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Black holes provide a natural laboratory to study particle physics and astrophysics. When black holes are
surrounded by matter fields, there will be plenty of phenomena which can have observational
consequences, from which we can learn about the matter fields as well as black hole spacetime. In
this work, we investigate the massive scalar field in the vicinity of a newly proposed rotating regular black
hole inspired by quantum gravity. We will especially investigate how this nonsingular spactime will affect
the superradiance instability and quasinormal modes of the scalar filed. We derive the superradiant
conditions and the amplification factor by using the matching-asymptotic method, and the quasinormal
modes are computed through continued fraction method. In the Kerr limit, the results are in excellent
agreements with previous research. We also demonstrate how the quasinormal modes will change as a
function of black hole spin, regularity described by a parameter k and scalar field mass respectively, with

other parameters taking specific values.
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I. INTRODUCTION

Our current best understanding on gravitational inter-
action is described by general relativity (GR). The recent
observation of gravitational waves [1-3] and black hole
shadows [4,5] provide even more evidences on this
fascinating theory. However, GR also faces several chal-
lenges, such as, the incompatibility between GR and
quantum theory [6], the singularities [7,8], the late time
acceleration of the universe and so on [9-11]. Among
these, the singularities in classical GR are most severe.
Because it is widely belief that singularities do not exist in
nature, rather they reveal the limitations of GR. Therefore,
the idea of regular black holes may provide a solution or a
trial to the singularity problem. The regular black holes are
the solutions that have horizons and are nonsingular at the
origin, and their curvature invariants are regular everywhere
[12-16]. A novel spherical symmetric regular black hole
proposed in [17-19] and reformulated in [20] is a very
promising solution to the singularity problem. Later it has
also been generalized to the rotating axisymmetric scenario
[21-23]. The exponential convergence factor is used in
these regular black holes, which is also used in formulation
of the quantum gravity [24].

Scalar fields play a crucial role in fundamental physics as
well as astrophysics, like the inflation field [25-27] and
also in the dark energy models [28]. Dark matter could also
be a kind of scalar field, especially, the ultralight scalar field
dark matter could have some advantages over the standard
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Lambda cold dark matter model [29]. When the Compton
wavelength of the scalar field particles are comparable to
the characteristic size of the black hole horizon, they can
efficiently extract rotational energy from rotating black
holes through superradiance instabilities and form macro-
scopic quasinormal condensates [30,31]. This provide a
unique way and natural laboratory to detect the ultralight
scalar field particles through black hole observations, for
example, they will leave imprints on the gravitational
waves [32,33]. Because of this and its importance in black
hole physics, superradiance has recently attracted plenty of
attention from the science community, and physicists have
performed investigation in many different aspects and
scenarios [34-50]. It is also worthwhile to mention that
there are alternative mechanisms for energy extraction from
a rotating black hole, such as Penrose process [51,52], the
Blandford-Znajek process [53], magnetic reconnection
process [54-56] and so on, which may also produce
(charged) scalar field particles.

Thus, to study the phenomenology of scalar field around
rotating regular black holes will provide us much more
insights on both gravity, astrophysics and particle physics.
Usually, the scalar filed will be taken as a test field or
perturbation filed such that it will not shift the black hole
background spacetime. There are some related works
on this topic but with different focus or regular spacetime
[57-59]. In this work, we will study the superradiance
instabilities and quasinormal modes of scalar field around
the newly proposed rotating regular black hole [21-23]. We
will demonstrate how the regular parameter affects the
superradiance and quasinormal modes.

© 2023 American Physical Society
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The structure of this paper is as follows: In Sec. II, we
will introduce the rotating regular black hole spacetime. In
Sec. III, we will solve the massive Klein-Gordon equation
in this spacetime, and obtained the radial and angular
equations. Then, in Sec. IV, we will analysis the super-
radiance instabilities and compute the amplification factor.
Then, in Sec. V, we will compute the quasinormal modes by
the continued fraction method, we also demonstrate
how the quasinormal modes will change as a function of
black hole spin, regular parameter and scalar field mass,
respectively. In Sec. VI, we will make a conclusion and
discussion.

II. ROTATING REGULAR BLACK HOLE

The metric of nonsingular rotating black hole mentioned
in the introduction could be written in the Boyer—Lindquist
coordinates as [21-23],

2Mre kT by
ds? = —<1 —L)dﬂ + 24 +3d6?

> A
4aMre*/r
_ 2V T Gin20didg
M 2.-k/r
+ [rz ta+ Lsinze] sin20dg? (1)

withY = r2 + a?cos?0,A = r2 + a®> = 2Mre %" and M, a,
and k are three parameters, which were assumed to be
positive. The Kerr metric could be reduced when setk/r = 0.

To show the regularity of this metric, it iS convenient
to study the spacetime invariants, for example, the
Kretschmann invariant K = R,,.,R®*? (R .4 is the
Riemann tensor).

4M2e
=55 (ZH%* - 8233 + AKX + Bk +C),  (2)
where A, B, and C are functions of r and 6, given by

A = =24r*S(=r* + a*cos*0)
B = —247°(r® + a%cos®0 — 5r*a*cos’0%)
C = 12r%(r° — abcos®0)
— 180r8a*cos?0(r? — a’cos?0). (3)

For M # 0, they are regular everywhere.
The solutions of equation

A=r+a>-2Mre7H" =0 (4)
will give us the event horizons. The numerical results of

horizon structure with different parameters were discussed
in [18]. However, there are no analytical solutions.

Despite this, we can use approximation method to
solve (4) analytically as long as k/M < 1, and it also
satisfies the condition for (4) to have two distinct real
solutions (see [18]), i.e., less than the critical value kEH
which decreases with the increase in a, for a = 0.9M,
kEH ~ 0.1M, for a = 0.95M, kEH ~0.05M. In the Kerr
limit, Ay =r*+a®>—2Mr= (r—r,)(r—r_), where
r, and r_ are called event and inner horizon of Kerr black
hole, respectively. They can be seen as the zeroth order
(with respect to k/r) solution to Eq. (4). Because the Eq. (4)
can be written as

r? +a* = 2Mr = 2Mr(e™¥" - 1), (5)

where the right-hand side is much smaller than the left-
hand side if k/r < 1, so the right-hand side is the small
perturbation. Therefore, if we brought the zeroth order
solutions r. into the right-hand side of (5), we will get high
order approximation solutions, there are

B =M (e = 1) = (1= ) (=7
Arerr = 2Mr_(e7¥= 1) = (r—7.)(r—rL) (6)

where r!_ and r_ could be seen as the first order approxi-
mate solutions to (4), i.e.,

A~ (r=r)(r—rl), (7)

where 7, and 7_ are the two extra roots because we are
solving two quadratic equations, and they are numerically
less accurate compared to 7, and r’. The explicit forms for
rl_and rL are given by

=M+ \/Mz—a2+2Mr+(e_k/’+—l) (8)

rI_:M—\/Mz—az—i—ZMr_(e_k/’*—l). 9)

For better accuracy, we can carry r, and r back to the
right-hand side of (5) and repeat the process above to get
more accurate second order solutions of (4).

b\ ) (1

=M - \/M2 —a®+2Mrl(eM — 1) (11)

even third order solutions

rill =M+ \/M2 —a? —|—2M}’i1(€_k/rl*l -1) (12)

=M - \/M2 —a® +2Mr(e7M 1) (13)

044013-2



SCALAR PERTURBATION AROUND ROTATING REGULAR BLACK ...

PHYS. REV. D 107, 044013 (2023)

they could be seen as the event horizon and inner horizon of
metric (1). One could repeat the approximation steps to get
more higher order solutions, but third order r//’ and r!/’ are
sufficient in this work, see the Appendix. Here after we will

define 7, = r!/" and #_ = r!! for simplicity.

III. DECOUPLED MASTER EQUATIONS FOR
MASSIVE SCALAR FIELD

The dynamics of a massive scalar field @ in the
spacetime (1) is governed by the Klein-Gordon equation

(VeV, = 1)@ = (/=)' 9,(y/=99"0,®) — *® = 0,
(14)
where g = det(g,,) and y is the mass of the scalar field. We

can rewrite it more explicitly in the Boyer-Lindquist
coordinates as

<(r2 Z a?)?

AMare /"

- a2sin29> 0,0,® + 0,0,®

(L ) o,0,0 - 0,(00,0)
A sin29) 77 e

1 .
- mag(sln GOHCD) +ﬂ22q) = 0 (15)

For the axisymmetric and asymptotically flat black-hole
spacetimes, the test Klein-Gordon allows for the separation
of variables [60]. Since the spacetime symmetry and
asymptotic behavior of Kerr black hole also apply to
rotating regular black hole (1) as well [18], so we can
decompose the field with the ansatz

(I)(x//‘) = e_iwteim¢Sln1<9)Rlin(r)’ (16)

where w is the frequency and it is permitted to be complex.
The sign of Im(w) determines whether the solution is
decaying (Im(w) < 0) or growing (Im(w) > 0) in time.
Carrying (16) to Eq. (15), this leads to two ordinary
differential equations, also called the Teukolsky equations
[61]. For the radial part,

d [ dRy, @*(r? + a*)? — dMamwre ™" + m?a?
(A +
dr dr A

(@R + P+ M))R,m(r) o, (17)

where A, is the separation constant, they are the eigen-
values with respect to the following angular part equation,

| d (. ds m?
e 0 m 20,2 2 29_ A
sin6.do <Sm do ) i <a (@ =p)eos0=Cop T Z’”)

The angular solutions S, (6) are spheroidal harmonics
Sim = SI'(cos 0; ¢). In the nonrotating limit, the spheroidal
harmonics reduce to spherical harmonics Y, and A, ~
I(1+1).

We define u(r) = vr* + a’R,,,(r) and switch to the

tortoise coordinate via dr, = rZJA“ZZ dr, after some algebra,
the radial function (17) takes the following Schrodinger-

like form

d*u(r,)

12 +V(r)u(r«) =0 (19)

with the effective potential V(r) given by

am \?2 A
V(r) = <w_a2+r2> _(a2+r2)2

x (a*w? + u?r’ + Ay, — 2amw)

r2A2 A+ 217 =2Me " (k + 1)
(@ + ) @+ )
4r2A
* (a* + r?)? (20)

the first two lines come from the potential of Eq. (17)
divided by (r* 4 a?)% The rest lines represent the effect of
introducing the tortoise coordinate dr.,.

IV. SUPERRADIANCE INSTABILITY

The incident scalar waves could be amplified when
scattered off of a rotating or charged black hole, within
certain parameter space of the black hole. This is the so-
called superradiance.

A. Superradiance modes

In this section, we will study the conditions for the
happening of superradiance. Now we consider the follow-
ing asymptotic behavior of the solutions or boundary
conditions of Eq. (19),

up(r.) = Az exp (=ikyr.), r, > —oo(r - 7,)
U (r,) = Arexp (—iker.) + Ag exp (iksrs),

r, > oo(r - o), (21)

where kj, = \/V(r—7,)=w—mQ,, ke, =+/V(r—> )=
\/(027—/42 . These boundary conditions describe an incom-
ing wave from spatial infinity with an amplitude of A7,
which scatters off the event horizon and produces reflected
and transferred waves with amplitudes of Ay and Ar,
respectively.
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Now, by equating the Wronskian quantity

W= du* ., du
B udr* " dr,

for regions near the event horizon with its counterparts at
infinity, we can get

@ — m,
VP — 2

where Q;, = a/(# + a?), According to the above equa-
tion, for superradiance to occur, the amplitude of the
reflected waves must be greater than the amplitude of
the incident waves, and the following frequency criteria
must be met

2

[Azf? = [Ag|* = [Ar

, (22)

U << mey,. (23)

The frequency or modes satisfying above condition is
called superradiance modes.

B. Amplification factor

The degree of amplification caused by the superradiance
is described by the amplification factor, it can be computed
via

Mg
" AP

(24)

Since the Kerr spacetime’s symmetry and asymptotic
behavior also applies to rotating regular black hole (1)
as well, the derivation of this section is essentially similar
to that of Kerr [30], with the exception that r is replaced
by 7#,. However, the geometry of near-horizon region is
altered as a result of this difference, which also results in a
different amplification factor. Just to be self-content, we
will briefly review the calculation steps of amplification
factor Z,,,,.

We assume that the Compton wavelength of scalar field
particle is significantly greater than the black hole gravi-
tational size or uM < 1, we also consider the low-
frequency regime wM < 1 which also implies aw < 1,
these conditions allow us to use the matching-asymptotic
techniques [62,63] as follow.

We divide the space into two overlapping regions,
i.e., the near-region w(r—r,.) <1, and the far-region
r—r,. > M. We will solve the radial equation (17) at
these two regions and then match them in their overlapping
region, this will give us the analytical solutions to
the amplitudes, so that we can compute the amplification
factor.

The radial equation (17) can be written as

d’R,, dR;,
x2(1 +X)2W+X(X+ 1)(2X+ ])W

+ (Px* — (@0*a® + Npy)x(x + 1)
— (P =P )x + 7 )%x(x + 1) + Q*)R,,, = 0, (25)

where we defined new variables

r—r,

= 26
TR o (26)
p=olt, —) (27)

?2 + a2
Q=—"—-(mQ-w). (28)

7’+ - r_
In the near region, we have kx<1 and

(P —?_)x + #,)* ~ p*#%, such that Eq. (25) is then
approximately take forms as

2
2 (x +1)? ddiém +x(x+1)(2x+ 1) dR)lCm
+(Q* =11+ Dx(x+ 1))R;,, =0 (29)

the general solution satisfying the boundary condition (21)
to the above equation is given by the hypergeometric
functions

x+1

iQ
le:A1< )F(—l,l+1,1—2iQ,—x) (30)

the large x behavior of above solution is

, T(1=2iQ)r (2l + 1)
C(1+[-2iQ)T(+1)
_ T(1 =2iQ)r (=21 1)
T(=1[(=1 - 2iQ)

le ~ Alx

+ Alx_

(31)

In the far region, equivalently x — oo, Eq. (25) approx-
imately give us

PR,y 2dR, [, 10+1)
- — R, =0, 32
dx? +x dx * (5 x2 lm (32)

where & = (7, — #_)\/@* — p*. The solution of this equa-
tion can be written in terms of the confluent hypergeometric
function

Ry, = exp(—iéx)Cx'U(1 + 1,21 + 2, 2iéx)
+ exp(=iéx)Cox~ 71U (=1, =21, 2iéx). (33)

Expanding it for small kx < 1, we obtain
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FIG. 1. The amplification factor Z;; for/ = m = 1, uM = 0.1,

with three black hole spin a = 0.5M, a = 0.7M, and a = 0.9M,
and different regular parameter values k = 0.01M, k = 0.03M,
k = 0.05M, with the Kerr case (k = 0) as reference.

Ry, ~ Cix! + Cox™I71, (34)
Now, matching (31) and (34), we can get
(1 -2iQ)r(20+1)
"T(I+ D)1 +1-2iQ)

(1 = 2iQ)I(—1 - 2I)
(=1 - 2iQ)T(=])

C,=A

C2 :Al

When r — oo, from (21), we can know the solution of
(17) takes form as

Uoo (1)

exp(_ikmr*)+AReXp(ikoor*)

r r

Ry~ ~ -AI (35)

Expanding (33) at infinity and matching to (35), we obtain
the analytical expression for A7 and Ap

(=2i)~71E7 T (21 4 2) (=2i) 1T (=21)

AZ:CI

ko D(14 1) T k(=D
(36)
L )TEr(20+ 2) (2i)1EHT(=21)
Ar =G ko D(1+1) T koT(=D)
(37)

After some algebra, we finally find the amplification
factor (24) takes the explicit form as

(149

Zin =408 (2DD2((20+ 1)N)? 1:[1 n

(38)

The formulas above are valid for any spin a < M provided
uM < oM < 1. In Fig. 1, we plot Z;, for different values

of regular parameter k and black hole spin, by setting
uM = 0.1. We can clearly see that the amplification starts
when wM > uM, and dies out when it is close to the
threshold frequencies m,. The amplification increases
along with the black hole spin, and the parameter k/M only
affects the amplification when the frequencies close to the
threshold m<,,, and bigger k/ M will cause a bigger threshold
frequency.

V. QUASINORMAL MODES
Quasinormal modes are solutions of the wave equa-
tion (19), satisfying the following boundary conditions,

uy(r,) = exp(—ikyr,), r, > —oo(r > 1)

Uy (r,) = exp(ikg ), r, = oo(r - ), (39)
which means there are only ingoing waves at the event
horizon, while pure outgoing wave at spatial infinity. This
condition leads to a discrete eigenvalue of frequencies.
Quasinormal modes were referred to as the “fingerprints”
of black holes. Because they are determined by the
parameters of black holes, like mass and spin etc.

There are many methods to compute the quasinormal
modes, see the reviews [64—66]. In this section, we will use
the popular continued fraction method to compute the
quasinormal modes, and this method has been used in many
outstanding works even recently [67-69].

A. Continued fraction method

According to the boundary conditions (39), we can
obtain a series solution to the radial equation (17), by
setting Ry, (r) as

Rew(r) = (r=#)7 (r=7)y(r =), (40)

where —io | and ico_ are the indices of R, (r) at singular
points r = 7, and r = 7_, they are given by

o, =2 (41)

(42)

where b =7, —7_. For simplicity, we first define
x =r—7_, now we have A = x(x — b). Next, we rewrite
(40) and (17) in terms of x, and also substitute the series
solution (40) into (17). Then we calculate the first term
(derivatives) of (17). When the above operations were
done, we collect all the terms with the same order of y(x),

2 .
%, % respectively. At the end, we can get the second order

differential equation for y(x),
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2

d’y dy
x(x—b)ﬁ—i- (By + Byx)—

Dk (@ = Wlx = b)

—2m/@* — p*(x — b) + B3)y =0, (43)

where B, B,, B3, and 5 are given by
B, = (-1-2io_)b
B, =2(ioc_ —io, + 1)
By =20*#% + 0*(Py +7_)? + @@’ — Ay, — p*#2

+ileo—0y)=(6_—0.)

n=—(@—u?/2)(Fy + 7))\ o = 2.

The function y(x) can be expanded further in a power series

. X — b\
V(x) = ekt y=(1/2)Bomin Zdn <x > )
n=0

X

By substituting the above series solution y(x) to Ry, (r),
and then to the radial equation (17). We can obtain the
coefficients d,, which satisfies a three term recurrence
relation as follow

a0d1 + ﬁ()d() =0 (45)
a,d,y +pd, +y,d,y =0, n=17273.... (46)
where the coefficients are

a, =n>+(co+ 1)n+c
Bp==2n*+ (c; +2)n+c3
Yn=n*+(c;=3)n+cy—c, +2 (47)

and the intermediate constant ¢, are defined as

co=By+Bi/b
cr =—=2(co+ 1 +i(n—keD))
¢y =co+2(1+in)

1 1
3= —cy —EB2 <—Bz - 1) +n(i —n) + ikeubcy + Bs

2

1 1
If the series in (40) and (44) converges and the r = oo
boundary condition (39) is satisfied, for a given a, M, k, u,
and A, the frequency @ must be a root of the continued
fraction equation

0=p,— oY1 X1V2 XY 3 (49)

Pi= P B3

or any of its inversions. (49) is obtained by combining
Egs. (45) and (46). The roots of (49) will give us the so-
called quasinormal modes.

B. Numerical results

For simplicity and consisting with the literature, we will
choose units by setting M = 1 in the rest of this paper. Then
the radial distance r, the regular parameter k and black hole
spin a are measured in unit of M, while the frequency @ and
scalar field mass p are in unit of M~

Our numerical procedures operate as follow, we first
calculate the angular eigenvalues A, using the Leaver
method [70], by fixing the values for (k, [, m, a, u). Then
the continued fraction equation (49) depends only on the
quasinormal frequency . For practical purposes, it is
necessary to truncate the above continuing fraction to an
order of n, We use a technique developed by Nollert [71] to
approximate the value n. At the end, the root-finding
algorithm (Built-in functions in Wolfram Mathematica)
will be applied to find the roots of the continued fraction
equation (49). Previous calculations of quasinormal modes
in the Kerr background [72,73] are used to validate our
numerical methods. The errors of quasinormal modes
caused by using the approximation (12) and (13) are less
than 1072, see the Appendix, they become extreme accurate
when the spin grows.

In Tables I and II, we show some of the quasinormal
frequencies for the fundamental mode with (I = 1,m = 0)
and (I =1,m = 1), by setting different black hole spins
and regular parameter k. The scalar field mass has been set
as u=0.1. In Table III, we show the dependency of
quasinormal frequencies on the scalar field mass y and
regular parameter k, by setting (I=1,m=1), a =0.5.
Please note that we used minus Im(w) to represent the
imaginary part of quasinormal modes here and after in this
paper. In all three tables, the k = 0 columns correspond to
the quasinormal modes of Kerr black hole, which are in
excellent six decimals agreements with the results obtained
before by [72,73].

From Tables I and II, we notice that the real part of
quasinormal frequencies grow along with the black spin,
while the imaginary part decrease with spin. The regular
parameter k does play a role on the quasinormal frequen-
cies. We also computed (/[ =1, m = 1) quasinormal
frequencies with smaller spin intervals Aa = 0.02 from
a = 0.05 to a = 0.91, with regular parameter k£ = 0, 0.001,
0.005, 0.01, The results were plotted in Fig. 2. We can see
that the higher spin and bigger regular parameter k, the
more deviation from Kerr black hole (k = 0).

To better show the dependency of quasinormal frequen-
cies on the regular parameter k, we plot the real and
imaginary part of quasinormal frequencies as a function of
regular parameter k in Fig. 3, with three different high spins
(a > 0.5). We can see that regular parameter k will increase
the real part of quasinormal frequencies gently. For the
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TABLE I.  Values of the quasinormal frequencies for the fundamental mode, with / = 1, m = 0, u = 0.1 for different values of k, and
spin a.

u=0.1 k=0 k =0.001 k = 0.005 k=0.01

a Re(w) —Im(w) Re(w) —Im(w) Re(w) —Im(w) Re(w) —Im(w)

0.1 0.297602 0.094884 0.297658 0.094884 0.297921 0.094914 0.298290 0.094981
0.2 0.298164 0.094661 0.298218 0.094658 0.298452 0.094661 0.298771 0.094684
0.3 0.299116 0.094273 0.299170 0.094269 0.299397 0.094259 0.299698 0.094260
0.4 0.300478 0.093692 0.300534 0.093686 0.300762 0.093668 0.301058 0.093653
0.5 0.302285 0.092873 0.302342 0.092865 0.302574 0.092838 0.302874 0.092809
0.6 0.304579 0.091742 0.304638 0.091732 0.304878 0.091692 0.305185 0.091646
0.7 0.307413 0.090182 0.307475 0.090168 0.307725 0.090110 0.308043 0.090041
0.8 0.310836 0.087989 0.310900 0.087968 0.311160 0.087884 0.311489 0.087780
0.9 0.314815 0.084810 0.314880 0.084778 0.315143 0.084654 0.315474 0.084498
TABLE II.  Values of the quasinormal frequencies for the fundamental mode, with [ = m = 1, u = 0.1 for different values of k, and
spin a.

u=0.1 k=0 k =0.001 k = 0.005 k=0.01

a Re(w) —Im(w) Re(w) —Im(w) Re(w) —Im(w) Re(w) —Im(w)

0.1 0.305329 0.095029 0.305390 0.095027 0.305674 0.095054 0.30607 0.095118
0.2 0.314119 0.094920 0.314184 0.094915 0.314460 0.094908 0.314833 0.094921
0.3 0.323981 0.094569 0.324052 0.094561 0.324347 0.094536 0.324735 0.094518
0.4 0.335181 0.093883 0.335261 0.093871 0.335590 0.093828 0.336015 0.093783
0.5 0.348105 0.092714 0.348198 0.092696 0.348576 0.092630 0.349059 0.092552
0.6 0.363345 0.090805 0.363456 0.090780 0.363904 0.090678 0.364474 0.090554
0.7 0.381888 0.087678 0.382025 0.087637 0.382580 0.087474 0.383285 0.087271
0.8 0.405606 0.082262 0.405790 0.082191 0.406531 0.081904 0.407473 0.081540
0.9 0.439045 0.071342 0.439332 0.071183 0.440495 0.070533 0.441982 0.069685
TABLE III.  Values of the quasinormal frequencies for the fundamental mode, with [ = m = 1, a = 0.5 for different values of &, and
mass u.

a=0.5 k=0 k =0.001 k = 0.005 k=0.01

U Re(w) —Im(w) Re(w) —Im(w) Re(w) —Im(w) Re(w) —Im(w)

0 0.344753 0.094395 0.344848 0.094375 0.345234 0.094301 0.345726 0.094214
0.1 0.348105 0.092714 0.348198 0.092696 0.348576 0.092630 0.349059 0.092552
0.2 0.358230 0.087478 0.358317 0.087466 0.358671 0.087423 0.359125 0.087375
0.3 0.375284 0.078022 0.375362 0.078020 0.375679 0.078016 0.376086 0.078016
0.4 0.399201 0.062970 0.399267 0.062982 0.399536 0.063031 0.399884 0.063099
0.5 0.429036 0.040234 0.429096 0.040270 0.429336 0.040421 0.429639 0.040617

imaginary part, the regular parameter k decrease imaginary
part of quasinormal frequencies, even more for higher
spins. These features could provide us some insights on
the connection between the regularity of black hole and
the stability of massive scalar field perturbation. All the
imaginary part of quasinormal modes are negative (see
Tables L, II, IIT and Figs. 2, 3), which means the black hole
(1) is stable under massive scalar field perturbation. What is
more, especially in the high spin regime, the increasing in
regular parameter k will cause a smaller imaginary part of

quasinormal modes compare to Kerr black hole, which
corresponds to a longer damping time. The regularity of
black hole seems put more “elasticity” onto the massive
scalar field perturbation such that they will live longer than
the Kerr black hole scenario. On the other hand, increasing
in regular parameter k will cause a bigger real part of
quasinormal modes, which means it will increase the
oscillation frequency of scalar field perturbation. In addi-
tion, we again see black hole spins change quasinormal
frequencies significantly for both real and imaginary part.
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FIG. 2. the ! = m = 1 fundamental quasinormal frequencies as

a function of black hole spin (from a = 0.05 to a = 0.91 with
spin intervals Aa = 0.02), with the regular parameter k = 0,
0.001, 0.005, 0.01, scalar filed mass ¢ = 0.1.
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FIG. 3. Upper and lower plots are respectively the real and

imaginary part of the fundamental quasinormal frequencies as a
function of parameter k, by setting [ = m = 1, u = 0.1 and three
different spins a = 0.5, 0.7, 0.9.

Last but not least, we investigate the quasinormal
frequencies dependency on the scalar field mass p.
From Table III, we can see that, for the real part, the
value increase monotonously with the scalar field mass p.
For the imaginary part, the value decrease monotonously

with the scalar field mass u. It seems that, for y < 0.3,
the bigger regular parameter k, the bigger real part
and smaller imaginary part. But for g > 0.4, it is not
the case, where the bigger k, the bigger imaginary part.
So, the scalar field mass will affect the relation between
the regularity of black hole and the stability of massive
scalar field perturbation. It maybe easy to understand
because the different scalar field mass will significantly
change the behavior of scalar field perturbation such that
it will react differently to the regularity of black hole
spacetime.

VI. CONCLUSION AND DISCUSSION

We have studied the massive scalar field perturbation
around regular rotating black hole. We first introduced
the newly proposed regular black hole spacetime metric (1)
and some physical quantities, also we used approximation
method to analytically solve the horizons. Then we
separated and solved the massive Klein-Gordon equation
in this spacetime and obtained the master equations (15),
also radial part (17) and angular part equations (18). With
these equations, we studied the superradiance instability
and quasinormal modes.

For the superradiance instability, we first discussed the
conditions for the superradiance happen. The results show
that the amplification happens when the frequencies are
within certain parameter region (23). Then, we used the
matching-asymptotic method to compute the amplification
factor under small mass and low frequency approximations.
At the end, we obtained a very net analytical expression for
the amplification factor (38) and we plotted the [ = m = 1
modes with several parameters.

Regarding to the quasinormal modes, we applied the
continued fraction method to numerically calculated the
quasinormal modes of the rotating regular black hole. We
present three tables (Tables I, II, and III), and the k = 0
columns could validate our numerical approaches. It is in
excellent agreement with the previous results in the Kerr
limit [72,73]. The numerical results, in these tables also in
Fig. 3, are computed by selecting some parameters as the
variables while others are settled down with certain values
for the purpose of studying: (a) fundamental quasinormal
modes as a function of black hole spin a; (b) fundamental
quasinormal modes as a function of regular parameter k;
(c) fundamental quasinormal modes as a function of scalar
field mass p.

This work is the first step to study the perturbations
around the nonsingular rotating black hole (1). There are
many researches could be conduct at the future. For
example, the superradiance instability and quasinormal
modes of the vector and gravitational perturbations (i.e.,
gravitational waves) in this spacetime. We believe it will
give us more deeper understanding on black holes and
gravity. We leave this research to the future.
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APPENDIX: THE ERRORS OF APPROXIMATION
METHOD

In Sec. II, we used the analytically approximation to
solve the Delta function (4). To show the accuracy of this
method, we plot the errors of high order solutions in Fig. 4
as a function of black hole spin a, given different regular
parameter k. We plot the errors up to the second order for
event horizon and third order for inner horizon. The errors
denoted as E', are computed by comparing to the numerical
solutions "™ of (4), i.e.,

i num
Eil — |y —rtt
+ = num ’

- (A1)

where i = I, 11,111 represents the i-th order solution.

We can see from Fig. 4, the approximation errors drop
down as the order goes up for both event and inner horizon,
besides that, we can see the errors of event horizon are tiny
(< 1073) even in the first order although they are slowly
going up along with the black hole spin. However, the errors
of inner horizon are significantly large at first order, but they
drop down quickly as the order and black hole spin goes up.

From the order of magnitude, the errors of inner horizon are
significantly larger than that of event horizons E*. > E', even
in the high spin regime. Therefore, we shall focus on the inner
horizon errors E, because it will dominate the errors of our
approximation results. We plot a horizontal line E. = 1072
and a vertical line a = 0.1. We would like to control the errors
such that they always below 1072 from a = 0.1 to 0.9. Then
the regular parameter k should be chosen not greater than
0.01M, and third order solutions are sufficient for our goal.

The final equation to compute the amplification factor
and quasinormal modes are (38) and (49) respectively, the

essential quantities Q, &, a,,, f3,, ¥, for these equations are
all proportional to 7., #,, o or their quadratic. The
accuracy of amplification factor and quasinormal modes,
because of using the approximation solutions (12) and (13),
are therefore in the order of (E')2+2 and E'!, respec-
tively. So, the approximation has almost no effect in
amplification factor, while the accuracy of quasinormal
modes are always higher than 1072, even 107® when
a 2 0.3, provided with the regular parameter k < 0.01M.
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FIG. 4. Upper and lower plots are respectively the errors of high
order event horizon and inner horizon, with regular parameter
k = 0.005, 0.01, 0.05 and black hole spin a = 0.01 to 0.91.
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