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We perform a study of gravitational waves emitted by inspiraling black holes in the context of quadratic
gravity. By linearizing the field equations around a flat background, we demonstrate that all degrees of
freedom satisfy wavelike equations. These degrees of freedom split into three modes: a massive spin-2
mode, a massive spin-0 mode, and the expected massless spin-2 mode. We construct the energy-momentum
tensor of gravitational waves and show that, due to the massive spin-2 mode, it presents the Ostrogradsky
instability. We also show how to deal with this possible pathology and obtain consistent physical
interpretations for the system. Using the energy-momentum tensor, we study the influence of each
massive mode in the orbital dynamics and compare it with the standard result of general relativity.
Moreover, we present two methods to constrain the parameter α associated with the massive spin-2
contribution. From the first method, using the combined waveform for the spin-2 modes, we obtain the
constraint α≲ 1.1 × 1021 m2. In the second method, using the coalescence time, we get the constraint
α≲ 1.1 × 1013 m2.
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I. INTRODUCTION

The direct detections of gravitational waves (GWs) by
the LIGO-VIRGO collaboration, first in 2015 due to the
collision of two black holes and then in 2017 due to the
collision of two neutron stars, is one of the main results in
the history of general relativity (GR) [1–3]. These detec-
tions not only observationally confirm one of the fascinat-
ing results of GR but also make it possible to obtain a
deeper understanding of the gravitational interaction. In
addition to the direct detections, GWs had already been
indirectly observed through neutron star binary systems. In
the 1970s, Hulse and Taylor observed a decrease in the
orbital period of the PSR 1913þ 16 system [4], entirely
consistent with the energy and momentum losses predicted
by GR theory due to GWs emission [5,6].
Despite these and several other experimental results

supporting the GR, there is a consensus in the scientific
community that it is an incomplete theory. In addition to
some structural problems within the theory, such as
the presence of singularities, the GR also presents pro-
blems when analyzed in the context of high-energy
physics. General relativity cannot be quantized through the

conventional methods of particle physics [7,8], and it
struggles to describe the early (inflationary) universe
consistently [9,10].
One of the main approaches to solving these problems

is modifying the GR, especially the Einstein-Hilbert
action. The first proposal to modify GR, and in turn the
simplest, came from Einstein himself, who introduced the
cosmological constant Λ in theory as a way of solving
the cosmological view of his time [11]. Despite being
one of the main candidates for dark energy, this modifi-
cation still faces some observational problems that
may even be associated with the current “cosmological
crisis” [12–19].
There are, however, more sophisticated modification

proposals which involve the addition of the curvature
scalar terms, such as the fðRÞ theories [20–23]. In this
scenario, the theory fðRÞ ¼ Rþ αR, for example, con-
stitutes the so-called Starobinsky inflationary model [9,24],
which proves to be a consistent approach to inflation [25].
Besides fðRÞ theories, there are proposals for several other
modifications to the Einstein-Hilbert action, e.g., theories
that include a vector field [26–28] and theories involving
the addition of higher-order terms like ∇R, ∇nR and
R□R [29–31]. Therefore, the search for observational
constraints in modified theories of gravity proves to be
fundamental in attempting to narrow down the parameters
of these theories.
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One of the main ways of establishing observational
constraints in theories of modified gravity is in the
cosmological context [32–35]. However, with the new
era of GWs detection, the analysis of modified theories
in contexts of gravitational waves [36–41] is also of
great interest, even allowing the determination of param-
eters in new scales different from those probed in cosmol-
ogy [42–46].
In this spirit, we analyze the quadratic gravity model

given by the action (1) in the context of the emission of
gravitational waves1:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 1

2
γR2 −

1

2
αCμναβCμναβ

�

− 2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lm; ð1Þ

where κ ¼ 8πG
c4 , α, γ are coupling constants with the

dimension of ðlengthÞ2 and Cμναβ is the Weyl tensor.
Quadratic gravity is embedded in a context of higher-

order gravity theories where higher energy corrections are
inserted in the action. In this context, the Einstein-Hilbert
term and the cosmological constant are zero-order terms
(squared mass terms), the invariants R2 and CμναβCμναβ are
first-order corrections2 (fourth mass terms), quantities of
the type R□R, Cμναβ□Cμναβ plus cubic terms in the
Riemann tensor are second-order corrections (sixth mass
terms), etc.3 Thus, this work aims to study how first-order
corrections to general relativity influence the emission of
GWs emitted by binary systems. More specifically,
we study the emission of GWs produced by the inspiral
phase of a binary black hole system in the approxima-
tions of point masses, circular orbit, and nonrelativistic
dynamics.
The paper has the following structure: in Sec. II, we carry

out the linearization of the field equation decomposing the
metric into three new fields: a massless spin-2 field, as in
GR; a massive spin-2 field, and a massive spin-0 field.
Next, we analyze the gauge conditions that allow us to
reduce the degrees of freedom of these new fields signifi-
cantly. In the Sec. III, we obtain the Green’s functions for
the massive fields and carefully analyze the multipolar
expansion for each field. In the Sec. IV, the solutions of the
fields in terms of the multipolar expansions are applied to a
binary system of point masses in circular orbits and the
power radiated by the GWs is obtained. With that, in Sec. V,
the effect of the emission of GWs is analyzed using the

energy balance equation, so that the inspiral phase is
studied in terms of the orbital frequency of the system.
In addition, Ostrogradsky’s instability, generated by the
Weyl-Weyl term, is carefully analyzed in this section, and
then it is shown how this apparent pathology can be
suppressed and corrected. In light of this apparent pathol-
ogy, we discuss in Sec. VI the role that spin-2 fields play in
the emission of GWs, mainly explaining the differences and
similarities between these fields, such as their propagation
velocities and waveforms. With this, we establish some
observational constraints. Finally, we end with the final
comments in Sec. VII.

II. QUADRATIC GRAVITY IN THE
WEAK-FIELD REGIME

The field equation is obtained from (1) by varying it with
respect to gμν:

Rμν −
1

2
gμνRþ γ

�
R

�
Rμν−

1

4
Rgμν

�
þ gμν∇ρ∇ρR−∇μ∇νR

�

−α

�
∇ρ∇βCμρνβ þ

1

2
RρβCμρνβ

�
¼ κTμν; ð2Þ

with the Riemann and Weyl tensors defined as

Rκ
ναβ ≡ ∂αΓκ

νβ − ∂βΓκ
να þ Γκ

ραΓρ
νβ − Γκ

ρβΓρ
να; ð3Þ

Cμναβ ≡ Rμναβ −
1

2
ðgμαRβν − gμβRαν þ gνβRαμ − gναRβμÞ

þ 1

6
Rðgμαgβν − gμβgανÞ: ð4Þ

In addition, the trace of the field equation (2) is

3γ∇ρ∇ρR − R ¼ κT: ð5Þ

The linearized equations on a flat background for
quadratic gravity were obtained in Ref. [50]. However,
we will retrieve these equations using a clearer and
more simplified approach. We start by decomposing
the metric as4

gμν ¼ ημν þ hμν;

where jhμνj ≪ 1. From the definition of the trace-reverse
tensor hνβ ¼ h̄νβ − 1

2
ηνβh̄, we obtain in linear order

1This action was proposed by Stelle [47,48] to deal with the
renormalizability problem of the gravitational field.

2The other two first-order terms, namely, □R and G ¼
R2−4RμνRμνþRμναβRμναβ, do not contribute to the field equations.

3More details about this construction can be found in the
introduction of [49]. 4We adopted the ð−1; 1; 1; 1Þ signature for the metric.
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Cð1Þ
μναβ ¼

1

2
½∂α∂νh̄μβ − ∂β∂νh̄μα þ ∂β∂μh̄να − ∂α∂μh̄νβ� −

1

4
ημαð∂ρ∂νh̄ρβ − ∂β∂νh̄þ ∂β∂ρh̄νρ −□h̄νβÞ

þ 1

4
ημβð∂ρ∂νh̄ρα − ∂α∂νh̄þ ∂α∂ρh̄νρ −□h̄ναÞ −

1

4
ηνβð∂ρ∂μh̄ρα − ∂α∂μh̄þ ∂α∂ρh̄μρ −□h̄μαÞ

þ 1

4
ηναð∂ρ∂μh̄ρβ − ∂β∂μh̄þ ∂β∂ρh̄μρ −□h̄μβÞ þ

1

6
½∂σ∂ρh̄σρ −□h̄�ðημαηβν − ημβηανÞ; ð6Þ

and

Rð1Þ
μν ≈

1

2

�
∂ρ∂νh̄μρ þ ∂ρ∂μh̄νρ −□h̄μν þ

1

2
ημν□h̄

�
; ð7Þ

Rð1Þ ≈ ∂σ∂ρh̄σρ þ
1

2
□h̄; ð8Þ

where □≡ ∂α∂
α and h̄≡ h̄αα.

The objective is to obtain wave equations for the various
degrees of freedom of the metric in quadratic gravity.
We start by defining the dimensionless scalar quantity
Φ≡ −γRð1Þ. In this case, the linearized equation (5) can be
written as

ð□ −m2
ΦÞΦ ¼ −

κT
3
; ð9Þ

where m2
Φ ¼ 1=ð3γÞ and T is the trace of Tμν in its

linearized form. Then we decompose the metric into a
scalar part and a tensorial part [51,52]

h̄μν ¼ Θμν − ημνðΦþ ϕÞ ð10Þ

with ϕ representing an auxiliary gauge field.5 Furthermore,
for the spin-2 part, we adopt the gauge

∂
νΘμν ¼ 0 ⇒ ∂

νh̄μν ¼ −∂μðΦþ ϕÞ: ð11Þ

Substituting the decomposition (10) in the linearized
equation (2) we get

□Θμαþ2∂μ∂αϕ−2ημα□ϕþ2α∂ν∂βCð1Þ
μναβ¼−2κTμα: ð12Þ

The next step is to separate the tensorial component into
a massive and a nonmassive mode:

Θμα ¼ h̃μα þ Ψμα; ð13Þ

where we impose that the nonmassive mode h̃μα satisfies
the equation

□h̃μα ¼ −2κTμα: ð14Þ

Thus, Eq. (12) can be rewritten as

□Ψμα þ 2∂μ∂αϕ − 2ημα□ϕþ 2α∂ν∂βCð1Þ
μναβ ¼ 0: ð15Þ

Then, we use the decomposition of the metric in the
Weyl tensor and calculate ∂

ν
∂
βCð1Þ

μναβ obtaining

∂
ν
∂
βCð1Þ

μναβ ¼ −
1

4
□

2ðh̃μα þ ΨμαÞ þ
1

12
ημα□

2ðh̃þ ΨÞ

−
1

12
∂α∂μ□ðh̃þ ΨÞ;

where h̃ ¼ h̃αα and Ψ ¼ Ψα
α.

Once ∂
ν
∂
βCð1Þ

μναβ has been calculated, we substitute this
result in (15) and choose the gauge field ϕ as6

ϕ ¼ α

3
□ðh̃þ ΨÞ: ð16Þ

So, Eq. (15) is rewritten as

□

�
Ψμα −

α

2
□ðh̃μα þΨμαÞ

�
¼ 0: ð17Þ

For trivial boundary conditions (e.g., fields vanishing at
infinity), the above equation is satisfied only if the term in
square brackets is null. In this case, using Eq. (14) we get

ð□ −m2
ΨÞΨμα ¼ 2κTμα; ð18Þ

where m2
Ψ ¼ 2=α. From the field equations (14) and (18)

we can show that the gauge conditions (11) and (16)
result in

∂
μΨμν ¼ 0; ∂

μh̃μν ¼ 0 and ϕ ¼ 1

3
Ψ: ð19Þ

Therefore, the decomposition of the metric in the
form

h̄μν ¼ h̃μν þ Ψμν − ημν

�
Φþ 1

3
Ψ
�
; ð20Þ

5TheΦ field contains the entire scalar degree of freedom of the
metric. 6This choice is necessary to obtain a wave equation for Ψμα.

GRAVITATIONAL WAVES FROM INSPIRALING BLACK HOLES … PHYS. REV. D 107, 044017 (2023)

044017-3



and the choice of gauge (19) result in the Eqs. (9), (14), and
(18) associated with massive spin-0, massless spin-2, and
massive spin-2 degrees of freedom, respectively.

A. Degrees of freedom

As in general relativity, the conditions given in (19) do
not completely fix the gauge. Performing an infinitesimal
coordinate transformation

x0μ ¼ xμ þ ξμðxÞ;

it is possible to show that the full spin-2 mode transforms as

Θ0
μν ¼ Θμν − ∂μξν − ∂νξμ þ ημν∂

βξβ: ð21Þ

Taking the divergence of the expression above, we notice
that any transformation ξν that respects □ξν ¼ 0 maintains
the harmonic gauge ∂

μΘμν ¼ 0. This residual gauge free-
dom allows us to choose a transformation in the form

ξν ¼ bνeik̄αx
α þ b�νe−ik̄αx

α
; ð22Þ

where k̄αk̄α ¼ 0 and bν is an arbitrary constant vector.
The next step is to show that this extra degree of

freedom, incorporated in the bν vector, acts only in
massless spin-2 modes. This can be verified from the
vacuum solutions of Eqs. (14) and (18),

h̃μν ¼ ε̃μνeikαx
α þ ε̃�μνe−ikαx

α
;

and

Ψμν ¼ εμνeiqαx
α þ ε�μνe−iqαx

α
;

where kαkα ¼ 0 and qαqα ¼ −m2
Ψ. Substituting this last

result and Eq. (22) in the transformation (21) we get

ε0μν ¼ εμν;

ε̃0μν ¼ ε̃μν þ kμbν þ kνbμ − ημνkβbβ: ð23Þ

Based onEqs. (19) and (23),we conclude that themassless
spin-2 mode has only 2 degrees of freedom as in general
relativity. Furthermore, for the vacuum solution, we can
choose the traceless-transverse gauge where h̃μ0 ¼ 0,
∂
ih̃ij ¼ 0 and h̃ii ¼ 0. Themassive spin-2modehas 5degrees
of freedom since ∂

μΨμν ¼ 0 and Ψ ¼ 3ϕ. Considering the
vacuum solution we can choose ϕ ¼ Ψ=3 ¼ 0.
For completeness, it is interesting to explicitly determine

the five degrees of freedom of Ψμν for a monochromatic
wave propagating in the z direction [53]. In this case,

qμ ¼ ðωq; 0; 0; qÞ and ω2
q ¼ q2 þm2

Ψ:

Using the gauge conditions ∂μΨμν ¼ 0,Ψ ¼ 0 and defining

Ψþ ¼ Ψ11 − Ψ22

2
; ΨD ¼ Ψ11 þ Ψ22;

Ψ× ¼ Ψ12; ΨB ¼ −Ψ13 and ΨC ¼ −Ψ23; ð24Þ

we get

Ψ00 ¼ −
q2

m2
Ψ
ΨD; Ψ01 ¼

q
ωq

ΨB; Ψ02 ¼
q
ωq

ΨC;

Ψ03 ¼
qωq

m2
Ψ
ΨD; Ψ33 ¼ −

ω2
q

m2
Ψ
ΨD;

Ψ11 ¼
1

2
ΨD þΨþ and Ψ22 ¼

1

2
ΨD −Ψþ:

Therefore, in matrix form, we have

Ψμν ¼ Ψþ

0
BBB@

0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

1
CCCAþΨ×

0
BBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1
CCCA

þΨB

0
BBB@

0 q
ωq

0 0

q
ωq

0 0 −1

0 0 0 0

0 −1 0 0

1
CCCAþΨC

0
BBB@

0 0 q
ωq

0

0 0 0 0
q
ωq

0 0 −1

0 0 −1 0

1
CCCA

þΨD

0
BBBBBB@

− q2

m2
Ψ

0 0
qωq

m2
Ψ

0 1
2

0 0

0 0 1
2

0

qωq

m2
Ψ

0 0 − ω2
q

m2
Ψ

1
CCCCCCA
;

whereΨþ,Ψ×,ΨB,ΨC, andΨD correspond to the 5 degrees
of freedom of Ψμν.

III. SOLUTIONS TO THE LINEARIZED
FIELD EQUATIONS

The physical solution of Eq. (14) is well known and
given by

h̃μνðtr;xÞ ¼
κ

2π

Z
d3x0

1

jx − x0jTμνðtr;x0Þ;

where tr ¼ t − jx−x0j
c is the retarded time and x (the vector

x0) points from the origin of the coordinate system to the
observer (to the source). The formal solutions to the
Eqs. (18) and (9) are given by

Φðx; tÞ ¼ −
κ

3

Z
GΦðxμ; xμ0 ÞTðt0;x0Þd4x0; ð25Þ

Ψμνðx; tÞ ¼ 2κ

Z
GΨðxμ; xμ0 ÞTμνðt0;x0Þd4x0: ð26Þ
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The retarded Green’s functions that appear in the
previous equations are described by the expression

GXðxμ; x0μÞ ¼ −
1

4π

1

c
1

s
δ

�
τ −

s
c

�

þ 1

4π

1

c
mXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2 − ðscÞ2
q

× J1

 
mXc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 −

�
s
c

�
2

s !
Θ
�
τ −

s
c

�
; ð27Þ

where τ ¼ t − t0, s ¼ jsj ¼ jx − x0j, and X represents Φ or
Ψ. The function Θ is the Heaviside step function and
J1 is the Bessel function of the first kind. Details on the
deduction of Eq. (27) can be seen in Appendix A of
Ref. [45].
Substituting Green’s function in Eqs. (25) and (26)

and considering large distances from the source, i.e.,
s ≃ jxj≡ r, we get

Φðx; tÞ¼ κ

12π

1

r

Z
Tðx0; trÞd3x0−

mΦ

12π
κ

Z
d3x0

×
Z

∞

r
c

dt̄
J1
�
mΦc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̄2− ðrcÞ2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̄2− ðrcÞ2

q Tðx0; t− t̄Þ ð28Þ

and

Ψijðx; tÞ ¼ −
κ

2πr

Z
d3x0Tijðx0; trÞ

þmΨκ

2π

Z
d3x0

Z
∞

r
c

dt̄
J1
�
mΨc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̄2 − ðrcÞ2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t̄2 − ðrcÞ2

q
× Tijðx0; t − t̄Þ: ð29Þ

Note that by the degrees of freedom ofΨμν it is enough to
calculate its spatial components. See Sec. II A.
The next step is to perform the multipolar expansion for

the fields h̃μν, Φ and Ψij. The multipolar expansion for the
massless spin-2 field is well known from GR. The
expansion procedure for the scalar field was deduced in
Ref. [45] and results in

Φðx; tÞ ¼ ΦMðx; tÞ þΦDðx; tÞ þΦQðx; tÞ þ � � � ;

where the monopole (M), dipole (D), and quadrupole (Q)
contributions are given by

ΦMðx; tÞ ¼ κ

12πr
½c2MðtrÞ�

−
mΦ

12π
κ

Z
∞

0

dt̄rFΦðt̄rÞ½c2MðζÞ�; ð30Þ

ΦDðx; tÞ ¼ κ

12πr

�
cni

∂Mi

∂t

				
tr

�

−
mΦ

12π
κ

Z
∞

0

dt̄rFΦðt̄rÞ
�
cni

∂Mi

∂t

				
ζ

�
; ð31Þ

ΦQðx; tÞ ¼ κ

12πr

�
1

2
ninj

∂
2Mij

∂t2

				
tr

�

−
mΦ

12π
κ

Z
∞

0

dt̄rFΦðt̄rÞ
�
1

2
ninj

∂
2Mij

∂t2

				
ζ

�
; ð32Þ

with the unit vector ni pointing along the xi direction,
ζ ¼ tr − t̄r and

FΦðt̄rÞ ¼
J1
�
mΦc

ffiffiffiffiffiffi
2t̄r

p ffiffiffiffiffiffiffiffiffiffi
t̄r
2
þ r

c

q �
ffiffiffiffiffiffi
2t̄r

p ffiffiffiffiffiffiffiffiffiffi
t̄r
2
þ r

c

q : ð33Þ

The mass moments built with the trace of the energy-
momentum tensor are defined as

MðtÞ≡ 1

c2

Z
d3x0Tðx0; tÞ; ð34Þ

MiðtÞ≡ 1

c2

Z
d3x0Tðx0; tÞx0i; ð35Þ

MijðtÞ≡ 1

c2

Z
d3x0Tðx0; tÞx0ix0j: ð36Þ

The multipolar expansion for the massive spin-2 field
follows similar steps to those performed for the Φ field.
Thus, we get

Ψijðx; tÞ ¼
κ

2π

�
−
1

r
SijðtrÞ þmΨ

Z
∞

0

dt̄rFΨðt̄rÞSijðζÞ

−
1

r
nk
c
∂Sij;k

∂t

				
tr

þmΨ

Z
∞

0

dt̄rFΨðt̄rÞ
nk
c
∂Sij;k

∂t

				
ζ

þ � � �
�
;

where FΨðt̄rÞ is given by Eq. (33) switching mΦ → mΨ.
The first two moments of the stress tensor Tij are defined as

SijðtÞ≡
Z

d3x0Tijðx0; tÞ

and

Sij;kðtÞ≡
Z

d3x0Tijðx0; tÞxk:

Furthermore, the first moment Sij can be written as
Sij ¼ 1

2
M̈ij, where
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Mij ¼ 1

c2

Z
d3x0T00ðx0; tÞx0ix0j ð37Þ

is the usual quadrupole mass moment of general relativity.
Therefore, using the traceless-transverse (TT) gauge for

h̃μν and taking into account only the dominant terms of each
mode, we have

½h̃TTij ðx; tÞ�Q ¼ 1

r
κ

4π
Λij;klðn̂ÞM̈klðtrÞ; ð38Þ

½Ψijðx; tÞ�Q ¼ −
1

r
κ

4π
M̈ijðtrÞ

þ κ

4π
mΨ

Z
∞

0

dt̄rFΨðt̄rÞM̈ijðζÞ; ð39Þ

Φðx; tÞ ¼ ΦMðx; tÞ þΦDðx; tÞ þΦQðx; tÞ; ð40Þ

where Λij;kl is a projection tensor that selects the TT gauge
[54]. We will see in the next section that for a binary
system with nonrelativistic dynamics ΦM ¼ ΦD ¼ 0, and
thus the dominant term of the scalar part will also be a
quadrupole term.

IV. BINARY SYSTEM IN CIRCULAR ORBIT

We begin by writing the energy-momentum tensor for a
nonrelativistic binary point-mass system mA in the center-
of-mass frame:

Tμν ¼
X2
A¼1

mAc2δ0μδ0νδð3Þðx − xAðtÞÞ;

where xAðtÞ is the vector representing the trajectory of
particle A. From this energy-momentum tensor and its
trace, we can calculate the mass moments for spin-0 and
spin-2 modes in the center-of-mass (c.m.) frame. So, by
Eqs. (34)–(37) we get

MðtÞ ¼ −m; MiðtÞ ¼ 0 and

MijðtÞ ¼ −μxi0ðtÞxj0ðtÞ ¼ −MijðtÞ; ð41Þ

where m ¼ m1 þm2 is the total mass, μ ¼ m1m2=m is
the reduced mass, and xi0ðtÞ is the relative coordinate
x0 ¼ x1 − x2. The above expression shows that the
monopole and dipole contributions to the spin-0
mode are zero. This result reflects the conservation of
mass and linear momentum of a nonrelativistic binary
system.
The next step is to determine the trajectory xi0ðtÞ.

For simplicity, we will consider a circular orbit of
radius R and angular frequency ωs positioned along

the XY plane. In this case, the relative coordinate is
given by7

xi0ðtÞ ¼
�
R cos

�
ωstþ

π

2

�
; R sin

�
ωstþ

π

2

�
; 0

�
; ð42Þ

and the unit vector niCM ¼ ð0; 0; 1Þ. Note that as the
orbit is restricted to the XY plane, the mass moments
M13¼M23¼M33¼0, which implies ΨB¼ΨC¼ΨD¼0.
Thus, of the 5 degrees of freedom associated with Ψij,
only the transverse modes Ψþ and Ψþ are produced.
By fixing the coordinate system at the observer’s point of

view, we can decompose the unit vector ni in terms of the
polar angle θ and the azimuthal angle ϕ as

ni ¼ ðsin θ sin ϕ; sin θ cos ϕ; cos θÞ:

In this reference frame, ϕ represents a phase in the XY
plane, and θ is the angle between the normal of the orbit
plane and the line of sight. For more details, see Figs. 3.2
and 3.6 of Ref. [54].
The spin-0, massive spin-2, and massless spin-2 modes

are obtained by substituting the moments Mij and Mij

present in (41) in Eqs. (38), (39), (40), and (32), and
then calculating the integrals that contain the functions FΨ
and FΦ. The calculation of these integrals is not trivial
and can be found in Appendix B of Ref. [45]. Carrying
out all these calculations, considering the chirp mass
Mc ≡m

2
5μ

3
5 and the Kepler’s third law ω2

s ¼ Gm=R3, we
obtain

h̃þðx; tÞ ¼
4c
r

�
GMc

c3

�5
3

ω2=3
s

�
1þ cos2θ

2

�

× cos

�
2ωs

�
t −

r
c

�
þ 2ϕ

�
; ð43Þ

h̃×ðx; tÞ ¼
4c
r

�
GMc

c3

�5
3

ω2=3
s cosθ sin

�
2ωs

�
t−

r
c

�
þ 2ϕ

�
;

ð44Þ

for massless tensorial modes,

7For certain configurations of the binary system, the circular
orbit approximation can be quite realistic if we assume that the
process of circularization of elliptical orbits of general relativity
also occurs in quadratic gravity. The study of circularization in
quadratic gravitation will be carried out in a future work.
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Ψþðx; tÞ ¼

8>><
>>:

− 4c
r

�
GMc
c3

�5
3ω2=3

s

�
1þcos2θ

2

�
cos ð2ωstþ 2ϕÞ exp

�
−mΨr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2ωs
mΨc

�
2

r �
; 2ωs < mΨc

− 4c
r

�
GMc
c3

�5
3ω2=3

s

�
1þcos2θ

2

�
cos

�
2ωs

�
t −
�

r
c

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mΨc
2ωs

�
2

r �
þ 2ϕ

�
; 2ωs > mΨc

; ð45Þ

Ψ×ðx; tÞ ¼

8>><
>>:

− 4c
r

�
GMc
c3

�5
3ω2=3

s cos θ sin ð2ωstþ 2ϕÞ exp
�
−mΨr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2ωs
mΨc

�
2

r �
; 2ωs < mΨc

− 4c
r

�
GMc
c3

�5
3ω2=3

s cos θ sin

�
2ωsðt −

�
r
c

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mΨc
2ωs

�
2

r �
þ 2ϕ

�
; 2ωs > mΨc

; ð46Þ

for the massive tensorial modes and

Φðx; tÞ ¼

8>><
>>:

2c
3r

�
GMc
c3

�5
3ω2=3

s sin2 θ cos ð2ωstþ 2ϕÞ exp
�
−mΦr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2ωs
mΦc

�
2

r �
; 2ωs < mΦc

2c
3r

�
GMc
c3

�5
3ω2=3

s sin2 θ cos

�
2ωs

�
t −
�
r
c

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mΦc
2ωs

�
2

r �
þ 2ϕ

�
; 2ωs > mΦc

; ð47Þ

for massive scalar mode.

The most relevant point of the solutions above is that the
massive modes have two distinct regimes. The first of these
is a damping regime that occurs when 2ωs < mXc.

8 In this
regime we do not have a wave solution, and the massive
modes only contribute with a temporal modulation for the
gravitational field that exponentially decays when moving
away from the source. The second regime, called the
oscillatory regime, occurs when 2ωs > mXc. It is only in
this regime that the source emits gravitational waves
associated with the massive modes.
The solutions for h̃þ;Ψþ and h̃×;Ψ× in the oscillatory

regime are waves of the same amplitude, same frequency
and different wave numbers, which provides an interpre-
tation of interference effects. In this sense, it is convenient
to introduce,

Θþ;× ¼ h̃þ;× þ Ψþ;×: ð48Þ

Equation (48) allows us to interpret the spin-2 waves as a
single structure generated by interference between the
fields h̃þ;× and Ψþ;×. Note that due to the difference in
sign between h̃þ;× and Ψþ;×, what we have is a destructive
interference effect. Furthermore, at the limit of mΨ → 0,
this destructive interference is complete, and in this case,
the emission of tensorial modes does not occur. We will see
in the next sections that physical interpretations of the
binary system are consistent only when we treat massive
and massless spin-2 modes together.

A. Gravitational energy-momentum tensor
and the power radiated

The low-frequency effects of second-order terms con-
tribute to background changes [6]. These terms, obtained
from space-time averages h…i, generate the gravitational
energy-momentum tensor tμα given by

tμα ¼ −
c4

8πG
½hGð2Þ

μα i þ γhHð2Þ
μα i − 2αhIð2Þμα i�; ð49Þ

where

Gð2Þ
μα ¼ Rð2Þ

μα −
1

2
ημαRð2Þ −

1

2
hμαRð1Þ; ð50Þ

Hð2Þ
μα ¼ Rð1ÞRð1Þ

μα −
1

4
Rð1ÞRð1Þημα þ hμα∂σ∂σRð1Þ

þ ημα□
ð1ÞRð1Þ þ ημα∂

σ
∂σRð2Þ

−∇ð1Þ
μ ∂αRð1Þ − ∂μ∂αRð2Þ; ð51Þ

Ið2Þμα ¼ ð∇ν∇βÞð1ÞCð1Þ
μναβ þ ∂

ν
∂
βCð2Þ

μναβ þ
1

2
Rνβð1ÞCð1Þ

μναβ: ð52Þ

After a long calculation presented in Appendix, we get

tμα ¼
c4

8πG

�
1

4
h∂μh̃νβ∂αh̃νβi −

1

4
h∂μΨνβ∂αΨνβi

þ 3

2
h∂αΦ∂μΦi þ 1

2
h∂μh̃νβ∂αΨνβi

�
: ð53Þ

8Remembering that X represents Φ or Ψ.
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An important point to be discussed is the opposite
(negative) sign that appears in the second term of
Eq. (53) [55]. Although potentially pathological, this
negative sign is expected because the Weyl-Weyl term
presents Ostrogradsky instability, implying that the
Hamiltonian density is not positive definite.9 However,
in the context we are studying, it is possible to avoid any
pathology by considering the massive and massless spin-2
modes as a single structure defined in Eq. (48). In this
context, neglecting the scalar mode, we have two different
situations:

(i) For 2ωs <mΨc (damping regime), the massive spin-2
part does not emit radiation—h∂μΨνβ∂αΨνβi ¼ 0—
and the system behaves as in general relativity.

(ii) For 2ωs > mΨc (oscillatory regime), spin-2 modes
emit two waves that interfere destructively in
such a way that the radiated energy is always less
than the case of pure GR but always positive,
i.e., h∂μh̃νβ∂αh̃νβi − h∂μΨνβ∂αΨνβi > 0.

The radiated power per solid angle unit is given by

dP
dΩ

¼ −cr2t01: ð54Þ

Due to the functional form of h̃þ:× their radial derivatives ∂1
can be switched to time derivatives ∂0 up to Oð1=r2Þ:

∂1h̃þ:× ¼ −∂0h̃þ:×:

Furthermore, using analogous reasoning forΨþ:× andΦ,
we obtain

∂1Ψþ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mΨc
2ωs

�
2
−1

r
cotð2ωstþ2ϕÞ∂0Ψþ; 2ωs <mΨc

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
mΨc
2ωs

�
2

r
∂0Ψþ; 2ωs >mΨc

;

∂1Ψ×¼

8>><
>>:
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mΨc
2ωs

�
2
−1

r
tanð2ωstþ2ϕÞ∂0Ψ×; 2ωs <mΨc

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
mΨc
2ωs

�
2

r
∂0Ψ×; 2ωs >mΨc

and

∂1Φ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mΦc
2ωs

�
2
−1

r
cotð2ωstþ2ϕÞ∂0Φ; 2ωs <mΦc

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
mΦc
2ωs

�
2

r
∂0Φ; 2ωs >mΦc

:

Substituting these last results in Eq. (54) and calculating the
spatial-time averages, we get [45]

dP
dΩ

¼ −
2Gμ2R4ω6

s

πc5

���
1þ cos2 θ

2

�
2

þ cos2 θ

�

×

 
1 − Θð2ωs −mΨcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mΨc
2ωs

�
2

s !

þ Θð2ωs −mΦcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mΦc
2ωs

�
2

s
1

12
sin4 θ

#
: ð55Þ

The Heaviside functionsΘð2ωs −mΨcÞ andΘð2ωs −mΦcÞ
indicate that only the oscillatory regimes contribute to the
radiated power. It is also worth noting that the cross term
h∂0h̃νβ∂1Ψνβi cancels out when averaged in time and space.
One additional integration gives the expression for the total
power radiated:

P¼−
32

5

c5

G

�
GMcωs

c3

�10
3

"
1−Θð2ωs−mΨcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
mΨc
2ωs

�
2

s

þΘð2ωs−mΦcÞ
18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
mΦc
2ωs

�
2

s #
: ð56Þ

Considering the tensorial part in the oscillatory regime
and the scalar part in the damping regime, we get

Pspin2 ¼ −
32

5

c5

G

�
GMcωs

c3

�10
3

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mΨc
2ωs

�
2

s #
:

This last expression corroborates the previous statement
that the emitted energy is always positive definite. In fact,
for mΨc ¼ 2ωs, we are at the threshold of the damping
regime and the system loses energy exclusively by the
massless spin-2 mode. As mΨ decreases, the destructive
interference effect occurs between h̃þ;× and Ψþ;× and the
energy loss decreases monotonically. In the limiting case
where mΨ → 0, the destructive interference is maximum
and the energy loss ceases to exist via tensorial modes. It is
worth remembering that the limit mΨ → 0 ⇒ α → ∞ is
nonphysical since the term CμναβCμναβ diverges in the
action (1).

V. INSPIRAL PHASE OF BINARY
BLACK HOLES

Let us consider the case of a binary system consisting of
two static black holes with spherical symmetry. For
simplicity, we will adopt the Schwarzschild solution as a
static solution, although, in quadratic gravity, other sol-
utions might exist [56,57]. Thus, in the weak field regime,
the gravitational potential is reduced to the Newtonian
potential.

9This phenomenon has been known for a long time in the
context of quadratic gravity quantization [47].
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The next step is to establish the balance equation that
determines the energy loss of the system through the
emission of gravitational waves:

P ¼ −
dEorbit

dt
; ð57Þ

where P is the total radiated power and

dEorbit

dt
¼ Gm1m2

2R2
_R; ð58Þ

is obtained in the approximation of quasicircular orbits
[54]. Substituting Eqs. (56) and (58) in the expression (57)
and using Kepler’s third law, we get

_ωs ¼
96

5

�
GMc

c3

�5
3

ω
11
3
s

(
1 − Θð2ωs −mΨcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mΨc
2ωs

�
2

s

þ Θð2ωs −mΦcÞ
18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mΦc
2ωs

�
2

s )
: ð59Þ

The Eq. (59) determines the variation of the orbital
frequency in the inspiral phase. The term within curly
brackets contains the usual contribution from GR (first
term) and additional contributions from the massive spin-2
and spin-0 modes. The massive modes only contribute
when Θð2ωs −mΨcÞ ¼ 1 or Θð2ωs −mΦcÞ ¼ 1, that is,
only when the solutions are in the oscillatory regime.
To analyze the effect of massive modes in the binary

system, we will divide the study into two cases: in the first
one, we only consider the tensorial mode in the oscillatory
regime; in the second, we only take into account the
scalar mode.
GR plus massive spin-2 mode: In this case we have

2ωs > mΨc and 2ωs < mΦc, so that Eq. (59) contains only
the first two terms. By integrating Eq. (59), we get the
curves shown in Fig. 1:
Figure 1 presents solutions for the combined spin-2

structure, i.e., Θμν ¼ h̃μν þ Ψμν, and the pure case of
general relativity. This figure clearly shows that the
coalescence time increases as the value mΨc decreases.
It occurs because the reduction of mΨc makes the process
of destructive interference between the h̃μν and Ψμν modes
more effective, and consequently, the binary system loses
energy more slowly. It is important to note that for
mΨc > 0, i.e., α finite, coalescence always occurs.
GR plus massive spin-0 mode: in this other configu-

ration we have 2ωs < mΨc and 2ωs > mΦc, and therefore
only the first and third terms are present in Eq. (59). By
integrating Eq. (59) in this context, we get the results shown
in Fig. 2.
Figure 2 presents ωsðtÞ in the inspiral phase considering

that the binary system loses energy through the h̃μν and Φ
modes. From this figure, we can see that the lower the value

of mΦc, the more effective is the energy loss via scalar
mode, and, consequently, the coalescence occurs earlier.
Furthermore, the proximity of the curves in Fig. 2 indicates
that the scalar mode carries considerably less energy than
the tensorial one, i.e., the orbital dynamics of the system is
essentially determined by the h̃μν mode.

VI. SPIN-2 WAVEFORM

Once the orbital dynamics of the binary system is
established, we will study what is the waveform of the
unique spin-2 structure detected at a certain point in
space.10 We saw earlier that the complete spin-2 wave is

FIG. 2. Numerical solution of the balance equation in units of
GMc=c3 ¼ 1, with initial condition ωð0Þ ¼ 0.5 and taking into
account only the spin-0 and massless spin-2 modes. The red and
blue curves are constructed with mΦc ¼ 1 and mΦc ¼ 0.1,
respectively. The black curve represents the pure general rela-
tivity solution.

FIG. 1. Numerical solution of the balance equation in units of
GMc=c3 ¼ 1, with initial condition ωð0Þ ¼ 0.5 and taking into
account only spin-2 modes. The red, blue, and green curves are
constructed with mΨc ¼ 1, mΨc ¼ 0.9, and mΨc ¼ 0.8, respec-
tively. The black curve represents the pure GR solution.

10During this section, we assume that there is no scalar mode
emission.
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composed of two modes, namely h̃þ:× and Ψþ:×, which
interfere destructively. At the time of emission, these two
modes have the same frequency and amplitude, but this is
no longer true at the time of detection. The main point of
this analysis is that the massive and massless modes
propagate at different velocities. While the h̃þ:× mode
propagates with velocity c, the Ψþ:× mode propagates with
group velocity

vgðtÞ ¼
dω
dk

;

where ω ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

Ψ

q
is the dispersion relation of the

massive mode. Remembering that in the approximation of
quasicircular orbits we have ω ¼ 2ωs, we can write the
velocity vg as

vg ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
mΨc
2ωs

�
2

s
; ð60Þ

with vg < c. The difference in propagation velocities
between the two modes generates the phenomenon of
dispersion in the complete spin-2 wave.
The combination of massive and massless modes at

detection time td occurs with waves that were emitted at
different times and therefore have different frequencies. If
the h̃þ:× mode was emitted in te, the Ψþ:× mode was
necessarily emitted earlier in tem . In this case, the frequency
ωsðteÞ associated with the massless mode is greater than the
frequency ωsðtemÞ associated with the massive mode.
Based on the previous discussion, we can write the

relationships between the detection time and the emission
times as

te ¼ td −
r
c
; ð61Þ

tem ¼ td −
r

vgðtemÞ
: ð62Þ

Combining these two expressions and using Eq. (60),
we get

tem ¼ te þ
r
c

0
B@1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð mΨc

2ωsðtem ÞÞ
2

q
1
CA: ð63Þ

The previous equation is an algebraic equation for tem
which together with Eq. (59) allows us to determine tem
and ωsðtemÞ.
In order to exemplify the phenomenon of dispersion in the

spin-2 complete wave, we consider a hypothetical binary
system ofMc ¼ 10M⊙ located at a distance of 10 Kpc. We
also assume mΨc ¼ 0.02 s−1 and neglect the scalar mode

emission.11 For convenience te is adopted as a time evolution
variable and we consider ωsðte ¼ 0Þ ¼ 0.01 Hz. This initial
condition causes the Ψþ:× mode to transition from the
damping regime to the oscillatory one exactly at te ¼ 0.
The next step is to numerically solve the balance

equation (59) obtaining ωsðtÞ, and then determine tem by
Eq. (63) considering different values of te. To facilitate this
analysis, we define the functions

fðtemÞ ¼ tem

and

gðtemÞ ¼ te þ
r
c

0
B@1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð mΨc

2ωsðtem ÞÞ
2

q
1
CA:

Figure 3 shows plots of the functions fðtemÞ and gðtemÞ
for three distinct values of te.
The plots sequence in Fig. 3 shows that as te increases,

the red curve shifts upwards. Furthermore, from te ¼ 37.7
Kyr, this curve intercepts the black curve indicating the
existence of solutions of Eq. (63). Physically this means
that the first wave fronts of the massive modes take 37.7
Kyr to travel a distance of 10 Kpc. Furthermore, due to the
nonlinearity of velocity vgðtÞ, we see that the complete
spin-2 wave detected is composed by the superposition of a

massless mode h̃þ:× and two massive modes Ψð1;2Þ
þ:× . This

fact is evidenced by the double solution of Eq. (63), which
occurs from te ¼ 37.7 Kyr. Figure 4 shows waveforms

Θþ ¼ h̃þðωe
sÞ þ Ψð1Þ

þ ðωemð1Þ
s Þ þΨð2Þ

þ ðωemð2Þ
s Þ considering

the same three values of te presented above.
The plots in Fig. 4 show the full tensorial mode wave-

forms associated with polarization plus. In the interval 0 ≤
te < 37.7 Kyr only the massless mode is present, and Θþ
has the form of a pure sinusoid. From te ≥ 37.7 Kyr, the

three modes h̃þ, Ψ
ð1Þ
þ and Ψð2Þ

þ combine and generate an
interference pattern. For te ≈ 37.7 Kyr (second plot of
Fig. 4), the two massive modes have similar frequencies
and contribute similarly to the structure of Θþ. As te
increases, the Ψð2Þ

þ mode (lower frequency mode) decreases

in importance compared to Ψð1Þ
þ . In the last plot of Fig. 4,

we present a moment when the complete waveform is

mainly characterized by h̃þ and Ψð1Þ
þ , both with similar

frequencies. In this case, we notice that Θþ is modulated by
an angular frequency envelope ωe

s − ω
emð1Þ
s with some

deformity generated by the presence of Ψð2Þ
þ .

In the next section, we will use the nonexistence of an
interference pattern in gravitational wave observations to
constrain the parameter mΨ.

11This can be obtained by considering mΦc much higher than
the typical orbital frequency of the binary system.
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A. Observational constraints

The waveform detected in the inspiral phase of a binary
black hole system allows constraining the parameter mΨ. It
is possible because the presence of massive modes pro-
duces an interference pattern (plots in Fig. 4) that is clearly
not observed. To obtain these constraints, we will consider
the event GW170104, which consists of the merge of two
black holes with a Chirp mass Mc ¼ 21.1 M⊙ and a
distance of r ¼ 880 Mpc [58].12 Figure 1 of Ref. [58]
indicates that the gravitational wave is detected initially at tini ¼ 0.5 s with frequency fGW ≈ 45 Hz, and the merge

occurs around tmer ¼ 0.59 s.
The estimated constraint for mΨ is performed as

follows:

FIG. 3. Plots of the functions fðtemÞ (black) and gðtemÞ (red)
considering three values of te. In the construction of gðtemÞ, we use
the numerical solution of Eq. (59) withMc ¼ 10M⊙, r ¼ 10 Kpc,
mΨc ¼ 0.02 s−1 and initial condition ωsð0Þ ¼ 0.01 Hz. FIG. 4. Waveforms Θþ ¼ h̃þ þ Ψð1Þ

þ þ Ψð2Þ
þ normalized by the

amplitude Aþ ¼ 2r−1c−4ðGMcÞ53ð1þ cos2θÞðωe
sÞ23 associated

with the h̃þ mode. The first plot presents only the massless mode
with frequency ωe

s ¼ 10−2 Hz. In the second plot, we
have a massless frequency mode ωe

s ¼ 1.762 × 10−2 Hz and
two massive frequency modes ω

emð1Þ
s ¼1.326×10−2 and ω

emð2Þ
s ¼

1.323×10−2Hz. In the third plot, themasslessmode has frequency
ωe
s ¼ 3 × 10−2 Hz and the two massive modes have frequencies

ω
emð1Þ
s ¼ 2.83 × 10−2 and ω

emð2Þ
s ¼ 1.07 × 10−2 Hz. All frequen-

cies were calculated from the solution of the balance equation (59).

12We only take into account the best-fit parameters.
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(i) Using the initial condition ωsðtiniÞ ¼ πfGW ¼ 141
Hz, we numerically solve the balance equation (59)
for different values ofmΨ. It is done considering that
the spin-0 mode is in the damping regime.

(ii) Knowing ωsðtÞ and using te ¼ tini, we determine the
largest value of mΨ in which Eq. (63) has a solution
for tem. Numerically this corresponds to a configu-
ration equivalent to the second plot in Fig. 3.

The procedure above establishes the maximum value ofmΨ
at which the massive mode produces an interference pattern
of the type shown in Fig. 4. As this pattern is not observed
in event GW170104, the maximum value obtained estab-
lishes a lower bound formΨ. Table I shows the result of this
constraint.
Another way to obtain a more restrictive constraint for

mΨ is through the coalescence time Δcol. From Fig. 1, we
see that the coalescence time increases substantially asmΨc
decreases. On the other hand, event GW170104 observes a
coalescence time Δob

col ∼ 0.1 s counted from the initial
setting ωsðtiniÞ ¼ 141Hz. Thus, imposing that the presence
of the massive mode cannot change (in order of magnitude)

the observed value of Δob
col, we can constrain the parameters

mΨ and α.
The coalescence time is calculated from Eq. (59) and

essentially depends on the parameters Mc and mΨ.
13

Solutions to this equation show that asMc andmΨ increase
Δcol decreases. In principle, any decrease inmΨ can be offset
by an increase inMc leaving Δcol invariant. However, there
is strong theoretical [59] and observational [60,61] evidence
that the mass of Chirp is “always” less than 100 M⊙.

14

Thus, assuming the maximum value Mc¼100M⊙, we can
establish a lower bound for mΨ requiring Δcol to be
compatible with the observed value Δob

col.
In Fig. 5, we show the solution ωsðtÞ for different values

of the parameter mΨ with Mc ¼ 100M⊙:
The coalescence time is calculated from Δcol¼ tcol−0.5,

where tcol is the instant when the functions in Fig. 5
diverge. Thus, for the models described by the blue, red,
and black curves, we obtain Δcol ¼ 0.5, 1, and 1.5 s,
respectively. Furthermore, these values correspond to the
minimum coalescence times of a given model mΨ as they
were calculated with the maximum value Mc ¼ 100M⊙. If
we decrease the chirp mass with mΨ fixed, we get a larger
value for Δcol.
Based on the previous discussion, we can estimate a

lower bound for the parameter mΨ considering Δcol ≤ Δob
col.

In principle, we should use Δob
col ∼ 0.1 s. However, to

compensate for the errors generated by the approximations
performed (nonrelativistic dynamics, point masses, etc.),
we reduce the constraint by 1 order of magnitude and
consider Δcol ≤ 1 s.15 Thus, from Fig. 5, we see that mΨc
must be larger than 86 s−1, which results in the following
constraint shown in Table II.
Due to the various approximations performed, the

estimates presented in Table II must be considered only
in order of magnitude. Still, the constraint for the α
parameter via coalescence time is about 8 orders of
magnitude more restrictive than the constraint obtained
via the interference pattern.

TABLE I. Emission frequencies of the massive (ωem
s ) and

massless (ωe
s) tensorial modes, and constraints for the parameters

mΨ and α where m2
Ψ ¼ 2=α. Note that the two massive modes

have approximately the same frequency given by ωem
s . Further-

more, since ωe
s and ω

em
s differ only by a factor of 2, the amplitudes

of the modes Ψð1;2Þ
þ:× and h̃þ:× are similar. Thus, for

mΨ < 4.2 × 10−11 m−1, we obtain an interference pattern similar
to the one shown in the second plot of Fig. 4.

ωe
s ωem

s mΨð≳Þ αð≲Þ
Spin-2 141 Hz 77 Hz 4.2 × 10−11 m−1 1.1 × 1021 m2

FIG. 5. Plot of the function ωsðtÞ considering the initial
condition ωsð0.5Þ ¼ 141 Hz and Mc ¼ 100M⊙. The blue, red,
and black curves are constructed with mΨc ¼ 120, mΨc ¼ 86,
and mΨc ¼ 70 s−1, respectively. The vertical dashed curve
indicates Δcol ¼ 1 s.

TABLE II. Constraints to parameters mΨ and α taking into
account Δcol ≤ 1 s.

mΨð≳Þ αð≲Þ
Spin-2 3 × 10−7 m−1 2 × 1013 m2

13Again, we consider that the spin-0 mode is in the damping
regime.

14By always we mean that the existence of a binary black hole
system with Mc ≳ 100M⊙ is highly improbable.

15Relativistic corrections are essential to correctly describe the
orbital dynamics close to the merger. However, they do not
change the coalescence time in order of magnitude. For example,
the predicted coalescence time for event GW1701104 in GR on
the quadrupole approximation is Δcol ¼ 0.16 s.
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VII. FINAL COMMENTS

In this paper, we studied GWs emitted by binary point-
mass black hole systems in the context of the quadratic
gravity model assuming nonrelativistic and circular orbit
approximations. The GWs solutions were calculated by
taking into account the dominant terms in the multipolar
expansion. They exhibit three modes: a massive spin-2
mode Ψμν, a massive spin-0 mode Φ, and the expected
massless spin-2 mode h̃μν. Besides, the massive modes
present two different behaviors: the oscillatory regime,
which plays the real role of GW; and the damped regime,
which presents an exponential decay.
We calculated the energy-momentum tensor tμν of the

GWsand showed that it presents theOstrogradsky instability.
To circumvent this potential problem and obtain a consistent
physical interpretation [62], we consider spin-2 waves as a
single structure given as a result of the destructive interfer-
ences between the fields h̃μν and Ψμν. Having obtained the
tμν, we constructed the energy balance equation and studied
how the quadratic gravity model modifies the orbital dynam-
ics of point-mass black hole binaries. We showed that the
spin-2 structure takes a longer time to reach coalescence
indicating the system loses energy more slowly when
compared to GR. For the case of spin-0 plus GR, we have
a shorter time to reach coalescence indicating that the system
loses energy faster than the GR pure case.
We determined the waveform that a detector would

observe for the complete spin-2 structure. When the
massive mode is not present, we obtain a pure sine wave.
However, when it is present, we get a clear interference
pattern. Using the nonobservation of this interference
pattern, we constrain the parameter to mΨ ≳ 4.2 ×
10−11 m−1 or α≲ 1.1 × 1021 m2. Furthermore, based on
the coalescence time, we developed a second method to
constrain mΨ. By this method, we obtain mΨ ≳ 3 ×
10−7 m−1 or α≲ 2 × 1013 m2, which is 8 orders of mag-
nitude more restrictive than the previous one.
The methods presented in Sec. VI A do not effectively

constrain the parametermΦ or γ. The main reason for this is
the structural difference between the solutions Φ and Ψþ;×.
For example, the scalar mode presents a longitudinal
polarization differently from the tensor modes [63–65].
This difference leads to factor 1=18 which appears in the
balance equation and makes the energy loss via scalar mode
ineffective.
There are some papers in the literature that constrain the

parameters of quadratic gravity. On astrophysical scales, of

the order of stellar systems, we get restrictions associated
with the scalar mode arising from binary systems. Using
observations of decreasing orbital period of neutron
star binaries, Refs. [42,66,45] constrain γ ≲ 1017 and
γ ≲ 1016 m2, respectively. At earthly scales, the Eöt-Wash
torsion balance experiment [67] provides bounds for both γ
and α parameters. Based on the static weak-field solution of
quadratic gravity [47], the Eöt-Wash experiment constrains
α ∼ γ ≲ 2 × 10−9 m2. Even though earthly bounds aremuch
more restrictive than astrophysical ones, it is always impor-
tant to test alternative models of gravity at different scales.
The circular orbit approximation motivates future work

in which noncircular orbits are considered from the
beginning. In this context, it would be possible to study
the loss of angular momentum and the effects of orbit
circularization. This would be particularly interesting in
quadratic gravity, where the presence of the Weyl-Weyl
term generates the Ostrogradsky instability.
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APPENDIX: THE GRAVITATIONAL
ENERGY-MOMENTUM TENSOR

In this Appendix, we calculate the gravitational energy-
momentum tensor

tμα ¼ −
c4

8πG
½hGð2Þ

μα i þ γhHð2Þ
μα i − 2αhIð2Þμα i�; ðA1Þ

where Gð2Þ
μα , H

ð2Þ
μα , and Ið2Þμα are given in Eqs. (50)–(52),

respectively.
The brackets h…i represent space-time averages of

wave-like solutions obtained from Eqs. (14), (18), and
(9). These averages are taken considering several periods of
time and space in such a way that in these averages we can
perform integrations by parts and neglect the surface terms

[54]. Using this property, we will simplify hHð2Þ
μα i and hIð2Þμα i.

So, remembering that

∇μ∂αR ¼ ∂μ∂αR − Γρ
μα∂ρR;

we have for hHð2Þ
μα i

hHð2Þ
μα i ¼ hRð1ÞRð1Þ

μα i − 1

4
ημαhRð1ÞRð1Þi þ hhμα□Rð1Þi þ ημαh½gλκ∇κ∂λ�ð1ÞRð1Þi þ hΓρð1Þ

μα ∂ρRð1Þi

¼ hRð1ÞRð1Þ
μα i − 1

4
ημαhRð1ÞRð1Þi þ hhμα□Rð1Þi − ημαhhλκ∂κ∂λRð1Þi − ημαη

λκhΓρð1Þ
κλ ∂ρR

ð1Þi

þ hΓρð1Þ
μα ∂ρRð1Þi;
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where □ ¼ ∂
σ
∂σ . To obtain hIð2Þμα i, we must develop the term

hð∇ν∇βÞð1ÞCð1Þ
μναβi ¼ hðgνκ∂κ∇βÞð1ÞCð1Þ

μναβi − hðgνκΓρ
κμ∇βÞð1ÞCð1Þ

ρναβi − hðgνκΓρ
κν∇βÞð1ÞCð1Þ

μραβi − hðgνκΓρ
κα∇βÞð1ÞCð1Þ

μνρβi
¼ −ηβλhhνκ∂κ∂λCð1Þ

μναβi − ηνκhΓρð1Þ
κμ ∂

βCð1Þ
ρναβi − ηνκhΓρð1Þ

κν ∂
βCð1Þ

μραβi − ηνκhΓρð1Þ
κα ∂

βCð1Þ
μνρβi:

So, Ið2Þμα is written as

hIð2Þμα i ¼ −hhνκ∂κ∂βCð1Þ
μναβi − ηνκhΓρð1Þ

κμ ∂
βCð1Þ

ρναβi
− ηνκhΓρð1Þ

κν ∂
βCð1Þ

μραβi − ηνκhΓρð1Þ
κα ∂

βCð1Þ
μνρβi

þ 1

2
ηνρηβλhRð1Þ

ρλ C
ð1Þ
μναβi:

Therefore,

hGð2Þ
μα i ¼ hRð2Þ

μα i − 1

2
ημαhRð2Þi − 1

2
hhμαRð1Þi; ðA2Þ

hHð2Þ
μα i ¼ hRð1ÞRð1Þ

μα i − 1

4
ημαhRð1ÞRð1Þi þ hhμα□Rð1Þi

− ημαhhλκ∂κ∂λRð1Þi − ημαη
λκhΓρð1Þ

κλ ∂ρR
ð1Þi

þ hΓρð1Þ
μα∂ρRð1Þi; ðA3Þ

hIð2Þμα i ¼ −hhνκ∂κ∂βCð1Þ
μναβi − ηνκhΓρð1Þ

κμ∂
βCð1Þ

ρναβi
− ηνκhΓρð1Þ

κν ∂
βCð1Þ

μραβi − ηνκhΓρð1Þ
κα∂

βCð1Þ
μνρβi

þ 1

2
ηνρηβλhRð1Þ

ρλ C
ð1Þ
μναβi: ðA4Þ

The next step is to calculate the various terms needed
using decomposition (20). As tμν is calculated in vacuum,
we can use the traceless-transverse gauge, and in this case,
h̃ ¼ Ψ ¼ 0 e □h̃μα ¼ 0. Then, the decomposed metric is
rewritten as

h̄μα ¼ h̃μα þ Ψμα − ημαΦ: ðA5Þ

With these simplifications, the first-order quantities
obtained in Sec. II simplify to

Rð1Þ ≈ −3□Φ; ðA6Þ

Rð1Þ
μα ≈ −

1

2
□Ψμα − ∂μ∂αΦþ ημα□Φ − ημα

Φ
2γ

; ðA7Þ

Cð1Þ
μναβ ¼

1

2
½∂α∂νðh̃μβ þ ΨμβÞ − ∂β∂νðh̃μα þ ΨμαÞ

þ ∂β∂μðh̃να þΨναÞ − ∂α∂μðh̃νβ þΨνβÞ�

þ 1

4
½ημα□Ψνβ − ημβ□Ψνα þ ηνβ□Ψμα − ηνα□Ψμβ�;

ðA8Þ

∂
βCð1Þ

μναβ ¼
1

4
½∂μ□Ψνα − ∂ν□Ψμα�; ðA9Þ

and

Γρð1Þ
κμ ¼ 1

2
ηρλð∂κhλμ þ ∂μhλκ − ∂λhκμÞ: ðA10Þ

The term hGð2Þ
μα i is given by the Eq. (A2). The calculation

of the terms hRð2Þ
μα i and hRð2Þi are extensive but straightfor-

ward and results in

hRð2Þ
μα i ¼ −

1

4
h∂μh̃νβ∂αh̃νβi −

1

4
h∂μΨνβ∂αΨνβi þ 1

2
h∂αΦ∂μΦi

−
1

2
h∂μh̃νβ∂αΨνβi þ 1

2
h∂λΨν

μ∂
λΨναi

−
1

2
ηαμh∂λΦ∂λΦi; ðA11Þ

and

hRð2Þi ¼ −
9

2
h∂λΦ∂λΦi − 1

4
h∂λΨνα

∂
λΨναi: ðA12Þ

Substituting the results (A11), (A12), (A6), and (A5) in

hGð2Þ
μα i, we get

hGð2Þ
μα i ¼ −

1

4
h∂μh̃νβ∂αh̃νβi −

1

4
h∂μΨνβ∂αΨνβi

−
1

2
h∂μh̃νβ∂αΨνβi þ 1

2
h∂αΦ∂μΦi

−
1

2
hΨν

μ□Ψναi −
1

4
ημαhΦ□Φi

−
1

8
ημαhΨνβ

□Ψνβi þ
3

2
hΨμα□Φi: ðA13Þ

The field equations (18) and (9) in vacuum can be written as

□Ψμα ¼
1

α
Ψμα and □Φ ¼ 1

3γ
Φ: ðA14Þ

Substituting these equations into hGð2Þ
μα i, we get
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hGð2Þ
μα i ¼ −

1

4
h∂μh̃νβ∂αh̃νβi −

1

4
h∂μΨνβ∂αΨνβi

−
1

2
h∂μh̃νβ∂αΨνβi þ 1

2
h∂αΦ∂μΦi

−
1

2α
hΨν

μΨναi −
1

12γ
ημαhΦ2i

−
1

8α
ημαhΨνβΨνβi; ðA15Þ

where we use that hΨμαΦi ¼ 0. The relation hΨμαΦi ¼ 0 is
derived from the vacuum field equations from the following
construction:

Φ□Ψμα ¼
1

α
ΦΨμα and Ψμα□Φ ¼ 1

3γ
ΦΨμα

⇒ hΦ□Ψμα −Ψμα□Φi ¼
�
1

α
−

1

3γ

�
hΦΨμαi

⇒
1

3γα
ð3γ − αÞhΦΨμαi ¼ 0:

Thus, for α ≠ 3γ, we have hΦΨμαi ¼ 0. The quantity hHð2Þ
μα i

is given by the Eq. (A3). Calculating each of the terms

present in hHð2Þ
μα i, we obtain

(i) First term:

hRð1ÞRð1Þ
μα i ¼ 3

2
h□Φ□Ψμαi þ 3h□Φ∂μ∂αΦi

− 3ημαhð□ΦÞ2i þ ημα
3

2γ
hΦ□Φi:

ðA16Þ

(ii) Second term:

hRð1ÞRð1Þi ¼ 9hð□ΦÞ2i: ðA17Þ

(iii) Third term:

hhμα□Rð1Þi ¼ −3h□Ψαμ□Φi − 3ηαμhð□ΦÞ2i:
ðA18Þ

(iv) Fourth term:

hhλκ∂κ∂λRð1Þi ¼ −3hð□ΦÞ2i: ðA19Þ

(v) Fifth term:

ηλκhΓρð1Þ
κλ ∂ρRð1Þi ¼ −3hð□ΦÞ2i: ðA20Þ

(vi) Sixth term:

hΓρð1Þ
μα∂ρRð1Þi ¼ 3h∂μ∂αΦ□Φi − 3

2
h□Ψαμ□Φi

−
3

2
ηαμhð□ΦÞ2i: ðA21Þ

Then we substitute these six results in the expression of

hHð2Þ
μα i obtaining

hHð2Þ
μα i ¼ 6h□Φ∂μ∂αΦi − 15

4
ημαhð□ΦÞ2i þ ημα

3

2γ
hΦ□Φi

− 3h□Ψαμ□Φi: ðA22Þ

Analogously to the case of hGð2Þ
μα i, we can use the field

equations (A14) and rewrite hHð2Þ
μα i as

hHð2Þ
μα i ¼ 1

γ

�
1

12γ
ημαhΦ2i − 2h∂μΦ∂αΦi

�
; ðA23Þ

where we use again that hΨαμΦi ¼ 0.
The quantity hIð2Þμα i is given by the Eq. (A4). Calculating

each of the terms present in hIð2Þμα i, we obtain
(i) First term:

hhνκ∂κ∂βCð1Þ
μναβi ¼ −

1

4
h□Φ□Ψμαi: ðA24Þ

(ii) Second term:

ηνκhΓρð1Þ
κμ ∂

βCð1Þ
ρναβi¼

1

4
h□Ψλ

α□Ψλμiþ
1

4
h□Ψμα□Φi:

ðA25Þ
(iii) Third term:

ηνκhΓρð1Þ
κν ∂

βCð1Þ
μραβi ¼ −

1

4
h□Φ□Ψμαi: ðA26Þ

(iv) Fourth term:

ηνκhΓρð1Þ
κα∂

βCð1Þ
μνρβi ¼

1

8
½h□Ψλα□Ψλ

μi þ h□Φ□Ψμαi
− h∂μ∂αΨλκ□Ψκλi�: ðA27Þ

(v) Fifth term:

1

2
ηνρηβλhRð1Þ

ρλ C
ð1Þ
μναβi

¼ 1

8

�
h□Ψμβ□Ψβ

αi þ h∂α∂μΨνβ□Ψνβi

−
1

2
ημαh□Ψνβ□Ψνβi þ h□Ψμα□Φi

�
: ðA28Þ
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Substituting these five terms into hIð2Þμα i, we get

hIð2Þμα i ¼ 1

4
h□Φ□Ψμαi −

1

4
h□Ψλ

α□Ψλμi

þ 1

4
h∂α∂μΨνβ□Ψνβi − 1

16
ημαh□Ψνβ□Ψνβi

¼ −
1

4α
h∂μΨνβ∂αΨνβi − 1

4α2
hΨλ

αΨλμi

−
1

16α2
ημαhΨνβΨνβi: ðA29Þ

Finally, to obtain the gravitational energy-momentum
tensor tμα, we substitute Eqs. (A15), (A23), and (A29) in
the expression (A1). Thus,

tμα ¼
c4

8πG

�
1

4
h∂μh̃νβ∂αh̃νβi −

1

4
h∂μΨνβ∂αΨνβi

þ 1

2
h∂μh̃νβ∂αΨνβi þ 3

2
h∂αΦ∂μΦi

�
:
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