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Recent advancements in observational techniques have led to new tests of thegeneral relativistic predictions
for black-hole spacetimes in the strong-field regime.One of the key ingredients for several tests is ametric that
allows for deviations from theKerr solution but remains free of pathologies outside its event horizon. Existing
metrics that have beenused in the literature often donot satisfy the null convergence condition that is necessary
to apply the strong rigidity theorem andwould have allowedus to calculate the location of the event horizon by
identifying it with an appropriate Killing horizon. This has led earlier calculations of event horizons of
parametrically deformed metrics to either follow numerical techniques or simply search heuristically for
coordinate singularities. We show that several of these metrics, almost by construction, are circular. We can,
therefore, use the weak rigidity and Carter’s rotosurface theorem and calculate algebraically the locations of
their event horizons, without relying on expansions or numerical techniques. We apply this approach to a
number of parametrically deformed metrics, calculate the locations of their event horizons, and place
constraints on the deviationparameters such that themetrics remain regular outside their horizons.We find that
introducing very general parametrizations of potential deviations is typically accompanied by pathological
behavior that extends outside the horizons of the black holes. We also show that calculating the angular
velocity of the horizon and the effective gravity there offers new insights into the observational signatures of
deformed metrics, such as the sizes and shapes of the predicted black-hole shadows.
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I. INTRODUCTION

General relativistic predictions for the spacetimes of
black holes are now being tested against observations of
gravitational waves during the coalescence of stellar-mass
black holes [1], the detection of post-Newtonian effects
in the orbits of stars around Sgr A* in the center of the
Milky Way [2], as well as imaging observations of super-
massive black holes with horizon-scale resolution [3,4].
Performing these tests requires a framework that allows for
deviations from these general relativistic predictions. One
of the ingredients of such a framework is a model for the
equilibrium spacetime of the compact object that is allowed
to be parametrically different from the Kerr spacetime.
The no hair theorem in general relativity ensures that

the only black-hole spacetime that is stationary, axisym-
metric, asymptotically flat, free of pathologies, and a
solution to the Einstein field equations is the one described
by the Kerr metric [5]. (For astrophysical black holes,

we do not consider the additional degrees of freedom
introduced by an electric charge.) Introducing any devia-
tions from the Kerr metric, therefore, requires that one of
these basic assumptions for the spacetime is allowed to be
violated. Early attempts considered metrics that are Ricci
flat, i.e., metrics that are solutions to the Einstein field
equations but describe either naked singularities [6] or have
other pathologies such as closed timelike curves [7,8].
Because the presence of pathologies outside the horizons
often precludes the calculation of observable predictions,
most recent attempts have instead abandoned the
assumption of Ricci flatness and either introduce para-
metric deviations in a manner that is agnostic to the
underlying theory [9–14] or that are specific solutions to
modified field equations [15]. Invariably, all these vacuum
spacetimes contain pathologies but, as long as they reside
inside event horizons, they do not hamper the calculation of
observables. Identifying the presence of event horizons and
calculating their locations is, therefore, critical for assessing
whether a parametric non-Kerr spacetime is suitable for
tests of gravity with black-hole observations.
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The event horizon of an asymptotically flat spacetime
is a continuous null surface that separates spacetime
locations from which a future null geodesic can reach
future null infinity from those that cannot. A variety of
techniques have been developed for event-horizon finding,
primarily to address the needs of the numerical relativity
community [16]. Albeit not complicated, especially in the
case of the stationary and axisymmetric spacetimes usually
considered, these techniques involve the solution of differ-
ential equations, which often can be achieved only numeri-
cally. Such techniques have been employed in Ref. [8] to
find the horizons of several non-Kerr spacetimes.
In general relativity, one can use Hawking’s strong rigidity

theorem to connect the global concept of an event horizon
to the local concept of a Killing horizon, which is easier to
calculate [5]. The strong rigidity theorem requires that the
Ricci tensor of the spacetime satisfies the null convergence
condition Rμνlμlν ≥ 0, for all null vectors lμ [17]. In general
relativity, this condition is closely connected to the weak
energy condition [18] since

Rμνlμlν ¼ 8π

�
Tμν −

1

2
Tgμν

�
lμlν ¼ 8πTμνlμlν ≥ 0; ð1Þ

which is expected to be satisfied. For spacetimes that do not
obey the Einstein field equations, however, the null con-
vergence condition is not necessarily satisfied and, therefore,
one cannot apply the strong rigidity theorem to calculate the
event horizon.
The more powerful, albeit less general, weak rigidity

theorem [5], which shows that the rotosurface is a Killing
horizon, and Carter’s rotosurface theorem [19], which
says that the rotosurface is the event horizon, connect
the event horizon of a spacetime with a Killing horizon
without making any assumptions regarding the underlying
field equations, if the spacetime is stationary, axisymmetric,
and circular (see Ref. [20] for an introduction to rigidity
theorems). A spacetime is circular if it has two Killing
vectors k and m and

k½μmν∇λmρ� ¼ 0; ð2Þ

m½μkν∇λkρ� ¼ 0: ð3Þ

We use here the term “circular” for any gravity theory
and for vacuum spacetimes that satisfy these conditions,
even though the term was originally introduced for general
relativistic spacetimes in the presence of matter, which
obey the circularity condition only if the matter field is in
circular orbits, i.e., with no meridian motions [21].
When expressed in adapted coordinates ðt; r; θ;ϕÞ, a

circular spacetime can be separated into two submanifolds:
the MðtϕÞ one spanned by the orbits of the two Killing

vectors and the orthogonal manifold MðrθÞ, whose tangent
vectors are orthogonal to the tangent vectors of the orbital
submanifold MðtϕÞ. The orthogonality of the tangent
vectors of MðrθÞ and MðtϕÞ allows for the covariant metric
(defined on the tangent space) to be decomposed into a
metric on the tangent vectors of MðtϕÞ and a metric on the
tangent vectors ofMðrθÞ, with no cross terms. Furthermore,
the metric components in a separable structure only depend
on the non-ignorable coordinates r, θ.
Almost by construction, the vast majority of parametri-

cally deformed Kerr metrics obey the circularity condition,
as do many of the black-hole metrics that are solutions to
modified field equations. This property allows us to find
their event horizons, without resorting to complex integra-
tions of differential equations. In Sec. II, we demonstrate
this approach on two widely used parametric metrics,
which we show are indeed circular and use this property
to calculate the locations of their event horizons. In Sec. III,
we evaluate the circularity condition for two spacetimes
that are solutions to modified field equations, show that
one satisfies it and the other does not, and discuss the
applicability of the above theorem. We offer our brief
conclusions in Sec. IV.

II. PARAMETRICALLY DEFORMED
BLACK-HOLE METRICS

In this section, we evaluate the validity of the circularity
condition for two metrics that are parametrically different
from Kerr and use Carter’s rotosurface theorem and the
weak rigidity theorem to calculate the locations of their
event horizons.

A. The Johannsen-Psaltis metric

The first metric we will explore is the one introduced
by Johannsen and Psaltis [10,11] (hereafter the JP metric)
and further developed in, e.g., Ref. [13]. This was devel-
oped to be free of pathologies, while allowing for para-
metric deviations from the Kerr metric and for the existence
of three integrals of motion for the trajectories of particles
and photons. The original version of this metric was
generated from the static Schwarzschild metric by adding
higher order terms in 1=r, which maintains staticity, and
then performing a Newman-Janis transformation, which
loses staticity, when real r-dependent terms are replaced
by suitable combinations of complex r and r̄ terms.
This procedure, however, does maintain circularity, as only
radial and not azimuthal terms are modified by the
replacement prescription of r. The separable version of
the metric was obtained by modifying directly the contra-
variant components of the Kerr metric via the addition of
higher-order terms in 1=r, as well, but in a manner such that
the corresponding Hamilton-Jacobi equations remain sepa-
rable. This approach also preserves circularity.
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The general form of the JP metric in Boyer-Lindquist–like coordinates is

ds2 ¼ −
Σ̃ðΔ − a2A2

2 sin
2 θÞ

½ðr2 þ a2ÞA1 − a2A2 sin2 θ�2
dt2 −

2a½ðr2 þ a2ÞA1A2 − Δ�Σ̃ sin2 θ
½ðr2 þ a2ÞA1 − a2A2 sin2 θ�2

dtdϕ

þ 1

A5

Σ
Δ
dr2 þ Σ̃ sin2 θ½ðr2 þ a2Þ2A2

1 − a2Δ sin2 θ�
½ðr2 þ a2ÞA1 − a2A2 sin2 θ�2

dϕ2 þ Σdθ2; ð4Þ

with

A1 ¼ 1þ α13
r3

þOðr−4Þ;

A2 ¼ 1þ α22
r2

þOðr−3Þ;

A5 ¼ 1þ α52
r2

þOðr−3Þ;

Σ̃ ¼ r2 þ a2 cos2 θ þ ϵ3
r
þOðr−2Þ ð5Þ

and the usual Kerr definitions for Δ ¼ r2 − 2Mrþ a2 and
Σ ¼ r2 þ a2 cos2 θ. The JP metric reduces to the standard
Kerr metric for αij ¼ 0 and ϵ3 ¼ 0. Unless otherwise
specified, we set G ¼ c ¼ M ¼ 1, where G is the gravi-
tational constant, c is the speed of light, and M is the mass
of the compact object, as measured with Keplerian orbits
at large distances.
The JP metric, in general, does not obey the null

convergence condition. To verify this, we take the limit
M ≪ 1 and set the spin and all deviation coefficients αij
of the JP metric to zero. The metric becomes diagonal
with grr ¼ −gtt ¼ 1þ ϵ3

r3. This means that the 4-vector
l ¼ ∂t þ ∂r is null. We obtain

Rμνlμlν ¼ Rtt þ Rrr

¼ 3ϵ3
r2ðr3 þ ϵ3Þ

�
1 −

10r3 þ ϵ3
2ðr3 þ ϵ3Þ

�

⟶ ½r ≫ jϵ3j1=3� −
12ϵ3
r5

: ð6Þ

This last expression can be positive or negative at large
distances from the horizon, depending on the sign of the
parameter ϵ3. As a result, the null convergence condition is
not satisfied and Hawking’s strong-rigidity theorem cannot
be applied to identify the event horizon of the JP metric
with a Killing horizon.
We can demonstrate explicitly, however, that the JP

metric is circular and, therefore, can apply the weak rigidity
theorem and the rotosurface theorem. In adapted Boyer-
Lindquist coordinates, as written above, the JP metric has
two Killing vectors given by k ¼ ∂t and m ¼ ∂ϕ, because
the metric coefficients are independent of the coordinates t

and ϕ, i.e., ∂tgμν ¼ ∂ϕgμν ¼ 0. To assess the circularity of
the JP metric, we write

k½μmν∇λmρ� ¼ ktmϕð∇rmθ −∇θmrÞ
¼ grr∇rmθ − gθθ∇θmr

¼� grrΓθ
rϕ − gθθΓr

θϕ ¼ 0; ð7Þ

where we used the fact that the only nonzero components
of the two Killing vectors are kt ¼ 1 and mϕ ¼ 1 and
that Γθ

rϕ ¼ Γr
θϕ ¼ 0. A similar argument holds for

m½μkν∇λkρ� ¼ 0. The JP metric is, therefore, circular.
Note that, even though we have shown explicitly the
circularity property of the JP metric, the same conclusion
can be reached for any spacetime that follows the general
form of the Lewis-Papapetrou metric.
According to the weak rigidity and the rotosurface

theorems, the event horizon of the JP metric is also a
Killing horizon. To calculate the location of the latter, we
first evaluate the quantity

N ¼ −ðk ∧ mjk ∧ mÞ; ð8Þ

which in adapted coordinates is the negative determinant of
the t;ϕ-part of the metric, i.e.,

N ¼ −ðk ∧ mjk ∧ mÞ
¼ −½ðkjkÞðmjmÞ − ðkjmÞ2�
¼� − ðgttgϕϕ − g2tϕÞ
¼ − det gðtϕÞ: ð9Þ

Here, the expression ðajbÞ denotes the inner product of the
4-vectors a and b and the symbol ¼� denotes the values of
the scalar quantities ðkjkÞ,ðkjmÞ, and ðmjmÞ in Boyer-
Lindquist coordinates. On the Killing horizon,N ¼ 0 [20].
Therefore, the roots of N trace the Killing horizon of
this circular spacetime, which is identical to its event
horizon [22].
To calculate the location of the horizon in the JP metric,

it is easier first to express the latter in terms of rational
polynomial coordinates, i.e.,
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ds2 ¼ −
Σ̃½Δ − a2A2

2ð1 − z2Þ�
½ðr2 þ a2ÞA1 − a2A2ð1 − z2Þ�2 dt

2 −
2a½ðr2 þ a2ÞA1A2 − Δ�Σ̃ð1 − z2Þ
½ðr2 þ a2ÞA1 − a2A2ð1 − z2Þ�2 dtdϕ

þ 1

A5

Σ
Δ
dr2 þ Σ̃ð1 − z2Þ½ðr2 þ a2Þ2A2

1 − a2Δð1 − z2Þ�
½ðr2 þ a2ÞA1 − a2A2ð1 − z2Þ�2 dϕ2 þ Σ

ð1 − z2Þ dz
2; ð10Þ

with the various coefficients expressed as before. The
determinant N in the JP metric is

N ¼ r4Δð1 − z2Þðr3 þ a2rz2 þ ϵ3Þ2
½r5 þ a2r3z2 þ α13ðr2 þ a2Þ − α22a2rð1 − z2Þ�2

¼ r6ΔΣ̃2ð1 − z2Þ
½r3Σþ α13ðr2 þ a2Þ − α22a2rð1 − z2Þ�2 ≡ Δhðr; zÞ

ð11Þ

and is zero for r ¼ 0, Δ ¼ 0, and Σ̃ ¼ 0. The outer event
horizon is located at Δ ¼ 0, i.e., r ¼ rþ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
,

just as in the case of the Kerr metric. The location of
the event horizon does not depend on the choice of the
deviation parameters.
A second condition for the applicability of Carter’s

rotosurface theorem is that the metric remains regular outside
the event horizon, i.e., that det gμν < 0 and never blows up.
This condition was explored in detail in Ref. [11], where it
was used to place bounds on the possible values of the
deviation parameters.
The weak rigidity theorem allows us to calculate a few

additional properties of the JPmetric (seeRef. [20] for details).
The angular velocity of the outer event horizon is equal to

ΩH ¼ −
ðkjmÞ
ðmjmÞ

����
EH

¼ −
ðkjkÞ
ðkjmÞ

����
EH
¼� −

gtt
gtϕ

����
rþ

¼ −
gtϕ
gϕϕ

����
rþ

¼ a
r2þ þ a2

�
A2

A1

�
¼ a

r2þ þ a2

�
1þ α22

r2þ

��
1þ α13

r3þ

�
−1
:

ð12Þ

This is constant along the horizon, as expected from
the theorem, which states that the horizon rotates rigidly for
circularmetrics.We note thatΩH does not depend on the other
two parameters ϵ3 and α52. The first of these parameters enters
the term Σ̃, which is a common factor for gtt; gtϕ, and gϕϕ, and,
therefore, drops out of the calculation of det gðtϕÞ ¼ 0. The
second of these parameters enters only the grr component and,
therefore, does not impact the calculation of det gðtϕÞ.
The Killing vector lν of the JP metric that corresponds to

the Killing horizon is equal to

lν ¼ kν þ ΩHmν

¼ kν þ a
r2þ þ a2

�
1þ α22

r2þ

��
1þ α13

r3þ

�
−1
mν: ð13Þ

Finally, the surface gravity on the outer event horizon for
the JP metric is

κ ¼
�
−
1

4
ðdljdlÞ

�
1=2

¼
�
−
1

2
∇μlν∇μlν

�
1=2

¼ rþ − 1

r2þ þ a2

�
1þ

�
α13
r3þ

�
2
�
−1=2

; ð14Þ

which is also clearly constant along the horizon and
vanishes for an extremal black hole (rþ ¼ 1). The surface
gravity depends only on the deviation parameter α13 and
not on α22. It defaults to the value ðrþ − 1Þ=ðr2þ þ a2Þ
for the Kerr metric (α13 ¼ 0) and the value 1=4 for the
Schwarzschild metric (a ¼ 0, α13 ¼ 0).
It is interesting to note that, for the Kerr metric, the sum

Ω2
H þ κ2 evaluated on the event horizon is a function only

of the horizon radius rþ, i.e.,

Ω2
Hþκ2¼

�
a
2rþ

�
2

þ
�
rþ−1

2rþ

�
2

¼Δþ1

4r2þ
¼ 1

4r2þ
: ð15Þ

This is not true any longer for the JP metric, for which the
Ω2

H þ κ2 evaluated on the event horizon depends on both
rþ and the parameter α22.

B. The Rezzolla-Zhidenko metric

The Rezzolla-Zhidenko (RZ) metric approach introduces
the functions N, W, K, Σ̃, and B such that the resulting
metric takes the form

ds2 ¼ −
ðN2 −W2 sin2 θÞ

K2
dt2 − 2Wr sin2 θdtdϕ

þ K2r2 sin2 θdϕ2 þ Σ̃
�
B2

N2
dr2 þ r2dθ2

�
ð16Þ

with suitable restrictions on the a priori arbitrary functions
to make the metric asymptotically flat and to identify the
mass parameter and angular momentum of a rotating black
hole. The functions N;W;K;B; Σ̃ are specified to depend
only on the coordinates r and θ. This ensures that k ¼ ∂t
and m ¼ ∂ϕ remain Killing vectors.
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To lowest order in the deviation parameters, the
various parametric functions become (see Appendix A
of Ref. [14])

N2ðr; θÞ ¼
�
1 −

r0
r

��
1 −

2 − r0
r

þ a2 þ r20 − 2r0
r2

þ a01r30
r3

�

þ

2
64a20r30

r3
þ a21r40

r4
þ k21

1þ k22ð1−r0
r Þ

1þk23ð1−r0
r Þ

r30
r3

3
75cos2θ;

ð17Þ

Bðr; θÞ ¼ 1þ b01r20
r2

þ b21r20
r2

cos2 θ; ð18Þ

Σ̃ðr; θÞ ¼ 1þ a2

r2
cos2θ;

Wðr; θÞ ¼ 1

Σðr; θÞ
�
2a
r2

þ w01r30
r3

þ w21r30
r3

cos2θ

�
; ð19Þ

K2ðr; θÞ ¼ 1þ aWðr; θÞ
r

þ 1

Σðr; θÞ

2
64a2
r2

þ k21

1þ k22ð1−r0
r Þ

1þk23ð1−r0
r Þ

r30
r3

cos2θ

3
75;

ð20Þ

where we have set some coefficients to the values
dictated by various requirements regarding the asymptotic
behavior of the metric and regularity conditions near the
horizon. Note that the continued fraction in N2 and K2 with
k22 ¼ −a2=r20 and k23 ¼ a2=r20 is necessary to reproduce
the Kerr metric.
The determinant of the t,ϕ-part of the metric is

N ¼ N2r2 sin2 θ; ð21Þ

and, therefore, the locations of the Killing and event
horizons can be found by the requirement N2 ¼ 0. We
will first explore the location of the horizon in spherical
symmetry, i.e., by setting a ¼ 0 and choosing appropriate
values for the other parameters such that there is no
dependence of N2 on the polar angle θ. This is the metric
originally introduced in Ref. [14], with α1 ≡ α01.
By solving the algebraic equation N ¼ 0 and exploring

the relative ordering of the solutions, we find, contrary
to the result reported in Ref. [14] that the outer horizon
occurs either at

rh;1 ¼ r0 ð22Þ

or at

rh;2 ¼
1

3

�
2 − r0 þ 2

2þ r0 − r20
Y1=3
2

þ Y1=3
2

�
; ð23Þ

where

Y2 ¼
1

2
fY1 þ ½32ðr0 − 2Þ3ðr0 þ 1Þ3 þ Y2

1�
1
2g;

Y1 ¼ 16þ 12r0 − 24r20 þ 7r30 − 27a01r30; ð24Þ

depending on the magnitudes of the parameters r0 and a01.
In particular, when r0 ≥ 1, the horizon is at rh;1 for

a01 ≥ ac;1 ¼ ð4 − 3r0Þ=r0 ð25Þ

and connects continuously to rh;2 for a01 < ac;1. On the
other hand, when r0 < 1, the horizon remains at rh;1 for
large values of a01 but jumps discontinuously to rh;2 when

a01 ≤ ac;2 ≡ ð2 − r0Þ
27r30

h
8þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2r0 − 2r20

q

þ r0
�
10 − 7r0 þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2r0 − 2r20

q 	i
: ð26Þ

(Note that the expression for rh;2 is real when this last
condition is satisfied but needs to be evaluated with care, as
it involves the cancellation of two imaginary terms of equal
magnitude but opposite sign.) Of course, these conditions
will be modified if terms of higher order, i.e., a02 and
higher, are included. Figure 1 shows the distinct regions of
the ðr0; a01Þ parameter space for the calculation of the
horizon radius, as well as two examples of the dependence
of the horizon radius on the parameter a01.
The second condition for the applicability of Carter’s

rotosurface theorem is that the determinant of the metric is
negative everywhere, i.e.,

det gμν ¼ −B2Σ̃2r4 sin2 θ < 0: ð27Þ

This condition ensures that the metric is everywhere
Lorentzian. The determinant of the metric is manifestly
negative unless the coefficients of the B function are such
that B ¼ 0 somewhere outside the outer event horizon.
For a spherically symmetric spacetime and keeping only
the lowest-order deviation parameters, this implies that,
in order for B to not be zero when r > rh (see Eq. (17)),
the b01 parameter needs to satisfy

b01 > −
�
rh
r0

�
2

: ð28Þ

Because, as we have seen above, the horizon radius
depends both on the parameters r0 and a01, this last
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condition also implicitly depends on both the r0 and a01
parameters.
Finally, to ensure that there exist no closed timelike curves

outside the horizon requires that gϕϕ > 0 [8]. This is always
true for a spherically symmetric RZ spacetime but translates
to the requirement K2 > 0 in the presence of spin. Note that,
although two of the deformation functions (N2 and K2) are
written as perfect squares, their actual functional forms allow
them to become negative, depending on the values and signs
of the various deviation parameters.
Exploring the details of the event horizon for the general

form of the RZ metric without spherical symmetry is
beyond the scope of this paper. We note, however, that
the shape of the horizon and its size will depend also on the
spin a as well as on the values of additional parameters such
as k21, a20, and a21. In fact, the shape of the horizon may be
oblate or prolate in Boyer-Lindquist–like coordinates,
depending on the signs of these parameters. Furthermore,
because the radius of the horizon is not necessarily equal
to r0, the condition for a spherically symmetric horizon is not
k21 þ a20 þ a21 ¼ 0 as suggested in Ref. [14]. Requiring
that the horizon completely surrounds the central singular-
ities and that the metric remains Lorentzian outside the
horizon will introduce a number of additional bounds on
the deviation parameters, which can be found following the
procedures we outlined above. Such bounds on the deviation

parameters have been explored in Ref. [23], albeit without
using the correct location of the event horizon.

C. The Carson-Yago metric

Carson and Yagi [24] introduced a separable metric,
based on the separable version of the JP metric, by
expanding the Carter tetrad terms and assigning arbitrary
functions to each of the terms in the expansion. They then
imposed constraints on the arbitrary functions by requiring
that the spacetime is asymptotically flat and complies
with the observational constraints on the coefficients of
the parametrized post-Newtonian metric.
The resulting metric is

ds2 ¼ −
Σ̃ðΔ − a2A2

2 sin
2 θÞ

ρ̃4
dt2

−
aΣ̃ sin2 θððr2 þ a2ÞA0 − ΔÞ

ρ̃4
dtdϕ

þ Σ̃ sin2 θððr2 þ a2Þ2A2
1 − a2Δ sin2 θÞ

ρ̃4
dϕ2

þ Σ̃
A5Δ

dr2 þ Σ̃dθ2; ð29Þ

with

ρ̃4 ¼ ððr2 þ a2ÞA1 − a2A2sin2θÞ2 þ a2ðr2 þ a2ÞðA0 − A1A2Þsin2θ
�
r2 þ a2

Δ
ðA0 þ A1A2Þ − 2Þ

�
; ð30Þ

FIG. 1. (Left) Distinct regions in a cross section of the parameter space of the spherically symmetric RZ metric for the calculation of
the radius of the event horizon. The two expressions for the critical curve to the left and to the right of the solid circle are defined in
the main text. The dashed segment of the curve signifies the fact that the horizon radius changes discontinuously there. (Right) The
dependence of the horizon radius on the deviation parameter a01 of the spherically symmetric RZ metric, for different values of the
parameter r0. The change in the slope occurs on the critical curve shown on the left panel. When r0 < 1, the change is discontinuous.
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Σ̃ ¼ Σþ fðrÞ þ gðθÞ, Σ ¼ r2 þ a2 cos2 θ, and Δ ¼
r2 − 2Mrþ a2. The functions AiðrÞ; fðrÞ; gðθÞ are given
by expansions of the form

AiðrÞ ¼ 1þ
X∞
n¼1

αin

�
M
r

�
n
; ð31Þ

fðrÞ ¼ r2
X∞
n¼1

ϵn

�
M
r

�
n
; ð32Þ

gðθÞ ¼ M2
X∞
n¼0

γnPnðcos θÞ; ð33Þ

with Pnðcos θÞ the Legendre polynominals. The separable
JP metric is recovered for A0 ¼ A1A2. Carson and Yagi also
show that this metric can be mapped to several well-known
black-hole solutions such as the Einstein-dilaton-Gauss-
Bonnet, the dynamical Chern-Simons, and the Kerr-Sen
solution. It also contains the RZ metric, as a subset.
The Carson-Yagi metric is axisymmetric, stationary, and

circular, since it has the required form in adapted coor-
dinates and the coefficients only depend on r and θ.
However, this is an example, where the second condition
for the applicability of Carter’s rotosurface theorem,
namely that the metric remains regular outside the event
horizon, is not met for the general form of the metric. For
example, this is the case when A0 is arbitrary; A1, A2, A5 are
all set to 1, and f, g are set to 0. This means that Carter’s
rotosurface theorem that implies N ¼ 0 at the event
horizon (and would lead to Δ ¼ 0) cannot be used in
general for the Carson-Yagi metric. This is caused mainly
by the additional (second) term in ρ̃4, which is proportional
to A0 − A1A2 and allows det gμν to change sign outside the
Killing horizon. It is also easy to see that gtt; gtϕ, and gϕϕ
are zero at Δ ¼ 0 and do not allow a unique evaluation
of the angular velocity at Δ ¼ 0. The same goes for the
Killing vector l ¼ kþ ΩHm and the surface gravity at
Δ ¼ 0. In the case of the separable version of the JP metric,
the term proportional to A0 − A1A2 drops out, since
A0 ¼ A1A2, and Carter’s theorem can be applied.
Requiring regularity outside the event horizon requires

certain correlations between the various parameters to be
satisfied. Exploring such correlations is beyond the scope
of this work. However, the example of the Carson-Yagi
metric, together with the case of the RZ metric, suggests
that the most general parametrizations of deviations from
the Kerr metric are often accompanied by pathologies that
are not enshrouded by horizons.

III. BLACK-HOLE METRICS FROM MODIFIED
GRAVITY THEORIES

In this section, we evaluate the circularity condition for
two metrics that are solutions to modified field equations.

A. Black-hole metrics in
Einstein-Maxwell-dilaton-axion theories

The first metric we investigate in this category is
the Einstein-Maxwell-dilaton-axion (EMDA) metric. This
describes a gravitional/electromagnetic system with the
two additional fields, the scalar dilaton, which couples to
the electromagnetic field via the scalar FμνFμν, and the
pseudoscalar axion, which couples to the electromagnetic
field via the pseudoscalar Fμν � Fμν.
We follow the notation of Ref. [25], but in order to be

consistent with Ref. [26], we rename Σ to Δ̂, Δ to Σ̂,
interchange b and β and finally replace m by m ¼ M þ b.
We then go to rational polynomial coordinates and set
G ¼ c ¼ M ¼ 1 such that

ds2 ¼ −
Δ̂ − a2ð1 − z2Þ

Σ̂
dt2 −

2aðδ̂ − Δ̂WÞð1 − z2Þ
Σ̂

dtdϕ

þ Σ̂
Δ̂
dr2 þ Σ̂

ð1 − z2Þ dz
2 þ Âð1 − z2Þ

Σ̂
dϕ2 ð34Þ

with

Σ̂ ¼ r2 þ a2z2 − ðβ2 þ 2brÞ þ βbðβb − 2azÞ; ð35Þ

Δ̂ ¼ r2 − 2rþ a2 − ðβ2 þ 2brÞ − β2bð1þ 2bÞ; ð36Þ

W ¼ 1þ βabð2z − βabÞ þ β2a
1 − z2

; ð37Þ

δ̂ ¼ r2 − 2brþ a2; ð38Þ

Â ¼ δ̂2 − a2Δ̂W2ð1 − z2Þ: ð39Þ

Here, b is the coupling parameter of the dilaton and β
the coupling parameter of the axion. The constants are
defined as

βa ¼
β

a
; βb ¼

β

b
; βab ¼

β

ba
: ð40Þ

The metric has a clear coordinate singularity at Δ̂ ¼ 0,
which has been tentatively identified with the event horizon
in earlier studies. We will show here that this condition
indeed specifies the location of the event horizon, albeit
for a different physical reason. In the following, we show
explicitly the dependence of the various results on the mass
M, for reasons that will become readily apparent.
The metric is clearly circular, as it is in the canonical

form and the metric coefficients depend only on the
coordinates r and z. Moreover, the determinant of the
EMDA metric in rational polynomial coordinates is

det gμν ¼ −ðr2 þ a2z2 − β2 − 2br − 2azβb þ β2bÞ2 ¼ −Σ̂2:

ð41Þ
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This shows that the EMDA metric is Lorentzian outside the
singularity at Σ̂ ¼ 0. Expanding gtt and gtϕ in Boyer-
Lindquist coordinates shows that the metric in the dilaton-
only case, with the axion coupling constant β set to zero, is
asymptotically flat. The metric with β ≠ 0 is not asymp-
totically flat, as the series expansion of gtϕ in the radial
coordinate contains a constant term proportional to β,
which is not admissible for asymptotically flat spacetime
[20]. This is not surprising, as the axion parameter β is
related to the Newman-Unti-Tamburino (NUT) parameter
of the asymptotically non-flat Taub-NUT spacetime [25].
This allows us to apply Carter’s theorem (albeit with

constraints on the various coupling parameters to ensure
that Σ̂ ≠ 0) only in the case with b ≠ 0 and β ¼ 0.
Nonetheless, we perform the following calculations for
the general case b, β ≠ 0. We write the determinant of the t,
ϕ part of the metric as

N ¼−ða2−2rþr2þβ2−2brþ2bβ2b−β2bÞð1−z2Þ¼−Δ̂

ð42Þ

and conclude (at least in the case of β ¼ 0) that, indeed,
the event horizon in the EMDA metric is located at Δ̂ ¼ 0,
i.e., at

rh ¼ ð1þ bÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ2ð1þ β2bÞ − a2

q
: ð43Þ

It is through the application of the weak rigidity and
rotosurface theorems that we can identify this location
with the event horizon of the spacetime, even though it
coincides with the location of the coordinate singularity. It
is also interesting that both the dilaton and the axion modify

the mass-dependent term of the horizon (when compared to
the Kerr value) but not the spin-dependent term.
As implied by the rigidity theorem, the angular velocity

is constant on the outer event horizon, i.e.,

ΩH ¼ a

δ̂
¼ a

r2þ þ a2 − 2brþ
¼ a

2ð1þ bÞrþ
: ð44Þ

The surface gravity on the horizon with no axions
(β ¼ 0) is

κ ¼ rþ − ð1þ bÞ
2rþ

; ð45Þ

whereas with no dilaton (b ¼ 0) it is

κ ¼ rþ − 1

2rþ þ β2
: ð46Þ

Note that in this metric, the sum Ω2
H þ κ2 depends not only

on rþ but also on the spin a and the dilaton parameter b.

B. Black-hole metrics in degenerate higher order
scalar tensor theories

As a final example, we contrast the results presented
earlier with those of a class of black-hole metrics in
degenerate higher order scalar tensor (DHOST) theories
[27,28]. These are stationary axisymmetric metrics that are
not Ricci flat. However, because the underlying scalar field
that sources them is time evolving, the resulting metric
contains off-diagonal terms and cannot be put in the Lewis-
Papapetrou form.
An example DHOST black-hole metric is

ds2 ¼ −
�
1 −

2M̃r
Σ

�
dt2 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p 4M̃arsin2θ
Σ

dtdϕþ Asin2θ
Σ

dϕ2

þ
�
Σ
Δ
−Dð1þDÞ 2M̃rðr2 þ a2Þ

Δ2

�
dr2 − 2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M̃rðr2 þ a2Þ

p
Δ

drdtþ Σdθ2 ð47Þ

with ΔðrÞ ¼ r2 − 2Mrþ a2, Σðr; θÞ ¼ r2 þ a2 cos2 θ, and
Aðr; θÞ ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ. The disformal param-
eter D, which is associated with the linear rate of change of
the scalar field, sets the mass and spin of the black hole, as
measured by an observer at infinity, to M̃ ¼ M=ð1þDÞ
and ã ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
1þD

p
, respectively. The limit D ¼ 0 repro-

duces the standard Kerr solution.
The DHOST metric is asymptotically flat and admits

an asymptotically timelike Killing vector k (¼ ∂t) and a
second Killing vector m (¼ ∂ϕ) for axisymmetry. However,
as discussed extensively in Ref. [27], the presence of these
two symmetries does not guarantee that the circularity

condition is satisfied. Indeed, the metric contains a gtr-term,
which arises from the time evolution of the scalar field.
As a result, the 1-form associated with the timelike
Killing vector is given by k ¼ gttdtþ gtϕdϕþ gtrdr,
whereas the 1-form associated with the spatial Killing
vector remains m ¼ gϕtdtþ gϕϕdϕ. This leads to the
following equalities:

m ∧ k ∧ dk

¼ gtr½−ð∂θgttÞgϕϕ þ ð∂θgtϕÞgtϕ� dt ∧ dr ∧ dθ ∧ dϕ;

ð48Þ
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k ∧ m ∧ dm

¼ gtr½−ð∂θgϕϕÞgtϕ þ ð∂θgtϕÞgϕϕ� dt ∧ dr ∧ dθ ∧ dϕ:

ð49Þ

Because gtr is nonzero and the tt−, ϕϕ-, and tϕ compo-
nents of the metric are θ-dependent, the above two
expressions are nonzero and, therefore, the metric is not
circular. The only situation in which the metric is circular is
when ∂θgtt ¼ ∂θgϕϕ ¼ ∂θgtϕ ¼ 0. However, this is equiv-
alent, with an appropriate redefinition of parameters, to the
Schwarzschild metric and, hence, does not represent a new
black-hole solution.
Reference [27] explores in detail the properties of this

metric and offers a possible calculation of its event horizon.
For the purposes of our paper, we present it only as a
counterexample of a black-hole spacetime that is stationary
and axisymmetric but, because it is not circular, does not
allow us to use the weak rigidity theorem and Carter’s
rotosurface theorem to identify its event horizon.

IV. CONCLUSIONS

We have shown that the application of Carter’s rotosur-
face theorem for circular metrics allows us to analytically
calculate the event horizon for several of the most com-
monly used non-GR metrics, as they tend to be circular. We
pointed out instances where the application of the theorem
is not possible, since some of its assumptions, such as
asymptotic flatness, are not satisfied. We also discussed
noncircular non-GR metrics, for which other methods to
determine the event horizon have to be devised.
Our approach allowed us to revisit the investigation of

the event horizon location in the commonly used RZ metric
and also to find a discontinuous jump in the dependence of
this location on particular deviation parameters. Identifying
the correct location of the event horizon is important in
setting bounds on the deviation parameters such that the
parametric metric is free of pathologies.

The application of the weak rigidity and rotosurface
theorems allowed us also to calculate the surface gravity
of the horizon and its angular velocity. Perhaps not
surprisingly, these two properties appear to be directly
related to the predicted shape and size of the predicted
black-hole shadows for these metrics. For the JP metric,
we found that the surface gravity of the horizon depends
on the same deviation parameters that affect the size of
the black-hole shadow (e.g., α13), whereas the angular
velocity of the horizon depends on the same deviation
parameters that affect the shadows’ shape and, in par-
ticular, any deviation from circular symmetry (e.g., α22)
[4,29,30]. This is easy to understand since the effective
gravity near the horizon affects the radius of the photon
orbit and, hence, the size of the black-hole shadow. On
the other hand, the angular momentum of the horizon is a
measure of frame dragging, which is responsible for any
deviations of the shadow shape from circular. In a future
publication, we will explore this potential connection to a
greater extent.
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Note added.—During the final stages of our work,
we became aware of Ref. [31], which proposes a
new class of parametric metrics that deviate from
Kerr that allow for violation of the circularity condition.
Moreover, we also became aware of Ref. [32] where,
prompted by an earlier private communication of our
work, the constraints on the parameters of the RZ
metric imposed by regularity considerations have been
explored.

[1] B. P. Abbott et al. (LIGO and Virgo Collaborations), Phys.
Rev. Lett. 116, 221101 (2016); Phys. Rev. D 100, 104036
(2019); 103, 122002 (2021).

[2] A. Hees, T. Do, A. M. Ghez, G. D. Martinez, S. Naoz, E. E.
Becklin, A. Boehle, S. Chappell, D. Chu, A. Dehghanfar, K.
Kosmo, J. R. Lu, K. Matthews, M. R. Morris, S. Sakai, R.
Schödel, and G. Witzel, Phys. Rev. Lett. 118, 211101
(2017); A. Amorim et al. (Gravity Collaboration), Phys.
Rev. Lett. 122, 101102 (2019); T. Do et al., Science 365,
664 (2019); R. Abuter et al. (Gravity Collaboration),
Astron. Astrophys. 636, L5 (2020).

[3] Event Horizon Telescope Collaboration, Astrophys.
J. Lett. 875, L1 (2019); 930, L17 (2022); 930, L12
(2022);

[4] D. Psaltis, L. Medeiros, P. Christian, and F. Özel (EHT
Collaboration), Phys. Rev. Lett. 125, 141104 (2020).

[5] W. Israel, Phys. Rev. 164, 1776 (1967); Commun. Math.
Phys. 8, 245 (1968); B. Carter, Phys. Rev. 174, 1559 (1968);
Phys. Rev. Lett. 26, 331 (1971); S. W. Hawking, Commun.
Math. Phys. 25, 152 (1972); R. H. Price, Phys. Rev. D 5,
2419 (1972); 5, 2439 (1972); D. C. Robinson, Phys. Rev.
Lett. 34, 905 (1975).

IDENTIFYING THE EVENT HORIZONS OF PARAMETRICALLY … PHYS. REV. D 107, 044015 (2023)

044015-9

https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.1103/PhysRevLett.118.211101
https://doi.org/10.1103/PhysRevLett.118.211101
https://doi.org/10.1103/PhysRevLett.122.101102
https://doi.org/10.1103/PhysRevLett.122.101102
https://doi.org/10.1126/science.aav8137
https://doi.org/10.1126/science.aav8137
https://doi.org/10.1051/0004-6361/202037813
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ac6756
https://doi.org/10.3847/2041-8213/ac6674
https://doi.org/10.3847/2041-8213/ac6674
https://doi.org/10.1103/PhysRevLett.125.141104
https://doi.org/10.1103/PhysRev.164.1776
https://doi.org/10.1007/BF01645859
https://doi.org/10.1007/BF01645859
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1007/BF01877517
https://doi.org/10.1007/BF01877517
https://doi.org/10.1103/PhysRevD.5.2419
https://doi.org/10.1103/PhysRevD.5.2419
https://doi.org/10.1103/PhysRevD.5.2439
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1103/PhysRevLett.34.905


[6] J. R. Gair, C. Li, and I. Mandel, Phys. Rev. D 77, 024035
(2008).

[7] K. Glampedakis and S. Babak, Classical Quantum Gravity
23, 4167 (2006).

[8] T. Johannsen, Phys. Rev. D 87, 124017 (2013).
[9] N. A. Collins and S. A. Hughes, Phys. Rev. D 69, 124022

(2004).
[10] T. Johannsen and D. Psaltis, Phys. Rev. D 83, 124015

(2011).
[11] T. Johannsen, Phys. Rev. D 88, 044002 (2013).
[12] S. Vigeland, N. Yunes, and L. C. Stein, Phys. Rev. D 83,

104027 (2011).
[13] V. Cardoso, P. Pani, and J. Rico, Phys. Rev. D 89, 064007

(2014).
[14] L. Rezzolla and A. Zhidenko, Phys. Rev. D 90, 084009

(2014); R. Konoplya, L. Rezzolla, and A. Zhidenko, Phys.
Rev. D 93, 064015 (2016).

[15] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.
Winstanley, Phys. Rev. D 54, 5049 (1996); 57, 6255 (1998);
N. Yunes and F. Pretorius, Phys. Rev. D 79, 084043 (2009);
N. Yunes and L. C. Stein, Phys. Rev. D 83, 104002 (2011);
K. Yagi, N. Yunes, and T. Tanaka, Phys. Rev. D 86, 044037
(2012); E. Barausse and T. P. Sotiriou, Classical Quantum
Gravity 30, 244010 (2013); E. Berti et al., Classical
Quantum Gravity 32, 243001 (2015); D. Ayzenberg and
N. Yunes, Phys. Rev. D 90, 044066 (2014); R. McNees,
L. C. Stein, and N. Yunes, Classical Quantum Gravity 33,
235013 (2016); H. O. Silva, J. Sakstein, L. Gualtieri, T. P.
Sotiriou, and E. Berti, Phys. Rev. Lett. 120, 131104 (2018);
G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett.
120, 131102 (2018); Phys. Rev. D 97, 084037 (2018);

D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120,
131103 (2018).

[16] J. Thornburg, Living Rev. Relativity 10, 3 (2007).
[17] P. T. Chruściel, J. L. Costa, and M. Heusler, Living Rev.

Relativity 15, 7 (2012).
[18] E. Curiel, Einstein Stud. 13, 43 (2017).
[19] B. Carter, Gen. Relativ. Gravit. 42, 653 (2010).
[20] M. Heusler, Black Hole Uniqueness Theorems, Cambridge

Lecture Notes in Physics Vol. 6 (Cambridge University
Press, Cambridge UK, 1996).

[21] E. Gourgoulhon, arXiv:1003.5015.
[22] Reference [11] explicitly calculated the location of the event

and the Killing horizons and showed that they coincide,
without assigning this coincidence to the validity of the
weak rigidity theorem.

[23] S. Shashank and C. Bambi, Phys. Rev. D 105, 104004 (2022).
[24] Z. Carson and K. Yagi, Phys. Rev. D 101, 084030 (2020).
[25] A. García, D. Galtsov, and O. Kechkin, Phys. Rev. Lett. 74,

1276 (1995).
[26] Z. Younsi, D. Psaltis, and F. Özel, arXiv:2111.01752.
[27] T. Anson, E. Babichev, C. Charmousis, and M. Hassaine,

J. High Energy Phys. 01 (2021) 018.
[28] J. Ben Achour, H. Liu, H. Motohashi, S. Mukohyama, and

K. Noui, J. Cosmol. Astropart. Phys. 11 (2020) 001.
[29] T. Johannsen, Astrophys. J. 777, 170 (2013).
[30] L. Medeiros, D. Psaltis, and F. Özel, Astrophys. J. 896, 7

(2020).
[31] H. Delaporte, A. Eichhorn, and A. Held, Classical Quantum

Gravity 39, 134002 (2022).
[32] P. Kocherlakota and L. Rezzolla, Mon. Not. R. Astron. Soc.

513, 1229 (2022).

DIRK HEUMANN and DIMITRIOS PSALTIS PHYS. REV. D 107, 044015 (2023)

044015-10

https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1103/PhysRevD.77.024035
https://doi.org/10.1088/0264-9381/23/12/013
https://doi.org/10.1088/0264-9381/23/12/013
https://doi.org/10.1103/PhysRevD.87.124017
https://doi.org/10.1103/PhysRevD.69.124022
https://doi.org/10.1103/PhysRevD.69.124022
https://doi.org/10.1103/PhysRevD.83.124015
https://doi.org/10.1103/PhysRevD.83.124015
https://doi.org/10.1103/PhysRevD.88.044002
https://doi.org/10.1103/PhysRevD.83.104027
https://doi.org/10.1103/PhysRevD.83.104027
https://doi.org/10.1103/PhysRevD.89.064007
https://doi.org/10.1103/PhysRevD.89.064007
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.54.5049
https://doi.org/10.1103/PhysRevD.57.625
https://doi.org/10.1103/PhysRevD.79.084043
https://doi.org/10.1103/PhysRevD.83.104002
https://doi.org/10.1103/PhysRevD.86.044037
https://doi.org/10.1103/PhysRevD.86.044037
https://doi.org/10.1088/0264-9381/30/24/244010
https://doi.org/10.1088/0264-9381/30/24/244010
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1103/PhysRevD.90.044066
https://doi.org/10.1088/0264-9381/33/23/235013
https://doi.org/10.1088/0264-9381/33/23/235013
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevD.97.084037
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.12942/lrr-2007-3
https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.1007/978-1-4939-3210-8_3
https://doi.org/10.1007/s10714-009-0920-9
https://arXiv.org/abs/1003.5015
https://doi.org/10.1103/PhysRevD.105.104004
https://doi.org/10.1103/PhysRevD.101.084030
https://doi.org/10.1103/PhysRevLett.74.1276
https://doi.org/10.1103/PhysRevLett.74.1276
https://arXiv.org/abs/2111.01752
https://doi.org/10.1007/JHEP01(2021)018
https://doi.org/10.1088/1475-7516/2020/11/001
https://doi.org/10.1088/0004-637X/777/2/170
https://doi.org/10.3847/1538-4357/ab8bd1
https://doi.org/10.3847/1538-4357/ab8bd1
https://doi.org/10.1088/1361-6382/ac7027
https://doi.org/10.1088/1361-6382/ac7027
https://doi.org/10.1093/mnras/stac891
https://doi.org/10.1093/mnras/stac891

