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Matter coupling in modified gravity theories is a nontrivial issue when the gravitational Lagrangian
possesses a degeneracy structure to avoid the problem of the Ostrogradsky ghost. Recently, this issue was
addressed for bosonic matter fields in the generalized disformal Horndeski class, which is so far the most
general class of ghost-free scalar-tensor theories obtained by performing a higher-derivative generalization
of invertible disformal transformations on Horndeski theories. In this paper, we clarify the consistency of
fermionic matter coupling in the generalized disformal Horndeski theories. We develop the transformation
law for the tetrad associated with the generalized disformal transformation to see how it affects the
fermionic matter coupling. We find that the consistency of the fermionic matter coupling requires an
additional condition on top of the one required for the bosonic case. As a result, we identify a subclass of
the generalized disformal Horndeski class which allows for consistent coupling of ordinary matter fields,
including the standard model particles.
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I. INTRODUCTION

Modified gravity theories, as the name suggests, refer to
modifications/extensions of general relativity. There are (at
least) several motivations to explore modified theories of
gravity. First, general relativity is not an ultraviolet com-
plete theory, and hence one expects that it has to be
modified at some high-energy scale. Modified gravity
theories could also address mysteries in cosmology, e.g.,
inflation, dark energy, and dark matter. Besides these,
modifying/extending general relativity leads to a deeper
understanding of general relativity itself. With these moti-
vations, innumerable modified gravity models have been
proposed up to now. From the perspective of testing gravity,
such modified gravity models are useful for comparison
with general relativity [1–3]. Indeed, effects of the modi-
fication would be encoded in, e.g., cosmic microwave
background, large-scale structure, black holes, and neutron
stars. These phenomena are a key to distinguish modified
gravity models from general relativity by observations.
Being the simplest extension of general relativity, scalar-

tensor theories (i.e., those written in terms of the metric and
a single scalar field) have been extensively studied to this
date. Despite their simplicity, they are expected to capture
essential aspects of generic modified gravity models.
Indeed, many modified gravity models contain some
additional scalar degree of freedom (d.o.f.) at least effec-
tively. Also, scalar-tensor theories offer a rich pheno-
menology in cosmology and compact objects. In order

to treat various scalar-tensor theories in a unified manner, it
is useful to develop a general framework of scalar-tensor
theories.1 Another reason to study such generalization is
that it gives rise to novel interactions in general, which are
expected to exhibit peculiar phenomena that can be tested
observationally. The most general class of scalar-tensor
theories with second-order Euler-Lagrange equations is
known as the Horndeski class [13–15]. Due to this second-
order nature, the Horndeski class is obviously free from the
problem of the Ostrogradsky ghost, i.e., unstable extra
degrees of freedom associated with higher-order equations
of motion [16]. However, the Horndeski class is not the
most general class of ghost-free scalar-tensor theories: One
can go beyond the Horndeski class by use of disformal
transformations [17–19]. A disformal transformation is a
redefinition of the metric containing the scalar field and its
derivatives, which includes the conformal transformation as
a special case. If one performs such a metric redefinition on
some given scalar-tensor theories, then one obtains possibly
new theories. Up to the first-order derivative of the scalar

1A complementary approach is the effective field theory (EFT)
based on the spontaneous breaking of spacetime symmetries,
which was originally developed in [4,5] to describe the dynamics
of cosmological perturbations in a model-independent manner.
We note that the EFT of [4,5] applies only to scalar-tensor
theories, and it was extended to incorporate vector-tensor theories
[6] and solids/fluids [7]. Moreover, applications to black hole
perturbations have also been discussed recently [8–12].
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field, one can write down the most general possible
transformation law for the metric as

ḡμν½gαβ;ϕ� ¼ F0ðϕ; XÞgμν þ F1ðϕ; XÞ∇μϕ∇νϕ; ð1Þ

which maps a pair ðgαβ;ϕÞ to ðḡαβ;ϕÞ with ḡμν being a new
metric. Here, F0 and F1 are functions of ðϕ; XÞ with
X ≔ gαβ∂αϕ∂βϕ. This transformation maps a theory within
the Horndeski class to its outside in general [20], which we
shall call the “disformal Horndeski class” (or theDH class for
short). An important thing to note is that the transformation
(1) is invertible (i.e., can be solved uniquely for gαβ at least
locally in the configuration space) so long as F0ðF0 þ
XF1ÞðF0 − XF0X − X2F1XÞ ≠ 0 is satisfied [21,22], where
a subscript X denotes the partial derivative with respect to X.
When such an invertible transformation acts on scalar-tensor
theories, it does not change the number of physical degrees of
freedom, and in particular, it maps a ghost-free theory to
another ghost-free theory [23,24]. Therefore, thanks to the
ghost-free nature of the Horndeski class, the DH class is also
ghost-free. Note that there are other classes of ghost-free
scalar-tensor theories [20,25–28] that are not disformally
related to the Horndeski class. These classes are free from the
Ostrogradsky ghost since they satisfy the so-called degen-
eracy condition [25,29–35] in a more nontrivial way.
However, these classes do not accommodate a viable cos-
mological solution [27,28,36], and hence they are phenom-
enologically disfavored. This is why we are interested in
ghost-free theories generated by disformal transformations.
Recently, a higher-derivative generalization of disformal
transformations was developed in [22] and was employed
to obtain a novel class of ghost-free scalar-tensor theories,
which is dubbed as the “generalized disformal Horndeski
class” (or the GDH class) [37]. The GDH class provides the
most general framework for ghost-free scalar-tensor theories
to this date.
By definition, a (G)DH theory is related to some

Horndeski theory via invertible (generalized) disformal
transformation. On the other hand, when minimally
coupled matter fields are introduced to each of the two
gravitational theories, the two systems are no longer
disformal relatives. In this sense, the existence of matter
fields is crucial to distinguish the (G)DH class from the
Horndeski class. Also, gravity can only be probed through
matter fields, and hence one should take them into account
in practice. We note that matter coupling in scalar-tensor
theories (or any other modified gravity theories) is in
general a nontrivial issue in the following sense: Even
though the gravitational sector satisfies the degeneracy
condition and is free from the Ostrogradsky ghost, the
introduction of matter fields can revive the ghost since the
degeneracy structure is altered in general. We would like to

avoid this problem at least for the standard model particles,
i.e., a scalar field, gauge fields, and spinor fields with
canonical kinetic terms. Fortunately, such ordinary matter
fields can be consistently coupled to DH theories without
reviving the Ostrogradsky ghost [38]. Further, the consis-
tency of the matter coupling in the GDH class was partially
addressed. The authors of [37,39] showed that ordinary
bosonic matter fields can be consistently coupled under the
unitary gauge in a particular subclass of the GDH class.
Namely, in this subclass, minimally coupled bosonic matter
fields do not spoil the degeneracy structure (see Secs. II A
and III A for details). Still, the consistency of fermionic
matter coupling in the GDH class has been remained a
nontrivial issue so far.
In the present paper, we investigate the consistency of

matter coupling in GDH theories, with a particular focus on
fermionic matter coupling. The most nontrivial thing in this
case is that the fermion Lagrangian is written in terms of not
the metric itself but the tetrad, whose transformation law
under the generalized disformal transformation has not
been clarified in the literature. In this paper, we develop the
transformation law for the tetrad to study the structure of
the fermion kinetic term. Interestingly, we find that the
consistency of the fermionic matter coupling requires an
additional condition on top of the one required for the
bosonic case. As a result, we find that the GDH class
accommodates a subclass where not only bosonic but also
fermionic matter fields can be consistently coupled without
reviving the Ostrogradsky ghost.
The rest of this paper is organized as follows. In Sec. II,

we review the generalized disformal transformation and
develop the tetrad transformation law associated with
the generalized disformal transformation. In Sec. III, we
discuss the consistency of matter coupling in GDH theories
based on the transformation law for the metric/tetrad
obtained in Sec. II, where we reveal the additional con-
dition necessary for making the fermionic as well as
bosonic matter coupling consistent. Finally, we draw our
conclusions in Sec. IV.

II. GENERALIZED DISFORMAL
TRANSFORMATION

In this section, we briefly review the higher-derivative
generalization of disformal transformations based
on [22,37]. We then develop the transformation law for
the tetrad associated with the generalized disformal trans-
formation. We shall use the results of this section to discuss
the consistency of matter coupling in Sec. III. Note that our
main focus is on a four-dimensional spacetime, but the
results in this section hold in arbitrary spacetime dimen-
sions. If one is interested in higher dimensions, the term
“tetrad” should be interpreted as “vielbein.”
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A. Metric transformation law

Let us consider the following generalized disformal
transformation [22]:

ḡμν½gαβ;ϕ� ¼ F0gμν þ F1ϕμϕν þ 2F2ϕðμXνÞ þ F3XμXν;

ð2Þ
with the coefficients Fi being functions of ðϕ; X; Y; ZÞ and

X ≔ ϕμϕ
μ; Y ≔ ϕμXμ; Z ≔ XμXμ: ð3Þ

Here and in what follows, we use the notations ϕμ ≔ ∂μϕ
and Xμ ≔ ∂μX. Note that the right-hand side of (2) is the
most general symmetric tensor of rank two constructed out
of ϕ, ϕμ, and Xμ. Thanks to this structure, it is straightfor-
ward to construct the inverse metric ḡμν such that ḡμαḡαν ¼
δμν [22]. Moreover, as detailed in [22], one can systemati-
cally obtain the conditions under which the transformation
is invertible [i.e., Eq. (2) can be uniquely solved for the
unbarred metric at least locally in the configuration space]
by focusing on the group structure of the transformations
under the functional composition. In particular, the closed-
ness under the functional composition requires that the
coefficient functions Fi satisfy

X̄Y ¼ X̄Z ¼ 0; X̄ ≔ ḡμνϕμϕν: ð4Þ

Namely, the kinetic term X̄ of the scalar field associated
with the barred metric, which is generically a function of
ðϕ; X; Y; ZÞ, must be a function only of ðϕ; X),

X̄ ¼ X̄ðϕ; XÞ: ð5Þ

With this requirement, one can construct the inverse
transformation in a fully covariant manner. One can also
see that, in order for the inverse transformation to exist, the
following conditions should be satisfied on top of (5):

F0≠0; F ≠0; X̄X ≠0;

����∂ðȲ;Z̄Þ
∂ðY;ZÞ

����≠0; ð6Þ

where we have defined Ȳ ≔ ḡμνϕμX̄ν, Z̄ ≔ ḡμνX̄μX̄ν with
X̄μ ≔ ∂μX̄, and

F ≔ F2
0 þ F0ðXF1 þ 2YF2 þ ZF3Þ

þ ðXZ − Y2ÞðF1F3 − F2
2Þ: ð7Þ

In [37], the generalized disformal transformation (2)
satisfying the invertibility conditions (5) and (6) was
employed to construct a novel class of ghost-free scalar-
tensor theories, which is dubbed theGDHclass. A nontrivial
thing in GDH theories (or any other ghost-free theories with
degenerate higher-derivative interactions) is that the
Ostrogradsky ghost could revive in general when matter

fields are taken into account.2 Interestingly, the authors
of [37,39] showed that a subclass ofGDH theories generated
by generalized disformal transformations of the following
form allows for consistent bosonic matter coupling:

ḡμν½gαβ;ϕ� ¼ f0gμν þ f1ϕμϕν þ 2f2ϕðμX νÞ þ f3XμX ν;

Xμ ≔
�
δαμ −

ϕμϕ
α

X

�
∂αX; ð8Þ

where Xμ denotes the projection of ∂μX onto a constant-ϕ
hypersurface and fi’s are functions of ðϕ; X;ZÞ with3

Z ≔ XμXμ ¼ Z −
Y2

X
: ð9Þ

Note that fi’s here are related to Fi’s in (2) as

F0 ¼ f0; F1 ¼ f1 −
2Y
X

f2 þ
Y2

X2
f3;

F2 ¼ f2 −
Y
X
f3; F3 ¼ f3: ð10Þ

We shall discuss the issue of matter coupling in detail in
Sec. III.
In what follows, we employ the strategy of [22] to derive

several formulas for the inverse metric and the inverse
transformation associated with the generalized disformal
metric (8), which are useful when we focus on this
particular subclass of generalized disformal transforma-
tions. The expression for the inverse disformal metric ḡμν is
obtained by assuming

ḡμν½gαβ;ϕ� ¼ a0gμν þ a1ϕμϕν þ 2a2ϕðμX νÞ þ a3XμX ν;

ð11Þ

and then fixing each coefficient function aiðϕ; X;ZÞ so that
ḡμαḡαν ¼ δμν . Written explicitly, we have

a0 ¼
1

f0
; a1 ¼ −

f0f1 þ Zðf1f3 − f22Þ
f0F

;

a2 ¼ −
f2
F

; a3 ¼ −
f0f3 þ Xðf1f3 − f22Þ

f0F
; ð12Þ

with F defined in (7), which can be expressed in terms of
fi’s as

F ¼ f20 þ f0ðXf1 þ Zf3Þ þ XZðf1f3 − f22Þ: ð13Þ

2We expect that the mass of the revived Ostrogradsky ghost
would scale as some inverse power of the matter energy density ρ.
Therefore, from the EFT point of view, the ghost would be
irrelevant at low energies for sufficiently small ρ.

3The quantity W ≔ Y2 − XZ used in [37] plays essentially the
same role as Z in the present paper.
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As a result, we obtain

X̄ ¼ Xa0 þ X2a1 ¼
Xðf0 þ Zf3Þ

F
; ð14Þ

which is a function of ðϕ; X;ZÞ in general. In order for the
disformal transformation to be invertible, we require that X̄
does not depend on Z, i.e., X̄ ¼ X̄ðϕ; XÞ. This requirement
poses a constraint among fi’s, which allows us to express
one of the fi’s in terms of the others. For instance, f1 is
written in terms of the other functions as

f1 ¼
1

X̄
−
f0
X

þ Zf22
f0 þ Zf3

: ð15Þ

We also assume X̄X ≠ 0 so that we have X as a function of
ðϕ; X̄Þ. Let us define

X̄μ ≔
�
δαμ −

ϕμϕν

X̄
ḡνα

�
∂αX̄ ¼ X̄X

�
Xμ þ

Zf2
f0 þ Zf3

ϕμ

�
;

ð16Þ

and then

Z̄ ≔ ḡμνX̄μX̄ ν ¼
XX̄2

X

X̄
Z
F
: ð17Þ

Provided that ðZ=F ÞZ ≠ 0, this equation allows us to
express Z as a function of ðϕ; X̄; Z̄Þ. Now, the inverse
disformal transformation can be written in the form

gμν½ḡαβ;ϕ� ¼
1

f0
ḡμν−

1

f0

�
f1−

Zf22ð2f0þZf3Þ
ðf0þZf3Þ2

�
ϕμϕν

−
2f2

X̄Xðf0þZf3Þ
ϕðμX̄ νÞ−

f3
X̄2
Xf0

X̄μX̄ ν; ð18Þ

where X and Z on the right-hand side should be respec-
tively regarded as functions of ðϕ; X̄Þ and ðϕ; X̄; Z̄Þ, as
explained earlier. The invertibility conditions are summa-
rized as

f0 ≠ 0; F ≠ 0; X̄X ≠ 0; X̄Z ¼ 0;

�
Z
F

�
Z
≠ 0: ð19Þ

Note that Eqs. (11)–(19) are consistent with those in [22]
under the identification (10).

B. Tetrad transformation law

As mentioned earlier, we shall discuss the consistency of
matter coupling in the presence of fermionic matter fields,
whose action is written in terms of the tetrad eaμ. Therefore,
in this subsection, we develop the transformation law for
the tetrad ēaμ ¼ ēaμ½ecα;ϕ� so that ḡμν ¼ ηabēaμēbν , with ḡμν
being the generalized disformal metric studied in Sec. II A.
Note that, instead of starting from the general form (2),
we assume ḡμν to be of the form (8) from the outset,
since otherwise bosonic matter coupling revives the
Ostrogradsky ghost [37,39]. For this purpose, let us put
the barred tetrad in the following form4:

ēaμ½ecα;ϕ� ¼ ðE0δ
α
μ þ E1ϕμϕ

α þ E2ϕμXα

þ E3ϕ
αXμ þ E4XμXαÞeaα; ð20Þ

with the coefficients EI (I ¼ 0; 1;…; 4) being functions of
ðϕ; X;ZÞ. Then, we have

ḡμν ¼ ηabēaμēbν ¼ E2
0gμν þ ðXE2

1 þZE2
2 þ 2E0E1Þϕμϕν þ 2½E0ðE2 þE3Þ þXE1E3 þZE2E4�ϕðμX νÞ

þ ðXE2
3 þZE2

4 þ 2E0E4ÞXμX ν: ð21Þ
By equating this expression with (8), we have

E2
0 ¼ f0; XE2

1 þ ZE2
2 þ 2E0E1 ¼ f1;

E0ðE2 þ E3Þ þ XE1E3 þ ZE2E4 ¼ f2; XE2
3 þ ZE2

4 þ 2E0E4 ¼ f3; ð22Þ
where the first equation requires f0 > 0. Note that we have only four equations for five unknown variables EI , meaning that
the system is underdetermined. Nevertheless, the ambiguity due to the underdeterminedness should be absorbed into a local
Lorentz transformation and hence does not affect the action for a fermionic matter field, as we shall discuss below. By
making use of this ambiguity, one can make E3 ¼ 0. We then obtain

4One can verify that (20) can be uniquely solved for the unbarred tetrad at least locally in the configuration space if the disformal
transformation of the metric is invertible (see the Appendix).
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E0 ¼
ffiffiffiffiffi
f0

p
; E1 ¼

ffiffiffiffiffiffiffiffiffiffi
X=X̄

p
−

ffiffiffiffiffi
f0

p
X

; E2 ¼
f2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f0 þ Zf3
p ; E3 ¼ 0; E4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0 þ Zf3

p
−

ffiffiffiffiffi
f0

p
Z

: ð23Þ

Here, we assumed E0 > 0 and chose a branch such that
ēaμ ¼ E0eaα (i.e., E1 ¼ E2 ¼ E4 ¼ 0) for the case of con-
formal transformations, where f1 ¼ f2 ¼ f3 ¼ 0 and
X̄ ¼ X=f0. Now, the transformation law (20) for the tetrad
is written only in terms of ϕ, ϕμ, and Xμ, and hence the
time derivative of the lapse function is absent under the
unitary gauge. Note also that, as they should be, the barred
tetrad satisfies ḡμνēaμēbν ¼ ηab and its dual ēμa (i.e., such that
ḡμν ¼ ηabēμaēνb) is given by ēμa ¼ ḡμνηabēbν.
Let us now study the local Lorentz transformation. We

assume that the transformation has the form

ēaμ → Λa
bēbμ;

Λa
b ≔ eaμðL0δ

μ
ν þ L1ϕ

μϕν þ L2ϕ
μX ν

þ L3ϕνXμ þ L4XμX νÞeνb; ð24Þ

with LI’s being functions of ðϕ; X;ZÞ, such that

ηcdΛc
aΛd

b ¼ ηab: ð25Þ

This equation poses the following constraints on LI’s:

L2
0 ¼ 1; XL2

1 þ ZL2
3 þ 2L1 ¼ 0; L2 þ L3 þ XL1L2 þ ZL3L4 ¼ 0; XL2

2 þ ZL2
4 þ 2L4 ¼ 0: ð26Þ

From the first equation, we can choose L0 ¼ 1. Then, the latter three equations should be satisfied by the remaining four
functions, meaning that there exists a family of local Lorentz transformations characterized by one function of ðϕ; X;ZÞ.
Acting the local Lorentz transformation Λa

b on the barred tetrad in (20), we have

Λa
bēbμ ¼ ðE0δ

α
μ þ Ẽ1ϕμϕ

α þ Ẽ2ϕμXα þ Ẽ3ϕ
αXμ þ Ẽ4XμXαÞeaα; ð27Þ

where

Ẽ1 ¼ ð1þ XL1ÞE1 þ L1E0 þ ZL2E2; Ẽ2 ¼ ð1þ ZL4ÞE2 þ L3E0 þ XL3E1;

Ẽ3 ¼ ð1þ XL1ÞE3 þ L2E0 þ ZL2E4; Ẽ4 ¼ ð1þ ZL4ÞE4 þ L4E0 þ XL3E3: ð28Þ

As it should be, one can confirm that the left-hand sides of
(22) are invariant under the local Lorentz transformation.
Hence, one can make Ẽ3 ¼ 0 by choosing L1 such that

ð1þ XL1ÞE3 þ L2E0 þ ZL2E4 ¼ 0: ð29Þ

Combining (26) and (29), we have the following solution
for LI’s:

XL1 ¼ ZL4 ¼ −1þ
�
1þ XZ

�
E3

E0 þ ZE4

�
2
�
−1=2

;

L2 ¼ −L3 ¼ −
E3

E0 þ ZE4

�
1þ XZ

�
E3

E0 þ ZE4

�
2
�
−1=2

:

ð30Þ

Note that we chose a branch such that the local Lorentz
transformation approaches identity (i.e., L1 ¼ L2 ¼ L3 ¼
L4 ¼ 0) in the limit E3 → 0. This guarantees that one
can impose E3 ¼ 0 without loss of generality in
obtaining (23).
The above discussion clarifies that the tetrad trans-

formation law associated with the generalized disformal

transformation (8) is given by (20) with (23). A caveat is
that there still remain ambiguities, even at the starting point
(20): One may note that one could incorporate yet higher
derivatives, e.g.,

Zμ ≔
�
δαμ −

ϕμϕ
α

X

�
∂αZ; ð31Þ

into the tetrad transformation law (20), while keeping the
metric transformation law (8). We expect that such terms
would also be absorbed into a (generalized) local Lorentz
transformation. Since it is more convenient for our purpose
to use a simpler form of tetrad transformations, we adopt
(20) with (23) for the following arguments rather than
studying more involved forms.

III. CONSISTENCY OF MATTER COUPLING

Let us now consider matter fields which are minimally
coupled to GDH theories. By construction of the GDH
class, one can move to the frame where the gravitational
action reduces to the Horndeski one, while the matter fields
are coupled to the generalized disformal metric, i.e.,
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S½gμν;ϕ;Ψ� ≔ SH½gμν;ϕ� þ Sm½ḡμν;Ψ�; ð32Þ

with the matter fields being denoted collectively byΨ. Note
that the (barred/unbarred) metric here should be replaced
by the (barred/unbarred) tetrad if the matter sector contains
fermionic components. As shown in [37], this “Horndeski
frame” is useful to study the consistency of matter
coupling. We note that the invertibility of generalized
disformal transformations plays a crucial role in going
back and forth between the two frames. We revisit the case
of bosonic matter fields in Sec. III A and discuss the case of
fermionic matter fields in Sec. III B.5

A. Bosonic matter

Let us first study the case of bosonic matter fields
coupled to GDH theories. We assume that the scalar field ϕ
in the gravitational sector has a timelike gradient and adopt
the unitary gauge where ϕ ¼ ϕðtÞ. Also, we introduce the
Arnowitt-Deser-Misner (ADM) variables as

gμνdxμdxν ¼ −N2dt2 þ hijðdxi þNidtÞðdxj þNjdtÞ; ð33Þ

where N is the lapse function, Ni is the shift vector, and hij
is the induced metric.
It is important to note that the Lagrangian of ordinary

bosonic matter fields does not contain derivatives of the
metric to which they are minimally coupled. For instance,
the action of a canonical scalar field σ is given by

Sscalar½gμν; σ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μσ∂νσ − VðσÞ

�
; ð34Þ

where no derivative acts on gμν. The same is true for the
following action of a canonical gauge field AA

μ :

Sgauge½gμν; AA
μ � ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

4
FA
μνFAμν

�
;

FA
μν ≔ ∂μAA

ν − ∂νAA
μ þ g�fABCAB

μAC
ν ; ð35Þ

where g� denotes the gauge coupling constant and fABC is the
structure constant associatedwith thegauge group.One could
of course consider a matter field whose Lagrangian contains
derivatives of the metric (e.g., cubic Galileon as studied
in [38,40]), but we are mostly interested in ordinary matter
fields like those described by the actions (34) and (35) or at

most their nonlinear generalizations (e.g., k-essence scalar
field [41] and nonlinear electrodynamics [42,43]).
Now, let us consider matter fields that are coupled to the

generalized disformal metric, as we mentioned above
in (32). As clarified in [37,39], under the unitary gauge,
the generalized disformal metric (2) in general contains
the time derivative of the lapse function N and so does the
matter action Sm½ḡμν;Ψ�, which makes N dynamical when
coupled to Horndeski gravity. This is the origin of the
revival of the Ostrogradsky ghost in the presence of matter
fields. On the other hand, restricted to the subclass of
generalized disformal transformations given by (8), the
matter coupling is consistent, i.e., the Ostrogradsky
ghost does not revive. To see this, recall that the trans-
formation (8) is constructed out of ϕ, ϕμ, andXμ. Under the
unitary gauge, the quantity Xμ corresponds to the three-

dimensional covariant derivative of X ¼ − _ϕ2=N2 on a
constant-t hypersurface. Therefore, the matter action does
not yield the kinetic term of N, and hence the matter
coupling is consistent. In the language of the original
frame, GDH theories that are generated via the generalized
disformal transformation of the form (8) allow for con-
sistent bosonic matter coupling.6

B. Fermionic matter

Having discussed the consistency of bosonic matter
coupling, let us consider a fermionic matter field. For
concreteness, we consider a free massless Dirac spinor ψ in
a curved spacetime described by the following action [47]7:

Sspinor½eaμ;ψ � ¼
Z

d4xe

�
−
1

2
ψ†iγ0̂eμaγa∇μψ þ c:c:

�
; ð36Þ

where e ≔ det eaμ, c.c. denotes the complex conjugate, and
γa denotes the gamma matrices in the Minkowski space-
time such that γaγb þ γbγa ¼ 2ηab1, with 1 being the
identity matrix in the spinor indices. Note that we put hats
on local Lorentz indices (a; b; � � � ¼ f0̂; 1̂; 2̂; 3̂g). Here, we
do not use the notation ψ . Usually, it denotes ψ†iγ0̂ in the
literature, but in the present paper we reserve ψ̄ to denote a
transformation of the spinor field [see Eq. (47)]. The
covariant derivative acting on the Dirac field is defined by

∇μψ ≔
�
1∂μ þ

1

4
ωμ

abγab

�
ψ : ð37Þ

Here, γab ≔ ðγaγb − γbγaÞ=2 and the (torsion-free) spin
connection ωμ

ab is defined by

5One could consider matter fields that are coupled to Horn-
deski gravity through the generalized disformal metric corre-
sponding to noninvertible transformations [more precisely, those
that do not satisfy at least one of the last three conditions in
Eq. (19)]. Our discussion in Secs. III A and III B also applies to
such a case, except that one cannot move to the frame where the
matter fields are minimally coupled to GDH theories. Interest-
ingly, without the invertibility conditions, one could obtain a
weaker set of conditions for consistent matter coupling [39].

6The condition for consistent matter coupling becomes tighter
in scalar-tensor theories with a nondynamical scalar field (e.g.,
the cuscuton [44] or its extension [45,46]), as pointed out in [37].

7Note that the discussion here would apply to the case of
massive Dirac fields as well as Majorana fields.
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ωμ
a
b ¼ −eνbð∂μeaν − Γλ

μνeaλÞ; ð38Þ

where Γλ
μν is the Christoffel symbol associated with the

metric. Equivalently, in terms of differential forms, the spin
connection 1-form ωab ≔ ωμ

abdxμ is defined so that

dea ¼ −ωa
b ∧ eb; ð39Þ

with ea ≔ eaμdxμ being the tetrad 1-form.
Since ωμ

ab involves derivatives of the tetrad/metric, one
may think that derivatives of the lapse function and/or
shift vector show up in the matter Lagrangian, which could
make the fermionic matter coupling inconsistent even in
Horndeski theories. Nevertheless, this is not the case
as we explain below. For the ADM metric (33), the tetrad
1-form can be explicitly written as

e0̂ ¼ Ndt; eî ¼ ð3Þeîkðdxk þ NkdtÞ; ð40Þ

where ð3Þeîk denotes the triad such that hkl ¼ δî ĵ
ð3Þeîkð3Þe

ĵ
l .

From (40), we have

de0̂ ¼ ∂kNdxk∧dt;

deî ¼ ½ð3Þ_eîk−∂kðð3ÞeîlNlÞ�dt∧dxkþ∂k
ð3Þeîldxk∧dxl; ð41Þ

where the time derivative (denoted by a dot) acts only on
the triad associated with the induced metric. Comparing
these equations with (39), it is clear that the time derivative
of N or Ni does not appear in the spin connection.
On the other hand, the time derivative of the triad shows

up through

ωî 0̂⊃
1

N
ð3Þeĵk

ð3Þelðî
ð3Þ_eĵÞlðdxkþNkdtÞ; ωî ĵ⊃

1

N
ð3Þek½î

ð3Þ_eĵ�kdt:

ð42Þ

This means that the spinor action would yield the time
derivative of N after the disformal transformation. Indeed,
from (20), the transformation law for the triad is obtained as

ð3Þēîk ¼ ðE0δ
l
k þ E4XkX lÞð3Þeîl;

ð3Þēk
î
¼

�
1

E0

δkl −
E4

E0ðE0 þ ZE4Þ
XkX l

�
ð3Þel

î
; ð43Þ

where the right-hand sides involve the lapse function (or
its spatial derivatives through Xk and Z). As a result,
the spin connection associated with the barred tetrad yields
_N, which could make the spinorial matter coupling
inconsistent.
In order to investigate the degeneracy structure in detail,

let us focus on terms in the spinor action (36) that involve
the time derivative of the spinor and the triad,

Sspinor½eaμ;ψ � ⊃
Z

d4x
ffiffiffi
h

p �
i
2
ψ† _ψ −

i
2
_ψ†ψ

þ i
4
ψ†ð3Þek

î
ð3Þ_eĵkγ

î ĵψ

�
; ð44Þ

with h ≔ det hkl ¼ ðdet ð3ÞeîkÞ2. It should be noted that the
right-hand side does not depend on N or Ni. Substituting
the barred triad into the above equation, we obtain

Sspinor½ēaμ;ψ �⊃
Z

d4x
ffiffiffi
h

p
E2
0ðE0þZE4Þ

�
i
2
ψ† _ψ−

i
2
_ψ†ψþ i

4
ψ†ð3Þek

î
ð3Þ_eĵkγ

î ĵψ − i
X2ZE2

4

E0ðE0þZE4Þ
∂kN∂l

_N
N2

ψ†ð3Þek
î
ð3Þel

ĵ
γ î ĵψ

�
;

ð45Þ

where we have employed (43) and the following
formula:

ffiffiffī
h

p
¼

ffiffiffi
h

p
E2
0ðE0 þ ZE4Þ: ð46Þ

One can absorb the overall factor E2
0ðE0 þ ZE4Þ by

redefining the spinor ψ as

ψ ¼ E−1
0 ðE0 þ ZE4Þ−1=2ψ̄ ; ð47Þ

where, as mentioned above, we use ψ̄ to denote the
new spinor field rather than ψ†iγ0̂. Then, (45) takes the
form

Sspinor½ēaμ;ψ �⊃
Z

d4x
ffiffiffi
h

p �
i
2
ψ̄† _̄ψ−

i
2
_̄ψ†ψ̄þ i

4
ψ̄†ð3Þek

î
ð3Þ_eĵkγ

î ĵψ̄

− i
X2ZE2

4

E0ðE0þZE4Þ
∂kN∂l

_N
N2

ψ̄†ð3Þek
î
ð3Þel

ĵ
γ î ĵψ̄

�
:

ð48Þ
Note that, except for the last term, the right-hand side has
the same form as (44).
Let us study how _̄ψ and _N show up in the equations of

motion. The variation of the action with respect to ψ̄†

involves the following terms:

−iffiffiffi
γ

p δS
δψ̄† ⊃ _̄ψ −

X2ZE2
4

E0ðE0 þ ZE4Þ
∂kN∂l

_N
N2

ð3Þek
î
ð3Þel

ĵ
γ î ĵψ̄ : ð49Þ
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Hence, the equation of motion (EOM) for ψ̄†, together with
its Hermitian conjugate, yields8

∂tðψ̄†γ î ĵψ̄Þ ¼ ðtermswithout _̄ψ or _NÞ: ð50Þ

Likewise, theEOMforN contains _̄ψ , _̄ψ†, and _N in general. To
avoid an unwanted extra d.o.f., these equations should be
degenerate, i.e., there should exist an appropriate linear
combination of the equations of motion for N and ψ̄ that
gives a constraint equation where any of _̄ψ , _̄ψ†, or _N does not
appear. However, we see that this is not the case: By using
(50), one can erase _̄ψ and _̄ψ† simultaneously from the EOM
forN, but _N still remains, which cannot be removed by use of
(49) without reintroducing _̄ψ . This problem originates from
the last term in (48), which is proportional to E2

4. This means
that there exists an unwanted extra d.o.f. so long as E4 ≠ 0,
i.e.,f3 ≠ 0 [seeEq. (23)].Conversely, iff3 ¼ 0, then (48) has
the same form as (44), and hence the spinor can be coupled to
gravity without reviving the Ostrogradsky ghost.
To summarize, the consistency of the spinorial matter

coupling requires an additional condition f3 ¼ 0 compared
to the bosonic case. Thus, we identified a class of GDH
theories to which both bosonic and fermionic matter fields
can be consistently coupled. Written explicitly, the gener-
alized disformal metric after imposing the consistency of
matter coupling takes the form

ḡμν½gαβ;ϕ� ¼ f0gμν þ f1ϕμϕν þ 2f2ϕðμX νÞ; ð51Þ

where fi’s are functions of ðϕ; X;ZÞ. Here, in order for the
transformation to be invertible, the function f1 should be
related to f0 and f2 as

f1 ¼
1

X̄
−
f0
X

þ Zf22
f0

; ð52Þ

through some function X̄ ¼ X̄ðϕ; XÞ. We note that the class
of generalized disformal transformations of the form (51)
covers conventional disformal transformations (i.e., those
with at most first-order derivative of ϕ).

IV. CONCLUSIONS

There have been extensive studies on scalar-tensor theories
with higher-order derivatives, where the degeneracy of
higher-derivative terms is crucial for avoiding the problem
of the Ostrogradsky ghost. The largest class of ghost-free
scalar-tensor theories known so far was proposed recently
in [37] and is called the generalized disformal Horndeski
class, which is generated from the class of Horndeski theories
via invertible generalized disformal transformation [22].
Whenmatter fields are coupled to such gravitational theories,

the Ostrogradsky ghost can revive, as the matter Lagrangian
does not necessarily respect the degeneracy conditions
imposed on the gravitational Lagrangian. Needless to say,
matter fields exist in our Universe, and hence one should
construct gravitational theories so that thematter fields can be
consistently coupled without reviving the Ostrogradsky
ghost. It was shown in [37,39] that ordinary bosonic matter
fields (e.g., a k-essence scalar field and standard gauge fields)
can be consistently coupled to a particular subclass of GDH
theories. This subclass is obtained via the generalized dis-
formal transformation (8), which does not involve the time
derivative of the lapse function in the unitary gauge (see
Secs. II A and III A for a detailed discussion).
On the other hand, in the case of fermionic matter fields,

the matter Lagrangian is written in terms of not the metric
itself but the tetrad, and hence the analyses in [37,39] do not
apply directly. Therefore, in the present paper, we studied
the tetrad transformation law under the generalized dis-
formal transformation in Sec. II B. We showed that, if the
generalized disformal transformation does not depend on
the time derivative of the lapse function under the unitary
gauge, neither does the associated tetrad transformation
law. By use of the transformation law for the tetrad, we
studied how the action of a spinorial matter field is
transformed under the generalized disformal transforma-
tion. We clarified that an additional condition [i.e., f3 ¼ 0
in the notation of (8)] is required in order not to revive the
Ostrogradsky ghost (see Sec. III B for details).
To summarize, we identified a class of GDH theories that

allows for consistent coupling of both bosonic and fer-
mionic matter fields. Although the consistency of matter
coupling puts a tight constraint on the form of the
generalized disformal transformation and GDH theories
associated with it, there still remains a nontrivial class of
GDH theories that includes the DH class as a strict subset.
Our strategy would be straightforwardly applied to more
generic invertible transformations as well as other modified
gravity theories, e.g., vector-tensor theories and multifield
scalar-tensor theories. It should also be noted that our
analysis (as well as those in [37,39]) relies on the unitary
gauge where the scalar field has a spatially uniform profile.
Indeed, the consistency of matter coupling under the
unitary gauge would be enough for the GDH theory to
be employed in the cosmological context where the scalar
field typically has a timelike profile. Away from the unitary
gauge, there would be a shadowy mode [48–50] in matter-
coupled GDH theories in general, which itself is harmless.
Having said that, the analysis away from the unitary gauge
would also be important when one is interested in a
situation where the scalar profile is spacelike, which we
expect to happen for, e.g., neutron star solutions.9 If one is

8We choose a representation of the gamma matrices such that
γ î’s are Hermitian matrices.

9Black holes/neutron stars in shift-symmetric scalar-tensor
theories can support scalar hair with a timelike profile
[10,12,51–65], for which one can take the unitary gauge.
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interested in such a situation, one has to study the structure
of the kinetic matrix without assuming the unitary gauge,
which should pose a tighter constraint on the transforma-
tion law. We hope to address this issue in a future
work [66].
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APPENDIX: INVERSE TRANSFORMATION LAW
FOR THE TETRAD

In this appendix, we briefly discuss the inverse trans-
formation associated with the tetrad transformation (20).
On top of (20), let us consider a disformal tetrad given by

ẽaμ½ecα;ϕ� ¼ ðA0δ
α
μ þ A1ϕμϕ

α þ A2ϕμXα þ A3ϕ
αXμ

þ A4XμXαÞeaα; ðA1Þ
which will be identified as the inverse transformation for
(20). The functional composition of the two disformal
transformations yield

ẽaμ½ēcα;ϕ� ¼ ðÃ0δ
α
μ þ Ã1ϕμϕ

α þ Ã2ϕμXα þ Ã3ϕ
αXμ þ Ã4XμXαÞðE0δ

β
α þ E1ϕαϕ

β þ E2ϕαX β þ E3ϕ
βXα þ E4XαX βÞeaβ;

ðA2Þ

where we have reorganized terms inside the first paren-
theses in terms of unbarred quantities. One can confirm that
the map between AI’s in (A1) and ÃI’s in (A2) is invertible
if the disformal transformation for the metric is invertible.
The inverse transformation for (20) is obtained by putting
ẽaμ½ēcα;ϕ� ¼ eaμ, which yields a system of linear algebraic
equations for ÃI’s. There exists a unique solution to this
system if and only if the following quantity does not vanish:

E2
0 þ E0ðXE1 þ ZE4Þ þ XZðE1E4 − E2E3Þ ≠ 0: ðA3Þ

By use of (22), one can show that

F ¼½E2
0þE0ðXE1þZE4ÞþXZðE1E4−E2E3Þ�2; ðA4Þ

which is nonvanishing under the condition (19). This
means that the condition (A3) is automatically satisfied
if the generalized disformal transformation for the metric is
invertible. Therefore, the invertibility of the tetrad trans-
formation follows from that of the metric transformation.
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