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We study the scattering of gravitational waves by a Schwarzschild black hole and its perturbed
siblings to investigate influences of proposed spectral instability of quasinormal modes on the ringdown
signal. Our results indicate that information of dominant ringdown signals, which are ascribed to the
fundamental (i.e., least damping) quasinormal mode of unperturbed Schwarzschild black holes, is
imprinted in the phase shift defined from the transmission amplitude (1=Ain in our notation). This
approximately parallels the fact that the resonance of quantum systems is imprinted in the phase shift of the
S matrix. The phase shift around the oscillation frequency of the fundamental mode is modified only
perturbatively even if the quasinormal-mode spectrum is destabilized by a perturbative bump at a distant
location, signifying the stability of the ringdown signal. At the same time, the phase shift at low frequencies
is modulated substantially reflecting the late-time excitation of echo signals associated with the
quasinormal-mode spectrum after destabilization.

DOI: 10.1103/PhysRevD.107.044012

I. INTRODUCTION

Quasinormal modes are believed to play a central role in
clarifying various properties of black hole spacetimes
(see, e.g., Refs. [1,2] for reviews). Physically, quasinormal
modes are exponentially decaying monochromatic waves
escaping to null infinity and to the event horizon. They
are excited in a universal manner as a response to imping-
ing fields [3–5] and/or the motion of matter [6–9], and
associated observable signals are called the ringdown
signals. Individual modes are characterized by a complex
frequency, i.e., the oscillation frequency and the decay
width (or damping time). Because they are determined by
the mass and the spin for Kerr (including Schwarzschild)
black holes, analysis of the ringdown signals tells us these
two parameters [10,11]. Remarkably, because the mass and
the spin completely determine all the quasinormal modes,
consistency assessment of estimated parameters for indi-
vidual modes will enable us to test whether astrophysical
black holes are really represented by Kerr black holes in
general relativity [12,13]. Furthermore, quasinormal-mode
spectra are expected to provide us with a hint to quantum
gravity [14–16].
In the last few years, it has been argued that the

quasinormal-mode spectrum could be destabilized by tiny
perturbations to the potential of various types [17–19]. In
particular, even the fundamental mode is destabilized when
the potential is modified at a large distance from the black

hole [18], dating back to Ref. [20] (see also Refs. [21,22]).
In realistic situations, excitation of quasinormal modes is
inevitably accompanied by nontrivial perturbations due to
the dynamical formation process of a deformed black hole
and/or surrounding material. Thus, the spectral instability
of quasinormal modes could be fatal to the program of
black hole spectroscopy.
However, the spectral instability of quasinormal-mode

spectra does not destabilize observable ringdown signals,
particularly on the damping time scale of unperturbed
quasinormal modes [23,24]. Rather, a lot of evidence is
accumulating that the ringdown signal is fairly universal
even for nonlinear perturbations. For example, various
numerical-relativity simulations of compact binary coales-
cences, both for vacuum and nonvacuum systems, have
clearly witnessed excitation of unperturbed quasinormal
modes in dynamical processes (see, e.g., Refs. [25,26], for
reviews). This prediction is confirmed to large extent by a
lot of binary-black-hole observations [27]. These facts
strongly suggest that the ringdown signals from a perturbed
black hole spacetime do not deviate nonperturbatively from
those from the unperturbed spacetime, even if the quasi-
normal-mode spectrum is destabilized in a catastrophic
manner. Stated differently, observable ringdown signals
may not necessarily be dictated by quasinormal-mode
spectra (see also Ref. [28]), even though they actually
are for unperturbed Schwarzschild and Kerr spacetimes.
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For example, fitting of observed ringdown signals against
damped sinusoids likely returns complex frequencies not
included in the destabilized quasinormal-mode spectra as
the strongest component [24].
A probable reason for this irrelevance is that the

quasinormal-mode spectrum is defined merely as a result
of analytic continuation of the relevant Green’s function in
terms of the frequency. Mathematically, quasinormal
modes are defined as the poles on the complex frequency
plane of the Green’s function satisfying outgoing (at null
infinity) and downgoing (at the event horizon) boundary
conditions. Meanwhile, the realistic signal should be
decomposed into real-frequency modes by the Fourier
transformation. Thus, it is natural to expect that information
governing the ringdown signals, which are likely to be
tightly related to the poles in the unperturbed black-hole
spacetime, is imprinted also in the real-frequency Green’s
function (see also Ref. [29] for real-frequency analysis of
ringdown and echo signals from exotic compact objects). In
particular, the fundamental mode, i.e., the quasinormal-
mode pole closest to the real axis, should have a decisive
impact.
In this study, we investigate the scattering of gravita-

tional waves in black hole spacetimes to demonstrate that
distant perturbations to the potential hardly destabilize
observable ringdown signals mainly characterized by the
unperturbed fundamental mode as anticipated above. As

an alternative to the poles on the complex frequency
plane, we propose that the phase shift defined from the
transmission amplitude of the ingoing waves enables us to
infer the properties of unperturbed quasinormal modes in
an approximate but stable manner. This tool is taken from
the resonance in quantum systems, and the correspon-
dence assumed here is sketched in Fig. 1 (see Sec. II C for
detailed discussions). In Sec. II, by solving the time
evolution of a Gaussian wave packet, we check that the
ringdown signal is stable even under perturbations
that destabilize the quasinormal-mode frequency of the
fundamental mode. Then, we explain our method to
extract useful information from the real-frequency scat-
tering problem. By analyzing a toy model in Sec. III,
we first explain how the spectral instability is relevant
only for complex frequencies required by analytic
continuation and next verify the utility of the phase shift
as a real-frequency indicator of dominant modes in the
ringdown signal. Equipped with this tool, we return to
Schwarzschild black holes and their perturbations in
Sec. IV. Section V is devoted to a summary and
discussions.
Throughout this paper, we adopt the geometric unit in

which G ¼ c ¼ 1, where G and c are the gravitational
constant and the speed of light, respectively. The mass of
the black hole is denoted byM. The Fourier transformation
is performed with the convention that

FIG. 1. Schematic figure showing the correspondence between the quantum scattering and the black hole perturbation. In the quantum
scattering, we usually consider incident waves with the unit amplitude and scattered waves with the (complex) amplitude SlðEÞ, and the
poles of SlðEÞ give us information about the resonance (see, e.g., Ref. [30]). In this study on the black hole perturbation, we consider
ingoing waves with the (complex) amplitude AinðωÞ and downgoing-wave components with the unit amplitude, and the zeroes of AinðωÞ
or equivalently the poles of 1=AinðωÞ actually give us information about the quasinormal modes. The red circle in the right panel is
drawn to imply the barrier associated with the Regge-Wheeler potential [31].
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fðtÞ ¼
Z

∞

−∞
f̃ðωÞe−iωt dω: ð1Þ

The complex quasinormal-mode frequency is decomposed
into the oscillation frequency ωR and the decay width Γ
by ω ¼ ωR − iΓ=2.

II. STABILITY OF RINGDOWN SIGNALS UNDER
SPECTRAL INSTABILITY

To set the stage for this study, we first show that the
ringdown signals in the Schwarzschild spacetime associ-
ated with the scattering of a Gaussian wave packet is stable
under perturbations of the effective potential even if the
fundamental mode is destabilized [18] (but see also
Ref. [32] for possible alternative definitions of stability
in terms of different norms). The significant difference is
observed only as late-time excitation of echoes between the
primary potential barrier and the perturbation. A similar
analysis has recently been made in Ref. [24] for slightly
different perturbations, and our results seem consistent with
theirs qualitatively. This analysis motivates us to search for
the signature of unperturbed quasinormal modes, particu-
larly the fundamental mode, from real-frequency solutions
of the scattering problem.

A. Setup

Time evolution of linear waves represented by ϕ around
a black hole is governed by hyperbolic equations with
effective potentials. Specifically, after spherical harmonic
decomposition (whose indices are suppressed here for ease
of notation), governing equations reduce to (see, e.g.,
Ref. [33] for comprehensive reviews)

∂
2ϕ

∂t2
¼ ∂

2ϕ

∂r2�
− Vðr�Þϕðt; r�Þ; ð2Þ

where r� ≔ rþ 2M lnðr=2M − 1Þ þ R� is the tortoise
coordinate, and V is the effective potential. Here, for
later convenience, we intentionally keep an integration
constant R� in the tortoise coordinate defined by dr�=dr ¼
1=ð1 − 2M=rÞ for the Schwarzschild spacetime. Unless
otherwise stated, we set R� ¼ 0.
Throughout this article, we focus on the l ¼ 2 mode

of axial gravitational waves, for which the unperturbed
effective potential is given by the so-called Regge-Wheeler
potential [31],

VRWðr�Þ ≔
�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
: ð3Þ

On another front, the polar gravitational waves obey Eq. (2)
with the so-called Zerilli potential [34], which is known to
be isospectral with the Regge-Wheeler potential [35].
Vector and scalar waves also obey the same equation with

similar potentials. Thus, we expect that the analysis of this
study applies to fields of any parity and spins, at least
qualitatively.
The quasinormal-mode spectrum including the funda-

mental mode is reported to be unstable when the potential
is augmented by a bump modeled by the Pöschl-Teller
form [18],

Vðr�Þ ¼ VRWðr�Þ þ VPTðr�; ϵ; bÞ; ð4Þ

VPTðr�; ϵ; bÞ ≔
ϵ

ð2MÞ2 cosh2½ðr� − bÞ=ð2MÞ�� ; ð5Þ

for sufficiently large values of b and/or ϵ.[36] In this
study, we fix ϵ ¼ 10−3, for which the fundamental mode is
reported to be destabilized if b≳ 50M. We checked that the
value of ϵ only determines the scale of the results presented
in this study unless it becomes ∼Oð1Þ.

B. Time evolution

To demonstrate that the ringdown signal is stable until
the late-time modes are excited, we numerically simulate
scattering problems for Eq. (2) with both the Regge-
Wheeler potential of Eq. (3) and that perturbed by a
Pöschl-Teller bump of Eq. (5) adopting b ¼ 100M. The
initial data are chosen to be ϕðt ¼ 0Þ ¼ 0 and the time
derivative in the form of a Gaussian wave packet,

∂ϕðt ¼ 0Þ
∂t

¼ exp

�
−
�
r� − r�;0
2M

�
2
�
; ð6Þ

where r�;0 ¼ −50M or 50M. Essentially the same initial
data are adopted in Ref. [23] for investigating the scattering
by double rectangular barriers (see also Sec. III below), and
we have reproduced their results with reasonable accuracy.
The evolved fields are extracted at a finite distance of
r�;ext ¼ 250M. The boundaries of our computational
domains are located at sufficiently large distances so that
numerical reflections do not affect the results shown below.
Figure 2 shows the time evolution of an initial Gaussian

wave packet in the Regge-Wheeler potential and that
perturbed by a Pöschl-Teller bump. The left panel depicts
the scattering of a wave packet initiated at r�;0 ¼ −50M,
and this case corresponds to outward propagation from the
inside of the potential peak. It is obvious that the ringdown
signals, i.e., the time evolution of the field characterized by
exponential damping, are essentially unchanged under
perturbations until the echo signal arrives after ∼2b ¼
200M from the direct signal. These features agree
with those found in the analysis of double rectangular
barriers [23] and the Regge-Wheeler potential perturbed by
a Gaussian bump [24].
The right panel of Fig. 2 shows the scattering of a wave

packet initiated at r�;0 ¼ 50M, which corresponds to
the middle of the main peak and the perturbative bump.
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This choice of the initial location enhances the echo signal
via the presence of low-frequency components outside
the main peak, which can be easily reflected back and
forth between the two potential barriers, from the begin-
ning [23,38]. In the case of the right panel, after the direct
arrival of a precursor signal at t − r�;ext ∼ −50M, the
ringdown signal sets in at ∼50M due to the reflection
from the Regge-Wheeler potential. Although the echo
signal begins to be dominant as early as ∼100M for the
perturbed spacetime, we can still observe the ringdown
signal, whose oscillation frequency and decay width are
essentially unchanged from the unperturbed values.

C. Where have the quasinormal modes gone?

Through the case studies shown in Fig. 2, we may safely
conclude that the dominant part of the ringdown signal
remains stable despite destabilization of the quasinormal-
mode spectra. This suggests that bona fide quasinormal
modes defined as the poles of the Green’s function on the
complex frequency plane may not always be useful for
characterizing observable signatures. A possible alternative
may be to rely on Wentzel-Kramers-Brillouin (WKB) and/
or similar methods for deriving approximate quasinormal-
mode spectra [39–42]. However, this returns the same
spectra as the unperturbed case in a trivial manner, unless
the potential is expanded to extremely high orders. We
would like to develop a method for approximately but
stably inferring unperturbed quasinormal modes, which are
likely to characterize dominant ringdown signals, and also
for extracting influences of perturbations, which are likely
to introduce echo signals, simultaneously. Time-domain
analysis like Fig. 2 and that presented in Refs. [19,24] is not
fully satisfactory, because the results may depend crucially
on the initial condition.

The key consideration is that the observable ringdown
signals in the time domain should be determined by the
Green’s function on the real axis of the frequency, irre-
spective of whether they are evolved from initial data or
sourced by matter. In the remainder of this article, we
investigate scattering problems in the frequency domain.
The Fourier component of the field is governed by

d2ϕ̃
dr2�

þ ½ω2 − Vðr�Þ�ϕ̃ ¼ 0: ð7Þ

General solutions of this equation are asymptotically
given by a superposition of plane waves, e�iωr� . We focus
on the “in” solution that satisfies purely downgoing
boundary condition at the horizon and hence, behaves
asymptotically as

ϕ̃inðr�Þ ¼
(
e−iωr� ðr� → −∞Þ
Aine−iωr� þ Aouteþiωr� ðr� → þ∞Þ ; ð8Þ

because it plays a central role in determining observable
signals at null infinity. The Green’s function with down-
going (at the horizon) and outgoing (at null infinity)
boundary conditions is inversely proportional to the
Wronskian of corresponding homogeneous solutions,
which reduces to

W ¼ 2iωAin; ð9Þ

under the normalization of Eq. (8) and the similar one for
the “up” solution that satisfies purely outgoing boundary
condition at null infinity. Quasinormal modes are defined
by zeroes of AinðωÞ, which are equivalent to the poles of the

FIG. 2. Time evolution of a Gaussian wave packet in the Regge-Wheeler potential (black solid) and that perturbed by a Pöschl-Teller
bump (purple dashed). The Pöschl-Teller bump is located at b ¼ 100M with the amplitude of ϵ ¼ 10−3, with which the fundamental
mode is destabilized [18]. The Gaussian wave packets are initially located at r�;0 ¼ −50M and r�;0 ¼ 50M for the left and right panels,
respectively. The origin of the time is chosen to account for the retardation at the extraction radius of r�;ext ¼ 250M. The power-law tail
is also observed at t − r�;ext ≳ 150M for the Regge-Wheeler potential with r�;0 ¼ 50M [37].
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Green’s function, and they never occur on the real axis due
to the flux conservation.
The fact that the zeroes of AinðωÞ define the quasinormal

modes is reminiscent of the fact that the poles of the S
matrix define the resonance in quantum systems (see, e.g.,
Sec. 13 of Ref. [30]). Let us recall the latter problem. For
the quantum scattering of a particle with mass μ by a
spherically symmetric potential, the radial wave function
RlðrÞ for the lmode is given by a spherical Bessel function.
Its asymptotic form is

Rlðr → ∞Þ ∝ e−iðkr−lπ=2Þ − SlðEÞeþiðkrþlπ=2Þ; ð10Þ

where E is the energy of the particle and k2 ≔ E=ð2ℏ2μÞ.
As depicted in the left panel of Fig. 1, the first and second
terms correspond to the incident and scattered waves,
respectively. If the scattering is elastic, the unitarity ensures
that the S matrix has the unit amplitude, so that we may
write SlðEÞ ¼ exp½2iδlðEÞ� in terms of the (real) phase shift
δlðEÞ. Meanwhile, the resonance is mathematically defined
on the analytically continued complex energy plane as the
pole E ¼ Eres ≔ ER − iΓres=2 of the S matrix. Then, the S
matrix on the real axis is expected to behave as

SlðEÞ ¼ e2iδlðEÞ ≈ e2iδBG;lðEÞ
E − E�

res

E − Eres
ð11Þ

¼ e2iδBG;lðEÞ
E − ER − iΓres=2
E − ER þ iΓres=2

; ð12Þ

where δBG;lðEÞ is the so-called background phase shift
and is expected to be a slowly varying function of E. We
stress that the derivative of the phase shift behaves like a
Lorentzian function (see, e.g., Sec. 11.4 of Ref. [43]),

dδl
dE

≈
Γres=2

ðE − ERÞ2 þ ðΓres=2Þ2
þ dδBG;l

dE
: ð13Þ

This quantity serves as a tool to extract the values of ER
and Γres via the location of a peak and the full-width-half-
maximum (FWHM), respectively, from the real-energy
wave function.
To apply this established tool in quantum mechanics to

quasinormal modes of black holes as a novel technique (see
Refs. [44–48] for related work), we assign ingoing (from
null infinity) and downgoing (to the horizon) waves,
respectively, the roles of the incident and scattered waves
in quantum mechanics [49]. As schematically presented in
the right panel of Fig. 1, this identification allows us to
investigate AinðωÞ in a similar manner to the Jost function
used for defining the S matrix. Hereafter, we occasionally
call 1=AinðωÞ the (complex) transmission amplitude [50].
Because AinðωÞ vanishes at the complex quasinormal-mode
frequency, we expect it to behave near the zero as

AinðωÞ ≈ ÂinðωÞ × ðω − ωR þ iΓ=2Þ; ð14Þ

where ÂinðωÞ is a slowly varying and finite function of ω.
Although the transmission amplitude is not unitary and
jAinðωÞj is strictly larger than unity on the real axis in our
problem, this approximation derives a manifestly unitary
expression,

AinðωÞ2
jAinðωÞj2

≈ e−2iδBGðωÞ
ω − ωR þ iΓ=2
ω − ωR − iΓ=2

; ð15Þ

e−2iδBGðωÞ ≔
ÂinðωÞ
Â�
inðωÞ

; ð16Þ

on the real axis. Thus, by defining the phase shift of the
transmission amplitude as

e−iδðωÞ ¼ AinðωÞ
jAinðωÞj

; ð17Þ

we arrive at the tool to extract quasinormal-mode fre-
quency, i.e., the derivative of the phase shift,

dδ
dω

≈
Γ=2

ðω − ωRÞ2 þ ðΓ=2Þ2 þ
dδBG
dω

: ð18Þ

Indeed, this procedure is similar to the definition of the S
matrix and the phase shift from the Jost function, while,
unlike the case of the quantum scattering, AoutðωÞ is not
equivalent to Ainð−ωÞ and is not utilized here. If this phase
shift enables us to extract, at least approximately, the
oscillation frequency and the decay width of quasinormal
modes for the unperturbed potential, the same information
may also be inferred from the phase shift for the perturbed
potential, taking the stability of ringdown signals into
account.
It should be remarked that our primary interest is in the

functional structure of AinðωÞ such as zeroes and poles, and
whether the component is physically scattered or not is
irrelevant here. The S matrix in quantum mechanics is
referred only to explain the idea behind our method. If we
take the word “scattering” literally, the reflected, outgoing
component is naturally regarded as the scattered compo-
nent. Actually, a lot of previous work on the scattering and
quasinormal modes for the black hole spacetimes have been
performed based on this natural identification (see, e.g.,
Ref. [51] and references therein for reviews of early work
on the scattering problem). In this study, we neglect the
outgoing component, because the relevant Green’s function
is determined entirely by AinðωÞ of the ingoing component.
In fact, Aout has some drawbacks for defining the phase

shift. First of all, the phase of Aout depends on the choice of
the tortoise coordinate via R�, while its magnitude for the
real frequency is simply given by jAoutj2 ¼ jAinj2 − 1 via
the flux conservation. Still, the derivative of argðAoutÞ may
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contain invariant information, and actually, the derivative of
the phase shift defined from the scattering amplitude
Aout=Ain appears to work in a similar manner to the one
defined from Ain in principle. However, from the technical
point of view, the numerical accuracy tends to be degraded
at high frequencies, because jAoutj becomes small due to the
very weak reflection by the potential. Additionally, the
weak reflection at high frequencies makes Aout fairly
sensitive to perturbations, so that its phase changes rapidly
in a manner not necessarily related to the quasinormal
modes. Hence, we focus on the phase shift defined from Ain
and its derivative in this study.
In the following, we apply the idea developed in this

section to the investigation of ringdown signals and their
stability in the Schwarzschild spacetime. However, we
defer the discussion on the Regge-Wheeler potential and its
perturbation to Sec. IV. Instead, we start from investigating
a toy model in the next section.

III. TOY MODEL: RECTANGULAR BARRIERS

To identify the cause of quasinormal-mode instability
and to test the strategy presented in the previous section, it
is instructive to study an analytically solvable toy model

consisting of double rectangular barriers. The potential is
given by [18,23]

Vðr�Þ ¼

8>>>>>><
>>>>>>:

0 ðr� < 0Þ
V0 ð0 ≤ r� < aÞ
0 ða ≤ r� < bÞ
V1 ðb ≤ r� < bþ dÞ
0 ðbþ d ≤ r�Þ

: ð19Þ

If V1 ¼ 0, this potential reduces to a single rectangular
barrier adopted by seminal work of Chandrasekhar and
Detweiler [35], and the “in” solution in the form of Eq. (8)
satisfies

Ain ¼ eþiωa 2ωk cosðkaÞ − iðk2 þ ω2Þ sinðkaÞ
2ωk

; ð20Þ

Aout ¼ e−iωa
iðk2 − ω2Þ sinðkaÞ

2ωk
; ð21Þ

where k2 ≔ ω2 − V0. If V1 ≠ 0, not necessarily requiring
V1 ≪ V0, the solution changes to

Ain ¼
1

4ω2kk0
ðf4ω2kk0 cosðkaÞ cosðk0dÞ − ðω2 þ k2Þðω2 þ k02Þ sinðkaÞ sinðk0dÞ

− 2iω½kðω2 þ k02Þ cosðkaÞ sinðk0dÞ þ k0ðω2 þ k2Þ sinðkaÞ cosðk0dÞ�geþiωðaþdÞ

þ ðω2 − k2Þðω2 − k02Þ sinðkaÞ sinðk0dÞeþiωð2b−aþdÞÞ; ð22Þ

Aout ¼
1

4ω2kk0
f½ðω2 þ k02Þ sinðk0dÞ − 2iωk0 cosðk0dÞ�ðω2 − k2Þ sinðkaÞe−iωðaþdÞ

− ðω2 − k02Þ sinðk0dÞ½ðω2 þ k2Þ sinðkaÞ þ 2iωk cosðkaÞ�e−iωð2b−aþdÞg; ð23Þ

where k02 ≔ ω2 − V1.
The real and imaginary parts of Ain for both the single

and double rectangular barriers are displayed in Fig. 3. In
this and the following figures, we specifically adopt V0 ¼
ð0.4=MÞ2 and V0a ¼ 9=ð4MÞ for the primary barrier to
mimic the height and the integral of the Regge-Wheeler
potential. Parameters of the second barrier is chosen to
b ¼ 100M, d ¼ a, and V1 ¼ 10−3=ð2MÞ2. We still normal-
ize V and ω by “the mass of the black hole,”M as VM2 and
Mω, although it is absent from the problem of rectangular
barriers. While the single barrier can be normalized by a
with leaving V0a2 as the only parameter, introducing M
seems equally useful for the case of multiple barriers.
Figure 3 indicates that Ain for the real frequency

does not change appreciably even in the presence of the
second barrier except for the low-frequency regime
Mω≲ ffiffiffiffiffiffiffiffiffiffiffiffi

V1M2
p

¼ 0.016. This comparison strongly indi-
cates the stability of the ringdown signal. Indeed, while the

perturbative second barrier also destabilizes the quasinor-
mal-mode spectrum [18], the dominant ringdown signal
resulting from scattering is stably characterized by the
fundamental mode of the unperturbed potential [23].

A. Reason for the quasinormal-mode instability

This toy model indicates that the quasinormal-mode
instability is relevant only for complex frequencies required
by analytic continuation of Ain given by Eq. (22), specifi-
cally the factor e2iωb appearing in the last line. On the one
hand, Ain, the Wronskian, and the Green’s function are
modified only on the order of V1=V0 for ω ≫

ffiffiffiffiffiffi
V1

p
, as far

as the frequency is real. Thus, the ringdown signals are also
kept unchanged within the order of perturbations, V1=V0.
On the other hand, the negative imaginary part of the

frequency, Γ > 0, is the essential ingredient of the quasi-
normal modes. They introduce a contribution in the form of
eΓb, which grows exponentially as the value of b increases;
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i.e., the second barrier is moved to a large distance. This
exponential dependence is responsible for the spectral
instability of quasinormal modes on the complex frequency
plane (see also discussions in Ref. [52] and Sec. IIIC1 of
Ref. [23]). Actually, even for the case of the Regge-
Wheeler potential perturbed by a Pöschl-Teller bump,
the threshold for the fundamental-mode instability shown
in Fig. 2 of Ref. [18] appears to agree reasonably with the
dependence of ϵeΓb ¼ const. expected for the impact of
the bump. To support this argument, we demonstrate that
the same mechanism works for generic two separated
potentials in the Appendix.

B. Quasinormal mode from the phase shift

We move to extraction of quasinormal modes from the
phase shift of the transmission amplitude, 1=Ain, on the real
axis of the frequency. As a preparation, Table I presents the
oscillation frequency ωR and the decay width Γ for a single
barrier. They are determined from the zeroes of Ain in the
complex frequency plane in a usual manner and are also

confirmed to characterize the ringdown signals. This table
also presents information extracted from the derivative of
the phase shift, ωpeak and ΓFWHM, described below.
The derivative of the phase shift for a single rectangular

barrier is given by

dδs
dω

≔ aV0

ka½2ω2 − V0sin2ðkaÞ� − 2V0 sinðkaÞ cosðkaÞ
ka½4ω2k2 þ V2

0sin
2ðkaÞ� :

ð24Þ
The full expression for the double rectangular barriers does
not seem very enlightening. Instead, we show the expres-
sion up to the linear order of V1=ω2,

dδd
dω

≔
dδs
dω

�
1 −

V1A1

A0

�
þ V1D

A0

; ð25Þ

where

A0 ≔ 4ω4½4ω2k2 þ V2
0 sin

2ðkaÞ�; ð26Þ

A1 ≔ 4ω2V0f2ωk cosðkaÞ cos½ωð2b − 2aþ dÞ�
− ðω2 þ k2Þ sinðkaÞ sin½ωð2b − 2aþ dÞ�g
× sinðkaÞ sinðωdÞ; ð27Þ

D≔DoþDaþDdþDbþ2ω2d½4ω2k2þV2
0 sin

2ðkaÞ�;
ð28Þ

Do ≔ 4V0

�
ω2ðω2 þ 3k2Þ

k
cosðkaÞ sin½ωð2b − 2aþ dÞ�

þ ωð3ω2 þ k2Þ sinðkaÞ cos½ωð2b − 2aþ dÞ�
�

× sinðkaÞ sinðωdÞ; ð29Þ

FIG. 3. Real (left) and imaginary (right) parts of Ain for the single and double rectangular barriers. The solid and dashed curves denote
the positive and negative values, respectively. We set the parameters of the primary barrier to V0 ¼ ð0.4=MÞ2 and a ¼ 9=ð4MV0Þ aiming
at mimicking the height and the integral of the Regge-Wheeler potential. The second barrier is given by b ¼ 100M, d ¼ a, and
V1 ¼ 10−3=ð2MÞ2. Curves in both panels are mostly indistinguishable for Mω≳ ffiffiffiffiffiffiffiffiffiffiffiffi

V1M2
p

¼ 0.016 as depicted in the insets.

TABLE I. Fundamental (n ¼ 0) and first two overtone (n ¼ 1,
2) modes for the single rectangular barrier with V0 ¼ ð0.4=MÞ2
and a ¼ 9=ð4MV0Þ, which can be summarized as V0a2 ¼ 2025=
64. The oscillation frequency and the decay width are presented
by a normalized form of MωR and MΓ, respectively. If the
corresponding information can directly be extracted from the
phase shift of the transmission amplitude 1=Ain, it is also
presented as Mωpeak and MΓFWHM.

n MωR MΓ Mωpeak MΓFWHM

0 0.4434 0.06319 0.4442 0.0566
1 0.5689 0.1918 0.5672 N/A
2 0.7458 0.3079 N/A N/A
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Da ≔ −4V0ω
4a sinðωdÞ sin½ωð2b − 2aþ dÞ�; ð30Þ

Dd ≔ −2V0ω
2df2ωk cosðkaÞ sin½ωð2b − 2aþ dÞ�

þ ðω2 þ k2Þ sinðkaÞ cos½ωð2b − 2aþ dÞ�g
× sinðkaÞ cosðωdÞ; ð31Þ

Db ≔ 2V0ω
2ð2bþ dÞ

× fðω2 þ k2Þ sinðkaÞ sin½ωð2b − 2aþ dÞ�
− 2ωk cosðkaÞ cos½ωð2b − 2aþ dÞ�g
× sinðkaÞ sinðωdÞ: ð32Þ

When the second barrier is located at a large distance,
the term Db with an overall factor 2bþ d ∼ 2b introduces
an apparently nonperturbative correction to the derivative
of the phase shift with the period in frequency of Δω ¼
2π=ð2b − 2aþ dÞ ∼ π=b.

The phase shift and its derivative are shown in Fig. 4
both for the single and double rectangular barriers. First, we
focus on the clean case of the single barrier. The derivative
of the phase shift clearly exhibits a sharp peak atMωpeak ¼
0.4442 with the FWHM being MΓFWHM ¼ 0.0566 (see
Table I). The value of ωpeak agrees with the oscillation
frequency ωR of the fundamental mode within ≈0.2%.
The value of ΓFWHM agrees with the decay width Γ of the
fundamental mode within ≈10%. This analysis convinces
us that the fundamental mode can approximately be
extracted from the phase shift defined from the real-
frequency solutions of the scattering problem for the case
of a single rectangular barrier.
The deviation in the decay width may be ascribed, at

least partially, to contamination by a subdominant peak at
Mωpeak ¼ 0.5672. This value agrees with the oscillation
frequency of the first overtone, MωR ¼ 0.5689, within
≈0.3%. Thus, we believe that this subdominant peak is
associated with the first overtone, although the FWHM is

FIG. 4. Phase shift (left) and its derivative with respect to the frequency (right) for the single and double rectangular barriers (top) and
their differences (bottom). The parameters of the potential are the same as those adopted in Fig. 3. The primary peak of the derivative is
located at Mωpeak ¼ 0.4442 with the FWHM being MΓFWHM ¼ 0.0566. These values should be compared with MωR ¼ 0.4434 and
MΓ ¼ 0.06319 for the fundamental mode of a single barrier (see Table I). Another peak is also observed atMωpeak ¼ 0.5672, compared
to MωR ¼ 0.5689 of the first overtone, although the FWHM cannot be extracted.
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no longer available in a straightforward manner. We also
see a shoulderlike structure around the oscillation fre-
quency of the second overtone, MωR ¼ 0.7458, while
there is no extremum. Although we have not performed
comprehensive analysis, for a larger value of V0a2, a
larger number of peaks associated with higher overtones
become distinguishable. These observations suggest that
multiple quasinormal modes may be extracted from Ain on
the real axis by careful analysis. Indeed, this must
obviously be true if the higher overtones contribute to
observable ringdown signals [53–56]. It should be cau-
tioned, however, that ΓFWHM of the main peak is not larger
but smaller than Γ of the fundamental mode for the
parameters adopted in this study. This implies that higher
overtones are unlikely to be extracted by simply assuming
that dδ=dω is given by a sum of multiple peaks. Extraction
of multiple quasinormal modes is our ongoing project, and
the result will be presented elsewhere.
Remarkably, even if the second barrier is turned on and

the quasinormal-mode spectrum is destabilized [18], as
shown in Fig. 4, the phase shift retains information about
the unperturbed quasinormal modes [57]. The second
barrier produces modulation in the phase shift δ itself only
on the order of V1=V0 for the frequency around the
unperturbed quasinormal modes. While the modulation
is enhanced by a factor of∼2b=M due to the differentiation,
the profile of dδ=dω still recovers the unperturbed peaks
once averaged over the frequency range wider than Δω ∼
π=b [58]. This feature explains why the initial stage of the
ringdown signal in the perturbed spacetime is characterized
by the unperturbed quasinormal modes even if the poles are
destabilized on the complex frequency plane. Here, we
should recall that the fine resolution in the frequency
domain becomes relevant only when we have sufficiently
long time-domain data. Thus, the averaging over the
frequency is naturally introduced when we focus on a
short time scale of ≲2b (see also Refs. [19,23,24] for
relevant discussions).
For the case of double barriers, quasinormal modes

associated with the late-time echo signal may also be
imprinted in the phase shift and its derivative. The
amplitude of the modulation in the phase shift grows as
the frequency decreases. Together with the enhancement by
a factor of ∼2b=M, this dependence results in formation of
equidistant narrow peaks at low frequencies for the deriva-
tive of the phase shift. The separation ofΔω ∼ π=b between
the maxima of these peaks represents the travel time
between the two barriers, and the narrow widths may be
consistent with long lifetimes. Thus, these peaks may
correspond to quasinormal modes associated with the
echoes between two barriers. However, because the peaks
in dδ=dω appear both as maxima and minima and its central
value is displaced from zero to ≈ −ð4–5Þ rad, physical
interpretations of these peaks are not as straightforward as
those of the main peak for the unperturbed fundamental
mode (see also Sec. IV).

Before concluding this section, we mention that the
magnitude of the transmission amplitude on the real axis
also reflects information about the quasinormal modes,
although not as clearly as the phase shift and its derivative
do. Figure 5 shows the magnitude of Ain in terms of jAinj2 −
1 ¼ jAoutj2 and 1=jWj ¼ 1=j2ωAinj as functions of the real
frequency. The oscillatory behavior of the former is
characteristic of the exactly rectangular potential, which
becomes transparent at discrete frequencies satisfying
sinðkaÞ ¼ 0. The inverse of the Wronskian becomes large
at these specific frequencies as found in the right panel, and
the overall features are similar to dδ=dω shown in the right
panel of Fig. 4. Still, the peak frequency agrees only within
≈5% with the oscillation frequency of the fundamental
mode, compared to ≈0.2% for the phase shift. Moreover, it
is not obvious how to extract decay widths from the broad
profile. Thus, we tentatively conclude that the phase is
more useful than the magnitude for extracting information
about the ringdown signal. However, we recall that both the
magnitude and phase of Ain or W on the real axis are
necessary to recover all the information on the complex
frequency plane.

IV. PHASE SHIFT FOR SCHWARZSCHILD
BLACK HOLES

We come back to our main problem of a Schwarzschild
black hole and its perturbation. Let us consider the
potential given by Eq. (4), i.e., the Regge-Wheeler
potential augmented by a small Pöschl-Teller bump.
Real-frequency “in” solutions in the form of Eq. (8) are
derived numerically for b ¼ 100M and 200M, aiming at
checking the dependence on b, as well as for the
unperturbed Regge-Wheeler potential. The real and
imaginary parts of Ain are shown in Fig. 6. As we have
noticed in Sec. II, a perturbative Pöschl-Teller bump
modifies Ain only in a perturbative manner except for
the low frequency of Mω≲ ffiffiffi

ϵ
p

=2 ¼ 0.016. In the follow-
ing, we present information about quasinormal modes
contained in Ain along the line presented in Sec. III B for
the rectangular barriers. We remind that the fundamental
mode of the Regge-Wheeler (and also Zerilli) potential
has the oscillation frequency of MωR ¼ 0.3737 and the
decay width of MΓ ¼ 0.1779 (see, e.g., Ref. [59]).
Figure 7 shows the phase shift and its derivative with

respect to the frequency. Comparisons with the results for
the single rectangular barrier presented in Fig. 4 reveal that
the phase shift for the Regge-Wheeler potential exhibits a
smooth structure without a clear second peak. This is
naturally understood by regarding the Regge-Wheeler
potential as a sequence of rectangular barriers with various
widths and heights (see also Ref. [20]). Another way of
explaining this smoothness is that the real parts of the
overtone modes are closer to the fundamental mode than in
the case of the single rectangular barrier. The single peak in
dδ=dω of Fig. 7 is characterized by Mωpeak ¼ 0.3758 and
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FIG. 5. Magnitude of the transmission amplitude in the form of jAinj2 − 1 ¼ jAoutj2 (left) and of the inverse of Wronskian, 1=jWj ¼
1=j2ωAinj (right) for the single and double rectangular barriers (top) and their relative differences (bottom). The parameters of the
potential are the same as those adopted in Fig. 3. The solid and dashed curves in the bottom panel represent positive and negative values,
respectively, which indicate the excess and the deficit for the double barriers, respectively. The relative difference is enhanced for
jAinj2 − 1 ≈ 0 in the left panel.

FIG. 6. Real (left) and imaginary (right) parts of Ain for the Regge-Wheeler potential (black) and that perturbed by a Pöschl-Teller
bump at b ¼ 100M (purple) or 200M (green). The solid and dashed curves denote the positive and negative values, respectively. The
magnitude of the bump is ϵ ¼ 10−3. All the curves are mostly indistinguishable for Mω≳ ffiffiffi

ϵ
p

=2 ¼ 0.016.
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MΓFWHM ¼ 0.211, which agrees with the oscillation
frequency and the decay width of the fundamental
mode of the Schwarzschild black hole within ≈0.6%
and ≈20%, respectively. The level of agreement is
comparable but worse by a factor of 2–3 than the case
of a single rectangular barrier. This may again be ascribed
to contamination by higher overtones. Specifically,
because the oscillation frequency of the first overtone
is lower only by ≈7% than that of the fundamental
mode [59], multiple poles are likely to be contributing
to the apparently single peak. This interpretation may be
supported by the fact that no isolated peak is found for
higher overtones.
The derivative of the phase shift allows us to understand

the relation between the quasinormal modes and the ring-
down signal in an intuitive manner. In quantum mechanics,
the derivative of the phase shift has been recognized to
describe the time delay in the scattering process of a wave

with a given frequency [60]. Because a wave packet is
formed at the frequency around which the time delay is
nearly stationary, the observable ringdown signal is natu-
rally characterized by the peak frequency of the derivative
of the phase shift. This interpretation appears consistent
with the conventional understanding that the quasinormal
mode is the leakage of waves transiently trapped around the
light ring [5]. In turn, this assessment suggests that the
derivative of the phase shift is directly related to observable
ringdown signals even if the quasinormal-mode spectra are
destabilized.
The influence of the Pöschl-Teller bump on the phase

shift is only perturbative, confirming the stability of the
ringdown signal found in Sec. II. Because the modulation
has a period in frequency ofΔω ∼ π=b, the influence on the
derivative of the phase shift is enhanced by a factor of
∼2b=M (see the right panel of Fig. 7). Still, the overall
shape of the peak is unchanged around the unperturbed

FIG. 7. Top: Phase shift (left) and its derivative with respect to the frequency (right) for the Regge-Wheeler potential (black solid) and
that perturbed by a Pöschl-Teller bump at b ¼ 100M (purple dashed) or 200M (green dotted). The magnitude of the bump is ϵ ¼ 10−3.
For the Regge-Wheeler potential, the derivative peaks at Mωpeak ≈ 0.3758 with the FWHM being MΓFWHM ≈ 0.211. These values
should be compared withMωR ¼ 0.3737 andMΓ ¼ 0.1779 of the fundamental mode (see, e.g., Ref. [59]). The modulation seen for the
perturbed potential has a period of Δω ≈ π=b, and its amplitude grows as the frequency decreases. Bottom: Differences between the
quantities for the Regge-Wheeler potential and that perturbed by a Pöschl-Teller bump.
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fundamental mode, and an appropriate averaging of the
phase shift (rather than its derivative) over the frequency
will allow us to extract the unperturbed fundamental mode
in an approximate but stable manner. Again, this feature
should be the explanation for the stability of dominant
ringdown signals under the spectral instability of quasi-
normal modes. At low frequencies, the amplitude of the
modulation grows in a similar manner to the case of double
rectangular barriers. This growth forms a bunch of peaks in
the derivative of the phase shift. These peaks are likely to
represent quasinormal modes associated with the echoes
between the Regge-Wheeler potential and the perturba-
tive bump.
To sum up, the behavior of the phase shift for the Regge-

Wheeler potential with a possible perturbative bump is
qualitatively the same as that for the rectangular barriers. A
notable difference is the absence of distinguishable sub-
dominant peaks associated with the higher overtones. This
may be reasonably explained by the proximity of the poles
for the unperturbed Regge-Wheeler potential.

We also present information related to the magnitude of
the transmission amplitude in Fig. 8. Differently from the
case of rectangular barriers, jAinj2 − 1 ¼ jAoutj2 is a
monotonic function except for tiny effects of a perturba-
tive bump. This is a mere repetition of the well-known
fact that the reflection and thus, transmission coefficients
of the Regge-Wheeler potential are monotonic func-
tions [61]. The magnitude of deviations observed for
Mω≳ 0.8 is only on the order of ϵ2, indicating that the
reflection coefficient is modified by filtering due to the
Pöschl-Teller bump on this order. The differences in
jAinj2 − 1 and 1=jWj between the unperturbed and per-
turbed potentials change its frequency dependence at
Mω ≈ 0.4, which corresponds to the peak of the Regge-
Wheeler potential. The fact that the envelopes of these
curves are approximately independent of the value of b is
another indication that the location of the perturbative
bump does not influence the stability of ringdown signals,
although the quasinormal-mode spectrum can be desta-
bilized due to analytic continuation to the complex plane.

FIG. 8. Top: Magnitude of the transmission amplitude in the form of jAinj2 − 1 ¼ jAoutj2 (left) and of the inverse of Wronskian,
1=jWj ¼ 1=j2ωAinj (right) for the Regge-Wheeler potential (black solid) and that perturbed by a Pöschl-Teller bump at b ¼ 100M
(purple dashed) or 200M (green dotted). The magnitude of the bump is ϵ ¼ 10−3. Bottom: Relative difference between the quantities for
the Regge-Wheeler potential and that perturbed by a Pöschl-Teller bump. The solid and dashed curves denote the positive and negative
values, respectively, which indicate the excess and the deficit of values for perturbed potentials, respectively.
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Instead, the dependence on b resides in the period of the
oscillation, ∼π=b. While the inverse of the Wronskian
seems to contain some information about quasinormal
modes in a similar manner to the rectangular barriers
shown in Fig. 5, it is not as clear as the phase shift and its
derivative do.

V. SUMMARY AND DISCUSSION

We investigated the influence of proposed spectral
instability of quasinormal modes on the observable ring-
down signal. We find that perturbations to the potential is
unlikely to destabilize the ringdown signal, which is rather
stably characterized by quasinormal modes in the unper-
turbed spacetime except for the late-time echo signals. The
quasinormal-mode spectra owe their instability to analytic
continuation with respect to the frequency. Specifically, a
phase factor of the form e2iωb, with b being the distance
between the two potentials, in Ain introduces an exponen-
tially growing contribution once the frequency gains a
negative imaginary part, which in fact is the essential
ingredient of the quasinormal modes.
Quasinormal modes of the unperturbed spacetime

can be extracted from real-frequency solutions of the
scattering problem via the phase shift defined from the
transmission amplitude, 1=Ain in our notation, even if a
perturbation destabilizes the quasinormal-mode spectrum.
This approach is motivated by the similarity of quasinormal
modes of black holes to resonances in quantum systems.
Although this extraction is not as precise as traditional
methods such as the continued fraction method [59], the
phase shift is advantageous in its immunity to destabiliza-
tion of bona fide quasinormal modes due to the analytic
continuation. Rather, quasinormal modes extracted from
the phase shift may enable us to characterize observable
ringdown signals in an approximate but stable manner. The
implication of this method to the observable signal is that
the dominant ringdown signal is stably characterized by the
unperturbed quasinormal modes even under the spectral
instability of quasinormal modes, and the perturbative
bump instead excites late-time echo signals, whose ampli-
tude is suppressed accordingly to the smallness of the
bump. They agree with and thus reconfirm the results of
time evolution.
The analysis in terms of the phase shift may be

applicable to a wide range of spacetimes, most importantly
the Kerr black hole and its perturbed siblings. Potential
difficulties, though not so serious, are how to handle
complex potentials associated with the black hole
spins [65,66], and transformation that makes the potential
real may be preferred [67,68]. It would also be beneficial to
perform systematic studies of quasinormal modes in
Schwarzschild spacetimes varying the parity, the spin of
the field, and the spherical harmonic eigenvalues.
After understanding that the ringdown signal is charac-

terized by information on the real axis, another question

arises; why the ringdown signal appears to be represented
faithfully by the poles on the complex plane for a simple
potential like Regge-Wheeler’s one? And, when the qua-
sinormal-mode spectrum is completely destabilized so that
the pole of the original fundamental mode disappears [18],
how do the remaining poles reproduce the original
quasinormal modes in the ringdown signal? It seems that
a series of poles generated by perturbations must be
conspiring to preserve influence of the original pole, at
least of the fundamental mode, on the ringdown signal.
This may be accomplished by suitable distributions of the
excitation factors [69]. Our current study only considers
the frequency of quasinormal modes, and their excitation
factor and/or coefficient have not been investigated.
Taking the fact that they should also reside on the real
axis into account, it is presumable that making full
use of Ain on the real axis should give us a clue to these
questions. Solving these problems will be helpful toward
the era of future detectors such as the Laser Interferometer
Space Antenna (LISA) [70], with which ringdown signals
will be detected frequently with high signal-to-noise
ratios, possibly accompanied by noticeable influences
of surrounding environments.
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APPENDIX: SPECTRAL INSTABILITY FOR
GENERIC TWO SEPARATED POTENTIALS

In Sec. III, we demonstrated that the spectral instability
of quasinormal modes for double rectangular barriers is
caused by a phase factor e2iωb by explicitly solving the
scattering problem. In this appendix, we argue that this
mechanism is a generic feature of two separated scattering
potentials relying only on the asymptotic behavior of the
solution (see also Ref. [52]).
First, we consider two potentials VAðr�Þ and VBðr�Þ,

both of which are localized around r� ¼ 0 and admit
plane wave solutions at r� → �∞. Specifically, the “in”
solution that becomes e−iωr� at r� → −∞may be expressed
at r� → þ∞ as

ϕ̃inðr�Þ ¼ Aine−iωr� þ Aouteþiωr� ðA1Þ

and

ϕ̃inðr�Þ ¼ Bine−iωr� þ Bouteþiωr� ; ðA2Þ
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for the potentials VAðr�Þ and VBðr�Þ, respectively.
This also implies that the solution that becomes eþiωr� at
r� → −∞ is written as B�

ine
þiωr� þ B�

oute−iωr� at r� → þ∞
for the potential VBðr�Þ.
Next, let us consider the potential given by

Vðr�Þ ¼ VAðr�Þ þ VBðr� − bÞ, where b is chosen so large
that Eq. (A1) is approximately valid at 0 ≪ r� ≪ b. By
translating the radial coordinate, we readily found that the
“in” solution for the potential Vðr�Þ takes the asymptotic
form of

ϕ̃inðr�Þ ¼ ðAinBin þ AoutB�
outeþ2iωbÞe−iωr�

þ ðAoutB�
in þ AinBoute−2iωbÞeþiωr� ; ðA3Þ

at r� → þ∞. Finally, the Green’s function with downgoing
and outgoing boundary conditions is given in terms of the
corresponding Wronskian,

W ¼ 2iωðAinBin þ AoutB�
outeþ2iωbÞ; ðA4Þ

which involves the phase factor eþ2iωb.
When the secondary potential VBðr�Þ can be regarded as

a perturbation to the primary potential VAðr�Þ, jBout=Binj ≪
jAout=Ainj ≤ 1 holds. Thus, the second term in the
Wronskian, Eq. (A4), is perturbative for the real frequency.
However, the phase factor moves the poles of the Green’s
function on the complex frequency plane in an outspiraling
manner as the value of b increases [18,23,52], causing the
spectral instability.
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