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Motivated by the fact that cosmological models based on fðQÞ gravity are very efficient in fitting
observational datasets at both background and perturbation levels, we perform a combined dynamical
system analysis of both background and perturbation equations in order to examine the validity of this
result through an independent method. We examine two studied fðQÞ models of the literature, namely,
the power-law and the exponential ones. For both cases, we obtain a matter-dominated saddle point
characterized by the correct growth rate of matter perturbations, followed by the transition to a stable
dark-energy-dominated accelerated universe in which matter perturbations remain constant. Furthermore,
analyzing the behavior of fσ8, we find that the models fit observational data successfully, obtaining a
behavior similar to that of the Lambda cold dark matter (ΛCDM) scenario, although the exponential model
does not possess the latter as a particular limit. Hence, through the independent approach of dynamical
systems, we do verify the results of observational confrontation, namely, that fðQÞ gravity can be
considered as a very promising alternative to the ΛCDM concordance model.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) is the most
successful theory to describe the gravitational interaction,
and based on that, the Lambda cold dark matter (ΛCDM)
scenario is the concordance cosmological model. However,
this standard gravitational and cosmological paradigm
faces theoretical and observational problems such as the
nonrenormalizability of GR, cosmological-constant prob-
lem, coincidence problem, Hubble tension, σ8 tension, etc.
[1–7]. Hence, in the literature, one may find various
modified theories of gravity [8–11] and several GR-based
models beyond the ΛCDM one [12–14] that aim to
alleviate a part or all of the above issues.
The usual way to construct gravitational modifications is

to add extra terms in the Einstein-Hilbert Lagrangian,
resulting in fðRÞ gravity [15–17], Gauss-Bonnet and

fðGÞ gravity [18–20], cubic and fðPÞ gravity [21–23],
Horndeski/Galileon scalar-tensor theories [24,25], etc.
Alternatively, one can add new terms to the equivalent
formulation of gravity based on torsion, resulting in fðTÞ
gravity [11,26], fðT; TGÞ gravity [27–29], fðT; BÞ gravity
[30,31], scalar-torsion gravity [32], etc. Nevertheless, there
is a third way to construct new classes of modified gravity,
starting from the “symmetric teleparallel gravity,” which is
based on the nonmetricity scalarQ [33], and extending it to
a function fðQÞ in the Lagrangian.
The modified theory of fðQÞ gravity leads to interesting

cosmological phenomenology at the background level
[34–58]. Additionally, it has been successfully confronted
with various background and perturbation observational
data, such as the cosmic microwave background, super-
novae type Ia, baryonic acoustic oscillations, redshift space
distortion (RSD), growth data, etc. [59–66]; this confron-
tation reveals that fðQÞ gravity may challenge the standard
ΛCDM scenario. Finally, fðQÞ gravity comfortably passes
the big bang nucleosynthesis (BBN) constraints too [67].
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Motivated by the exciting features of fðQÞ gravity, in
this work, we employ the powerful mathematical tool of
dynamical systems analysis in order to investigate for the
first time the cosmological dynamics of fðQÞ cosmology at
both background and perturbation levels. Such investiga-
tion can be used to further confirm the results obtained from
the observational analysis. We mention that, usually, the
dynamical systems approach is applied at the background
level [68–85], however, relatively recently it was realized
that the analysis can be applied at the perturbation level too
[86–89]. Hence, with this combined analysis, we can
determine both the background stable late-time solutions,
as well as the growth of the structure formation, indepen-
dent of the specific initial conditions. Moreover, we can
examine how the matter perturbations backreact to the
background solutions, too.
Thework is organized as follows: In Sec. II, we present the

field equations of fðQÞ gravity, from which one can arrive
at the background and perturbed cosmological equations.
Section III dealswith the dynamical analysis of the combined
system for the power-law and exponential models. Finally,
the obtained results are summarized in Sec. IV.

II. f ðQÞ COSMOLOGY

In this section, we briefly review fðQÞ cosmology. The
action of fðQÞ gravity is given by [33,34]

S ¼
Z �

−
1

16πG
fðQÞ þ Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where g is the determinant of the metric gμν and Lm is the
matter Lagrangian density. fðQÞ is an arbitrary function of
the nonmetricity scalar [33]

Q¼−
1

4
QαβγQαβγþ1

2
QαβγQγβαþ1

4
QαQα−

1

2
QαQ̃

α; ð2Þ

where Qα ≡Qα
μ
μ and Q̃α ≡Qμ

μα are acquired from
contractions of the nonmetricity tensor Qαμν ≡∇αgμν.
Thus, the symmetric teleparallel equivalent of general
relativity, and therefore general relativity, is recovered for
fðQÞ ¼ Q.
Variation of action (1), and setting 8πG ¼ 1 for sim-

plicity, leads to the field equations [34,35]
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ν; ð3Þ

where Lα
μν ¼ 1

2
Qα

μν −QðμανÞ is the disformation tensor,
Tμν is the matter energy-momentum tensor, and fQ≡
∂f=∂Q.

At the background level, we assume a homogeneous,
isotropic, and spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime, whose metric is of
the form

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð4Þ

where t is the cosmic time, aðtÞ is the scale factor, and x, y,
z are the Cartesian coordinates. Note that in the FLRW
metric, for the nonmetricity scalar, we obtain Q ¼ 6H2,
where H ¼ _a

a is the Hubble function and the upper dot
denotes derivative with respect to t. Imposing the splitting
fðQÞ ¼ Qþ FðQÞ and applying the FLRW metric, the
corresponding Friedman equations are [33,34]

3H2 ¼ ρþ F
2
−QFQ; ð5Þ

ð2QFQQ þ FQ þ 1Þ _H þ 1

4
ðQþ 2QFQ − FÞ ¼ −

p
2
; ð6Þ

with FQ ≡ dF
dQ and FQQ ≡ d2F

dQ2. In the above equations, ρ
and p are the energy density and pressure of the matter
fluid, which for no interaction satisfy the conservation
equation

_ρþ 3Hð1þ wÞρ ¼ 0; ð7Þ

with w≡ p=ρ as the matter equation-of-state parameter.
We can now introduce the effective, total energy density

ρeff and pressure peff , respectively, as

ρeff ≡ ρþ F
2
−QFQ; ð8Þ

peff ≡ ρð1þ wÞ
2QFQQ þ FQ þ 1

−
Q
2
; ð9Þ

and thus the corresponding total equation of state weff is
given by

weff ≡ peff

ρeff
¼ −1þ Ωmð1þ wÞ

2QFQQ þ FQ þ 1
: ð10Þ

We mention that for an accelerated universe one requires
weff < − 1

3
. Finally, it proves convenient to introduce the

energy density parameters as

Ωm ¼ ρ

3H2
; ΩQ ¼

F
2
−QFQ

3H2
; ð11Þ

and thus the first Friedman equation (5) becomes simply

Ωm þ ΩQ ¼ 1: ð12Þ

Let us proceed to the investigation of the linear pertur-
bation level, focusing on the matter density contrast δ ¼ δρ

ρ ,

KHYLLEP, DUTTA, SARIDAKIS, and YESMAKHANOVA PHYS. REV. D 107, 044022 (2023)

044022-2



where δρ is the perturbation of the matter energy density.
In particular, the evolution equation of the matter over-
density at the quasistatic limit is given by [34,63]

δ̈þ 2H _δ ¼ ρδ

2ð1þ FQÞ
; ð13Þ

where the denominator of the last term accounts for the
appearance of an effective Newton’s constant. We mention
that in the quasistatic limit the terms involving time
derivatives in the perturbed equations are neglected, and
only spatial derivative terms remain. It is worth mentioning
that such an approximation is sufficient at small scales, well
within the cosmic horizon [90].

III. DYNAMICAL SYSTEMS ANALYSIS

In this section, we construct the dynamical system of the
background and perturbed equations, for a general function
FðQÞ. In this regard, we transform Eqs. (5)–(7) and (13)
into a first-order autonomous system, by considering the
following dynamical variables:

x ¼ F
6H2

; y ¼ −2FQ; u ¼ dðln δÞ
dðln aÞ : ð14Þ

Hence, while the variables x, y are associated with the
background evolution of the Universe, the variable u
quantifies the growth of matter perturbations. Therefore,
u > 0 signifies the growth and u < 0 indicates the decay of
matter perturbations, whenever the matter density contrast δ
is positive.
The background cosmological parameters Ωm, ΩQ and,

weff can be expressed as

Ωm ¼ 1 − x − y;

ΩQ ¼ xþ y;

weff ¼ −1þ ð1 − x − yÞð1þ wÞ
2QFQQ − y

2
þ 1

: ð15Þ

Now, in terms of variables (14), the cosmological equations
can be written as the following dynamical system:

x0 ¼ −
_H
H2

ðyþ 2xÞ; ð16Þ

y0 ¼ 2y
_H
H2

QFQQ

FQ
; ð17Þ

u0 ¼ −uðuþ 2Þ þ 3ð1 − x − yÞ
ð2 − yÞ −

_H
H2

u; ð18Þ

where a prime stands for differentiation with respect to ln a,
and

_H
H2

¼ −
3 − 3ðxþ yÞ

4QFQQ − yþ 2
: ð19Þ

The physical system is a product space of the background
phase space B, which includes the variables x, y, and the
perturbed space P, which consists of the variable u. Under
the physical condition 0 ≤ Ωm ≤ 1, the phase space of the
combined system is

Ψ ¼ B × P ¼ fðx; y; uÞ ∈ R2 ×R∶0 ≤ xþ y ≤ 1g: ð20Þ

It is worth mentioning that the projection of orbits of the
product space Ψ on space B reduces to the corresponding
background orbits.
As a next step we shall determine the dynamical

evolution of the system by extracting its critical points
and examining their stability. Physically, a stable point with
u > 0 indicates an indefinite growth of matter perturbations
and hence the system is not stable with respect to matter
perturbations. However, a stable point with u < 0 indicates
the decay of matter perturbations and therefore the system
is asymptotically stable with respect to perturbations.
Finally, when u ¼ 0 at a stable point, this implies that
matter perturbations remain constant. In summary, for a
viable model, one desires to have an unstable or saddle
point with u > 0, required for the description of the matter
epoch of the Universe, in which the matter perturbations
grow but which does not hold eternally, followed by a
stable late-time attractor corresponding to acceleration but
with u ¼ 0.
In order to proceed to specific analysis, we need to

specify the function F and hence determine the term QFQQ

FQ
.

In the following subsections, we will consider two specific
models, which are known to lead to interesting cosmo-
logical phenomenology.

A. Model I: FðQÞ= αðQQ0
Þn

We start our analysis by considering a power-law model
with [34,60,62]

FðQÞ ¼ α

�
Q
Q0

�
n
; ð21Þ

where α and n are two parameters and where Q0 ¼ 6H2
0 is

the present value of Q (note that applying the first
Friedmann equation at present, α can be eliminated in
terms of n and the present value Ωm0). This model can
describe the late-time Universe acceleration and it is also
compatible with BBN constraints [67]. We mention that
for n ¼ 0 this model is equivalent to the concordance
ΛCDM scenario, while for n ¼ 1 the model reduces to
the symmetric teleparallel equivalent of general relativity
[34,60,62]. In this case, we have QFQQ ¼ ð1−nÞy

4
and hence

the system (16)–(18) closes.
The corresponding dynamical system contains the fol-

lowing four critical points:
(i) Point A1 (0,0,1): This point corresponds to a matter-

dominated critical solution with the background
parametersΩm ¼ 1 and weff ¼ 0. At the perturbation

COSMOLOGY IN FðQÞ GRAVITY: A UNIFIED DYNAMICAL … PHYS. REV. D 107, 044022 (2023)

044022-3



level we have u ¼ 1, which implies that the matter
overdensity δ varies as the scale factor a and hence
increases with the Universe expansion. The corre-
sponding Jacobian matrix has the eigenvalues − 5

2
; 3,

and 3
2
ð1 − nÞ, therefore point A1 for any value of n is

always a saddle one. Hence, the trajectories pass
through this point and leave it, as they are attracted by
a late-time stable point. Thus, we conclude that this
point could be the main candidate for describing the
structure formation during the matter domination era
at both the background and perturbation levels.

(ii) Point B1 ð0; 0;− 3
2
Þ: At the background level, this

point corresponds tomatter domination, withΩm ¼ 1
and weff ¼ 0. However, this point could not describe
the formation of structures at the perturbation level,
since u ¼ − 3

2
, and hence the matter overdensity δ

varies as a−
3
2. The eigenvalues of the Jacobian matrix

are 5
2
; 3, and 3

2
ð1 − nÞ, and therefore this point is

unstable for n < 1 and saddle for n > 1.
(iii) The curve of critical points C1 ð1 − y; y; 0Þ: Each

point on this curve corresponds to a solution
dominated by the effective dark-energy component,
i.e., ΩQ ¼ 1, in which the Universe is accelerated
with a cosmological-constant-like behavior, namely,
with weff ¼ −1. Furthermore, at the perturbation
level we have u ¼ 0, which implies that the matter
perturbation remains constant. The corresponding
eigenvalues are −2;−3, and 0, and since the curve is
one dimensional with one vanishing eigenvalue, it is
normally hyperbolic [69], and one can determine its
stability by examining the signature of the remaining
nonvanishing eigenvalues [69]. Therefore, we con-
clude that it is always stable. In summary, the curve
C1 describes the late-time dark-energy-dominated
Universe, at both background and perturbation
levels.

(iv) Curve of critical points D1 ð1 − y; y;−2Þ: Similar
to C1, this curve of critical points also corresponds
to a cosmological-constant-like solution, i.e., with
weff ¼ −1, dominated by the effective dark-energy
component. Additionally, it is characterized by the
decay of matter perturbations, since u ¼ −2. How-
ever, it is a saddle point with eigenvalues 2;−3, and
0. Hence, unlike C1, curveD1 cannot describe a late-
time dark-energy-dominated universe at the pertur-
bation level.

Our analysis reveals that different critical points describe
different modes of matter perturbations. Additionally, we
mention that identical background critical points behave
differently at the perturbation level. For instance, we
showed that points A1 and B1 describe the decelerated
matter-dominated era at the background level, but only
point A1 has the correct growth of matter structure.
Interestingly, point A1 is saddle and thus it provides the
natural exit toward a late-time accelerated epoch. On the
other hand, at late times, the curves of critical points C1 and

D1 are identical at the background level, describing the
accelerated dark-energy-dominated epoch. However, only
curve C1 is physically and observationally interesting at the
perturbation level, since it is stable and exhibits constant
matter perturbations. Finally, examining for completeness
whether there are critical points at infinity, we find that no
such physical points exist.
In order to give the above information in a more

transparent way, we display the phase portrait of the system
(16)–(18) in Fig. 1. As we see, the system follows the orbit
B1 → A1 → C1. Furthermore, in Fig. 2 we present the
evolution of the background parameters and the matter
growth rate variable u, in terms of the redshift z ¼ a0

a − 1
with a0 ¼ 1 as the current scale factor. As we see, the
model describes the transition from matter domination
toward an accelerated dark-energy-dominated epoch.
In summary, the present power-law model can describe

the desired thermal history of the Universe, both at the
background and perturbation levels. Our analysis indicates
that, in principle, the above hold for any value of n.
Nevertheless, we should mention that a tuning of initial
conditions is required in order to have a sufficiently long
matter-dominated era.
Finally, in order to test the predictions on the matter

growth with observational data, in Fig. 3 we provide the
evolution of fσ8. This quantity is defined as the product of
the growth rate factor f ¼ u ¼ d ln δ

d ln a and the root-mean-
square normalization of the matter power spectrum σ8. The
value of σ8 usually depends on the model, however, here we
have taken σ8 ¼ 0.8, which could alleviate the present σ8
tension between the RSD and Planck data [2]. We mention
here that we have checked that for n > 0 the evolution of
fσ8 coincides with that of the ΛCDM scenario, namely,
with the case n ¼ 0. From Fig. 3, we observe that models

FIG. 1. The phase portrait of the system (16)–(18), for the
power-law model I of (21) with n ¼ 0.5. This particular example
exhibits the evolution B1 → A1 → C1.
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with n < 0 have a smaller value of fσ8, however, the data
prefer comparatively larger values. Hence, models with
n < 0 are not favored by the data. Additionally, it is worth
noting that observational data still favor n < 1 [60–62,65].
Thus, from our analysis we can conclude that the condition
0 < n < 1 is required in order to acquire consistency with
observations.

B. Model II: FðQÞ= Qeβ
Q0
Q −Q

In this subsection, we consider the exponential model [63]

FðQÞ ¼ Qeβ
Q0
Q −Q; ð22Þ

with β as the only dimensionless parameter. For β ¼ 0, the
model is equivalent to GR without a cosmological constant,
however, the interesting feature is that for β ≠ 0 this model
can fit observations in a very satisfactory way, although it
does not include a cosmological constant [63]. Note that

applying the first Friedmann equation at present, β can be
eliminated in terms of Ωm0 [63]. Additionally, since at early
times Q ≫ Q0, the model tends to GR limit and hence it
trivially passes the BBN constraints [63,67].
In this case, we have QFQQ ¼ ðxþ1Þ2þxðy−2Þþy2

4
−1

xþ1
, and

therefore the dynamical system (16)–(18) has four curves
of critical points. In what follows, we shall describe the
properties of each curve.

(i) Curve of critical points A2 ð− y
2
; y; 1Þ: This curve

corresponds to a matter scaling solution with Ωm ¼
1 − y

2
and weff ¼ 0. The corresponding Jacobian

matrix has the eigenvalues − 5
2
; 3, and 0, and thus

the corresponding points are always saddle. Fur-
thermore, since u ¼ 1, it is implied that the matter
perturbations grow, and hence the solution is of
interest from the structure formation point of view.

(ii) Curve of critical points B2 ð− y
2
; y;− 3

2
Þ: Similar to

A2, this curve corresponds to a matter scaling
solution. However, since u < 0, we deduce that
the matter perturbations decay and therefore it
cannot describe the growth of structures during
the matter-dominated epoch. It corresponds to an
unstable node with eigenvalues 5

2
; 3, and 0.

(iii) Curves of critical points C2 ð1 − y; y; 0Þ and D2

ð1 − y; y;−2Þ: Both these curves correspond to
accelerated solutions, dominated by the nonmetric-
ity component. The stability and cosmological
properties of curves C2 and D2 are exactly the same
as the curves C1 and D1. Finally, we find that only
C2 is interesting for the late-time Universe at the
perturbation level.

Similar to model I of the previous subsection, we see
that the inclusion of perturbations distinguishes critical
points that are equivalent at the background level. Hence,

FIG. 2. Upper: evolution of the density parameters of matterΩm
and of nonmetricity (dark energy) ΩQ, as well as of the total,
effective equation-of-state parameter weff, as functions of the
redshift, for the power-law model I of (21) with n ¼ 0.5. Lower:
evolution of the perturbation variable u ¼ dðln δÞ

dðln aÞ.

FIG. 3. The evolution of fσ8 as a function of the redshift, for
the power-law model I of (21), for various values of n. The data
are taken from [91,92].
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from the combined background and perturbation analysis,
we find that only curve A2 is physically interesting to
describe the matter-dominated epoch, where matter per-
turbations are generated. On the other hand, curve C2

corresponds to late-time dark-energy domination, with a
fixed evolution of matter perturbations, as observations
require. Finally, for this model, we also find no critical
points at infinity.
In Fig. 4, we present the phase-space evolution, describ-

ing the transitionB2 → A2 → C2. Furthermore, in Fig. 5 we
depict the evolution of the background cosmological
parameters and the growth rate u, where we observe the
transition from matter domination toward a late-time dark-
energy-dominated epoch. As we mentioned above, it is
interesting that, even though the present model does not
possess a ΛCDM limit for any parameter choice, the
corresponding dynamics is qualitatively similar with that
of ΛCDM (see Fig. 5). Hence, since the model is free from
the cosmological-constant problem, it may be considered as
slightly preferred over the ΛCDM scenario, constituting an
interesting alternative.
Finally, in Fig. 6, we investigate the evolution of fσ8,

using σ8 ¼ 0.7. As we observe, the behavior is comparable
with that of the ΛCDM paradigm. In summary, the unified
dynamical systems analysis confirms the observational
investigation at background and perturbation levels per-
formed in [63,65].

IV. CONCLUSIONS

Motivated by the fact that cosmological models based on
fðQÞ gravity are very efficient in fitting observational
datasets at both background and perturbation levels
[63,65], in the present work we performed a combined
dynamical systems analysis of both background and

FIG. 5. Upper: evolution of the density parameters of matterΩm
and of nonmetricity (dark energy) ΩQ, as well as of the total,
effective equation-of-state parameter weff, as functions of the
redshift, for the exponential model II of (22). Lower: evolution of
the perturbation variable u ¼ dðln δÞ

dðln aÞ.

FIG. 6. The evolution of fσ8 as a function of the redshift, for
the exponential model II of (22). The data are taken from [91,92].FIG. 4. The phase portrait of the system (16)–(18), for the

exponential model II of (22). This particular example exhibits the
evolution B2 → A2 → C2.
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perturbation equations in order to examine the validity of
this result through an independent method.
After transforming the background and perturbation

equations into an autonomous system, we focused on
two studied fðQÞ models of the literature, namely, the
power-law and the exponential ones. Because of the extra
variable related to matter perturbations, each background
critical point split into two points, characterized by differ-
ent behavior of matter perturbations and stability.
Concerning the power-law model, we obtained a matter-

dominated saddle point characterized by the correct growth
rate of matter perturbations, followed by the transition to a
stable dark-energy-dominated accelerated universe in which
matter perturbations remain constant. Furthermore, we
studied the growth of matter perturbations by analyzing
the behavior of fσ8, and we found that the model fits
observational data successfully if the exponent lies within
0 < n < 1, in which case we obtained a behavior similar to
that of the ΛCDM scenario.
Concerning the exponential model, we also found

curves of points corresponding to matter domination and
matter perturbation growth, and the fact that they are saddle
points provides a successful transition to the stable late-
time dark-energy-dominated solution with constant matter
perturbations. The interesting feature of this model is that

this desired behavior is obtained although the model does
not possess the ΛCDM scenario as a particular limit,
namely, it arises solely from the nonmetricity structure.
Additionally, we found that, while the power-law model
resembles ΛCDM cosmology for n < 1, the exponential
model resembles the latter for any choice of the model
parameter.
In summary, the combined dynamical analysis at the

background and perturbation levels do verify the results of
observational confrontation, showing through an indepen-
dent way that fðQÞ gravity, and specifically, the exponen-
tial model, can be considered as a very promising
alternative to the ΛCDM concordance model.
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Nunes, Forecasting FðQÞ cosmology with ΛCDM back-
ground using standard sirens, Phys. Rev. D 105, 123531
(2022).

[48] Raja Solanki, Avik De, and P. K. Sahoo, Complete dark
energy scenario in fðQÞ gravity, Phys. Dark Universe 36,
100996 (2022).

[49] Avik De, Sanjay Mandal, J. T. Beh, Tee-How Loo, and P. K.
Sahoo, Isotropization of locally rotationally symmetric
Bianchi-I universe in fðQÞ-gravity, Eur. Phys. J. C 82,
72 (2022).

[50] Raja Solanki, S. K. J. Pacif, Abhishek Parida, and
P. K. Sahoo, Cosmic acceleration with bulk viscosity in
modified fðQÞ gravity, Phys. Dark Universe 32, 100820
(2021).

[51] Salvatore Capozziello and Rocco D’Agostino, Model-
independent reconstruction of fðQÞ non-metric gravity,
Phys. Lett. B 832, 137229 (2022).

[52] S. A. Narawade, Laxmipriya Pati, B. Mishra, and S. K.
Tripathy, Dynamical system analysis for accelerating mod-
els in non-metricity fðQÞ gravity, Phys. Dark Universe 36,
101020 (2022).

[53] N. Dimakis, A. Paliathanasis, M. Roumeliotis, and T.
Christodoulakis, FLRW solutions in fðQÞ theory: The effect
of using different connections, Phys. Rev. D 106, 043509
(2022).

[54] Inês S. Albuquerque and Noemi Frusciante, A designer
approach to fðQÞ gravity and cosmological implications,
Phys. Dark Universe 35, 100980 (2022).

[55] Simran Arora and P. K. Sahoo, Crossing phantom divide in
fðQÞ gravity, Ann. Phys. (Berlin) 534, 2200233 (2022).

[56] Laxmipriya Pati, S. A. Narawade, S. K. Tripathy, and B.
Mishra, Scalar perturbations in a class of extended sym-
metric teleparallel gravity models, arXiv:2206.11928.

[57] A. S. Agrawal, B. Mishra, and P. K. Agrawal, Matter bounce
scenario in extended symmetric teleparallel gravity, arXiv:
2206.02783.

[58] Fabio D’Ambrosio, Lavinia Heisenberg, and Simon Kuhn,
Revisiting cosmologies in teleparallelism, Classical Quan-
tum Gravity 39, 025013 (2022).

KHYLLEP, DUTTA, SARIDAKIS, and YESMAKHANOVA PHYS. REV. D 107, 044022 (2023)

044022-8

https://doi.org/10.1016/j.physletb.2005.10.010
https://doi.org/10.1016/j.physletb.2009.03.060
https://doi.org/10.1016/j.physletb.2009.03.060
https://doi.org/10.1103/PhysRevD.99.123527
https://doi.org/10.1103/PhysRevD.101.103534
https://doi.org/10.1103/PhysRevD.101.103534
https://doi.org/10.1088/1475-7516/2021/01/069
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.79.084003
https://doi.org/10.1103/PhysRevD.79.124019
https://doi.org/10.1103/PhysRevD.90.084044
https://doi.org/10.1088/0264-9381/31/17/175011
https://doi.org/10.1103/PhysRevD.90.084045
https://doi.org/10.1103/PhysRevD.90.084045
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1103/PhysRevD.92.104042
https://doi.org/10.1140/epjc/s10052-017-4677-0
https://doi.org/10.1140/epjc/s10052-017-4677-0
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1016/j.physletb.2011.09.082
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.98.044048
https://doi.org/10.1103/PhysRevD.101.103507
https://doi.org/10.1140/epjc/s10052-019-7106-8
https://doi.org/10.1140/epjp/s13360-020-00918-3
https://doi.org/10.1103/PhysRevD.103.044030
https://doi.org/10.1103/PhysRevD.103.044030
https://doi.org/10.1103/PhysRevD.102.124029
https://doi.org/10.1016/j.physletb.2020.135970
https://doi.org/10.1103/PhysRevD.102.024057
https://doi.org/10.1103/PhysRevD.102.024057
https://doi.org/10.1088/1361-6382/ac2b09
https://doi.org/10.1088/1361-6382/ac2b09
https://doi.org/10.1088/1361-6382/ac776b
https://doi.org/10.1088/1361-6382/ac776b
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.103.103521
https://doi.org/10.1103/PhysRevD.104.124077
https://doi.org/10.1103/PhysRevD.105.024060
https://doi.org/10.1103/PhysRevD.105.024060
https://doi.org/10.1103/PhysRevD.105.104060
https://doi.org/10.1103/PhysRevD.105.123531
https://doi.org/10.1103/PhysRevD.105.123531
https://doi.org/10.1016/j.dark.2022.100996
https://doi.org/10.1016/j.dark.2022.100996
https://doi.org/10.1140/epjc/s10052-022-10021-9
https://doi.org/10.1140/epjc/s10052-022-10021-9
https://doi.org/10.1016/j.dark.2021.100820
https://doi.org/10.1016/j.dark.2021.100820
https://doi.org/10.1016/j.physletb.2022.137229
https://doi.org/10.1016/j.dark.2022.101020
https://doi.org/10.1016/j.dark.2022.101020
https://doi.org/10.1103/PhysRevD.106.043509
https://doi.org/10.1103/PhysRevD.106.043509
https://doi.org/10.1016/j.dark.2022.100980
https://doi.org/10.1002/andp.202200233
https://arXiv.org/abs/2206.11928
https://arXiv.org/abs/2206.02783
https://arXiv.org/abs/2206.02783
https://doi.org/10.1088/1361-6382/ac3f99
https://doi.org/10.1088/1361-6382/ac3f99


[59] Ismail Soudi, Gabriel Farrugia, Viktor Gakis, Jackson Levi
Said, and Emmanuel N. Saridakis, Polarization of gravita-
tional waves in symmetric teleparallel theories of gravity
and their modifications, Phys. Rev. D 100, 044008 (2019).

[60] Ruth Lazkoz, Francisco S. N. Lobo, María Ortiz-Baños, and
Vincenzo Salzano, Observational constraints of fðQÞ grav-
ity, Phys. Rev. D 100, 104027 (2019).

[61] Bruno J. Barros, Tiago Barreiro, Tomi Koivisto, and Nelson
J. Nunes, Testing FðQÞ gravity with redshift space dis-
tortions, Phys. Dark Universe 30, 100616 (2020).

[62] Ismael Ayuso, Ruth Lazkoz, and Vincenzo Salzano, Ob-
servational constraints on cosmological solutions of fðQÞ
theories, Phys. Rev. D 103, 063505 (2021).

[63] Fotios K. Anagnostopoulos, Spyros Basilakos, and
Emmanuel N. Saridakis, First evidence that non-metricity
fðQÞ gravity could challenge ΛCDM, Phys. Lett. B 822,
136634 (2021).

[64] Sanjay Mandal and P. K. Sahoo, Constraint on the equation
of state parameter (ω) in non-minimally coupled fðQÞ
gravity, Phys. Lett. B 823, 136786 (2021).

[65] Luís Atayde and Noemi Frusciante, Can fðQÞ gravity
challenge ΛCDM?, Phys. Rev. D 104, 064052 (2021).

[66] Noemi Frusciante, Signatures of fðQÞ-gravity in cosmol-
ogy, Phys. Rev. D 103, 044021 (2021).

[67] Fotios K. Anagnostopoulos, Viktor Gakis, Emmanuel N.
Saridakis, and Spyros Basilakos, New models and big bang
nucleosynthesis constraints in fðQÞ gravity, arXiv:2205
.11445.

[68] JohnWainwright and George F. R. Ellis,Dynamical Systems
in Cosmology (Cambridge University Press, Cambridge,
England, 1997).

[69] A. A. Coley, Dynamical Systems and Cosmology (Kluwer,
Dordrecht, Netherlands, 2003).

[70] Sebastian Bahamonde, Christian G. Böhmer, Sante Carloni,
Edmund J. Copeland, Wei Fang, and Nicola Tamanini,
Dynamical systems applied to cosmology: Dark energy and
modified gravity, Phys. Rep. 775–777, 1 (2018).

[71] Edmund J. Copeland, Andrew R. Liddle, and David Wands,
Exponential potentials and cosmological scaling solutions,
Phys. Rev. D 57, 4686 (1998).

[72] Yungui Gong, Anzhong Wang, and Yuan-Zhong Zhang,
Exact scaling solutions and fixed points for general scalar
field, Phys. Lett. B 636, 286 (2006).

[73] M. R. Setare and E. N. Saridakis, Quintom dark energy
models with nearly flat potentials, Phys. Rev. D 79, 043005
(2009).

[74] Tonatiuh Matos, Jose-Ruben Luevano, Israel Quiros, L.
Arturo Urena-Lopez, and Jose Alberto Vazquez, Dynamics
of scalar field dark matter with a cosh-like potential, Phys.
Rev. D 80, 123521 (2009).

[75] Edmund J. Copeland, Shuntaro Mizuno, and Maryam
Shaeri, Dynamics of a scalar field in Robertson-Walker
spacetimes, Phys. Rev. D 79, 103515 (2009).

[76] Yoelsy Leyva, Dania Gonzalez, Tame Gonzalez, Tonatiuh
Matos, and Israel Quiros, Dynamics of a self-interacting
scalar field trapped in the braneworld for a wide variety of
self-interaction potentials, Phys. Rev. D 80, 044026 (2009).

[77] Genly Leon and Emmanuel N. Saridakis, Dynamics of the
anisotropic Kantowsky-Sachs geometries in Rn gravity,
Classical Quantum Gravity 28, 065008 (2011).

[78] L. Arturo Urena-Lopez, Unified description of the dynamics
of quintessential scalar fields, J. Cosmol. Astropart. Phys.
03 (2012) 035.

[79] Genly Leon, Joel Saavedra, and Emmanuel N. Saridakis,
Cosmological behavior in extended nonlinear massive
gravity, Classical Quantum Gravity 30, 135001 (2013).

[80] Carlos R. Fadragas, Genly Leon, and Emmanuel N.
Saridakis, Dynamical analysis of anisotropic scalar-field
cosmologies for a wide range of potentials, Classical
Quantum Gravity 31, 075018 (2014).

[81] Maria A. Skugoreva, Emmanuel N. Saridakis, and Alexey V.
Toporensky, Dynamical features of scalar-torsion theories,
Phys. Rev. D 91, 044023 (2015).

[82] Jibitesh Dutta, Wompherdeiki Khyllep, and Nicola
Tamanini, Cosmological dynamics of scalar fields with
kinetic corrections: Beyond the exponential potential, Phys.
Rev. D 93, 063004 (2016).

[83] Jibitesh Dutta, Wompherdeiki Khyllep, and Nicola
Tamanini, Scalar-fluid interacting dark energy: Cosmologi-
cal dynamics beyond the exponential potential, Phys. Rev. D
95, 023515 (2017).

[84] Hmar Zonunmawia, Wompherdeiki Khyllep, Jibitesh Dutta,
and Laur Järv, Cosmological dynamics of brane gravity: A
global dynamical system perspective, Phys. Rev. D 98,
083532 (2018).

[85] Wompherdeiki Khyllep and Jibitesh Dutta, Cosmological
dynamics and bifurcation analysis of the general non-
minimal coupled scalar field models, Eur. Phys. J. C 81,
774 (2021).

[86] Spyros Basilakos, Genly Leon, G. Papagiannopoulos, and
Emmanuel N. Saridakis, Dynamical system analysis at
background and perturbation levels: Quintessence in severe
disadvantage comparing to ΛCDM, Phys. Rev. D 100,
043524 (2019).

[87] Artur Alho, Claes Uggla, and John Wainwright, Perturba-
tions of the Lambda-CDM model in a dynamical systems
perspective, J. Cosmol. Astropart. Phys. 09 (2019) 045.

[88] Ricardo G. Landim, Cosmological perturbations and
dynamical analysis for interacting quintessence, Eur. Phys.
J. C 79, 889 (2019).

[89] Wompherdeiki Khyllep, Jibitesh Dutta, Spyros Basilakos,
and Emmanuel N. Saridakis, Background evolution and
growth of structures in interacting dark energy scenarios
through dynamical system analysis, Phys. Rev. D 105,
043511 (2022).

[90] Yong-Seon Song, Wayne Hu, and Ignacy Sawicki, The large
scale structure of fðRÞ gravity, Phys. Rev. D 75, 044004
(2007).

[91] Bryan Sagredo, Savvas Nesseris, and Domenico Sapone,
Internal robustness of growth rate data, Phys. Rev. D 98,
083543 (2018).

[92] Lavrentios Kazantzidis and Leandros Perivolaropoulos,
Evolution of the fσ8 tension with the Planck15=ΛCDM
determination and implications for modified gravity theo-
ries, Phys. Rev. D 97, 103503 (2018).

COSMOLOGY IN FðQÞ GRAVITY: A UNIFIED DYNAMICAL … PHYS. REV. D 107, 044022 (2023)

044022-9

https://doi.org/10.1103/PhysRevD.100.044008
https://doi.org/10.1103/PhysRevD.100.104027
https://doi.org/10.1016/j.dark.2020.100616
https://doi.org/10.1103/PhysRevD.103.063505
https://doi.org/10.1016/j.physletb.2021.136634
https://doi.org/10.1016/j.physletb.2021.136634
https://doi.org/10.1016/j.physletb.2021.136786
https://doi.org/10.1103/PhysRevD.104.064052
https://doi.org/10.1103/PhysRevD.103.044021
https://arXiv.org/abs/2205.11445
https://arXiv.org/abs/2205.11445
https://doi.org/10.1016/j.physrep.2018.09.001
https://doi.org/10.1103/PhysRevD.57.4686
https://doi.org/10.1016/j.physletb.2006.03.057
https://doi.org/10.1103/PhysRevD.79.043005
https://doi.org/10.1103/PhysRevD.79.043005
https://doi.org/10.1103/PhysRevD.80.123521
https://doi.org/10.1103/PhysRevD.80.123521
https://doi.org/10.1103/PhysRevD.79.103515
https://doi.org/10.1103/PhysRevD.80.044026
https://doi.org/10.1088/0264-9381/28/6/065008
https://doi.org/10.1088/1475-7516/2012/03/035
https://doi.org/10.1088/1475-7516/2012/03/035
https://doi.org/10.1088/0264-9381/30/13/135001
https://doi.org/10.1088/0264-9381/31/7/075018
https://doi.org/10.1088/0264-9381/31/7/075018
https://doi.org/10.1103/PhysRevD.91.044023
https://doi.org/10.1103/PhysRevD.93.063004
https://doi.org/10.1103/PhysRevD.93.063004
https://doi.org/10.1103/PhysRevD.95.023515
https://doi.org/10.1103/PhysRevD.95.023515
https://doi.org/10.1103/PhysRevD.98.083532
https://doi.org/10.1103/PhysRevD.98.083532
https://doi.org/10.1140/epjc/s10052-021-09559-x
https://doi.org/10.1140/epjc/s10052-021-09559-x
https://doi.org/10.1103/PhysRevD.100.043524
https://doi.org/10.1103/PhysRevD.100.043524
https://doi.org/10.1088/1475-7516/2019/09/045
https://doi.org/10.1140/epjc/s10052-019-7418-8
https://doi.org/10.1140/epjc/s10052-019-7418-8
https://doi.org/10.1103/PhysRevD.105.043511
https://doi.org/10.1103/PhysRevD.105.043511
https://doi.org/10.1103/PhysRevD.75.044004
https://doi.org/10.1103/PhysRevD.75.044004
https://doi.org/10.1103/PhysRevD.98.083543
https://doi.org/10.1103/PhysRevD.98.083543
https://doi.org/10.1103/PhysRevD.97.103503

