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We discuss the question of whether or not inflationary spacetimes can be geodesically complete in the
infinite past. Geodesic completeness is a necessary condition for averting an initial singularity during
eternal inflation. It is frequently argued that cosmological models which are expanding sufficiently fast
(having average Hubble expansion rate Havg > 0) must be incomplete in null and timelike past directions.
This well-known conjecture relies on specific bounds on the integral of the Hubble parameter over a past-
directed timelike or null geodesic. As stated, we show this claim is an open issue. We show that the
calculation of Havg yields a continuum of results for a given spacetime predicated upon the underlying
topological assumptions. We present an improved definition forHavg and introduce an uncountably infinite
cohort of cosmological solutions which are geodesically complete despite having Havg > 0. We discuss a
standardized definition for inflationary spacetimes as well as quantum (semiclassical) cosmological
concerns over physically reasonable scale factors.
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I. INTRODUCTION

One of the oldest problems of philosophy is whether the
universe had an ultimate origin. In the context of relativistic
cosmology, that is usually translated into the question of
whether there was a past singularity. In standard Friedmann
RobertsonWalker (FRW) big bang models, causal develop-
ment of the initial curvature singularity is indeed a past
boundary of spacetime. By contrast, the once-popular
steady-state cosmological model, involving the continuous
creation of particles [1–3], is eternal. Criticism of the big
bang theory by advocates of the steady-state theory were
summed up by the aphorism that “it merely claims things
are as they are because they were as they were.” In other
words, the observed nature of the universe is simply
relegated to unexplained initial conditions, and specifically
to its ordered, low-entropy, initial state. However, in the
steady state model the theory is also incomplete, but for a
different reason. The metric for a FRW space is given as

ds2 ¼ −dt2 þ f2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

�
ð1Þ

with f being the scale factor and k being the spatial
constant sectional curvature, usually normalized to
k ∈ f0;þ1;−1g, and dΩ2 being the usual spherical metric.

The steady state universe is described as a patch of de Sitter
space with fðtÞ ¼ eHt and k ¼ 0. The steady state universe,
which expands at all times, occupies one-half of the
complete de Sitter manifold (topologically R1

1 × Sn−1). A
coordinate system that covers the entire de Sitter spacetime
is given by the metric of Eq. (1) with f ¼ cosh ðHtÞ and
k ¼ þ1. It describes a universe that contracts to a minimum
radius and then expands in a time-symmetric manner.
Consider a worldline r ¼ constant in the latter system.
Tracing back in time from future infinity, the worldline
traverses the steady state patch and eventually crosses the
edge of the coordinate system, and hence out of the steady
state universe. Clearly the steady state universe is geodesi-
cally incomplete. Recognizing this shortcoming, Hoyle and
Narlikar proposed a modified theory [1–3] using the entire
spacetime, which involved a contraction followed by an
expansion. This so-called C-field cosmology approaches
the steady state in the far future and far past and can be
made time symmetric by assuming matter creation to be
oppositely directed in the regions t > 0 and t < 0. A
closely analogous issue arises in the case of eternal
inflation, in which the “units of creation” are not subatomic
particles but “bubble universes.” A simple model of eternal
inflation uses the steady state metric outside of the bubbles,
and is therefore geodesically incomplete. However, this
model can be amended with a minimum spacelike diameter,
just like the full de Sitter case, which is complete.
Some confusion arises from the ambiguous use of the

term “universe.” One definition is the entire spacetime,
including all extensions, e.g. metric f ¼ cosh ðHtÞ and
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k ¼ þ1 in the foregoing example. Another definition is a
congruence of worldlines orthogonal to a spacelike foli-
ation bounded by horizons, e.g. steady state metric in the
foregoing. A steady state observer on a worldline r ¼
constant in this metric perceives an eternally expanding
universe with an event horizon, but the universe (i.e. the
timelike foliated coordinate patch shown in Fig. 1) is past
incomplete.
Here we discuss how to characterize the geodesic

completeness of a generalization of FRW spacetimes,
and show that the aforementioned heuristic example holds
in a more general sense. Our result is purely geometric,
holding for any metrical theory of gravity.

II. INFLATION AND GEODESIC COMPLETENESS

Among the most compelling models of the early universe
is the inflationary universe paradigm [4]. Shortly after its
conception the question naturally emerged: could inflation
be eternal, in particular, eternal into the past? If so, the
universe itself could be eternalwithout the need for a definite
beginning [5–10]. A critical component needed to answer
this question is a thorough understanding of singularities in
general spacetimes, see e.g. [11–13], namely, spacetimes
without any further assumptions on structure.
If a spacetime contains a singularity (curvature singularity

or otherwise) it cannot inflate eternally. One should ascertain
whether a spacetime admits even a single incomplete
geodesic, namely a geodesic which does not exist for all
values of affine parameter. If such an incomplete geodesic
exists, the spacetime is singular; an observer on such a
timelike geodesic trajectory experiences a catastrophic halt to

their proper time, as their worldline cannot be extended past a
particular spacetime event. In the case of a curvature
singularity an observer’s clock stops because a spatial defect
is encountered.
Venturing forward with pedantic mathematical concern,

one must restrict to the class ofmaximal geodesics—curves
which cannot be further extended. A maximal geodesic line
γ is defined as

γ∶ ða; bÞ → M; ð2Þ

where a, b are real numbers in open interval ða; bÞ and M
is the spacetime in question. Additionally, one can define a
maximal geodesic ray emanating from a point p ¼ γðaÞ by

γ∶ ½a; bÞ → M: ð3Þ

The singularity structure of a spacetime may be elucidated
by studying the worldlines of observers on maximal
geodesic trajectories. If γ is complete the domain is defined
on all R.
Now consider a smooth past-directed causal geodesic

segment γð½a; b�Þ as the image of a geodesic γ defined over
the compact set ½a; b�. Smooth (hence continuous) maps
preserve compact sets and therefore γð½a; b�Þ is compact.
Could γð½a; b�Þ be complete? The answer is no.
(1) A singularity is encountered in the image of γ and

the preimage of such must be excluded from the
domain (hence ½a; b� cannot be all R).

(2) γðaÞ and/or γðbÞ ∈ ∂M, the boundary of the space-
time, and is trivially incomplete.

(3) γðaÞ and/or γðbÞ ∈ intM, the interior of the space-
time, and is extendable.

In the first two cases the spacetime is incomplete because
any past-directed causal geodesic arising from the interior
which intersects the spacelike boundary abruptly stops, else
it would have to change causal character to propagate along
the spacelike boundary which cannot occur for a geodesic.
In the third case, any geodesic segment which realizes an
end point on the interior can be extended by considering a
semi-Riemannian normal neighborhood centered at γðbÞ
and calculate expγðbÞ _γðbÞ, where expp X is the exponential
map centered at p ∈ M—calculated by finding the geo-
desic at p with initial velocity X and evaluating the point at
unit time. Such an extension must always occur, even if the
diameter of such a semi-Riemannian normal neighborhood
is very small. Any extendable geodesic segment cannot be
complete because it does not contain all the possible
information contained in the maximal curve, namely the
information contained in the extensions.
In a general model with very little structure, it can be

difficult to classify all geodesics in a spacetime. Even if
structure is introduced allowing such a classification of
geodesics, the geodesic equation may not have an analytic
solution: thus advanced methods vis à vis hyperbolic

FIG. 1. An example spacetime which does not conform to
Definition 2. The external rectangle is schematic for overall
spacetime ðM; gÞ which contains two potential inflationary
neighborhoods U, V. Neighborhood V has a canonical time axis
which is timelike with respect to overall metric g and is indeed
inflationary with respect to the above definition. However,
neighborhood U has a canonical time axis which, in its native
immersed Lorentzian (causal) structure is taken to be timelike;
however, it is spacelike with respect to overall metric g. Such a
situation is excluded by Definition 2. Light cones are shown with
respect to overall metric g.
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differential equations and functional analysis are required.
However, a sufficient condition for an incomplete geodesic
can be found utilizing Jacobi fields to find conjugate or
focal points, which is often easier to calculate than solving
all possible geodesic equations: this is the basis for the
singularity theorems of [11].
Demonstrating that a spacetime is free of incomplete

geodesics does not mean that the spacetime is physically
reasonable. While free of singularities, such models may
violate reasonable energy conditions with “exotic” sources
required to ensure that all geodesics are complete.
Nonetheless, spacetimes which are geodesically complete
are void of singularities at the geometric level and one may
hope that a reasonable metric theory of gravity exists,
capable of supporting these spacetimes.
Returning to the discussion of eternal inflation, the title

of [9] claims that any inflationary spacetime must be
geodesically incomplete. Below,we provide an uncountably
infinite cardinality ofmonsters—see [14]—applications of a
theory to prickly examples at the boundary of the domain of
discoursewhich helps to clarify tenets of the theory, showing
that this cannot be the case. These simple monsters are well
definedwithin the realm of general relativity (GR), although
in that context, they violate energy conditions for an
arbitrarily short time. We begin with a brief discussion of
[9] elucidating some of the contentious points therein. We
then introduce the class of generalized FriedmannRobertson
Walker spacetimes (GFRW), and discuss their geodesic
completeness. Next we discuss properties of scale functions
yielding inflationary monsters which satisfy the Havg > 0
condition of [9] yet are geodesically complete. Finally, we
speculate on how quantum gravity may ultimately constrain
the domain of discourse with respect to physically reason-
able scale functions.

III. WHAT IS INFLATION?

Much of the contention surrounding Havg in [9] stems
from ambiguous underlying assumptions. We remedy this
by attempting to explicitly state the underlying assump-
tions. Fittingly, we begin by discussing what is meant by
the term inflationary.
In the introduction of [15], inflationary theory pioneer

Alan Guth aptly states, “the term inflation encompasses a
wide range of detailed theories,” and refrains from defining
inflation in a mathematically precise manner. Popular
definitions of inflation include “a quasi-de Sitter period,”
“a period when gravity acted as a repulsive force” or “a
period during which the Hubble sphere is shrinking.”
Several authors prefer to discuss inflation in terms of what
it does, avoiding the need for a precise or rigorous
definition. In [16], the authors define inflation as “any
epoch during which the scale factor of the Universe is
accelerating,” and provide the defining equation.
Definition 1.—INFLATION ⇔ f̈ > 0; where we take f

to be the scale factor and “·” denotes differentiation with

respect to cosmic time t. This definition assumes that the
metric can be expressed as a warped product from [17] as

g ¼ dπ�1g1 þ f2dπ�2g2; ð4Þ

where topologically the manifold in question is a Cartesian
product M1 ×M2 of two semi-Riemannian manifolds
ðM1; g1Þ and ðM2; g2Þ and dπ�1; dπ

�
2 are the metric pull-

backs of the canonical projections π1∶ M → M1,
π2∶ M → M2 in the Cartesian product construction.
Additionally, f is a strictly positive smooth function
“warping” the contribution of the second metric g2 to
the overall metric g.
Relating this to the standard Friedmann Robertson

Walker (FRW) model of cosmology and cosmogony, one
has already foliated out a privileged time dimension by
assumption and by defining a scale function f with respect
to this time dimension. The spacetime metric is that
of Eq. (1).
In fact, the results apropos scale functions discussed in

this paper are applicable to the broader class of generalized
Friedmann Robertson Walker (GFRW) spacetimes. These
GFRW spacetimes are defined as the warped product

R1
1 ×f Σ; ð5Þ

where ðΣ; gΣÞ is a complete1 Riemannian manifold—taken
to be the spacelike leaf—and R1

1 is the timelike foliation.
Note that the subscript is used to denote a negative definite
index of the metric in R1

1 as in [12,13]. Finally, a positive
definite smooth warping function f is used in the ×f

notation for specification of the warped product metric
g ¼ −dt2 þ f2gΣ. Additionally, the dπ�t ; dπ�Σ are unam-
biguous and have been suppressed.
One of the goals of [9] is to generalize concepts from a

highly structured FRW spacetime, so one may ask if a
spacetime which cannot admit a global foliation of a time
direction should be considered inflationary or not. In fact, if
a dimension 3 or higher open neighborhoodU ⊂ M admits
a curl-free, local Killing vector field it is isometric to a
warped product spacetime—see Lemma 3.78 of [13]. Are
such spacetimes to be considered inflationary? In particu-
lar, it is much easier for local Killing vector fields to exist
than global ones, so many spacetimes which cannot
globally foliate out a time direction fall into this category.
An additional concern with respect to Definition 1 are

bouncing cosmologies. Clearly, we must have f̈ > 0 for a
time during the transition from contraction to expansion;

1Any differentiable manifold admits a Riemannian metric—
which can be pulled up from the underlyingEuclidean space via the
atlas, and any Riemannianmetric is conformal to a completemetric
[18]. Thus, given any (Hausdorff, second countable) reasonable
space Σ, it can be endowed with a complete Riemannian metric.
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however, the contracting phase strictly violates the defi-
nition of [16]. Although strict definitions of a spacetime
vary subtly between authors, the canonical literature
typically demands that the Lorentzian manifold be time
oriented, thus it makes sense to talk about f̈ being explicitly
positive or negative. Because there can only be a single
choice of time orientation, once this time orientation is
fixed what constitutes inflation or deflation is fixed. Given
the above, we feel that it is myopic to exclude the possible
bouncing phenomenology from inflationary models and a
rigorous definition for inflation should encompass bounc-
ing cosmologies (in the cosmological bounce the comoving
Hubble radius decreases, as it does during inflation and
there is at least a short period during which f̈ > 0 during
the bouncing phase).
Given these considerations, we feel that the inflation

definition of Definition 1 is overly restrictive. We propose a
new definition for an inflationary spacetime:
Definition 2.—Let ðM; gÞ be an n dimensional space-

time which admits a connected open neighborhoodU ⊂ M
which is isometric to ða; bÞ ×f V as a warped product open
submanifold, where ða; bÞ is a timelike codimension n − 1
embedded submanifold, V is a spacelike codimension 1
embedded submanifold and no assumptions are made
concerning f except that it is a well defined function
between sets. The spacetime ðM; gÞ is an inflationary
spacetime if there exists some t0 ∈ ða; bÞ such that (assum-
ing that it exists and is well defined), f̈ðt0Þ > 0 where
derivatives of f are taken with respect to the timelike ða; bÞ
coordinate and the sign of f̈ is given with respect to the time
orientation of M.
In this definition, no assumptions about the continuity of

f or its derivatives are made. There is debate in the
literature about what precise assumptions functions in
metrical theories of gravity must have for well defined
curvatures to exist—see Chapter 3.1 of [11], for example—
we do not comment on this issue here. Additionally,
we do not assume that f > 0, as in [12,13,17], so as not
to exclude the possibility of an initial singularity caused
by f → 0.
There are several technicalities apropos Definition 2. The

first is a local global relationship of the local inflationary
neighborhood ða; bÞ ×f V to the global spacetime ðM; gÞ.
As written in Definition 2, the inflationary canonical time
axis must be timelike with respect to the global metric and
V must be spacelike with respect to this metric as well. This
assumes the existence and causal knowledge of ðM; gÞ
nonlocally. If one holds the view that inflation is purely a
local phenomenon, Definition 2 is overly restrictive,
excluding the possibility of two distant observers under-
going inflation orthogonal to each other, each believing the
other’s time axes to be spacelike—see Fig. 1. In fact, upon
accepting these arguments, one could even theorize that
having a well defined metric is a local property. If one
demands causality—even exotic causality such as in closed

timelike curves or vicious spacetimes2—this possibility
must be excluded as it is in the definition. However, by
examining various inflationary neighborhoods within a
single spacetime under Definition 2, it gives valuable
information as to the causal structure, and subsequently
the overall metric of the global spacetime, especially as one
extrapolates upon a distant inflationary neighborhood
which may exceed one’s observable universe.
We now discuss various subtleties concerning the

immersion versus the embedding of the inflationary neigh-
borhood. Should a spacetime like that of Fig. 2 be licit
under the definition of inflation? As was mentioned in the
previous paragraph, the reader’s opinion of local versus
global concerns drives possible definitions of inflation. If
one believes inflation to be observer dependent, an

FIG. 2. An example spacetime ðM; gÞ conformal to
R1

1 × S1 × S2. The vertical perimeter is glued aligning the arrows
as is done in a standard quotient topology diagram. The cylinder
admits a single inflationary neighborhood U with canonical time
axis wrapped around the cylinder. In the topology of the overall
space one considers a neighborhood V—circle neighborhood in
the center, but the intersection with the inflationary subspace
topology yields a disconnected subset—one connected compo-
nent shaded dark. In the (embedded) overall topology all points in
V are close, however in the (immersed) subspace topology the
connected components are far away. Definition 2 excludes this
possibility.

2A spacetime is vicious at a point if the causal future/past
encompasses the entire spacetime, namely J �ðpÞ ¼ M. A
spacetime is totally vicious if it is vicious everywhere—see
[13,19].
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immersed submanifold definition is superior and the
spacetime of Fig. 2 is allowed because what occurs outside
of the observer’s observable universe is absurd. This has the
drawback that every observer could potentially have a
different immersed topology. However, if one believes that
the “top down” structure of the entire spacetime is para-
mount, the embedded submanifold definition—this is what
is assumed in Definition 2—and all possible observers must
be compatible with the entire spacetime’s topology, and
Fig. 2 is excluded.
What about the maximality of inflationary neighbor-

hoods? As discussed in the Introduction, it might be
possible to find an extension of an inflationary neighbor-
hood enlarging it. Thus, the length of a geodesic to the
boundary of an inflationary neighborhood can vary depend-
ing upon the arbitrary selection of neighborhood boundary.
However, if one chooses to use the maximal inflationary
neighborhood and a geodesic intersects the boundary in
finite length then the space is incomplete. Definition 2 does
not comment on this phenomena, and it is possible one
could be interested in inflationary phenomena in a par-
ticular coordinate system without wanting maximality.
However, if one desires to compute geodesic completeness
in an inflationary neighborhood, it must be maximal.
Does an inflationary neighborhood need to be con-

nected? The explicit use of the term connected in
Definition 2 is equivalent to the connectedness of the
spatial section V in the Cartesian product construction of
ða; bÞ ×f V. In order for the definition to correlate with
observation it is necessary that the inflationary neighbor-
hood be connected: how would one observe a distinct3

distant connected component? However, in some theories
—in particular those which admit pocket universes—it is
possible that inflation is occurring in multiple distinct
distant places at once, and as long as the geometry of
the inflating regions is uniformly scaled by the same f the
inflationary patch could be disconnected [topologically
ða; bÞ ×f ∐i∈IVi for some index set I]. One could
consider the union of all inflating regions—even those
with differing scale functions—as a union: this could be
useful in calculations of inflating region volumes [8–10].
All of the aforementioned concerns are built on the edifice
of Definition 2; the definition itself, however, only defines
the geometry of a single connected inflating region akin to
our observable universe.
Finally one can consider the dimension of the spacelike

foliation V. In standard metric theories of gravity, this must
be a codimension 1 submanifold, akin to a hypersurface. If,
however, one would like to accommodate a theory with
extra dimensions, it is conceivable that other codimensions
might be considered, perhaps for various D-branes pop-
ulating the bulk. This is not accommodated by Definition 2

in order to agree with FRW historical convention. It would
not be difficult to alter the definition to include this
phenomenology.
Definition 2 broadly expands the phenomenologywhich is

considered inflationary. In the absence of a unique model of
the nascent universe supported by experimental evidence, we
choose to be overly accommodating with respect to the
inflationary paradigm, which is consistent with known
observations. Additionally, there is precedent with defining
a categorization of a spacetime with respect to a quantity at a
single point—consider the general condition of [11]. One
may also discuss how much inflation a spacetime is experi-
encing by using statements like it is “completely inflationary”
where it inflates for all time, or only inflates on ða; bÞ, to
accommodate realistic models and also bouncing models.
We adopt Definition 2 as a working definition for

inflation, attempting to address some of the topological
machinery enthymeme in Definition 1. Naturally, depend-
ing on one’s bias apropos phenomenology, there are other
potential definitions for inflation which might be superior.
For example, the topological criteria for an inflationary
neighborhood to exist—namely the existence of a curl-free
local Killing vector field—might uniquely specify a def-
inition upon further investigation and proof. We leave such
exploration for future work.

IV. DISCUSSION OF Havg

We now compare our proposed definition for an infla-
tionary spacetime, Definition 2 with a discussion ofHavg in
[9]. There, the authors propose a gedanken experiment of
measuring the tidal forces in a general spacetime ðM; gÞ
along a geodesic γ with velocity Vμ ¼ dγ

dλ by subsequent
measurements of a massive test particle moving along some
timelike geodesic α∶ J → M with velocity Uμ ¼ dα

dλ in a
locally Minkowski neighborhood. The quantity

Hγ ¼ −
VμðλÞ

β2ðλÞ þ κ

DUμðλÞ
Dλ

ð6Þ

along geodesic γ, where a spatially dependent generalized
Lorentz factor is given by β2ðλÞ ¼ VμUμ, and κ ¼ VμVμ is
taken to be κ ¼ −1 for γ being a timelike geodesic, and
κ ¼ 0 for γ being a null geodesic.4 Additionally, we denote
the parallel transport of Uμ along γ as DUμ

Dλ . The above may
be written succinctly in geometer notation as

Hγ ¼ −
gðV;∇VUÞ
gðU;VÞ þ κ

; ð7Þ

where g is the metric and ∇ is the Levi-Civita connection.

3The use of the term “distinct” implies each spatial foliation is
disjoint from every other one.

4We use metric signature convention f−1;þ1;…;þ1g op-
posed to fþ1;−1;…;−1g used in [9].
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Note that Eq. (6) reduces to the usual definition of the
Hubble parameter

HðtÞ ¼
_fðtÞ
fðtÞ ð8Þ

in the special case that the spacetime is inflationary, and in
the inflationary neighborhood, Vμ is purely spacelike and
Uμ is purely timelike.5 In fact, in a gedanken experiment
where timelike observer V ¼ a ∂

∂t þ A measures a timelike
test particle U ¼ b ∂

∂t þ B with both A, B purely spacelike,
we find

Hγ ¼ −
b

_f
f kAk2g − a2 ∂b

∂t þ gðA; dπΣ∇ABÞ
gðA;BÞ − ab − 1

; ð9Þ

where dπΣ∇AB is the projection of the Σ-tangential
components of ∇AB onto spacelike slice Σ and kAk2g ¼
gðA; AÞ. By utilizing the fact that in warped product
constructions ξ2A ≡ f2kAk2g is a constant—which corre-
sponds to the initial speed of a test particle with respect to
cosmic time, not a Nöether conserved quantity—Eq. (9)
can be expressed as

Hγ ¼
_f
f

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2B

f2

q
ðξ2Af2Þ þ ð1þ ξ2A

f2Þ
ξ2B
f2

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2B

f2

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2A

f2

q ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2B

f2

q
− gðA;BÞ

1
CA

þ gðA; dπΣ∇ABÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2A

f2

q ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2B

f2

q
− gðA;BÞ

ð10Þ

which differs from the expected Hubble parameter
_f
f.

If we assume spatial curvature is negligible—namely
dπΣ∇AB ≃ 0 and the directions of spatial propagation
between observer and test particle are orthogonal—the
above equation simplifies to

Hγ ≃
_f
f

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2B

f2

q
ðξ2Af2Þ þ ð1þ ξ2A

f2Þ
ξ2B
f2

1ffiffiffiffiffiffiffiffi
1þξ2

B
f2

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2A

f2

q ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2B

f2

q
1
CA ð11Þ

which is schematic to

Hγ ≃
_f
f
×Oðξ2A; ξ2BÞ: ð12Þ

Hence, we arrive at the undesirable result, that Hγ is
irreducibly convoluted with the particular speeds ξ2A; ξ

2
B

of the test particles in question. It would be ideal to find an

expression which yields
_f
f independent of the particular

speeds of the particle, which Eq. (6) is not. However, in the
case that both particles are relativistic with respect to

cosmic time, one recoversHγ ≃ 2
ffiffi
2

p
3

_f
f, but for nonrelativistic

particles this prefactor varies by choice of test particle.
It would be ideal to calculate the Hubble parameter

_f
f

in an inflationary spacetime independent of frame and
particular velocity. One proposal is the quantity

Hγ ¼ gð ∂
∂t ; IIðX; YÞÞ
gðX; YÞ ; ð13Þ

where X, Y are purely spacelike (horizontal) vector fields
and IIðX; YÞ ¼ nor∇XY is the second fundamental form
yielding extrinsic curvature, where nor∇XY is the projec-
tion of ∇XY onto the linear subspace normal to the
hypersurface in question. In a GFRW

IIðX; YÞ ¼ −
_f
f
gðX; YÞ ∂

∂t
; ð14Þ

thus, for any X, Y as stated above, one reaps Hγ ¼ _f
f. There

are of course drawbacks to this definition: ambiguity of
precisely knowing ∂

∂t or that II is an abstract geometric
quantity and X, Y are spacelike; neither of which can be
directly measured.
We now state what we consider to be the main result

of [9].
Theorem 1.—Inflationary spacetimes are past incom-

plete. Let ðM; gÞ be a spacetime, and γ∶½λi; λf� → M be
some causal geodesic. If one computes the quantity

Hγ
avg ¼ 1

λf − λi

Z
λf

λi

HγðαÞdα ð15Þ

to be strictly positive along the image of γ, the spacetime is
geodesically incomplete.
We study the implications of this theorem and its results.

First, we will examine topological subtleties calculating6

Havg and introduce two other methods to calculate this
quantity including the asymptotic past and/or futures. Next
we will enumerate an uncountably infinite cardinality of
classical monsters with respect to Theorem 1 which are
geodesically complete despite having various values of
Havg depending on the underlying topological assumptions.
Some of the calculated Havg > 0 are strictly positive which
violates Theorem 1.

5This calculation makes use of Corollary 12.8 in [12].

6In Theorem 1 the definition of Hγ
avg includes the superscript

“γ” to reinforce the idea that Havg is potentially geodesic
dependent. In the case where choice of geodesic is unambiguous
the superscript will be suppressed.
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Here we consider only metrical theories of gravity; and
while cursory computations of the Einstein field equations
(EFE) will be discussed within the context of energy
conditions, all proofs that follow require only assumptions
at the geometric level. Given this, however, our aforemen-
tioned GFRW spacetime monsters do exist within the scope
of general relativity, with only an arbitrarily small necessity
for energy-condition-violating exotic matter. On the other
side, these completeness results hold for any metrical
theory of gravity which may ultimately preempt general
relativity. Any further speculations on relationships
between geometrical quantities and mass energy is beyond
the scope of this paper.
Our first criticism of Eq. (15), involves the implicit

assumption that the integral is computed over a compact
interval. Careful study of Eqs. (5), (10), and (11) of [9]
reaps that the computed integrals are evaluated on the
boundary per Stokes’ theorem7 and thus the underlying
topology of the Havg calculation is a compact set, seeing as
no mention is made of any limiting procedure not including
the boundary. In this way, the integral is predestined to
converge, assuming the minimum condition that HγðλÞ is
never infinite on a set of nonzero (Borel) measure.
Canonically, properties of geodesic completeness are for-
mulated with respect to maximal geodesic rays of domain
½0; bÞ. A strict reading of Theorem 1 then begs the question
of what underlying interval to select, and the value of Havg

varies depending on the interval. No matter which compact
interval is chosen, any compact geodesic segment is
necessarily incomplete by the discussion from Sec. II.
By defining geodesics in this manner over compact
intervals it is difficult to compare Theorem 1 to the standard
mathematical literature, and even worse is equivalent to
incompleteness. A strict application of Theorem 1, exactly
as written, never allows for the possibility that an infla-
tionary spacetime could be complete.
Addressing these criticisms we propose two amended

definitions of Havg:

H−;γ
avg ¼ lim

a→−∞

1

b − a

Z
b

a
HγðαÞdα ð16Þ

and

H�;γ
avg ¼ lim

−a;b→∞

1

b − a

Z
b

a
HγðαÞdα: ð17Þ

The first, H−
avg, includes the asymptotic past and the latter,

H�
avg, includes the entire worldline including both the

asymptotic past and future. With respect to the maximality
requirements of geodesic completeness, the proposed
definitions of Eqs. (16) and (17) remove the topological

ambiguity of interval selection inherent in Theorem 1.
Geodesic ray candidates for past-complete geodesics cor-
respond toH−

avg and the maximal curves as candidates for a
complete geodesic line correspond to H�

avg.
In particular, if one defines Hγ by Eq. (15), the

suppression by a finite 1
λf−λi

makes it difficult for

Havg → 0 in the limit, yielding false positives for geodesic
incompleteness: this is equivalent to an a priori assumption
of incompleteness. Considering this, it is not surprising the
aforementioned use of Havg claims to find all inflationary
spacetimes to be incomplete. However, if H−

avg is utilized
the finite contribution from the start of the geodesic ray,
γðbÞ, is quenched in the limit a → −∞ and if Eq. (16) is
substituted for Eq. (15) in Theorem 1, one finds H−

avg ¼ 0

in many cases—with the notable example of a cofinite tail
of f ¼ expHt which is already well known to be incom-
plete (see Example 7.41 in [12])—and Theorem 1 almost
never applies. This occurs for examples such as the monster
of Figs. 3 and 4 which are nondecreasing and inflationary,
and yet H−

avg ¼ 0. Interestingly, if one includes the asymp-
totic future and calculates H�

avg, the cofinite de Sitter phase
restores the support needed for H�

avg > 0 and such an
inflationary spacetime has a positive averaged Hubble
parameter as expected, however this calculation is highly
sensitive to the order the limits are taken in.
Another interesting subtext of Theorem 1 is the depend-

ence of Hγ
avg on a particular choice of geodesic γ. In

particular, the geodesic which one selects might not happen
to yield a Hγ

avg > 0: in order to properly classify geodesic
completeness of M, one must examine supγ∈MGeoðMÞH

γ
avg,

where MGeoðMÞ is the space of maximal geodesics over
M. Utilizing methods of analysis and the fact that the space
of complete maximal geodesics is closed in the C0 Whitney
topology—see Theorem 4.7 in [20]—one should be able to
calculate the range of Hγ

avg when viewed as a functional on
the space of geodesics over a (fixed) spacetime, which we
leave to future work. Finally, the fact that both the observer
and test particle are assumed to follow geodesics has not
been used in the derivation of Hγ.
It is obvious that the Havg of Eqs. (15)–(17) is not linear.

Having some generalization of linearity for Havg would be
ideal. A geodesic segment γ∶½λ0; λl� → M could be decom-
posed into ½λ0; λl� ¼ ∪l−1

k¼0½λk; λkþ1� with γk ¼ γð½λk; λkþ1�Þ.
One computes

Hγ
avg ≠

Xl−1
k¼0

Hγk
avg: ð18Þ

Without any assumptions about the partition f½λk; λkþ1�gl−1k¼0,
one cannot bound Hγ

avg above or below
Pl−1

k¼0H
γk
avg, espe-

cially if the interval length is not constant. We return to this
issue later with respect to the monsters discussed in the next
section.

7Here we invoke the full Stokes theorem
R
M dω ¼ R

∂M ω not
the specific application seen in surface geometry.
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V. MONSTERS

We now present an uncountably infinite class of classical
monsters which have Havg ≥ 0 but are geodesically com-
plete. We would like to remind the reader that this a purely
geometric result: it applies to any metrical theory of gravity.
For any GFRW R1

1 ×f Σ with a smooth scale function f—
thus guaranteeing there will not be any curvature singu-
larities—the geodesic completeness of GFRWs is enumer-
ated by the following [20,21]:
Theorem 2.—Geodesic completeness criterion for GFRW

spacetimes—Let M ¼ R1
1 ×f Σ be a GFRW spacetime:

(1) The spacetime M is future timelike complete iffR∞
t0

fðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfðtÞÞ2þ1

p diverges for all t0 ∈ R.

(2) The spacetime M is future null complete iffR
∞
t0

fðtÞdt diverges for all t0 ∈ R.

(3) The spacetimeM is future spacelike complete iffM
is future null complete or if

R∞
t0
fðtÞdt < ∞ then f is

unbounded; for all t0 ∈ R.
(4) The GFRW is past timelike/null/spacelike complete

if, for items 1–3 above, upon reversing the limits of
integration from

R∞
t0

to
R
t0
−∞ the word “future” is

replaced by “past.”
(5) The spacetime M is geodesically complete iff it is

both future and past timelike, null, and spacelike
geodesically complete.

Thus, one can definitively calculate the geodesic com-
pleteness of a given GFRW with Theorem 2 and compare
the predictions to Theorem 1. In particular, if the con-
dition that

inf
R
f ¼ a > 0 ð19Þ

FIG. 4. The scale factor for an eternally inflating example GFRW R1
1 ×f Σ with f ¼ expHtþ c with H ¼ 1 and c ¼ 27

125
≈ 0.216.

Strictly speaking, this example is not an element of the uncountable cohort of monsters discussed in this paper due to the additive
constant c, but Theorems 1 and 2 still apply. The scale function is shown in blue with the asymptote shown in dotted orange. This

example is geodesically complete by Theorem 2 with infRf ¼ 27
125

. The various Havg are calculated as Havg ∈ ð0; expHtf
expHtfþcÞ as a function

of interval, H−
avg ¼ 0, and H�

avg ∈ ½0; H�. Theorem 1 applies because Havg > 0. Despite being eternally inflating H−
avg ¼ 0 and one

potential calculation of H�
avg ¼ 0 as well, a paradoxical result.

FIG. 3. Plot of the scale function for a monster GFRW R1
1 ×f Σ. Here f loiters in a Minkowski phase for t < −1 and enters a de Sitter

phase for t ≥ 0. The transition zone, for t ∈ ½−1; 0�, consists of both phases being convoluted with a smooth bump function. By careful
construction the spacetime model is free of curvature singularities commensurate with the smoothness of f and the completeness of
ðΣ; gΣÞ. The GFRW is geodesically complete as per Theorem 2. One calculates Havg ∈ ð0; H�, H−

avg ¼ 0, and H�
avg ∈ ½0; H�. On the

right, the shaded region where _H ≥ 0 indicates the NEC (and WEC) is violated.
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holds then the GFRW spacetime is geodesically complete.
One can imagine a class of GFRW spacetimes with a
smooth scale function obeying infRf¼a>0, limt→−∞f¼c
with c ≥ a > 0, however for t > t0 with respect to some
given t0 ∈ R behaves as de Sitter space with f ¼ eHt. Such
scale functions can be constructed with smooth partitions
of unity.
As discussed in Sec. IV, the generalization of the Hubble

parameter to Eqs. (6) and (7) yields Eq. (10) which differs

from the expected
_f
f. However, in a GFRW, one can always

choose a spacelike geodesic measuring a timelike test
particle for which Hγ does in fact reduce to the expected
value. For the remainder of this section, unless otherwise

noted, we will make such a choice that Hγ ¼ _f
f.

Now one must examine the question ofHavg with respect
to these monsters. If one calculates Havg directly from
Theorem 1 one must determine an interval to calculate over.
Ignoring the fact that any compact interval cannot para-
metrize a maximal, hence complete, geodesic one may still
calculateHavg over the selected interval; however, the value
of Havg varies depending on the interval selected: if an
interval that only contains the de Sitter phase is selected one
yieldsH, but as f → c the value ofHavg is quenched by the
support of the cofinite past towards but never attaining zero.
Depending on the behavior of f in the finite past as well as
the interval selected, Havg may obtain any real value.
However, as more of the cofinite de Sitter phase is included
in an interval, any bounces are offset by the increasing
exponential function, and Theorem 1 applies.
The calculation of H−

avg ¼ 0 proceeds as in the previous
paragraph, except the asymptote of zero is actually realized.
This is particularly concerning: one such monster in this
cohort is that of Fig. 3. In fact, the monster expHtþ c with
c > 0 (see Fig. 4) inflates eternally but has H−

avg ¼ 0. If
H−

avg is calculated in this fashion, Theorem 1 does not apply
to any monsters in this cohort.
If one selects a past-directed geodesic ray with starting

point extremely far but still finite in the future—say Σð216Þ
where ΣðnÞ is the busy beaver function of [22]—the
observable universe of such an observer8 is only privy to
the de Sitter phase and would measure Havg ¼ H, however
the truth is that therewas a cofinite loiter into the asymptotic
past with a measurement of H−

avg ¼ 0. Such a universe
inflates into the cofinite asymptotic future in a deSitter phase
and yet hasH−

avg ¼ 0: a paradoxical result. A criticism of this
argument is that a universe in the epoch ofΣð216Þ could be a
very strange place, perhaps one that does not support life if
an anthropomorphic principle is invoked. It might be

possible that a clever experiment utilizing novel physics
might be able to detect the loitering phase at a starting point
of only a few Hubble times, or perhaps not. Pragmatically,
one must consider empirical and epistemological consid-
erations of various observers piercing various horizons to be
able to measure the scale function f and calculateHavg. We
have tacitly assumed that global knowledge of f can always
be measured and communicated but this may not be true
considering the existence of horizons such as the observable
universe in a de Sitter phase. The Σð216Þ model above
features an extreme praxiswhich calls such an assumption of
global knowledge of f—and thus the applicability ofHavg—
into question. Any further discussion on this matter is
beyond the scope of this paper.
Finally, the calculation of H�

avg is even more concerning.
The outcome is predicated upon what order the limits of
Eq. (17) are taken. If one executes the b limit first

lim
a→−∞

lim
b→∞

1

b − a

Z
b

a
HγðαÞdα ¼ H

and if the a limit is executed first

lim
b→∞

lim
a→−∞

1

b − a

Z
b

a
HγðαÞdα ¼ H−

avg ¼ 0:

Additionally for any q ∈ Rþ� , the strictly positive real
numbers, one can parametrize the H�

avg calculation as

lim
b→∞

1

b · ðqþ 1Þ
Z

qb

−b
HγðαÞdα ∈ ð0; HÞ

which varies by choice of q. This is particularly concerning,
because if H�

avg ∈ ½0; H� Theorem 1 both applies and does
not simultaneously to the monsters in this cohort.
All that matters to construct this class of counterexam-

ples is that the tail of f behaves as de Sitter, and it can be
smoothly combined with any other function of positive
infimum on the interval ð−∞; t0Þ with a smooth partition of
unity over a compact interval, and approaches a strictly
positive constant in the distant past. The size of the function
space over this interval enumerates a cohort of classical
monsters, see Fig. 3. Additionally, because the dimension-
ality of C∞ðð−∞; t0ÞÞ, the space of smooth functions on the
interval ð−∞; t0Þ, is uncountably infinite, there are an
uncountably infinite number of GFRW spacetimes which
have Havg ≥ 0 but are geodesically complete.
One can apply the theory developed here to the loitering

monster of Fig. 3. The application of Theorem 2 guarantees
that this monster is geodesically complete for all geodesi-
cally complete spacelike foliations ðΣ; gΣÞ. Application of
Eqs. (15)–(17) yieldsHavg ∈ ð0; H� depending on choice of
incomplete causal geodesic segment, H−

avg ¼ 0 for all past-
directed maximal geodesic rays, andH�

avg ∈ ½0; H� depend-
ing on parametrization and order the limits are taken over

8Observable universe radius is taken to be the speed of light
divided by the Hubble constant. This also assumes that H of the
model is commensurate to the H of the physical universe such
that Σð216Þ ·H ⋙ 1, thus an unfathomable number of e-folds
have occurred.
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any maximal (both past and future) geodesic line chosen. In
particular, Theorem 1 may or may not apply, depending on
the Havg variant chosen. At this point we remind the reader
that a strict reading of Theorem 1 cannot produce complete
geodesic segments because all computations are performed
over compact intervals. However, with respect to H�

avg,
Theorem 1 both simultaneously does and does not apply
depending on how the limit is taken (see Table I).
We now revisit Eq. (18). A natural decomposition

of a maximal geodesic line into geodesic segments yields
γ ¼ γð−∞;−1� ∪ γ½−1;0� ∪ γ½0;t0� ∪ γ½t0;∞Þ, where γð−∞;−1� is the
loitering asymptotic past, γ½−1;0� is the smooth transition
region, γ½0;t0� is the finite past de Sitter phase, and γ½t0;∞Þ is
the de Sitter asymptotic future. Ideally, one would like the
Havg sum of Eq. (18) to be equality. However, from a
mathematically pragmatic standpoint, what matters for the
computation of Havg is the natural logarithm of the scale
function at the boundary end points as is shown in Eq. (10)
of [9], not what occurs in the interior. This is one of the
reasons Theorem 1 fails to predict geodesic completeness
but Theorem 2—which is derived by manually solving the
geodesic equation—does.
The question now emerges, are such classical monsters

physically reasonable? In [23] the authors discuss the
example of Fig. 4, namely fðtÞ ¼ a0ð1þ eH0tÞ. Although
not strictly an element of the above cohort of monsters due to
the additive constant in the asymptotic future, the authors
argue that such a scale function possesses nonzero quantum
mechanical tunneling probability when treated with the
Wheeler-DeWitt equation, thus eliminating the viability of
an eternally loitering phase prior to inflation and expansion.
In particular, they argue that the class of aforementioned
classical monsters (belonging to the “emergent universe”
scenario [24–28]) should be excluded from the domain of
discourse of physically reasonable scale factors (see also
[29]). In fact, the implications of cosmologieswhich infinitely
loiter in a steady state generates the prime antinomy of
temporalCopernicanism: whydowe existNOWeven though
it is infinitely likely we should exist at some other time? For
the current discussion, however, we have little to contribute.

We do feel it is important to point out that calculational use
of theWheeler-DeWitt equation, predicated on the Arnowitt
Deser and Misner (ADM) formalism—see [30,31]—has
somewhat of a contentious past, see e.g. [32,33]. In particu-
lar, resolving the factor ordering problem eliminates
the consistent canonical quantization of most general
Hamiltonians in curved spacetimes [34], a detail which
has simply been assumed to have been resolved in [30].
With respect to the current problem at hand, one criticism of
the calculation of [23] is the semiclassical treatment and
subsequent elimination of time-ordering terms from the
potential; a well-known point of controversy apropos the
Wheeler-DeWitt equation. For future work, it would be
interesting to repeat the calculation including these terms,
possibly utilizing methods contained in [35]. Many semi-
classical physical quandaries are resolved when treated in a
complete quantum formalism.
Besides the above concern, it is not possible to have such

a loitering universe exit the loitering phase or a bounce into
an expanding phase in GR while obeying the weak energy
condition (WEC): Tμνtμtν ≥ 0, for timelike vectors tσ. As
shown in Fig. 3 the WEC is violated very briefly in the
transition between the two phases during t ∈ ½−1; 0�.
Indeed, even the null energy condition (NEC) is violated
in this region. However, this transition zone can be made
arbitrarily small, perhaps even smaller than a Planck time,
so the need for any such exotic matter such as Galileons
[36] which can stably support such a NEC violation [37], or
any other new physics such as strings to accommodate a
loitering phase [38,39], is fleeting. Of course, even the
standard inflationary scenario necessarily violates the
strong energy condition (SEC); indeed, our current period
of accelerated expansion indicates the SEC is being
violated even today, and it is well known that all of the
energy conditions can be violated at the quantum level.
Because of their ability to violate the NEC, Galileon

fields have been used to construct monsters of the type
discussed above, including loitering, inflationary and
bouncing cosmologies [37,40–44] and other exotic cos-
mological solutions [45–47]. Stability arguments in such
theories are complicated and depend on external back-
ground matter [48]. Even properly defining energy con-
ditions in noncanonical scalar-tensor theories is nontrivial
[49]. The devil is in the details, and it is unclear how similar
quantum stability arguments of [23] apply to these models.

VI. CONCLUSION

For a mathematical model to aspire to be a plausible
description of the actual universe (or multiverse), additional
criteria are often brought to bear. Such criteria may depend
on the theoretical framework adopted in the treatment.
Within classical theories of gravity, a frequently invoked
question is whether a proposed solution is “generic.” More
precisely, if the solution involves either a parameter value
or initial conditions that must be chosen from a set of

TABLE I. Havg calculations for the uncountable cohort of
smooth monsters with infRf ¼ a > 0; limt→−∞ f ¼ c ≥ a > 0

and f ¼ eHt for t > t0. Depending if Havg is calculated by
Eqs. (15)–(17) the answer varies. The calculation of Havg by
Eq. (15) varies by choice of interval. The calculation of H−

avg ¼ 0

with certainty. The calculation of H�
avg varies by parametrization

of
R
b
a HγðαÞdα and the order the limits are taken. All monsters of

this cohort are geodesically complete by Theorem 2.

Monster cohort Havg calculation

Havg R Varies by interval choice and scale factor
H−

avg 0
H�

avg ½0; H� Varies by limit order and parametrization
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measure zero, the model is often dismissed as unphysical.
A simple example is in Newtonian cosmology, where an
initial density singularity will exist if the distribution of
matter is exactly spherically symmetric. However, if the
coefficients of the higher multipoles are not all strictly 0,
infinite densities may not occur. In general relativity,
however, departures from sphericity may not serve to
remove the singularity if certain energy conditions apply,
but it may be that most matter will “miss” the singularity
and the corresponding worldlines will be geodesically
complete in the past. In this paper, we have presented a
set of geodesically complete solutions of inflationary
metric theories of gravity that belong to an uncountable
continuum, which is therefore a set of nonzero measure in
the space of (continuous) initial conditions. As such, these
“monsters” are generic and thus are stable to perturbations
in initial conditions, which are impossible to know pre-
cisely. We note that the measure of the set of initial
conditions being described here is predicated on the
assumption of the continuity of spacetime, which may
be transcended in the context of quantum cosmology.
Another criterion that might be used as a filter for

physically plausible theories is the second law of thermody-
namics, generalized to include cosmological event horizons.
Such horizons are a feature of inflationary cosmological
models. In the case of deSitter space, the event horizon area is
constant, but in FRWmodels where f is concave upward as t
tends to infinity, the event horizon area will shrink and will
generally imply a violation of the generalized second law of
thermodynamics. Such models might then be regarded as
unphysical. There may, of course be additional criteria
beyond a solution being generic and not violating the
generalized second law. The point we wish to make is that
the plausibility or otherwise of a mathematical model to
describe the real universe goes beyond it merely being a
correct solution to a set of accepted dynamical equations.
In this paper, we offered a critical discussion of the

Havg > 0 geodesic completeness criterion for inflationary
spacetimes with respect to the arguments presented in [9].
Our first area of discussion involved the definition of

inflationary spacetimes. In the voluminous body of liter-
ature on the subject, what is rigorously meant by an
inflationary spacetime varies between authors. By intro-
ducing Definition 2, we have suggested a standardized
definition for inflation which underpins the geometrical
requirements while broadly encompassing physically rea-
sonable phenomenology. We have further introduced Hγ

and Hγ
avg and discussed both advantages and disadvantages

to this definition, culminating with the generalizations of
Eqs. (16) and (17) removing the underlying topological
ambiguities of Theorem 1 by including the asymptotic past
and future. Drawing on this equation, we discussed an
uncountably infinite cohort of classical monsters which are
geodesically complete despite having Havg > 0 in some
computations, in contradiction to the arguments found in
[9] being supplanted by the calculations of [21]. These
results are purely geometric and apply for any metrical
theory of gravity.
The solutions presented necessarily violated traditional

energy conditions within the context of pure GR; although
it is possible, such solutions may exist within noncanonical
scalar field theories in a stable way as discussed above.
Again within the context of GR the solutions may suffer
from quantum considerations, as discussed in [23], leading
to the possible exclusion of this class of classical monsters
from the domain of discourse for physically reasonable
scale factors; however, a deeper understanding of quantum
gravity is needed to definitively make such a statement. For
the time being, the question of the viability of eternal
inflation, and the controversy of Havg is far from settled,
leaving many possibilities for future work.
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