiar
form

d

�
P
T

�
¼ nd

�
μ

T

�
− ϵkind

�
1

T

�
: ð46Þ

2. Variation of the entropy S

In order to maximize the entropy S at fixed energy E and
particle number N

δS
kB

− β0δEþ α0δN ¼ 0; ð47Þ

where β0 ¼ 1
kBT0

and α0 ¼ μ0
kBT0

are global (uniform)
Lagrange multipliers, respectively, we will use the integrate
Gibbs-Duhem relation (45) in (35).
With the use of (39) and the energy E expressed as

E ¼
Z �

ϵkin þ
1

2
nmΦ

�
dV; ð48Þ

where dV ¼ 4πr2dr is a volume element, the variational
problem (47) can be written as

Z �
δϵkin
kBT

−
μ

kBT
δn

�
dV

− β0

Z
ðδϵkin þmΦδnÞdV þ α0

Z
δndV ¼ 0; ð49Þ

where the variations on δϵkin and δn must vanish identi-
cally. Therefore, vanishing of the first one provides that the
temperature must be uniform, that is, T ¼ const at the
statistical equilibrium. Because of that fact, the relation (46)
is now

dP ¼ ndμ ð50Þ

such that using μðrÞ ¼ μ½nðrÞ; T� one finds

dP
dr

¼ n
dμ
dr

: ð51Þ

On the other hand, vanishing of the variation on the particle
number density gives

μðrÞ ¼ μ0 −mΦðrÞ; ð52Þ

where we have defined μ0 ¼ α0kBT. We also immediately
notice the dependence on gravity. Taking the r-derivative of
(52) results as

9It can be easily shown when the second variation of (39) is
taken.
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dμ
dr

¼ −m
dΦ
dr

¼ −m
�
GMðrÞ

r2
þ aκρ0ðrÞ

�
; ð53Þ

with the boundary condition

μðrsÞ ¼ μ0 −mΦðrsÞ ¼ μ0 þ
GMm
rs

:

It is clear that from (53) and (50) one gets the hydrostatic
equilibrium equation (26) for Palatini fðR̂Þ gravity in
nonrelativistic limit, that is,

dP
dr

¼ −ρðrÞ
�
GMðrÞ

r2
þ aκρ0ðrÞ

�
: ð54Þ

We see that the modified hydrostatic equilibrium is implied
by the condition of statistical equilibrium. It is so because
of the chemical potential, which takes into account the
presence of the gravitational field.

C. Statistical equilibrium state

Let us now discuss forms of the local variables describ-
ing the statistical equilibrium. Using the results derived in
the previous subsection and applying them into the dis-
tribution function (41) and Eqs. (28)–(30) we have

fðr;pÞ ¼ g
h3

1

1þ e−α0eβðp2=2mþmΦðrÞÞ ; ð55Þ

nðrÞ ¼ g
h3

Z
dp

1þ e−α0eβðp2=2mþmΦðrÞÞ ; ð56Þ

ϵkinðrÞ ¼
g
h3

Z
p2=2mdp

1þ e−α0eβðp2=2mþmΦðrÞÞ ; ð57Þ

PðrÞ ¼ g
3h3

Z
p2=2mdp

1þ e−α0eβðp2=2mþmΦðrÞÞ ; ð58Þ

where β ¼ 1=kBT and α0 ¼ μ0=kBT, while the gravita-
tional potential is given by the Eq. (25). It can be
demonstrated that one gets the hydrostatic equilibrium
equation (54) by taking the r-derivative of (58) and
applying to it the equation (56). The above set of equations
also provide the equation of state for self-gravitating
nonrelativistic Fermi gas, that is, using the properties of
the Fermi integral (u > 0)

IuðtÞ ¼
Z þ∞

0

xu

1þ tex
dx; I0uðtÞ ¼ −

u
t
Iu−1ðtÞ; ð59Þ

the equation of state P ¼ ½ρðrÞ; T� at finite temperature can
be written in the parametric form with the parameter
αðrÞ ¼ α0 − βmΦðrÞ as

ρðrÞ ¼ 4πg
ffiffiffi
2

p
m5=2

h3β3=2
I1=2½e−α0þβmΦðrÞ�; ð60Þ

PðrÞ ¼ 8πg
ffiffiffi
2

p
m3=2

3h3β5=2
I1=2½e−α0þβmΦðrÞ�; ð61Þ

where the dependence on (modified) gravity is clearly
evident, since ΦðrÞ is given by (25).
However, when one considers the complete degenerate

Fermi gas at ground state, that is, T → 0, the Fermi-Dirac
distribution (42) reduces to the Heaviside function

fðr;pÞ ¼ g
h3

if EkinðpÞ < EFðrÞ ð62Þ

fðr;pÞ ¼ 0 if EkinðpÞ > EFðrÞ; ð63Þ

where the Fermi energy EF depends on a model of gravity

EFðrÞ ¼ μðrÞ ¼ μ0 −mΦðrÞ ð64Þ

as well as does the Fermi momentum, defined as

pFðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðμ0 −mΦðrÞÞ

p
: ð65Þ

The expression for the density and pressure simplify to

ρ ¼
Z

fmdp ¼ 4πgm
3h3

p3
FðrÞ; ð66Þ

P ¼ 1

3

Z
f
p2

m
dp ¼ 4πg

15mh3
p5
FðrÞ; ð67Þ

which can be rewritten in a more familiar form, known as
the polytropic EoS;

P ¼ Kρ
5
3; K ¼ 1

5

�
3h3

4πgm4

�2
3

; ð68Þ

without the direct dependence on gravity, in contrast to the
Fermi momentum (65). Therefore, using the polytrope with
the polytropic parameter γ ¼ 5=3 with the modified, non-
relativistic hydrostatic equilibrium equation is consistent.
However, when one deals with a more general form, as
given by (60) and (61), the effects of (modified) gravity
should be taken into account.

IV. RELATIVISTIC CASE

In this part, we will focus on the analogous formalism
discussed in the previous section, but in the fully relativistic
description of the gravitational field in modified gravity,
as presented briefly in the Sec. II. We will recall again
the local and global variables describing a system of self-
gravitating fermions in the box of the radius rs.
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A. Fermi-Dirac entropy in a
microcanonical ensemble

For an arbitrary distribution function fðr;pÞ the particle
number density is given by

n ¼
Z

fdp ð69Þ

while the energy density is defined as

ϵ ¼
Z

fEðpÞdp; ð70Þ

where E is the total, that is, kinetic and rest mass, energy of
a particle. It is given by

EðpÞ ¼ mc2 þ EkinðpÞ; ð71Þ

where the relativistic kinetic energy

EkinðpÞ ¼ mc2
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

m2c2
þ 1

s
− 1

#
: ð72Þ

Moreover, the energy density (70) is expressed as

ϵ ¼ ρc2 þ ϵkin; ð73Þ

with ρ ¼ nm being the rest mass density, and the kinetic
energy density is defined by the following expression

ϵkin ¼
Z

fEkinðpÞdp; ð74Þ

while the local pressure

P ¼ 1

3

Z
f
dEðpÞ
dp

dp ¼ 1

3

Z
f

p2c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4

p dp: ð75Þ

Let us notice that the above expressions reduce to the forms
in the nonrelativistic limit given in the Sec. III A when
c → þ∞.
On the other hand, the Fermi-Dirac entropy density has

the same form as before

s ¼ −kBfmax

Z
f̃ ln f̃ þ ð1 − f̃Þ lnð1 − f̃Þdp: ð76Þ

Regarding the global variables, the main difference with
respect to the global variables defined in III A is that in the
relativistic case we need to take into account the proper
volume element. In order to significantly simplify the
further calculations, we will use the “Einstein frame
variables,” which we denote with hat, that is, for instance,
the radial coordinate in the Einstein frame is represented by
r̂, while in the physical frame it will be r. Therefore, the

proper volume element in the Einstein frame is given by
χ̂dV̂, where we have defined

χ̂≕
�
1 −

2GMðr̂Þ
r̂

�
−1
2

; dV̂≕ 4πr̂2dr̂: ð77Þ

for further convenience.
Therefore, the explicit forms of the entropy and particle

number of the fermion gas are

S ¼
Z

r̂s

0

sðr̃Þ
�
1 −

2GMðr̃Þ
r̃

�
−1
2

4πr̃2dr̃; ð78Þ

N ¼
Z

r̂s

0

nðr̃Þ
�
1 −

2GMðr̃Þ
r̃

�
−1
2

4πr̃2dr̃; ð79Þ

respectively, where r̂s is the box’s radius in the Einstein
frame. The binding energy

E ¼ E − Nmc2 ð80Þ

includes the rest mass energy Nmc2, and the mass energy
E ¼ Mc2, with the mass M given by (12).

B. Maximization of the Fermi-Dirac entropy
in a microcanonical ensemble

Local thermodynamic equilibrium state in the relativistic
case is analogous to the nonrelativistic one, as given in the
Sec. III B 1. One has to maximize the entropy density (76)
at fixed energy density ϵ̂ and particle number density n:

δs
kB

− βðr̂Þδϵ̂þ αðr̂Þδn ¼ 0; ð81Þ

where αðr̂Þ and βðr̂Þ are local, Lagrangian multipliers in the
Einstein frame. Following the similar steps, the Fermi-
Dirac distribution function is then

fðr;pÞ ¼ g
h3

1

1þ exp½EðpÞ−μðr̂ÞkBTðr̂Þ �
; ð82Þ

with the local first law of thermodynamics

ds ¼ dϵ̂
T

−
μ

T
dn; ð83Þ

and local variables10

nðr̂Þ ¼ g
h3

Z
dp

1þ exp½EðpÞ−μðr̂ÞkBTðr̂Þ �
; ð84Þ

10Notice that for the convenience, we use the hat only for the
energy density and pressure since only those local variables
appear in the solutions of field equations.
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ϵ̂ðr̂Þ ¼ g
h3

Z
EðpÞdp

1þ exp½EðpÞ−μðr̂ÞkBTðr̂Þ �
; ð85Þ

ϵkinðr̂Þ ¼
g
h3

Z
EkinðpÞdp

1þ exp½EðpÞ−μðr̂ÞkBTðr̂Þ �
; ð86Þ

P̂ðr̂Þ ¼ g
h3

Z p dEðpÞ
dp dp

1þ exp½EðpÞ−μðr̂ÞkBTðr̂Þ �
: ð87Þ

Using the above results with the Fermi-Dirac distribution
function (82) in (76), one finds the integrated Gibbs-
Duhem relation

sðr̂Þ ¼ ϵ̂ðr̂Þ þ P̂ðr̂Þ − μðr̂Þnðr̂Þ
Tðr̂Þ ð88Þ

respectively. Let us notice that the integrated Gibbs-Duhem
relation can be written in terms of the generalized density
and pressure, given by (13) and (14), as

sðr̂Þ ¼ Q̂ðr̂Þ þ Π̂ðr̂Þ − μðr̂Þnðr̂Þ
Tðr̂Þ ; ð89Þ

such that the standard form of the first law of thermody-
namics can be rewritten as

d

�
Π̂
T

�
¼ nd

�
μ

T

�
− Q̂d

�
1

T

�
: ð90Þ

C. Variation of the entropy S

Using the above relations to the entropy definition (78)

S ¼
Z

R

0

Q̃ðr̃Þ þ Π̃ðr̃Þ − μðr̃Þnðr̃Þ
Tðr̃Þ χ̂dV̂ ð91Þ

and maximizing it at fixed mass energy E and particle
number N

δS
kB

− β0δM þ α0δN ¼ 0; ð92Þ

where β0 and α0 are global (uniform) Lagrange multipliers,
provides

Z �
δQ̂
kBT

−
μ

kBT
δnþ α0δn

�
χ̂dV̂ − β0

Z
δQ̂dV̂

þ
Z �

Q̂þ Π̂ − μn
kBT

þ α0n
�
δχ̂dV̂ ¼ 0: ð93Þ

Moreover, we have the following useful expressions

δχ̂ ¼
�
1 −

2GMðr̂Þ
r̂

�
−3
2 GδM
r̂c2

; ð94Þ

δM ¼ 1

c2

Z
r̂

0

δQ̂4πr̃2dr̃; ð95Þ

dδM
dr̂

¼ 1

c2
δQ̂4πr̂2: ð96Þ

Vanishing of (93) requires from the variations on δn that the
ratio between the local chemical potential and the local
temperature is a constant value:

α0 ¼
μðrÞ

kBTðrÞ
≡ α: ð97Þ

We will skip the index 0 in the further part for simplicity.
Using the above result in (90) provides that the first law of
thermodynamics reduces to

d

�
Π̂
T

�
¼ −Q̂d

�
1

T

�
: ð98Þ

It allows us to write down the modified Tolman equation in
the form

dΠ̂
dr̂

¼ Q̂ðr̂Þ þ Π̂ðr̂Þ
T

dT
dr̂

: ð99Þ

Inserting the constant ratio (97) in the above equation
provides

dΠ̂
dr̂

¼ Q̂ðr̂Þ þ Π̂ðr̂Þ
μ

dμ
dr̂

: ð100Þ

On the other hand, the variation on δQ̂, after inserting (97)
into (93), gives

Z �
δQ̂
kBT

χ̂ þ
�
Q̂þ Π̂
kBT

�
δχ̂ − β0δQ̂

�
dV̂ ¼ 0: ð101Þ

The above equation can be further rewritten with the use of
(94) and (96) as

Z ��
χ

kBT
− β0

�
dδM
dr̂

þ
�
Q̂þ Π̂
c2kBT

�
∂χ̂

∂M
δM4πr̂2

�
dr̂ ¼ 0

ð102Þ

while the integration by part applied to the first term will
yield
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0¼c2
�

χ̂ðr̂sÞ
kBTðr̂sÞ

−β0

�
δMðr̂sÞ

−
Z �

c2
d
dr̂

�
χ̂

kBT

�
−
�
Q̂þ Π̂
kBT

�
∂χ̂

∂M
4πr̂2

�
δMdr̂: ð103Þ

Vanishing of the first term in the above equation provides
(we also skip the index 0 in the Lagrangian multiplier β0)

β ¼ χ̂ðr̂sÞ
kBTðr̂sÞ

¼ 1

kBTðr̂sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GMðr̂sÞ

r̂sc2

q ; ð104Þ

while vanishing of the second one

c2
d
dr̂

�
χ̂

T

�
¼

�
Q̂þ Π̂

T

�
∂χ̂

∂M
4πr̂2 ð105Þ

which can be expressed as

1

T
dT
dr̂

¼ −
1

c2

GMðr̂Þ
r̂2 þ 4πG

c2 Π̂r̂

1 − 2GMðr̂Þ
r̂c2

: ð106Þ

This can be further rewritten in the well-known form
of the Tolman-Oppenheimer-Volkoff (TOV) equation for
Palatini gravity in the Einstein frame [86] when we use the
Eq. (99)

dΠ̂ðr̂Þ
dr̂

¼ −
Q̂ðr̂Þ þ Π̂ðr̂Þ

c2

GMðr̂Þ
r̂2 þ 4πG

c2 Π̂r̂

1 − 2GMðr̂Þ
r̂c2

; ð107Þ

with the mass function given by

Mðr̂Þ ¼ 1

c2

Z
4πr̂2Q̂dr̂: ð108Þ

Coming back to the physical frame, the TOV equation is
simply the above one, after using the definitions (13)
and (14), and performing the conformal transformation
r̂2 ¼ ϕr2:

dP
dr

¼ −
GM
c2r2

ðϵþ PÞ 1þ
4πr3

Mc2 ðP − U
2κ2
Þ

1 − 2GMffiffiffi
ϕ

p
rc2

�
ϕ −

rϕ0

2

�

þ 4κ2ðP − U
2κ2
Þϕ0 þUϕϕ

0ϕ
2κ2ϕ

ð109Þ

where Uϕ ¼ dU=dϕ while the mass function is given by
the Eq. (18).
Apart from this, we are also able to write explicitly the

Tolman and Klein equations, as well as the total particle
number and the total entropy of the system. Combining
Eqs. (99) and (106) and integrating the result with respect

to r̂, one can write the Tolman formula, which is a relation
between the local temperature and the metric coefficient
(here already written in the physical frame)

TðrÞ ¼ T∞BðrÞ−1
2; ð110Þ

where T∞ ¼ TðrsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GMðrsÞ

rs

q
is the global temperature,

that is, the temperature measured by the distant observer
while BðrÞ is given by the equation (16). On the other hand,
combining above equation with (97) provides the local
chemical potential (Klein relation) as

μðrÞ ¼ μ∞BðrÞ−1
2; ð111Þ

where μ∞ ¼ αkBTðrsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GMðrsÞ

rs

q
is the global chemical

potential, that is, the chemical potential measured by the
distant observer (at infinity). Let us notice that both local
variables depend on a theory of gravity via the interior
solution, given in our case by (16). This is also a case of the
total particle number and total entropy—after the con-
formal transformations, the Eqs. (78) and (79) have the
following form:

N ¼
Z

R

0

nðrÞ
�
1 −

2GMðrÞ
ϕ

1
2r

�
−1
2

4πϕðrÞr2

×

�
1 −

r
2
∂r lnϕðrÞ

�
dr;

S ¼
Z

R

0

ϵðrÞ þ PðrÞ
ϕðrÞ32TðrÞ

�
1 −

2GMðrÞ
ϕ

1
2r

�
−1
2

4πr2

×

�
1 −

r
2
∂r lnϕðrÞ

�
dr −

μ∞
T∞

N:

In order to see directly how the Fermi equation of state is
modified by Palatini gravity, let us introduce gravitational
potential φðrÞ:

BðrÞ ¼
�
μ∞
mc2

�
2 1

1þ φðrÞ
c2

;

such that the Fermi energy and momentum can bewritten as

EFðrÞ ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φðrÞ
c2

þ 1

r
; pF ¼ m

ffiffiffiffiffiffiffiffiffi
φðrÞ

p
:

Introducing x ¼ pF
mc one writes the equation of state of the

relativistic Fermi gas as
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P ¼ πgm4
ec5

6h3
½xð2x2 − 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
þ 3sinh−1x�;

ϵ ¼ πgm4
ec5

2h3
½xð2x2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
− sinh−1x�;

n ¼ 4πgm3
ec3

3h3
x3

which now clearly demonstrates that Fermi gas EoS
depends on a model of gravity.

V. CONCLUSIONS

Motivated by many indications suggesting that modified
gravity can have something to say about the microscopic
properties of stellar and substellar objects as briefly
discussed in the introduction, we wanted to focus on that
hypothesis. Therefore, in the following work we have
analyzed the derivation of the Fermi equation of state in
the nonrelativistic and relativistic case, demonstrating that
the effects of modified gravity indeed must be taken into
account. However, before doing so, we have also shown
how the local and global variables describing a system in
the statistical equilibrium state depend on a theory of
gravity. Therefore, the main conclusion of this paper is that
the microphysics is dependent on the (modified) gravity.
In order to be consistent, one should take into account

the effects of the considered model of gravity on micro-
physics. The common approach is to modify a hydrostatic
equilibrium equation only, while other equations are kept as
they resulted from GR or Newtonian physics. We have
demonstrated in this paper that in order to deal with a
consistent set of equations describing a stellar or substellar
object in the statistical equilibrium state,11 the microscopic
variables must also be adjusted to the given theory of
gravity. The reason for that is quite obvious: the definitions
of the total entropy and the total particle number require a
notion of the proper volume element, which is provided by
the solution of the (modified) field equations, and by these

means the model of gravity is taken into account in the
thermodynamical variational principle. In the nonrelativ-
istic case, the modifications enter via the potential energy,
that is, the gravitational potential, which resulted as a
solution of the modified Poisson equation. In both cases,
the thermodynamical quantities which carry the modifica-
tions and influence the equation of state, are the temper-
ature and chemical potential, as already noticed in [59].
This work opens new research lines and questions such

as, for instance: how significant are the effects introduced
to microphysics by modified gravity? Let us notice that
different models of modified gravity are effective models of
quantum gravity proposals. Quantum gravity corrections to
the equations of state are of Planck scale order [102,103],
and even so small modifications have an impact on the
observable properties of stellar objects, such as for instance
mass and radius [69,104]. Therefore, we should also expect
a non-negligible effects in the case of Palatini gravity, even
for small values of the theory parameters. Therefore, the
data related to the critical masses of compact stars, such as
maximal neutron stars masses or Chandrasekhar one, and
of nonrelativisitc objects, as minimum main sequence mass
for example, could be used to constrain gravity. Further, we
can also ask: How should more general equations of state
be modified to consistently describe a system at the
statistical equilibrium? How nuclear reactions happening
in the cores of stars should be modified in the light of those
findings? How an extra degree of freedom, as for example
scalar field or dynamical connection, influences the deri-
vation of local and global variables, and, effectively, the
equation of state? Is a stable thermodynamical equilibrium
state also always dynamically stable in modified gravity, as
it happens in GR? How does rotation affect our current
considerations [105]? Some of those hypotheses are
already investigated and the answers should appear else-
where in the nearest future.
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