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Resonant excitation of f modes in binary neutron star coalescences influence the gravitational waves
(GWs) emission in both quasicircular and highly eccentric mergers and can deliver information on the star
interior. Most models of resonant tides are built using approximate, perturbative approaches valid at low
frequencies but then often employed up tomerger. Thus, thesemodels require to be carefully validated against
numerical relativity (NR) simulations in the high-frequency regime. We perform detailed comparisons
between a set of high-resolution NR simulations and the state of the art effective-one-body (EOB) model
TEOBResumS with various tidal potentials and including a model for resonant tides. For circular mergers, we
find that f-mode resonances can improve the agreement between EOB and NR, but there is no clear evidence
that the tidal enhancement after contact is due to a resonantmechanism. Tidalmodelswith f-mode resonances
do not consistently reproduce, at the same time, the NR waveforms and the energetics within the errors, and
their performance is comparable to resummed tidal models without resonances. For highly eccentric mergers,
we show for the first time that our EOB model reproduces the bursty NR waveform to a high degree of
accuracy. However, the considered resonant model does not capture the f-mode oscillations excited during
the encounters and present in the NR waveform. Finally, we analyze GW170817 with both adiabatic and
dynamical tide models and find that the data shows no evidence in favor of models including dynamical tides.
This is in agreement with the fact that f-mode resonances take place near merger frequencies but the latter are
not available for GW170817. Measurement with next generation detectors might be possible but will require
improved resonant models within EOB waveforms.
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I. INTRODUCTION

Tidal resonances in coalescing compact binaries have been
studied for a long time in connection to gravitational-wave
(GW) observations [1–4] (See also [5–8] for earlier work on
tidally generated radiation.) During the coalescence process,
the proper oscillation modes of a neutron star (NS) can be
resonantly excited by the orbital frequency. For a quasicir-
cular orbit, the energy transfer between the orbit and the
mode can change the rate of inspiral and alter the phase of
the chirping GWs [4]. In general, the impact of the tidal
resonance on the GWs depends on the duration of the
resonance, and it is stronger the slower the orbital decay
is. Initial studies focused on the excitation g-modes at
frequencies ≲100 Hz, although the effect was found negli-
gible due to the weak coupling between the mode and the
tidal potential [1]. In contrast, f modes have stronger tidal
coupling but also higher frequencies ∼ðGMA=R3

AÞ1=2, thus
falling in the kilo-Hertz regime for typicalNSmassesMA and
radii RA of the star A. These frequencies are too large for the
resonance to occur during the inspiral [4]; their value actually
approaching (or being larger than) the merger frequency [9].
Numerical-relativity (NR) simulations of quasicircular

neutron star mergers conducted so far do not show decisive

evidence for the presence of f-mode resonances. On the
one hand, some GW models including f-mode resonances
have been shown to reproduce the NR waveform phasing
near merger [10–12]. On the other hand, the same data can
be reproduced at the same accuracy without assuming the
presence of a f-mode resonance nor additional parameters
[11,13–15]. Moreover, it is well known that the two NSs
come in contact well before the resonance condition is met
[16,17] (see also discussion below in Sec. II). Interestingly,
f-mode excitation is instead observed in NR simulations of
highly eccentric compact binaries composed of black-hole–
NS [18] and two NSs [19,20]. In these mergers, each close
passage triggers the NS’s oscillation on proper modes; the
GW between two successive bursts (corresponding to the
passages) clearly shows f-mode oscillations (see Fig. 5).
Note however that the excitation does not meet the resonant
condition [19]: the close periastron passage exerts a tidal
perturbation which excites the axisymmetric (m ¼ 0)
l ¼ 2 mode [8].
Recent studies after GW170817 [21–23] reconsidered

waveform models with f-mode resonances and demon-
strated the possibility of GW asteroseismology with binary
neutron star inspiral signals [24–26]. In particular, the
prospect study in Ref. [26] demonstrates that neglecting
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dynamical tidal effects associated with the fundamental
mode could lead to systematic biases in the inference of the
tidal polarizability parameters and thus the NS equation of
state. Since GW analyses are performed with matched
filtering, these studies postulate the validity of resonant
models to merger or contact and a sufficient accuracy of the
GW template. While it is, in principle, possible to obser-
vationally verify the necessity of a f-mode resonance
model in a particular observation (e.g. via hypothesis
ranking), the quality of current GW data and templates
at high frequencies is still insufficient [27]. The potential
relevance of resonant tides for GW astronomy and the
above considerations motivates further detailed compari-
sons between the current analytical results and numerical
relativity simulations.
In this work, we consider state-of-art models for the

compact binary dynamics with tidal resonances in the
effective-one-body (EOB) framework and critically assess
their validity against numerical relativity data. In Sec. II we
briefly summarize the effective Love number model pro-
posed in Refs. [10,28] (see also Appendix A) that can be
efficiently coupled to any EOB implementation to generate
precise inspiral-merger waveforms. This model prescribes a
dynamical Love number (or tidal coupling constant) as a
function of the quasicircular orbital frequency that, while
approaching merger, enhances the effect of tidal interac-
tion. Qualitatively, this effect is known also from studies of
tidally interacting compact binaries with affine models [29–
33]. On physical ground, tidal interactions stronger than
those expected by adiabatic and post-Newtonian models are
expected towards merger [34]. For example, early EOB/NR
comparisons for quasicircular mergers found that the
description of tidal effects after contact and towards merger
requires to enhance the attractive character of the EOB tidal
potential in post-Newtonian form [13,17,35]. In these
studies, it was also pointed out that a key diagnostic to
robustly assess tidal effects in NR data is the use of gauge-
invariant energetics [36].
In Sec. III, we compare different EOB tidal models to

selected, high-resolution NR simulations considering both
energetics and GW phasing. In particular, in Sec. III A we
consider quasicircular mergers and show that the f-mode
resonance does not give a consistently accurate description
of both energetics and the waveform. Similarly, in Sec. III B
we consider a highly eccentric merger and show that an
f-mode resonance model does not qualitatively capture the
“free-oscillation” feature observed in the frequency evolu-
tion of the NR waveform. Notably however—modulo this
effect—the EOB waveform and (orbital) frequency closely
follow the NR quantities up to ∼ one orbit before merger,
attesting to the goodness of the dynamics description
provided by the model even for these extreme systems.
In Sec. IV we perform Bayesian analyses and model

selection on GW170817 data using the various EOB
models introduced in Sec. II. We find that f-mode

augmented models are not favored with respect to models
which only implement adiabatic tidal effects. The f-mode
resonant frequencies cannot be measured in GW170817,
as also observed in [24]. This is expected, since f-mode
inference is mostly informative at frequencies larger than
∼1 kHz (for comparable and canonical NS masses), and
GW170817 may not contain enough high-frequency infor-
mation to allow for such a measurement.
Finally, in Sec. V we conclude that, while the f-mode

model can be effective in improving the agreement between
NR and EOB after contact and to merger, it is not clear
whether this corresponds to the actual resonant effect or if it
is rather an effective description for the hydrodynamics-
dominated regime of the merger. Hence, caution should be
applied whenever trying to extract actual physical infor-
mation (i.e. the f-mode resonant frequencies) from a
matched filtered analysis using templates that include
f-mode resonances. More advanced, general-relativistic
models of f-mode resonances coupled to EOB waveform
appear necessary for applications in GW astronomy with
next generation detectors and observations.
Notation.—We use geometrical units, c ¼ G ¼ 1. We

indicate the total binary mass as M ¼ m1 þm2, the
reduced mass as μ ¼ m1m2=M, the mass fraction of star
A as XA ¼ mA=M, the mass ratio is q ¼ m1=m2 ¼
X1=X2 ≥ 1 and the symmetric mass ratio as ν ¼ μ=M.
The EOB variables are mass rescaled,

r ¼ R=ðGMÞ; t ¼ T=ðGMÞ; Ω̂ ¼ dφ
dt

: ð1Þ

In these variables Kepler’s law is Ω̂2 ¼ u3 with u ¼ 1=r.

Given the dimensionless Love number for star A, kðAÞl ,
the tidal polarizability parameters are defined as

ΛðAÞ
l ¼ 2

ð2l − 1Þ!!C
2lþ1
A kðAÞl ; ð2Þ

where CA ¼ GMA=ðc2RAÞ. The tidal coupling constants of
star A ¼ 1 are given by

κð1Þl ¼ ð2l − 1Þ!!Λð1Þ
l

X2l
1

X2

; ð3Þ

and κT2 ¼ κð1Þ2 þ κð2Þ2 . The f-mode frequency with index l

of star A is indicated as ωðlÞA
f , and we use ω̄ðlÞ

fA ¼ GmAω
ðlÞ
fA

[the labels A and ðlÞ are sometimes dropped].

II. EFFECTIVE LOVE NUMBER MODEL

The model of Refs. [10,28] describes the resonant
excitation of the NS f mode by a circular orbit based
on an effective quadrupolar Love number. The latter is
defined by an approximate, Newtonian solution of
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keff2 ¼ EijQij

E2
; ð4Þ

where Eij ¼ ∂i∂jϕ is the external quadrupolar field derived
from the Newtonian potential ϕ and Qij is the NS’s
quadrupole. The resonance of a NS’s modes is triggered
by the condition

mΩ̂XA ¼ ω̄ðlÞ
fA ; ð5Þ

and its net effect is an enhancement of the Love number

kðAÞl . This results in a simple prescription to obtain
“dynamical tides” based on the formal substitution of
the Love numbers (or equivalently the tidal coupling
constants) with their effective values:

kðAÞl ↦ keffðAÞl ≔ αlmðν; Ω̂; ω̄ðlÞ
fA ; XAÞkðAÞl ; ð6Þ

where the dressing factor αlm in Eq. (A2) is a multipolar
correction valid for l ¼ m. All the expressions are given in
Appendix A.
In this work, the model with l ¼ 2; 3; 4 resonances is

incorporated in TEOBResumS (v3 “GIOTTO”) [14,37–43].
Tidal interactions are described by additive contribution AT
to the EOBmetric potential [44]. Different choices forAT are
considered: (i) a post-Newtonian (PN) baseline expression
including next-to-next-to leading order (NNLO) gravito-
electric corrections [17] (as also employed in Refs. [10,28])
and LO gravitomagnetic terms [15], (ii) a resummed expres-
sion of high-order gravitoelectric l ¼ 2 PN terms obtained
from gravitational self-force computations [13,45], hereafter
referred to as GSF2ðþÞPNð−Þ (see Table I of [15]), and (iii) a
resummed expression of high-order gravitoelectric l ¼ 2; 3
PN terms obtained from gravitational self-force computa-
tions (GSF23ðþÞPNð−Þ). TEOBResumS’s GIOTTO release
also includes the LO gravitoelectric PN terms up to l ¼ 8
[46,47]. Tidal terms in the other EOB potentials and in the
waveform are described in detail in Ref. [15].
For typical binaries the resonant condition in Eq. (5) is

met before the moment of merger (defined as the peak of
the l ¼ m ¼ 2 mode of the strain). This is shown in Fig. 1
for equal-mass mergers, where the merger frequency (solid
black line) is computed in terms of the tidal coupling
constant κT2 using the quasiuniversal relations of Ref. [9].
The contact frequency (gray solid line) is estimated as in
Eq. (78) of [44]; this simple expression is known to
overestimate the values extracted from the simulations1—
e.g. Ω̂ ∼ 0.04 for equal mass NSs with κT2 ∼ 180, effectively
corresponding to the last 2–3 GW cycles to the moment
of merger [17]—but provides a sufficient estimate for
this work.

Colored (nonsolid) lines indicate that the resonant
excitation for the l ¼ 2; 3; 4 f mode happens progres-
sively earlier in the merger process. While the l ¼ 2 f
mode is excited shortly before merger (approximately
corresponding to the last GW cycles) and after contact,
the octupolar and hexapolar l ¼ 3; 4 mode resonances
are reached before the NSs’ contact. This has two
important implications. First, the predicted resonance
phenomenon can be directly tested with numerical
relativity simulations and should, if significant, be visible
in the gauge-invariant energetics of the dynamics from
the simulations. Second, the dominant l ¼ 2 resonance
happens in a regime in which the model itself is not valid
since the NSs are not anymore isolated nor “orbiting;”
the matter dynamics being governed by hydrodynamical
processes.
The typical behavior of the dressing factors αlm during

the quasicircular merger process is shown in Fig. 2 for a
fiducial binary (that reproduces Fig. 1 of [28] with our
implementation). After the resonance, the dressing factors
decrease and become smaller than one or even negative
for typical binary neutron stars (BNS) parameters. Since
the postresonance behavior is not directly modeled in the
effective Love number model it is unclear to what extent
this effect is physical. However, given that the resonances
happen before merger, this trend affects the accuracy of
the EOB waveforms that adopt this f-mode model.
Indeed, the behavior of the dressing factors after the

resonance can introduce unphysical features in the EOB
dynamics by affecting the EOB light ring, rEOBLR . When
using the PN expanded tidal model with dressed tides, the
peak of the orbital frequency typically happens after the

resonance, i.e. at Ω̂peak > Ω̂ð2Þ
f . Since Ω̂peak (the EOB light

ring) is the natural point to stop the EOB dynamics, the

FIG. 1. Mass-rescaled orbital merger frequency, contact fre-
quency and resonant conditions for l ¼ 2, 3, 4 modes for equal-
mass binaries with different tidal coupling constant κT2 . The
merger frequency is computed from the NR quasiuniversal fits of
Ref. [9]. The contact frequency is estimated as in [44] using the

quasiuniversal relations CAðΛðAÞ
2 Þ of [46].

1A better representation would be obtained accounting also for
the shape Love number of the stars, h [17,44].
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earlier resonance generates an unphysical steep increase of
the waveform’s amplitude approaching merger. In order to
minimize this behavior, the EOB model of [10,28] termi-
nates the EOB dynamics at the NR merger using the
quasiuniversal fits of [9,48] for which Ω̂NR

mrg < Ω̂peak. We
follow here the same procedure, but emphasize that this
solution is not satisfactory since a well designed EOB
model should not break before its light ring (this is true for
TEOBResumS even in the binary black hole case). Further, we
manually impose that αlm ≥ 1 postresonance.

III. COMPARISON WITH
NUMERICAL-RELATIVITY DATA

We contrast different EOB tidal models to selected NR
simulations considering both gauge-invariant energy-
angular momentum energetics [36] and the l ¼ m ¼ 2
waveform mode phasing. We consider the NNLO [17],
GSF2ðþÞPNð−Þ [13,45], and GSF23ðþÞPNð−Þ [15] prescrip-
tions for the EOB tidal potential with and without the
f-mode resonance model described above. We consider
NR data from quasicircular and highly eccentric mergers
computed respectively in Refs. [49,50] and Ref. [20] using
Jena’s BAM (bi-functional adaptivemesh) code [16,51]. The
binding energy Eb and the specific angular momentum j are
computed as described in [17,36]. The tidal contribution ET

b
to the energy curves is isolated by subtracting the relative
binary-black-hole contribution as described in [13,17,35].
For the NR data we use the equal mass, nonspinning binary-
black-hole simulating extreme spacetime (SXS) simulation
SXS:BBH:0002. For time-domain waveforms compari-
son, the arbitrary time and phase relative shifts are deter-
mined by minimizing the phase difference ΔϕEOBNR over a
fixed time interval Δt, e.g. [52,53].

A. Quasicircular mergers

We consider the simulations of the CoRe collaboration
named BAM:0037 [49], BAM:0064 [49], BAM:0095
[49] and BAM:0107 [50] corresponding to nonspinning
mergers with κT2 ¼ 187, 287, 73, 136 and q ¼ 1, 1, 1,
1.224047 respectively. These data is computed at multiple
resolutions and show convergent properties that allowed a
clear assessment of the error bars [15]. Hence, these are
some of the most challenging NR waveforms to reproduce
with analytical models.
Figure 3 shows the tidal contribution to the binding energy

for theNRdata and for all the consideredmodels (top panels)
and the differences ΔET

b ¼ ETEOB
b − ETNR

b (bottom panels).
The EOBmodel based on theNNLOPNexpansion of theAT
potential significantly underestimates the actual tidal inter-
action, as it is well known from previous results [13,17].
Augmenting theNNLOmodel with f-mode resonance terms
improves the agreement with NR but the energetics are
compatible only for BAM:0095 while for the other three
binaries the disagreement remains significant. Further, with-
out forcibly stopping the evolution at the NR merger (see
Sec. II), the amplitude of the waveform, too, would be
largely overestimated near merger. Note the NNLOþ
f-mode is the model employed in SEOBNRv4 [10,12,28].
TheGSF2ðþÞPNð−Þ andGSF23ðþÞPNð−Þ models behave very
similarly to the NNLOþ f-mode model, improving the
NNLO behavior but also departing from the NR data for
BAM:0064 and BAM:0107. The GSF23ðþÞPNð−Þ is cur-
rently the default choice in TEOBResumS [13,15]. If these
gravitational self force (GSF)models are augmentedwith the
f mode the dynamics becomes too attractive and departs
from the NR data in all the considered binaries but
BAM:0107 and BAM:0064.
Figure 4 shows the GW phasing analysis for all the

simulations considered; the top, middle and bottom panels
show the evolution of the waveform’s amplitude, the
waveform’s frequency and the phase differences Δϕ ¼
ϕEOB − ϕNR respectively. For BAM:0107, the frequency
evolution of the NNLO model significantly differs out of
the alignment interval and is not sufficiently rapid to follow
the NR data. This is in agreement with the relative
energetics discussed above. The NNLOþ f-mode and
the GSF (without f-mode) models improve over the
NNLO phasing but, again, the frequency evolution remains
too slow to capture the NR tides. On the contrary, the
GSF2þ f-mode models describe very closely the fre-
quency evolution of the NR data, and give the best
approximation of the waveform for this binary. This
behavior is consistent with what was observed in the
energetics above, although the merger—approximated by
the EOB light ring—is reached too early in the coalescence.
The BAM:0037 and BAM:0064 phasing analyses are

qualitatively analogous to one another, and no model is able
to reproduce the NR frequency evolution, although the

FIG. 2. Dressing factors prescribed by the effective Love
number model as a function of the orbital frequency and for a
fiducial binary. Vertical lines mark the resonances and the
merger frequency. The explicit expressions for αlm are given
in Appendix A. The dashed cyan line is the waveform’s
amplitude correction of Eq. (A9). The dotted gray line, which
happens to be superimposed to the green l ¼ 3 resonance,
corresponds to the contact frequency of the stars.
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phase of the corresponding waveform might fall within the
NR error. Tidal effects are too attractive for f-mode
augmented GSF models, and not attractive enough for
the remaining models.
Differently from the others, for the BAM:0095 simu-

lation the NNLOþ f-mode and the GSF (no f-mode)
models are the closest to the NR data and within the error
bars. In this case, the GW phasing analysis is compatible
with the results of the energetics.
The results discussed above highlight that establishing

the presence of f-mode resonances in quasicircular merger
computed in numerical relativity is not straightforward. On
the one hand, the inclusion of this interaction in EOB
models can help obtaining analytical waveforms more
faithful to NR, at least for some binaries. This is evident
in the analysis of the equal-mass, nonspinning merger
BAM:0095, where the inclusion of the f-mode resonance
in the NNLO EOB model shows an excellent agreement
to NR data in both energetics and phasing as opposed to
the NNLO EOB baseline. On the other hand, the f-mode

resonance does not capture well the waveforms of other
binaries and the EOB/NR waveform agreement does not
always correspond to an improvement of the energetics
(i.e. the Hamiltonian). For example, the NNLOþ f-mode
model does not perform uniformly well with the other
equal-mass, nonspinning binaries. The GSFþ f-mode
models, instead, give a very attractive interaction close
to merger and significantly depart from NR for case studies
BAM:0037 and BAM:0095.

B. Highly eccentric encounters

We consider the BAM:0113 simulation of Ref. [20],
where constraint satisfying initial data are prepared and
evolved for a highly eccentric (eNR ∼ 0.45) merger. The
binary undergoes eleven periastron passages before merg-
ing; each passage is characterized by a burst of GW
radiation, as shown in Fig. 5. Between each burst, the
GW shows oscillations compatible with the axisymmetric f
mode of the (nonrotating) NS component. The oscillation

FIG. 3. ÊT
b and ΔÊT

b as functions of the angular momentum ĵ of the system for the equal mass BAM simulations considered in this
paper (black) and the respective TEOBResumS simulations. The latter are computed using different baseline tidal models (NNLO,
GSF2ðþÞPNð−Þ, GSF23ðþÞPNð−Þ) and f-mode contributions. The EOB and NR mergers are denoted via dots, while shaded gray bands
indicate the NR error.
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frequency can be identified also in the fluid density and it is
triggered by the close passage to the companion [19].

TEOBResumS can model these types of mergers [54–56].
Although previous works focused on BBH systems, the
extension of TEOBResumS to eccentric and hyperbolic
binaries including NSs is straightforward, and we have it
implemented in this work. The EOB/NR comparison with

these types of NR data requires to fine-tune the EOB initial
conditions because no analytical map is known between
EOB and the initial data employed in the simulation [57]. In
order to reproduce the NR waveform, we fix the NS masses
and quadrupolar tidal parameters to those employed in
the NR simulation and vary independently the nominal
EOB eccentricity and initial frequency until an acceptable

FIG. 4. Waveforms (top panels), frequency evolution ω̂22 (middle panels) and EOB/NR phase difference ΔϕEOB=NR (bottom panels)
for all the nonspinning BNS simulations considered in Fig. 3. The GSFþ f-mode tidal model is the closest to NR for the BAM:0064
and BAM:107 simulations, while for BAM:0037 and BAM:0095 the NNLOþ f mode and the GSF models without dynamical tides
deliver the best waveforms.
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EOB/NR phase agreement is found. This procedure is
equivalent to fixing the initial frequency of the waveform
and varying independently the mean anomaly and the
eccentricity of the system. For this work we do not
implement a minimization procedure, we instead find that
manually tuning the parameters to ω̂0 ¼ 0.0058 and
e0EOB ¼ 0.58 is enough to obtain a good visual EOB/NR
agreement that is sufficient for our purposes.
The waveform comparison is performed in terms of the

multipole ψ22 ¼ ḧ22 of the Weyl pseudoscalarΨ4 since this
quantity best highlights the f-mode oscillations between
the bursts. As shown in the top and middle panels of Fig. 5,
the EOB ψEOB

22 closely matches the NR data in both
amplitude and phase showing an excellent agreement
during the ten periastron passages and up to merger.
However, the middle panel also shows that the EOB
f-mode model does not capture the high frequency
oscillations in the GW frequency ω̂22. This might not be
surprising: as shown in the bottom panel of Fig. 5, the
f-mode model prescribes significant variations of the
dressing factors only around the peaks of the (orbital)
frequency while it is close to one in between the peaks. By
contrast, in the NR data the high-frequency oscillations are
observed mainly at times between two close passages.2

Further, by comparing the orbital frequency evolution to
the resonant frequency condition, we observe that through-
out the inspiral the resonance is never fully crossed.
To model this behavior, it seems necessary to consider

more complex models which consider the postresonance
dynamics—not included in our effective model—and for
which the tidal response is evolved together with the orbital
dynamics of the system [8,59,60] and incorporate those
models in the EOB.
We complement the GW phasing analysis with a dis-

cussion on the energetics. Figure 6 shows the binding
energy of the highly eccentric system as a function of the
orbital angular momentum. The decrease of ÊbðĵÞ presents
clear oscillations that can be reconducted to the close
encounters. During each passage both Êb and ĵ decrease
but the times at which the two NSs are apart are charac-
terized by approximate “plateaus” (moments of approx-
imately constant energy and angular momentum, see the
inset). From this interpretation, it appears that the EOB and
NR curves, although close, are not perfectly compatible:
the encounters do not always align in the ÊbðĵÞ curves.
Finally, we stress that, modulo the small f-mode feature,
our EOB waveforms quantitatively reproduce highly
eccentric NR simulations up to a few orbits before merger.
Ours is the first EOB model capable of describing a highly
eccentric comparable-mass system including neutron stars,
and this is to our knowledge the first EOBNR comparison
of this kind. The striking agreement between EOB and NR
in Fig. 5 attests to the goodness of the radiation reaction
model employed within TEOBResumS.

IV. MODEL SELECTION ON GW170817

We now apply our models to GW170817, using the
bajes pipeline [61] and the DYNESTY [62] sampler. We
consider 128 seconds of data around GW170817 GPS time,
and analyze frequencies between 23 and 2048 Hz. The
employed prior is uniform in component masses and tidal
parameters, isotropic in spin components and volumetric in

FIG. 5. EOB/NR comparison between the multipolar Weyl scalars ψ2;2 (top panel) and their respective frequency evolutions ω̂22

(middle panel). The f-mode excitations that are typically observed in NR simulations between two close encounters are not captured by
the f-mode resonance model which prescribes kl ↦ αlkl.

2We note that in order to correctly compute the f-mode
induced amplitude oscillations, Ref. [20] corrected the multipoles
for displacement-induced mode mixing [58]. Although we
mainly focus on the frequency of the waveform, rather than
the amplitude, Ref. [20] suggests that this quantity too might be
influenced by such an effect, which we do not account for here.
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luminosity distance. It spans the ranges of chirp mass
Mc ∈ ½1.1; 1.3�, mass ratio q ∈ ½1; 3�, spin magnitudes
χi ∈ ½0; 0.05�, tidal parameters Λi ∈ ½0; 5000� and distance
DL ∈ ½20; 100� Mpc. We consider three models for our
analysis: the GSF23ðþÞPNð−Þ model, the GSF23ðþÞPNð−Þ
model augmented with dynamical tides and the NNLO
model, also augmented with dynamical tides.3 When using
the f-mode resonance model, we either fix the values of

ω̄ð2Þ
fA , ω̄

ð2Þ
fB via the quasiuniversal relation of [63] or we infer

them independently of Λ, imposing uniform priors on

ω̄ð2Þ
fi ∈ ½0.04; 0.14� with i ¼ A, B.
Posteriors for the intrinsic parameters can be inspected in

Appendix B. The evidences recovered with the five models
are instead reported in Table I. The data mildly favors the
GSF tidal model and the GSF model augmented by f-mode
resonances with respect to the NNLO dynamical tides
model. When sampling the resonance frequencies (see
Fig. 7), we find that it is not possible to precisely determine

ω̄ð2Þ
f from GW170817 data. For both tidal baselines, the

recovered ω̄ð2Þ
B distribution is consistent with the flat prior

imposed. The distribution of ω̄ð2Þ
A , instead, allows only to

impose an upper or lower bound on the f-mode frequency,
depending on whether the GSF or NNLO tidal model is
employed. This is consistent with what was previously
observed in Ref. [26]: it is not possible to accurately

determine ω̄ð2Þ
f from GW170817 data.

A simple Fisher matrix study (Fig. 8) immediately
clarifies the reason for the fact illustrated above.
Following Ref. [34], we compute the diagonal Fisher
Matrix (normalized) integrands γðfÞfvp:

γðfÞ ¼ f−7=3=SnðfÞR
fmax
fmin f−7=3=SnðfÞ

; ð7Þ

where v ¼ ðMπfÞ1=3 and p depends on the parameter
considered. Employing the PN frequency domain model of
Ref. [64] and considering only the leading order for each
of the studied parameters, one finds that pM ¼ −10,

FIG. 6. EOB/NR comparison between the evolution of the
binding energy Êb of the system as a function of its orbital
angular momentum ĵ for the same binary of Fig. 5. The color bar
additionally indicates the EOB frequency evolution along the
dynamics. The energy difference that we obtain is Oð10−4Þ,
compatible with the estimates of the energy carried by f-mode
oscillations via Eq. (17) of [20].

FIG. 7. Posterior samples for ω̄ð2Þ
fA and ω̄ð2Þ

fB extracted from
GW170817 via direct sampling (blue, red) or by applying
quasiuniversal relations to the mass and tidal parameters recov-
ered (cyan, magenta). The sampled values span the entire interval
investigated, indicating that we are not able to precisely extract
the l ¼ 2 resonance frequency from GW170817 data.

TABLE I. Logarithmic evidences logZ of the five models
employed in our GW170817 reanalysis and their Bayes’ factors
computed against the GSF model. The GSF model is slightly
favored over the GSFþ f-mode model both when we do and do

not attempt to infer ω̄ð2Þ
f from the GW data. NNLOþ f-mode

models, instead, appear mildly disfavored with respect to those
employing the adiabatic GSF tidal baseline.

Model (X) logZ logBX
GSF

GSF 480.23� 0.18 0
GSFþ f mode 479.61� 0.18 −0.62
GSFþ f modeþ sampling 479.57� 0.18 −0.66
PNþ f modeþ sampling 479.22� 0.18 −1.01
PNþ f mode 479.15� 0.18 −1.08

3For computational convenience we do not employ dressed
spin-quadrupole parameters.
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pν ¼ −6, pΛ̃ ¼ 10 and pω̄f
¼ 22. This indicates that

f-mode parameters are determined close to the resonance
frequency, where the effect of the model is strongest
(αl > 1). For GW170817, such frequencies are dominated
by the detectors’ noise.

It is worth noting that in the region where dynamical
effects become more prominent (above the frequency of
contact between the two stars), the model itself is not
physically grounded. Parameter estimation studies such
as the ones presented in [24,26,67] circle this issue by
generating waveforms exclusively up to the contact fre-
quency, measuring the secular accumulated phase difference
due to the effect of dynamical tides away from the resonance
over a very large number of GW cycles. Directly testing the
physical validity of this approach is challenging, as it would
require extremely long NR simulations which are currently
unavailable. Within our EOB model, we find an accumu-
lated phase difference due to dynamical tides of ∼0.5–1 rad
at contact for a 1.35þ 1.35 reference binary from 20 Hz
(Fig. 9). Most of the phase is accumulated above 300 Hz.
This phase difference might become measurable with
third generation detectors [68], although biases due to an
imperfect knowledge of the point mass and (adiabatic) tidal
sectors of the models could affect future measurements.

V. CONCLUSIONS

In this paper we studied the f-mode resonances in
three different tidal flavors of the EOB approximant
TEOBResumS, namely the NNLO PN, the GSF2 and the
GSF23 resummed models. We performed detailed EOB/
NR comparisons of both waveforms and gauge-invariant
energetics focusing on four selected high-resolution sim-
ulations of quasicircular and one highly eccentric BNS
merger.
In the circular merger case, we found that the

NNLOþ f-mode model performs similarly to the GSF-
resummed ones without f mode, and that—in all but one
case—the model fails to capture either the energetics or the
waveform of NR data. Therefore, while the studied model
certainly represents a viable alternative to GSF resumma-
tion, we suggest caution when trying to extract physical
information from it via GW data analysis of real events: no
clear signature of the presence of f-mode resonances after
the NS contact can be assessed from NR simulations.
In the highly eccentric case, we found that the effective

f-mode model does not capture the oscillations in the
NR data (small oscillations in amplitude and frequency
of the waveform centered around the proper mode star
frequency). This is not unexpected because (i) the f-mode
model considered here was specifically derived for quasi-
circular orbits and (ii) the resonant condition is not met
during the close passages. Aside from the small oscillation
feature, we demonstrated that our TEOBResumS for generic
orbits quantitatively reproduces the NR waveform and
frequency evolution with high accuracy up to merger. To
our knowledge, this is the first EOB/NR comparison of
highly eccentric BNS mergers.
Finally, we applied our adiabatic- and dynamic-tidal

models to GW170817, and found that models which
employ the GSF tides baseline are mildly preferred over

FIG. 8. Fisher matrix integrands, computed as in [34], evalu-
ated considering the leading order phase contribution for chirp
mass, symmetric mass ratio, effective tidal parameter and f-mode
frequency. Straight curves are computed using advanced LIGO
PSD (power spectral density) [65], while dashed lines are
estimated with Einstein Telescope PSD [66]. Notably, the
f-mode resonance frequency is informed mainly by very high
frequencies, larger than merger or contact.

FIG. 9. Phase difference Δϕ ¼ ϕf-mode − ϕno f-mode due to
dynamical tides for a target binary system with M ¼ 2.7M⊙,
Λ1 ¼ Λ2 ¼ 978 and q ¼ 1 from a starting frequency of
20 Hz. We employ three different baseline tidal models: NNLO
(blue), GSF2ðþÞPNð−Þ (orange) and GSF23ðþÞPNð−Þ (green).
Dashed colored lines indicate time of contact between the
two stars. Note that the horizontal axis scale changes
at ðt − tmrgÞ=M ¼ −400.
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models that employ NNLO dynamical tides. Additionally,
we were not able to determine f-mode resonances from the
GW data. The reason for this was immediately understood
in terms of a simple Fisher matrix study, which highlights
that dynamical tides are effectively measured at very high
frequencies (≥1 kHz).
Our results should be considered when adopting f-mode

resonance models in gravitational-wave analyses and
parameter estimation. Some of these analyses might be
carried with phenomenological models that can reproduce
some waveform features but do not allow for a careful
check of the underlying dynamics and Hamiltonian [64,69].
A careful validation of these models against more complete
EOB models appears necessary in the future.
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APPENDIX A: EFFECTIVE LOVE NUMBER
MODEL FOR f -MODE RESONANCES

This appendix summarizes the effective Love number
model introduced in [10,28]. The model results from an
approximate solution of the equation defining the effective
quadrupolar Love number,

keff2 ¼ EijQij

E2
; ðA1Þ

for a Newtonian inspiral. In Eq. (A1), Eij ¼ ∂i∂jϕ is the
external quadrupolar field derived from the Newtonian
potential ϕ andQij the NS’s quadrupole. The Love number
kl of star A (or analogously the tidal polarizability
parameter) is substituted with an effective Love number
that depends on the orbital frequency and its f-mode

frequency ω̄ðlÞ
f ,

kl ↦ keffl ≔ αlmðν;Ω; ω̄ðlÞ
f ; XAÞkl: ðA2Þ

The enhancement, or dressing, factor αlm in Eq. (A2) is a
multipolar correction valid for l ¼ m and given by

αlm ¼ al þ bl

�
x2

x2 − 1
þ 5

6

x2

1 − x5=3

þ x2ffiffiffi
ϵ

p
�
cosðΩ0 t̂2Þ

Z
t̂

−∞
sinðΩ0s2Þds

− sinðΩ0 t̂2Þ
Z

t̂

−∞
cosðΩ0s2Þds

��
: ðA3Þ

In the above equations, the first multipolar coeffi-
cients are ða2; a3; a4Þ ¼ ð1=4; 3=8; 29=64Þ, ðb2; b3; b4Þ ¼
ð3=4; 5=8; 35=64Þ; the multipolar parameter

x ≔ xm ¼ ω̄ðlÞ
f

mΩ̂XA

ðA4Þ

controls the frequency of the f-mode resonance, Ω0 ¼ 3=8
and

ϵ ≔
256

5
ν

�
ω̄ðlÞ
f

mXA

�5=3

; t̂ ≔
8

5

1ffiffiffi
ϵ

p ð1 − x5=3Þ: ðA5Þ

The first two terms in Eq. (A3) are singular at the resonance
(x ¼ 1). The integrals in the third term reduce to Fresnel
integrals,

FSðzÞ ≔
ffiffiffi
2

π

r Z
z

0

sinðs2Þds; FCðzÞ ≔
ffiffiffi
2

π

r Z
z

0

cosðs2Þds;

ðA6Þ

by writing

Z
t̂

−∞
cos ðΩ0s2Þds ¼

ffiffiffiffiffiffiffiffi
π

2Ω0

r
½FCð∞Þ þ FCð

ffiffiffiffiffi
Ω0p
t̂Þ�

¼
ffiffiffiffiffiffiffiffi
π

2Ω0

r �
1

2
þ FCð

ffiffiffiffiffi
Ω0p
t̂Þ
�

ðA7Þ

and similarly for the other.
In TEOBResumS, the dressing factors are computed along

the dynamics and using the circular frequency Ω̂ ¼ u3=2.
Following LAL’s SEOBNRv4 implementation of Steinhoff,4

the singular terms in Eq. (A3) are substituted by their
expansion near x ¼ 1 if x − 1 < 10−2. The tidal coupling
constants are then calculated with the dressing factors and
used with any prescription for the EOB tidal potentials.
This way, the f-mode resonant effect propagates into the
EOB dynamics. Spin interactions in TEOBResumS are mode-
led using the centrifugal radius [37],

rc ¼ ðr2 þ a02ð1þ 2uÞ þ Δa2uþ ðΔNNLO
a2 þ ΔLO

a4 ÞuÞ2;
ðA8Þ

4https://github.com/jsteinhoff/lalsuite/tree/tidal_resonance_
NSspin.

ROSSELLA GAMBA and SEBASTIANO BERNUZZI PHYS. REV. D 107, 044014 (2023)

044014-10

https://github.com/jsteinhoff/lalsuite/tree/tidal_resonance_NSspin
https://github.com/jsteinhoff/lalsuite/tree/tidal_resonance_NSspin
https://github.com/jsteinhoff/lalsuite/tree/tidal_resonance_NSspin


which includes quadrupole S2 effects at NNLO and
also S4 terms. The functions a02 and Δ contain the
quadrupole moments CQA

of the NS; ΔLO
a4 also con-

tains the octupole and hexapole parameters. The CQA

(and their derivatives) are computed using the fits of
Ref. [71] using the dressed tidal polarizability parameters;
no dressing is instead applied to the other parameters for
simplicity. Finally, a l ¼ m ¼ 2 waveform’s amplitude
correction due to the f mode is applied using the dressing
factor

α̂22 ¼ x2
α22ð1þ 6 XB

x2 Þ − 1

3ð1þ 2XBÞ
: ðA9Þ

This result was first reported in Ref. [11] with a different
coefficient and without any detail on the calculation. It was
later reportedwith the coefficient used above inRef. [12], and
it is used in this form also in Steinhoff’s LAL implementation.

APPENDIX B: POSTERIOR PLOTS
FOR GW170817

In this appendix we display the posterior distributions
of the intrinsic parameters that we obtained from
our GW170817 reanalyses. Figure 10 displays the mar-
ginalized two-dimensional posterior samples for the chirp
mass M, the mass ratio q, the effective spin χeff and the
tidal parameter Λ̃.

FIG. 10. Marginalized, two-dimensional posterior samples for GW170817 obtained with the tidal flavors of TEOBResumS listed
in Table I.
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