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The dynamics of perturbed nonrotating black holes (BHs) can be described in terms of master equations
of the wave type with a potential. In the frequency domain, the master equations become time-independent
Schrödinger equations with no discrete spectrum. It has been recently shown that these wave equations
possess an infinite number of symmetries that correspond to the flow of the infinite hierarchy of Korteweg–
de Vries (KdV) equations. As a consequence, the infinite set of associated conserved quantities, the KdV
integrals, are the same for all the different master equations that we can consider. In this paper we show that
the BH scattering reflection and transmission coefficients characterizing the continuous spectrum can be
fully determined via a moment problem, in such a way that the KdV integrals provide the momenta of
a distribution function depending only on the reflection coefficient. We also discuss the existence
and uniqueness of solutions, strategies to solve the moment problem, and finally show the case of the
Pöschl-Teller potential where all the steps can be carried out analytically.
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I. INTRODUCTION

General relativity predicts the existence of black holes
(BHs), regions of spacetime from where nothing can
escape, not even light [1–4]. After many years of study
of these intriguing objects from many different points of
view, some spectacular results have been discovered. Of
particular relevance is the no-hair conjecture, which tells us
that isolated BHs are characterized just by three numbers:
Mass, spin, and electric charge (not relevant from the
astrophysical point of view). An astonishing fact about BHs
is that they can come in any size, the only impediment
against their existence is to have a viable formation
mechanism. BHs are central objects in several areas of
physics and astronomy. They also play a role in the
development of fundamental physics theories that include
gravity and go beyond the standard model of particle
physics. Of special relevance are theories that involve
higher dimensions or implement the holographic principle.
From the observational point of view, accumulating evi-
dence of BHs (or of objects that look like BHs) come from
various sources, in particular x-rays (see, e.g., [5]) and
gravitational waves [6–8]. In the case of gravitational
waves, we expect to learn more about BHs with future
third-generation detectors [9,10] and space-based detectors
like LISA [11–14].

Among the possible processes involving BHs, there are
two of great relevance: Scattering processes and quasinor-
mal mode (QNM) oscillations. We devote this paper to the
first kind of processes. Scattering theory for BHs [15,16]
has seen a number of resurgences during time in line with
different developments in astrophysics and fundamental
physics. This is not surprising since scattering methods are
in general a powerful tool to investigate the nature of the
scatterer by collecting asymptotic data. Therefore, various
authors, during decades (see, e.g., [15–23]), have explored
this field looking for details on the nature of the gravita-
tional interaction and the implications for gravitational
quantum theory.
In the case that the scattered particles or waves can be

considered as small perturbations of the BH geometry,
the best tool to study scattering processes on a nontrivial
curved background is spacetime perturbation theory. In this
case, BH perturbation theory (BHPT). As it was found in
pioneering works in Refs. [24–30] (see also Ref. [4]), and
generalized to d-dimensional BHs in Refs. [31,32], the
physical content of the perturbations around a BH back-
ground can be described by master wave-like equations
with a potential (and eventually source terms in the case
that these perturbations are generated by matter fields).
When considered in the frequency domain, such master
equations are actually time-independent Schrödinger equa-
tions for each frequency. Therefore, BHPT together with
scattering theory permits to describe a quite large variety of
physical phenomena [15].
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Greybody factors are key physical quantities in this
context. They are nothing but the transmission (and
reflection) probabilities associated with the potential
barrier and are therefore highly informative about the
nature of the object (a BH in this case, but other more
exotic compact object can also be considered) and its
response to the perturbations. By construction, greybody
factors represent the amount of particles or waves that are
transmitted through the BH barrier. This is particularly
important, for example, when studying Hawking radia-
tion [33], as greybody factors encode the deviations
from the black-body spectrum caused by the interaction
with the background potential. Furthermore, the poles
of the analytic extension of the transmission coefficient
represent the discrete complex energies associated to
resonances, known as the BH quasinormal modes
(QNMs), that is, the characteristic damped oscillation
modes of the BH [34–37]. These modes are of crucial
importance in the recent era of gravitational wave
astronomy, as they can be used as fingerprints of new
physics [14,38,39].
There is substantial literature about calculations of

greybody factors. The first calculations date back to the
mid 70s where already low-frequency [18,40–42] and high-
frequency [19–21] limits were presented using matching
techniques at the turning points. A powerful technique
is the Wentzel–Kramers–Brillouin (WKB) approxima-
tion [43], first applied in this context in Refs. [44–46]
and then extended to higher orders in the approximation
in Refs. [47–49]. Other approaches to the calculation of
greybody factors include the bounding of the Bogoliubov
coefficients [50,51], monodromy methods [22,52,53], etc.
For the case of higher-dimensional BHs see [53].
In this paper, we use recent results on the structure

of BHPT [54,55] to derive a new method for the com-
putation of greybody factors. In [54], the full space
of master functions and equations for the perturbations
of Schwarzschild BHs was constructed. Two branches of
master equations were distinguished: (i) The standard
branch, which contains master equations with the known
potentials, namely the Regge-Wheeler potential [24] for
odd-parity perturbations and the Zerilli potential [28] for
even-parity perturbations.(ii) The Darboux branch, where
there is an infinite set of master equations with new
potentials. In [55], it was found that all these master
equations can be linked by means of Darboux trans-
formations (see also [56]), establishing in this way their
physical equivalence given that the Darboux transformation
preserves the spectrum, that is, it is isospectral. This means
that all these master equations lead to the same reflection
and transmission coefficients, thus extending the result of
Refs. [4,57]. Therefore, Darboux transformations emerge
as a symmetry of the master equations describing pertur-
bations of the Schwarzschild geometry, named as Darboux
covariance [55].

Moreover, the structure of the space of master functions
gets enriched by the introduction [55] of inverse scattering
techniques [58–62]. These techniques are used to solve
nonlinear evolution problems [63,64], like for instance
the Korteweg–de Vries (KdV) equation, which describes
a wide range of physical phenomena [65]. The key idea
behind the inverse scattering method is to reconstruct the
time evolution of a potential (the unknown satisfying the
nonlinear evolution equation) from the evolution of its
scattering data, which is obtained from an associated linear
and time-independent problem. In the case of the KdV
equation, the linear problem is the time-independent
Schrödinger equation. Another remarkable result is the
appearance of an infinite series of conservation laws for
the KdV equation with the corresponding set of conserved
quantities [66–68], the so-called KdV integrals. We can
apply these techniques to our master equations in the
frequency domain and generate the associated set of KdV
integrals [55]. One can see that the KdV equation con-
stitutes an isospectral deformation of the master equations
so that the transmission coefficient and the quasinormal
modes are preserved by the KdV deformation. More
importantly, it was shown in [55] that the KdV integrals
are invariant under Darboux transformations.
Executive Summary. In this paper we show that the KdV

integrals associated with the BH effective potential fully
determine the transmission probability, or greybody factors,
which contains all the relevant physical information about
BH scattering processes. The way in which the KdV
integrals determine the transmission probability is through
a moment problem, that is, the KdV integrals turn out to
be the moments (up to a trivial multiplicative factor) of a
distribution function associated with the transmission
probability. We also show that this moment problem is
determinate, so that a solution exists and it is unique. This
means that it is possible to invert the moment problem to
find the greybody factors. We discuss possible avenues to
carry out the inversion and illustrate it with an example that
can be analytically solved: The particular case of a Pöschl-
Teller potential.
Structure of the paper. In Sec. II we introduce BHPT for

the case of a Schwarzschild BH and introduce the main
elements that are necessary for the developments of this
work. In Sec. III we review the landscape of possible master
functions and equations describing the BH perturbations. In
Sec. IV we show how Darboux transformations work and
their consequences. In Sec. V, we introduce the concept of
KdV deformation of the master equations, their structure
and how they generate an infinite sequence of conservation
laws and conserved quantities, the KdV integrals. We also
show their invariance under Darboux transformations. In
Sec. VI, using all the previous tools, we study BH
scattering and arrive to the main result of this work: The
formulation of a moment problem for the transmission
coefficient, where the moments are essentially the KdV
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integrals associated with the BH potential(s). In Sec. VII,
we discuss the inversion of the moment problem and
illustrate it in the case of an analytically solvable case.
We finish the paper in Sec. VIII with a discussion of the
next steps in this type of study and of future perspectives
and potential applications. The paper contains five appen-
dices: Appendix A on gauge invariant metric perturbations;
Appendix B about the Hamiltonian formalism for infinite–
dimensional system; Appendix C on basic elements of one-
dimensional scattering processes; Appendix D about some
results on the Pöschl-Teller potential; and Appendix E
shows the first KdV integrals for the potentials associated
with a Schwarzschild BH.
Throughout this paper, otherwise stated, we use geo-

metric units in which G ¼ c ¼ 1. For convenience, we use
multiple notations for partial derivatives of a given function
fðxÞ: ∂f=∂x, ∂xf, f;x.

II. SUMMARY OF BHPT
IN THE NONROTATING CASE

The study of perturbations of BHs started with the
seminal paper of Regge-Wheeler [24], which already laid
many of the elements of the theory that are used now, at
least in the nonrotating case. Let us now summarize these
ingredients and the last developments that are the basis
of the work presented in this paper. For more details
see [54,69–71].

A. Formulation of the first-order
perturbative equations

In relativistic perturbation theory we deal with space-
times that describe phenomena that, in a sense, can be
considered as small deviations of an idealized physical
situation/system. This idealized situation is encoded in
what we call the background spacetime, which typically is
a spacetime with a certain degree of symmetry. In our case,
the background is the Schwarzschild spacetime [72], i.e.,
an isolated nonrotating BH, which is static and spherically
symmetric. The metric of the background spacetime has
then the following simple form1:

dŝ2 ¼ ĝμνdxμdxν ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð1Þ

where

fðrÞ ¼ 1 −
rs
r
; ð2Þ

where rs is the location of the event horizon, the
Schwarzschild radius: rs ¼ 2GM=c2 ¼ 2M.

The physical spacetime is a member of a one-parameter
family of spacetimes, ðMλ; gλÞ, which is the way in which
perturbation theory is usually formulated (see, e.g., [2,73]).
In this way, the perturbations are defined as the derivative
terms of the Taylor series expansion in λ, evaluated on the
background (λ ¼ 0). The parameter λ is, in general, a
dummy parameter that controls the strength of the
perturbations and, for simplicity, we can ignore it. Here,
we only consider first-order (order λ1) perturbations, hμν
(jhμνj ≪ jĝμνj), so that the spacetime metric of the physical
spacetime can be written as:

gμν ¼ ĝμν þ hμν: ð3Þ

We denote the first-order perturbation of any quantityQ as:
δQ ¼ Q − Q̂. In particular, hμν ¼ gμν − ĝμν ¼ δgμν.
We can introduce Eq. (3) into the full Einstein equations

and, keeping only terms linear in the metric perturbations
hμν, we obtain the equations for the perturbations, which
schematically can be represented as:

δG½h�μν ¼ 0; ð4Þ

where δG is a linear operator that when applied to the
perturbations yields the first-order perturbative equations (in
vacuum). These equations are partial differential equations
(PDEs) that are coupled. A natural strategy is to try to solve
them by looking for combinations of the metric perturba-
tions (and their derivatives) so that they satisfy equations that
are decoupled from the rest of variables. These type of
combinations and their corresponding equations are usually
known as master variables and equations respectively. Of
course, the success of this strategy depends on the character-
istics of the background spacetime.
Spacetime perturbations are subject to a gauge freedom

that comes from the infinite ways we have to establish a
correspondence between the background and physical
spacetimes [73,74]. A gauge transformation of the pertur-
bations relates two of these correspondences. In practice, by
pulling back the physical metric and the geometric structure
associated with it to the background spacetime, a gauge
transformation connects two points of the background
spacetime in the form of a coordinate transformation:

xμ → x0μ ¼ xμ þ ξμ; ð5Þ

in such away that xμ and x0μ are the coordinates of two points
of the background spacetime that correspond to a single
point of the physical spacetime. Here, the vector field ξμ

(jξμj ≪ jĝμνj), is the generator of the gauge transfor-
mation. The change induced in the metric perturbations
looks as:

hμν → h0μν ¼ hμν − 2ξðμ;νÞ: ð6Þ
1We use a hat to denote quantities associated with the back-

ground spacetime.
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B. Spherically symmetric background

The spherical symmetry of the Schwarzchild metric (1)
tells us that it can be decomposed as the warped product of
two bidimensional geometries (M0 ¼ M2 ×r S2):

dŝ2 ¼ gabðxcÞdxadxb þ r2ðxaÞΩABðxCÞdxAdxB; ð7Þ

where gab is a Lorentzian geometry [we can choose the
coordinates to be xa ¼ ðt; rÞ] andΩAB is the metric of the 2-
sphere [we can choose the coordinates to be ΘA ¼ ðθ;φÞ].
In the case of the Schwarzschild metric we can write

gabdxadxb ¼ −fðrÞdt2 þ dr2

fðrÞ ; ð8Þ

ΩABdΘAdΘB ¼ dθ2 þ sin2θdφ2: ð9Þ

In Eq. (7), rðxaÞ is the area radial coordinate and r2 is the
geometry warp factor. The covariant derivative on S2 is
denoted by a vertical bar (ΩABjC ¼ 0) while forM2 we use a
colon (gab∶c ¼ 0). The volume Levi-Civita tensor in S2 is
denoted by ϵAB while in M2 is denoted by εab.
This special geometric structure allows for the separa-

tion, e.g., for solutions of the wave equation, of the
dependence on the coordinates of M2 from the angular
dependence. Then, we can expand the solution in
spherical harmonics, or when applied to the Einstein
perturbative equations, in tensor spherical harmonics. It
is well known that the different harmonics can be divided
according to how they transform under parity transforma-
tions [ðθ;ϕÞ → ðπ − θ;ϕþ πÞ]. In this way, we can dis-
tinguish even-parity harmonics, Elm, which transform as:
Elm → ð−1ÞlElm, and odd-parity harmonics, Olm, which
transform as Olm → ð−1Þlþ1Olm. The basis of scalar,
vector, and tensor spherical harmonics that are needed are:
(i) scalar harmonics Ylm, which are eigenfunctions of the
Laplace operator on S2:

ΩABYlm
jAB ¼ −lðlþ 1ÞYlm: ð10Þ

(ii) Vector spherical harmonics (for l ≥ 1). In the even-
parity case they are Ylm

A ≡ Ylm
jA and in the odd-parity case:

Xlm
A ≡ −ϵABYlm

B . (iii) Symmetric tensor spherical harmon-
ics (2nd-rank, for l ≥ 2). In the even-parity case we
have Tlm

AB ≡ YlmΩAB (trace) and Ylm
AB ≡ Ylm

jAB þ ðlðlþ
1Þ=2ÞYlmΩAB (traceless), and for the odd-parity case:
Xlm
AB ≡ Xlm

ðAjBÞ (traceless). See [54,70] for more details.

C. Master equations for each harmonic
of the metric perturbations

The metric perturbations can be written as a multipolar
expansion using the basis of scalar (Ylm), vector (Ylm

A ,
Xlm
A ), and tensor spherical harmonics (Tlm

AB , Y
lm
AB , X

lm
AB). In

this way, and thanks to the spherical symmetry of the
background, the different harmonics decouple, and
the harmonics with different parity decouple as well.
That is, from the Einstein perturbative equations we obtain
separate equations for each ðl; mÞ and parity mode (see,
e.g., [75,76]). That is, we can write

hμν ¼
X
l;m

hlm;odd
μν þ hlm;even

μν ; ð11Þ

and, dropping for simplicity the harmonic numbers ðl; mÞ,

hoddab ¼ 0; hoddaA ¼ haXA;

hoddAB ¼ h2XAB; hevenab ¼ habY;

hevenaA ¼ |aYA; hevenAB ¼ r2ðKTAB þ GYABÞ: ð12Þ

Here,2 for each ðl; mÞ, hab are scalar perturbations; ðha; |aÞ
are vector perturbations; and ðh2; K;GÞ are the tensor ones,
and all depend on the coordinates fxag of M2.
As a consequence of the perturbative gauge freedom [see

Eqs. (5) and (6)], there is also a gauge freedom for each
harmonic component of the perturbations. See Appendix A
for the list of gauge invariant combinations for each
harmonic component of the metric perturbations.
Once we have decomposed the Einstein perturbative

equations according to each harmonic mode ðl; mÞ and
parity we can try to manipulate them in order to find
combinations of them, known as master equations, that
isolate certain combinations of the metric perturbations,
known as master functions. The form of the master
equations is as follows:

�
−

∂
2

∂t2
þ ∂

2

∂x2
− Veven=odd

l

�
Ψeven=odd ¼ 0; ð13Þ

where x is the tortoise coordinate, which satisfies
dx=dr ¼ 1=f; Ψeven=oddðt; rÞ is the even/odd master func-

tion; and Veven=odd
l ðrÞ is the potential. In the case of odd-

parity perturbations, two independent master functions
were known: The Regge-Wheeler (RW) [24] and the
Cunningham-Price-Moncrief (CPM) [25–27] master func-
tions. They can be written in covariant form as [54,70] (see
Appendix A):

ΨRW ¼ ra

r
h̃a; ð14Þ

ΨCPM ¼ 2r
ðl − 1Þðlþ 2Þ ε

ab

�
h̃b∶a −

2

r
rah̃b

�
: ð15Þ

2The distinction of scalar, vector and tensor modes in [54]
contains typos.
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In the case of even-parity perturbations we have the master
function introduced by Zerilli [28] and later by Moncrief
[30]. In covariant form (see Appendix A):

ΨZM ¼ 2r
lðlþ 1Þ

�
K̃ þ 2

λ
ðrarbh̃ab − rraK̃∶aÞ

�
; ð16Þ

where

λðrÞ ¼ ðl − 1Þðlþ 2Þ þ 3rs
r

: ð17Þ

It is clear from their expressions that these master functions
are gauge invariant (see Appendix A). On the other hand,
the potential for odd-parity perturbations is the Regge-
Wheeler potential

VRW
l ðrÞ ¼

�
1 −

rs
r

��
lðlþ 1Þ

r2
−
3rs
r3

�
; ð18Þ

while for even parity we have the Zerilli potential

VZ
lðrÞ ¼

fðrÞ
λ2ðrÞ

�ðl − 1Þ2ðlþ 2Þ2
r2

�
lðlþ 1Þ þ 3rs

r

�

þ 9r2s
r4

�
ðl − 1Þðlþ 2Þ þ rs

r

��
: ð19Þ

Once the master equations are solved, in certain gauges,
for instance in the Regge-Wheeler gauge [24], we can
reconstruct all the master perturbations from the master
functions.

III. THE FULL LANDSCAPE OF MASTER
FUNCTIONS AND EQUATIONS

In [54], the following question was asked3: What are all
the possible master equations that one can obtain for the
vacuum perturbations of a Schwarzschild BH? To answer
this question, Ref. [54] adopted a general and systematic
way of searching for master functions and associated
potentials without having to resort to ad hoc combinations
of the perturbative field equations that yield decoupled
master equations.
The main outcome of the analysis of [54] is a complete

picture of the space of master functions and equations, or in
other words, of the space of pairs ðVl;ΨÞ that satisfy a
wave equation of the form given in Eq. (13). To that end,
only two assumptions on the master functions were
imposed: (i) The master functions are linear combinations
of the metric perturbations and its first-order derivatives (as
in the known master functions). (ii) The coefficients of

these linear combinations are time independent, i.e., they
only depend on the radial area coordinate r (motivated
by the static character of the background). The analysis
was done in an arbitrary gauge and, as a by-product, the
resulting master functions turned out to be gauge invariant.
The resulting landscape found in [54] reveals the

existence of two branches of possible pairs of potentials
and master functions (master equations), ðVl;ΨÞ. The first
branch contains the known cases and hence it is called the
standard branch. For each parity there is just one potential,
the Regge-Wheeler (odd-parity) and Zerilli (even-parity)
potentials, i.e.

SV
odd=even
l ¼

�
VRW
l odd parity;

VZ
l even parity;

ð20Þ

In the standard branch, the most general master function
can be written as follows

SΨodd=even ¼
�
C1ΨCPM þ C2ΨRW odd parity;

C1ΨZM þ C2ΨNE even parity;
ð21Þ

whereC1 andC2 are arbitrary constants. Then, themost general
master function in the odd-parity case is a linear combination
of the Regge-Wheeler (14) and the Cunningham-Price-
Moncrief (15) master functions. In the even-parity sector,
themost general master function is a linear combination of the
Zerilli-Moncrief (16) one and a new master function, ΨNE,
found in [54], which reads (see Appendix A):

ΨNEðt; rÞ ¼ 1

λðrÞ t
aðrK̃∶a − h̃abrbÞ: ð22Þ

The master functions ðΨCPM;ΨRWÞ and ðΨZM;ΨNEÞ are
related by a time derivative:

taΨCPM
;a ¼ 2ΨRW; ð23Þ

taΨZM
;a ¼ 2ΨNE; ð24Þ

where the time vector ta onM2 is defined using its Levi-Civita
tensor:

ta ¼ −εabrb: ð25Þ

The second branch is completely new, and is called the
Darboux branch due to the emerging symmetry (see
Sec. IV). This branch contains an infinite class of master
functions and potentials pairs. The potential can be any
solution of the following nonlinear second-order ordinary
differential equation:

�
δV;x

δV

�
;x
þ 2

�
VRW=Z
l;x

δV

�
;x
− δV ¼ 0; ð26Þ

3Actually, this question was considered in a more general
context, where a cosmological constant of arbitrary sign was also
included.
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where δV ¼ DV
odd=even
l − VRW=Z

l . The master functions in
the Darboux branch depend explicitly on the potential.
Given a potential, the master functions read [54]

DΨodd ¼ C1ΨCPM þ C2ðΣoddΨCPM þΦoddÞ; ð27Þ

DΨeven ¼ C1ΨZM þ C2ðΣevenΨZM þΦevenÞ; ð28Þ

where Σodd=evenðrÞ are given by

Σodd ¼ −
rs
2r2

þ
Z
x
dx0DV

odd
l ðx0Þ; ð29Þ

Σeven ¼ 1

lðlþ 1Þ
�
λ − ðlþ 2Þðl − 1Þ

2r

−
Z
x
dx0DV

even
l ðx0Þ

�
: ð30Þ

As we can see, they contain integrals of the potential. Here,
Φodd=even are combinations of metric perturbations and their
first derivatives, but they are not by themselves master
functions. Only their combinations with ΨCPM=ZM in
Eqs. (27) and (28) are master functions [54].

IV. DARBOUX COVARIANCE OF BH
PERTURBATIONS

The structure and properties of the landscape of master
functions and equations was studied in [55]. The con-
clusion is that all the pairs ðV;ΨÞ are related by Darboux
transformations (DTs). To understand this, let us consider
two such pairs, say ðv;ΦÞ and ðV;ΨÞ, that satisfy a wave
equation like Eq. (13). We say that they are related by a DT
if there is a function gðxÞ, the DT generating function, that
maps one pair onto the other as

ðv;ΦÞ → ðV;ΨÞ∶Ψ ¼ Φ;x þ gΦ; ð31Þ

V ¼ vþ 2g;x: ð32Þ

The DT generating function g cannot be arbitrary but it has
to satisfy the following Riccati equation

g;x − g2 þ v ¼ C; ð33Þ

where C is an arbitrary constant. From Eq. (32) we can
isolate g;x

g;x ¼
V − v
2

: ð34Þ

Introducing this into the derivative of the Riccati equa-
tion (33) we obtain

g ¼ ðV þ vÞ;x
2ðV − vÞ ; ð35Þ

Then, the consistency between these expressions for gðxÞ
and g;xðxÞ yields

�
δV;x

δV

�
;x
þ 2

�
v;x
δV

�
;x
− δV ¼ 0; ð36Þ

where δV ¼ V − v. This is precisely Eq. (26), that is, the
equation that any potential in the Darboux branch should
satisfy [54], where v ¼ VRW=Z. Hence, all master equations
in the Darboux branch are connected via a DT to the
standard branch, with DT generating functions given by:

gZ→even
RW→odd ¼

1

2

Z
dxðVeven

odd − VZ
RWÞ; ð37Þ

while the two parities in the standard branch are connected
by a DT with generating function:

gRW→Z ¼ 1

2

Z
dxðVZ − VRWÞ ¼ −gZ→RW: ð38Þ

In conclusion, there is an infinite set of master functions
and equations linked by DTs, as illustrated by Fig. 1. This
shows the existence of a hidden symmetry in the perturba-
tions of spherically-symmetric (nonrotating) BHs: Darboux
covariance [55].
The DT preserves the frequency of monocromatic

waves, that is, it preserves the spectrum of the fre-
quency-domain operator. To see this, we can work
in the frequency domain, where originally the DT was
introduced [77,78]. Let us then consider a single-frequency
solution, i.e.

Ψðt; rÞ ¼ eiktψðk; xÞ; ð39Þ

FIG. 1. Schematic representation of the landscape of master
functions and equations for the perturbations of a Schwarzschild
BH and how they are linked by DTs.
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so that the master equation becomes a time-independent
Schrödinger equation:

LVψ ≡ ψ ;xx − Vψ ¼ −k2ψ : ð40Þ

One can easily see that DTs map this equation into another
Schrödinger-type equation with the same eigenvalue −k2,
showing the isospectral character of the DT.
It is important to mention that the original approach to

DTs relies on the existence of a particular solution ϕ0, with
eigenvalue −k20, to build the new master function ψ from
the old one, ϕ [Φðt; xÞ ¼ eiktϕðxÞ like in Eq. (39)], via a
DT. The new master function can then be written as

ψðxÞ ¼ W½ϕ;ϕ0�ðxÞ
ϕ0ðxÞ

¼ ϕðxÞ;x −
ϕ0ðxÞ;x
ϕ0ðxÞ

ϕðxÞ; ð41Þ

where W is the Wronskian, defined as usual

W½F1; F2� ¼ F1;xF2 − F1F2;x: ð42Þ

The DT generating function is given by

gðxÞ ¼ −ðlnϕ0Þ;x; ð43Þ

and despite ϕ0 satisfies the Schrödinger equation (40) with
eigenvalue −k20, both the new and old time-independent
master functions, ψ and ϕ respectively, satisfy the
Schrödinger equation (40) with eigenvalue −k2, which
shows again the isospectrality of the DT transformation.
Finally, It turns out that the Regge-Wheeler equation has

an algebraically special solution [79,80] (see [56]), namely

ϕ0 ¼
λðrÞ
2

e−ik0x; k0 ¼ −i
nlðnl þ 1Þ

3M
; ð44Þ

where nl ¼ ðlþ 2Þðl − 1Þ=2 and λðrÞ given by Eq. (17).
Therefore, the DT generating function gRW→Z that goes
from the odd- to the even-parity sector of the standard
branch (see Fig. 1) can be constructed from this solution. It
has the following simple form

gRW→ZðxÞ ¼ ik0 þ
3rsfðrÞ
r2λðrÞ : ð45Þ

V. KORTEWEG-DE VRIES SYMMETRIES

We have described the complete landscape of possible
master equations and functions.Wehave also seen the role of
the DT as a way of connecting all of them and establishing
the isospectrality of the underlying physical description
corresponding to this infinite set. In this sense, the DT plays
the role of a covariance or symmetry of this set of possible
physical descriptions of (vacuum) BH perturbations.

There is an independent set of transformations of the
master equations that introduces a different kind of sym-
metry, actually an infinite set of them, and which also have
the property of being isospectral. The starting point is the
work of Gardner, Greene, Kruskal and Miura [64], who
found a way of solving the Korteweg-de Vries (KdV)
equation [81]

KdV½V�≡ V;τ − 6VV;x þ V;xxx ¼ 0; ð46Þ

by using the inverse scattering method [60–62,82]. This
discovery constituted a breakthrough in the field that
provided a very original way of solving the KdV equation
by expressing it in terms of the spectral and scattering
theory of the Schrödinger operator in Eq. (40).
Lax [68] provided a different point of view. He consid-

ered a continuous deformation of the Schrödinger operator,
LV , which essentially means deforming the potential:

VðxÞ → Vðτ; xÞ; ð47Þ

and introducing the following operator

PVψ ¼ −4ψ ;xxx þ 6Vψ ;x þ 3V;xψ ; ð48Þ

so that

∂LV

∂τ
− ½PV; LV � ¼ −KdV½V� · Id: ð49Þ

The operators ðPV; LVÞ form a Lax pair, that is a pair of
operators whose commutator is the action of an operator
corresponding to an integrable nonlinear PDE, as the
KdV equation, times the unity operator. From Eq. (49)
we deduce that, if V satisfies the KdV equation (46), the
operator LV is deformed remaining similar to itself (the
different LV for different τ are unitary equivalent):

LVðτÞ ¼ UðτÞ · LVð0Þ · U−1ðτÞ; ð50Þ

where the unitary operator UðτÞ evolves as:

dUðτÞ
dτ

¼ PV · UðτÞ: ð51Þ

Then, it follows that all the spectral characteristics of the
operator LVðτÞ are preserved by the KdV flow (i.e., the
evolution along the time τ). This establishes an important
connection between integrable systems and isospectral
problems.
Actually, if we consider a deformation of our time-

independent Schrödinger equation (40) consisting of
Eq. (47) and

ψðxÞ → ψðx; τÞ; k → kðτÞ; ð52Þ
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and such that ψðt; xÞ evolves with PV

ψ ;τ ¼ PVψ ; ð53Þ

we have [55]

ðKdV½V� − ðk2Þ;τÞψ ¼ 0: ð54Þ

This means that if the potential (the Schrödinger equation)
is deformed according to the KdV equation we must have

ψðk2Þ;τ ¼ 0; ð55Þ

and therefore k2 is invariant under the KdV flow. This, in
particular, applies to the complex quasinormal mode
frequencies of the Schwarzschild BH.
The Lax approach opened the door for a Hamiltonian

formulation of the KdV equation and the associated
conservation laws. Gardner [83] was the first to notice
that the KdV equation can be written in terms of a
Hamiltonian. Zakharov and Faddeev [67] provided a
different point of view of the results of Gardner and
collaborators [64,83]. They used the Hamiltonian formal-
ism to express the KdV conserved quantities in terms of
action-angle variables that appear naturally when looking
at the scattering problem associated with the time-
independent Schrödinger equation (see Sec. VI). Actually,
we can introduce an infinite hierarchy of KdV evolution
equations, associated with the infinite chain of KdV
conservation laws, using the Hamiltonian formulation of
the KdV equation (see also [84]):

∂τkV ¼ Kk½V�; k ¼ 0; 1; 2;… ð56Þ

where we have introduced different evolution parameters τk
to illustrate that these equations are independent. The
functionals Kk½V� are (see Appendix B):

Kk½V� ¼ fV;Hkþ1½V�gGZF ¼
∂

∂x
δHkþ1½V�
δVðxÞ ; ð57Þ

where the Hk½V� constitute an infinite sequence of con-
served quantities, which we show below how to construct,
that are functionals of V:

Hk½V� ¼
Z

∞

−∞
dxhkðV; V;x; V;xx;…Þ; ð58Þ

and the densities hkðV; V;x; V;xx;…Þ are differential poly-
nomials in the potential V.
In Eq. (57), we are using the Gardner-Zakharov-Faddeev

bracket [67,83]. But we can also use the Magri bracket [85]
(see Appendix B) to generate the KdV hierarchy of
equations:

Kk½V� ¼ fV;Hk½V�gM ¼ EV
δHk½V�
δVðxÞ ; ð59Þ

where the operator EV is defined in Appendix B.
Equations (57) and (59) show the bi-Hamiltonian character
of the hierarchy of KdV evolution equations. Actually, by
comparing them we can obtain the Lenard [86] infinite
sequence of recursion relations (see [68,83]):

D
δHkþ1½V�
δVðxÞ ¼ EV

δHk½V�
δVðxÞ ⇒

∂

∂x
δHkþ1

δV
¼

�
−

∂
3

∂x3
þ 4V

∂

∂x
þ 2V;x

�
δHk

δV
: ð60Þ

All we need to specify is the first density

h0 ¼
1

2
V ⇒ H0 ¼

1

2

Z
∞

−∞
dxVðxÞ: ð61Þ

It is easy to show that H0 (known as the mean height) is
a conserved quantity by evolving it with respect to τ,
using the KdVequation, and using the fact that the integral
of total gradients vanishes (by using the decay of V at
x → �∞). Then, from the Lenard recurrence, we get the
next conserved quantity:

h1 ¼
1

2
V2 ⇒ H1 ¼

1

2

Z
∞

−∞
dxV2ðxÞ; ð62Þ

which is interpreted as the momentum of the KdV wave.
Using the Lenard recurrence again we get [87]

h2 ¼ V3 þ 1

2
V2
;x ⇒ H2 ¼

Z
∞

−∞
dx

�
V3 þ 1

2
V2
;x

�
; ð63Þ

which is interpreted as the energy of the wave. Actually, the
KdV equation itself can be written as:

∂τV ¼ D
δH2

δV
¼ EV

δH1

δV
¼ 6VV;x − V;xxx: ð64Þ

In summary, the KdV dynamics admits two Hamiltonian
structures and, under both of them, we have an infinite
number of conserved quantities, which we have called
Hk½V� (k ¼ 0; 1; 2;…), and are functionals made out of
differential polynomials in the potential V. From the
different equations, and in particular using the Lenard
recursion, we can see that these conserved quantities are in
involution, that is, they satisfy:

fHj;HkgGZF ¼ fHj;HkgM ¼ 0; j; k ¼ 0; 1; 2;… ð65Þ

therefore, we can say that the KdVequation is an integrable
system in the classical Liouville sense [88]. As a conse-
quence, Zakharov and Faddeev [67] were able to carry out
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the first construction of action-angle variables for the KdV
equation (see Sec. VI).
To end this section, let us comment on the relation

between the KdV flows and the DT. We have seen that
the KdV deformation, actually any deformation from
the infinite hierarchy of KdV equations, of the time-
independent Schrödinger equation (40) constitutes an
isospectral symmetry of the dynamics of BH perturbations.
In addition, there is a strong connection between this set of
deformations and the DTs. Following the work of [89] it is
possible to show that the system of equations

LVψ ¼ −k2ψ ; ∂τψ ¼ PVψ ; ð66Þ

is invariant under DTs provided the DT generating function
g is KdV-deformed as

g;τ ¼ −g;xxx þ 6ðV þ g;xÞg;x: ð67Þ

VI. BLACK HOLE SCATTERING

We have seen the rich structure and multiple properties of
the space of possible master functions and equations for the
dynamics of BH perturbations. Two different types of iso-
spectral transformation play a key role, namely Darboux
covariance andKdVdeformations.UnderDTs, the potential is
transformed via Eq. (32), i.e., by a gradient, while under KdV
transformations, the potential follows the KdV flow (46).
Let us now investigate how we can take advantage of

these properties to study BH scattering processes, one of
the main applications of BHPT. The typical scattering
process is illustrated in Fig. 2 where we have a wave packet
coming from −∞ (the BH horizon) and, after interacting
with the BH potential barrier, there is a reflected part (going
toward the horizon) and a transmitted part (going toward

spatial infinity). Given that the BH potential barrier is
positive, the spectrum of the perturbations contains only the
continuum part, that is, there are no discrete bound states.
We are going to see how to establish a new method to

compute the reflection/transmission coefficients that char-
acterize BH scattering. One of the main ingredients is the
use of the so-called trace identities, equations that in our
case relate the KdV integrals to the reflection coefficient4

Following the results of [55] we are going to see that all the
possible BH potentials share the same greybody factors as
they can be written only in terms of the KdV integrals. In
particular, we are going to see that the trace identities can be
cast as a symmetric Hamburger moment problem [90], thus
setting the ground for a new method of calculation of
greybody factors from KdV integrals.
Let us consider the scattering process illustrated in Fig. 2

and the basics of scattering theory shown in Appendix C
(see also [58–62] for a detailed treatment). The solution of
the time-independent Schödinger equation for this physical
situation is given by

ψðx; k; τÞ ¼
8<
:

aðk; τÞeikx þ bðk; τÞe−ikx for x → −∞;

eikx for x → ∞;

ð68Þ
where the complex coefficients aðk; τÞ and bðk; τÞ are the
so-called Bogoliubov coefficients. They completely deter-
mine the transmission/reflection coefficients (and therefore
the scattering matrix, see Appendix C) as follows

tðk; τÞ ¼ 1

aðk; τÞ ; rðk; τÞ ¼ bðk; τÞ
aðk; τÞ ; ð69Þ

The transmission and reflection probabilities, i.e., the
greybody factors, are simply given by the square of the
modulus of the corresponding coefficients

Tðk; τÞ ¼ jtðk; τÞj2; Rðk; τÞ ¼ jrðk; τÞj2; ð70Þ

which, for real k, satisfy Eq. (C25). Under the KdV flow,
the Bogoliubov coefficients evolve as [64]

aðk; τÞ ¼ aðk; 0Þ; bðk; τÞ ¼ bðk; 0Þe8ik3τ; ð71Þ

which means that we have a conservation law

a;τðk; τÞ ¼ 0: ð72Þ
The module of bðk; τÞ is also preserved by the KdV flow.
Similar evolution laws, can be obtained for the reflection
and transmission coefficients.

FIG. 2. Plot of the Regge-Wheeler BH potential [24] in terms of
the tortoise coordinate x. The barrier has a maximum at
x ≈ 3M ¼ 3rs=2. This plot is for the particular case l ¼ 4.

4In the case of the existence of a discrete spectrum, the trace
identities also involve the discrete eigenvalues [67].
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When investigating the relations between r, t and the
KdV integrals, the analytic properties of these functions in
the complex plane play a key role [91,92]. These features
depend on the asymptotic behavior of the potential (see
Appendix C), which has to be smooth and integrable over
the whole range of x. We further require the differential
polynomials built out of the potential and its derivatives to
be also integrable. It is not difficult to see that all the
BH potentials we can obtain via DT transformations (32)
are integrable. Actually, we just have to consider the
integrability of the Regge-Wheeler potential together with
the asymptotics of all the possible DT generating functions
g [55]. Therefore, aðk; τÞ is analytic in the upper half-plane
of the complex k-plane (see Appendix C and [61]). Then,
using the Cauchy theorem, we can write ln aðk; τÞ as

ln aðk; τÞ ¼ 1

2πi

I
dk0

ln aðk0; τÞ
k0 − k

; ð73Þ

with ℑðkÞ > 0. If we use a typical semicircle contour in the
upper complex k-plane, the integral over the circular part,
thanks to the asymptotic behavior shown in Eq. (C27), goes
to zero as we make its radius to be infinite. Therefore, we
are left with the integral over the real k-line

ln aðk; τÞ ¼ 1

2πi

Z
∞

−∞
dk0

ln aðk0; τÞ
k0 − k

: ð74Þ

On the other hand, āðkÞ is analytic in the lower half-plane
of the complex k-plane, and hence we can write the
corresponding Cauchy integral using a contour there.
However, since we are considering ℑðkÞ > 0, the
Cauchy transform gives zero as the integrand has no poles
in the region of integration, and therefore:

1

2πi

Z
∞

−∞
dk0

ln āðk0; τÞ
k0 − k

¼ 0; ð75Þ

If we now sum Eqs. (74) and (75), we obtain

ln aðk; τÞ ¼ 1

2πi

Z
∞

−∞
dk0

lnTðk0; τÞ
k − k0

: ð76Þ

Therefore, we can write aðk; τÞ, for ℑðkÞ ≠ 0, as
follows [62,93]

aðk; τÞ ¼ exp

�
1

2πi

Z
∞

−∞
dk0

lnTðk0; τÞ
k − k0

�
; ð77Þ

so that, the values in the real line, ℑðkÞ ¼ 0, can be
obtained as the following limit

aðk; τÞ ¼ lim
ϵ→0þ

aðkþ iϵ; τÞ: ð78Þ

Then, knowing aðk; τÞ we can find bðk; τÞ from Eq. (69).
As a consequence of the asymptotic behavior of aðk; τÞ [see
Eq. (C27)], ln aðk; τÞ admits, for jkj → ∞, the following
expansion in inverse powers of k,

ln aðk; τÞ ¼
X∞
n¼1

mnðτÞ
kn

: ð79Þ

The trace formulas can then be obtained by evaluating
the coefficients mn of the above expansion in two
different ways and then equating them [67]. First,
we expand Eq. (76) for jkj → ∞, so that 1=ðk − k0Þ≃P∞

n¼0 k
0n=knþ1, to obtain

ln aðk; τÞ ¼ 1

2πi

X∞
n¼0

1

k2nþ1

Z
∞

−∞
dk0k02n lnTðk0; τÞ: ð80Þ

This expression has been simplified after integrating away
odd functions. As a consequence, only odd coefficients
survive so that

m2n ¼ 0; ð81Þ

m2nþ1 ¼
1

2πi

Z
∞

−∞
dkk2n lnTðk; τÞ: ð82Þ

The second way of calculating the coefficients mn is based
on the Schrödinger equation. Let us write the solution in
Eq. (68) as

ψðx; k; τÞ ¼ exp

�
ikx −

Z þ∞

x
dx0Φðx0; k; τÞ

�
; ð83Þ

so that in the half-plane, ℑðkÞ > 0, we have

aðk; τÞ ¼ lim
x→−∞

e−ikxψðx; k; τÞ; ð84Þ

and hence

ln aðk; τÞ ¼ −
Z

∞

−∞
dxΦðx; k; τÞ: ð85Þ

The phase function Φ satisfies the following complex
Riccati equation

Φ;x þ 2ikΦþΦ2 ¼ V; ð86Þ

obtained by substituting Eq. (83) into the time-independent
Schrödinger equation. We can look for solutions of Eq. (86)
by expanding Φ in inverse powers of k
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Φðx; k; τÞ ¼
X∞
n¼1

fnðx; τÞ
ð2ikÞn : ð87Þ

This provides a three-term recurrence relation for the fn

f1 ¼ V; ð88Þ

fn ¼ −
d
dx

fn−1 −
Xn−1
m¼1

fn−m−1fm; ðn ¼ 2;…Þ: ð89Þ

The first coefficients have the form

f2 ¼ −V;x; ð90Þ

f3 ¼ −V2 þ V;xx; ð91Þ

f4 ¼ −V;xxx þ 4VV;x; ð92Þ

f5 ¼ V;xxxx − 6VV;xx − 5V2
;x þ 2V3: ð93Þ

We see that f2 and f4 are total derivatives. This property
holds for all the even coefficients, f2n (see, e.g., [55]),
and therefore, all their integrals vanish. On the other hand,
note that each f2nþ1 is actually proportional, up to total
derivative terms, to the densities hn appearing in the
Hamiltonian formalism in Eq. (58). The actual relations are

2hn ¼ ð−1Þnf2nþ1 þ Total Derivative Terms; ð94Þ

where the minus sign is just a consequence of the chosen
asymptotics (68). This implies that the functions f2nþ1 lead
to the conserved quantities of the KdV equations [67,83],
i.e., the KdV integrals

I2nþ1 ¼
Z

∞

−∞
dxf2nþ1ðxÞ ¼ 2ð−1ÞnHn: ð95Þ

Therefore, the odd integrals I2nþ1, which are the only
nonvanishing ones, actually correspond to the true first
integrals Hn (58) of the KdV equation, i.e., those naturally
described by the (bi-)Hamiltonian structure showed in
Sec. V. Moreover, notice that the odd In integrals, contrary
to the integrals Hn, have alternate sign, i.e., I1 > 0; I3 <
0; I5 > 0… (see also Appendix E).
The conservation of the Bogoliubov coefficient a under

the KdV flow [see Eq. (72)] provides an alternative point of
view to the one of Sec. V to prove that the integrals In are
conserved quantities of the KdV equation. In fact, thanks
to Eqs. (79) and (87) we can check that dIn=dτ ¼ 0.
Therefore, in the following we can omit the explicit τ
dependence. However, this is not the only conservation
property of the KdV integrals. Indeed, it was shown in [55]
that the infinite set of KdV integrals are also invariant under
DTs. Putting the two results together we conclude that the

KdV integrals are the same for the whole class of BH
potentials. In this sense, we can write

I2nþ1½V� ¼ I2nþ1½VRW�; ð96Þ

where V is any BH potential represented in Fig. 1.
To summarize, from the previous results we conclude

that the KdV integrals are really fundamental quantities
of BH scattering processes and they naturally reflect the
isospectral character of the full space of master equations
and functions.
Returning to ln aðkÞ, we can finally evaluate the coef-

ficients mn in Eq. (79) by comparing with Eqs. (85), (87)
and (95):

m2n ¼ 0; ð97Þ

m2nþ1 ¼ ið−1Þn I2nþ1

22nþ1
: ð98Þ

Finally, we match Eqs. (82) and (98) to obtain the following
trace formulas

ð−1Þnþ1
I2nþ1

22nþ1
¼ 1

2π

Z
∞

−∞
dkk2n lnTðkÞ: ð99Þ

This set of integral equations relates the BH greybody
factors to the KdV integrals. These relations can be recast in
the following convenient form

μ2n ¼
Z

∞

−∞
dkk2npðkÞ; ð100Þ

where

μ2n ¼ ð−1Þn I2nþ1

22nþ1
: ð101Þ

and

pðkÞ ¼ −
lnTðkÞ
2π

: ð102Þ

We have left a minus sign in this equation in order to
express everything in terms of positive quantities. With this
we have arrived at the main result of this work: The
determination of the BH scattering transmission probability
TðkÞ in terms of the BH potential barrier KdV integrals:
BH moment problem. The transmission probability/grey-

body factors associated with BH scattering processes are
uniquely determined in terms of the BH potential KdV
integrals via a (Hamburger) moment problem.
The key equation is Eq. (100), which clearly defines a

moment problem [94,95], i.e., the problem of finding a
probability distribution starting from the knowledge of its
moment sequence. In this case, the probability distribution
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is given by pðxÞ [Eq. (102)] and the moments by μ2j
[Eq. (101)]. Notice that we only have even moments. This
is a key property that we discuss in the next section.
Let us conclude this section with a remark on Eq. (102).

We have already mentioned in Sec. V that the KdVequation
is a completely integrable Hamiltonian system for which
one can find action angle variables [67,88] ðPðkÞ; QðkÞÞ. It
turns out that the action variable PðkÞ is associated to the
distribution pðkÞ of the BH moment problem, defined by
Eq. (102), while the angle variable QðkÞ is given by the
argument of the Bogoliubov coefficient bðkÞ, that is

PðkÞ ¼ 2kpðkÞ; QðkÞ ¼ argbðkÞ: ð103Þ

This means that the KdV evolution equations for the
scattering data (71) are actually Hamilton’s equations for
the KdV written in terms of action-angle variables.

VII. GREYBODY FACTORS FROM KDV
INTEGRALS: MOMENT PROBLEM METHODS

We have just seen that the greybody factors associated
with BH scattering processes are connected to the KdV
integrals of the BH potential(s) via a moment problem. Let
us now discuss this new point of view to see how one can
use it in order to provide practical methods to compute the
greybody factors. We illustrate this discussion with a case
where all the equations involved can be solved analytically,
namely the case of a Pöschl-Teller potential.
Let us start by considering a particular interval of the real

line, I ⊆ R. The moments of a distribution pðxÞ with
support on I are defined as

μn ¼
Z
I
dxxnpðxÞ n ¼ 0; 1; 2;…; ð104Þ

where x here is just a real coordinate on I and pðxÞdx ¼
dρðxÞ defines a positive measure. We also assume that fμng
is a sequence of real numbers. In broad terms, the moment
problem can be thought as the inverse problem of finding
the probability distribution pðxÞ from the knowledge of its
moments fμng. To that end, we need to consider the three
following elements:
(1) Existence: Is there a function pðxÞ on I whose

moments are given by fμng?
(2) Uniqueness: Do the moments fμng determine

uniquely a distribution pðxÞ on I?
(3) Construction: How can we construct all such prob-

ability distributions?
When the solution is unique the problem is said to be
determinate, otherwise it is called indeterminate. When I
is the positive real line, I ¼ ½0;∞Þ, the moment pro-
blem is known as the Stieltjes moment problem [96,97],
when I ¼ R it is known as the Hamburger moment
problem [98–101] and, finally, when I ¼ ½a; b� ⊂ R it is
known as a Hausdorff moment problem. By looking at the

definition of our BH moments in Eq. (100), it is clear
that the problem we are facing is a special case of the
Hamburger one, called the symmetric Hamburger moment
problem, which is characterized by a probability dis-
tribution that is symmetric with respect to the origin so
that the only nonvanishing moments are the even ones
[see Eq. (100)].
This problem has a long history [102]. It originated with

the work of Stieltjes [96,97] on the study of analytic
properties of continued fractions, although moments were
already investigated by Chebyshev [103] and later by
Markov [104] (see [105] for an historical account) while
studying limiting values of integrals with continued frac-
tions. Nevannlina [106] made contact with the field of
complex functions and Riesz [107–109] with functional
analysis. Important contributions to the moment problem
were also made by Carleman, Wall and others (see [94,95]
for other references). For a more recent account on the
connections with different mathematical branches see [90]
and references therein. Although many results regarding
existence and uniqueness of solutions have been found, no
general solution method exists.
For convenience (see the expressions of the KdV

integrals shown in Appendix E), we reformulate the
moment problem (100) in terms of the dimensionless
variable w ¼ rsk:

μ̂2n ¼
Z

∞

−∞
dww2npðwÞ; μ̂2n ¼ r2nþ1

s μ2n: ð105Þ

A. Hamburger moment problem: Existence and
determinacy conditions

Here we study our BH moment problem (100) as a
Hamburger moment. We start by looking at what can we
say about existence and uniqueness of the solution. We start
by introducing the so-called Hankel determinants, fDng,
associated to a real sequence fμng as

Dn ¼

														

μ0 μ1 μ2 � � � μn

μ1 μ2 μ3 � � � μnþ1

μ2 μ3 μ4 � � � μnþ2

..

. ..
. ..

. � � � ..
.

μn μnþ1 μnþ2 � � � μ2n

														

: ð106Þ

Existence of solutions to the Hamburger moment problem
is guaranteed provided all the Hankel determinants Dn are
positive. For a symmetric Hamburger moment problem
like ours, all odd entries vanish, which makes it easier to
check whether the Hankel determinants are positive. A
possible strategy is to consider the Cholesky decomposition
(see, e.g., [110]) to simplify the calculations. In Fig. 3, we
show the first Hankel determinants for different values of l.
For small l, the Dn first decrease but then start increasing
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with n, while for bigger l the determinants grows rapidly
(this appears to be related to the behavior of the moments,
see Fig. 4). It seems natural to claim that the Hankel
determinants will never become negative. Therefore, we
conclude that solutions to the problem (100) exist.
The second fundamental condition to check is whether

the solution is unique. There are a number of statements
defining determinacy [90] of the moment problem. One of
the most used ones is the Carleman condition, which states
that a sufficient condition for the Hamburger moment
problem to be determinate is

X∞
n¼1

μ
− 1
2n

2n ¼ ∞: ð107Þ

Of course, Carleman’s condition has the disadvantage of
only providing a sufficient condition, i.e., there can be
moment sequences for which this criterion does not hold
but they are still determinate. However, it also gives us the
following intuitive interpretation: If the even moments do
not tend to infinity too quickly, then the moment problem is
determinate. A practical approach to study this growth
condition, which is equivalent to Carleman’s condition, is
to study whether there is a constant C for which

μ2n ≤ Cnð2nÞ!≡ CðnÞ; for all n > 0: ð108Þ

In Appendix E we show analytic expressions for the KdV
integrals for the RW potential (and hence, for any other
potential associated with BH perturbations). As we can
see, the KdV integrals grow with the harmonic number l
at most as: I2nþ1 ∝ Lnþ1 where L ¼ lðlþ 1Þ (see also
Fig. 4). Furthermore, Eq. (101) shows that μ̂2n ∝
I2nþ1=22nþ1 so that it seems natural to think that taking
C ¼ ðL=2Þ2 will meet the criteria (108). The factorial term
in Eq. (108) already grows faster than any power of L so
that it only helps improving the condition. Indeed, notice
from Fig. 5 that the difference

ΔðnÞ ¼ CðnÞ − μ̂2n; ð109Þ

is actually increasing, indicating that condition (108) is
always satisfied with C ¼ ðL=2Þ2. Independently on
whether or not there is a more stringent bound, the
important result is that the moments (101), and thus the
KdV integrals, uniquely determine the distribution (102)
and therefore the BH greybody factors.

FIG. 4. Plot, in logarithmic scale of base 10, of the dimension-
less moments [see Eq. (105)] for: l ¼ 2 (black dots), l ¼ 3 (blue
squares), l ¼ 5 (red triangles), and l ¼ 10 (orange crosses).

FIG. 5. Plot of the difference ΔðnÞ, in logarithmic scale of base
10, evaluated using the dimensionless moments of Eq. (105). For
this plot we use: l ¼ 2 (black dots), l ¼ 3 (blue squares), l ¼ 5
(red triangles), and l ¼ 10 (orange crosses).

FIG. 3. Plot of the Hankel determinants up to n ¼ 35 in
logarithmic scale of base 10, for: l ¼ 2 (black dots), l ¼ 3
(blue squares), l ¼ 5 (red triangles), and l ¼ 10 (orange
crosses). The determinants are evaluated using the dimensionless
moments of Eq. (105).
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B. Analytic methods to solve the moment problem

In order to construct solutions to the moment problem, it
is useful to consider the connection with the theory of
analytic functions [106]. Actually, given a solution pðkÞ of
the moment problem, one can define its Stieltjes transform
function [94,95] as

FðzÞ ¼
Z

∞

−∞
dk

pðkÞ
k − z

; ð110Þ

which is analytic for every z ∈ CnR. Besides, for any range
of angles ϵ ≤ argðzÞ ≤ π − ϵ with 0 < ϵ < π=2, this func-
tion is asymptotically represented by the following series

FðzÞ ¼ −
X∞
n¼0

μn
znþ1

; ð111Þ

which results from formally expanding the denominator
of Eq. (110) for large jzj. The inverse is also true, i.e.,
given the function FðzÞ with those properties, there
exists only one distribution pðkÞ that solves the moment
problem with moments fμng, and such that FðzÞ has the
integral representation (110) with asymptotics given in
Eq. (111). From the series expansion, the Stieltjes trans-
form can also been seen as the generating function for the
moments μn. Another important consequence of condition
(108) is that it guarantees that FðzÞ actually has the
asymptotic representation (111) (see Ref. [43]), not just
has a formal expansion.
There is a one-to-one relation between the moment

problem and the problem of finding the analytic function
FðzÞ in CnR and with the asymptotic expansion of
Eq. (111). We then conclude that the solution pðkÞ to
the moment problem is determined uniquely by FðzÞ.
Indeed, the Stieltjes-Perron inversion formula [96] (see
also [90,94,95]) provides the inverse relation between FðzÞ
and pðkÞ and it reads

pðkÞ ¼ lim
ϵ→0

Fðkþ iϵÞ − Fðk − iϵÞ
2πi

¼ lim
ϵ→0

ℑFðkþ iϵÞ
π

; ð112Þ

where the last equality holds if FðzÞ ¼ Fðz̄Þ. This feature is
guaranteed by the Herglotz property of the Stieltjes trans-
form [43], by which the sign of ℑFðzÞ is the same as the
sign of ℑz. Therefore, the moment problem is equivalent to
the problem of inverting the Stieltjes transform (110) with
the use of the Stieltjes-Perron inversion formula (112),
which relates the probability distribution with the branch
cut discontinuity of the Stieltjes transform across the real
axis. It is clear that Eq. (76) defines a Stieltjes transform
after identifying pðkÞ with the distribution given by
Eq. (102) and

Fðkþ iϵÞ ¼ i ln aðkþ iϵÞ: ð113Þ

Therefore, Eq. (112) now reads

lnTðkÞ ¼ −lim
ϵ→0

2ℜ ln aðkþ iϵÞ: ð114Þ

In order to illustrate how the procedure described above
works, we are going to show what happens in a particular
case where we can carry out all the steps using analytic
techniques, namely the case of a Pöschl-Teller potential:

VðxÞ ¼ V0

cosh2 ðαxÞ ¼
α2λð1 − λÞ
cosh2ðαxÞ : ð115Þ

Although this potential does not belong to the family of
potentials describing the perturbations of Schwarzschild
BHs, it is one of the exactly solvable problems in scattering
theory (see Appendix D for details), and as such it is very
interesting to consider in order to understand the procedure
in an analytical way.
From Eq. (D13) we can directly obtain the exact

expression for aðkÞ

aðkÞ ¼ Γð1 − ikÞΓð−ikÞ
Γð1

2
− iðk − lÞÞΓð1

2
− iðkþ lÞÞ ; ð116Þ

Notice that in the left-hand side of Eq. (114),
TðkÞ ¼ jaðkÞj−2, is evaluated on the real line, while
aðkþ iϵÞ on the right-hand side, is the analytical continu-
ation into the complex plane. Therefore, we consider the
analytical extension of Eq. (116) for k ∈ C, whose exist-
ence is guaranteed by the analytic properties of the
Gamma function [111]. The logarithm of aðkÞ can then
be decomposed as

ln aðkÞ ¼ lnΓð1 − ikÞ þ lnΓð−ikÞ − lnΓ
�
1

2
− iðk − lÞ

�

− lnΓ
�
1

2
− iðkþ lÞ

�
: ð117Þ

After taking the real part of this and the limit for the
imaginary part of k going to zero, we end up with the
following expression for the transmission probability

lnTðkÞ ¼ ln

�
sinh2ðπkÞ

cosh2ðπkÞ þ sinh2ðπlÞ
�
; ð118Þ

where we have used some mathematical properties of the
Gamma function [112]. Therefore, we have recovered
Eq. (D14) and have proved, in this particular case, that
the Stieltjes-Perron inversion formula provides the correct
solution to the moment problem. However, given the
necessity of the explicit analytical expression of the
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Stieltjes transform, this approach is not going to be useful
in general cases.
A different approach may be attempted. By looking at

Eqs. (102) and (113), it is clear that the asymptotic
expansion (111) corresponds to Eq. (79), up to an imagi-
nary unit. At this point, one may be tempted to use such
expansion in terms of the moments together with the
inversion formula (112) to obtain the greybody factors in
terms of the KdV integrals. However, the Stieltjes-Perron
inversion formula depends heavily on the analytic proper-
ties of the Stieltjes function as it essentially relates the
distribution, on the real line, to the jump of the Stieltjes
transform across the real axis (which by definition is
discontinuous there). Unfortunately, this behavior seems
to be lost when we consider the asymptotic expansion
(111). What is more, Eq. (111) is only valid in the complex
plane, so that no such expansion is expected to hold on the
real line. We can use again the case of the Pöschl-Teller
potential to show this. The greybody factor TðkÞ is given in
Eq. (D14). Imagine to start from the asymptotic expansion
of Eq. (79). The Stieltjes-Perron inversion formula (112)
will clearly preserve the asymptotic form. However, we
immediately see from Eq. (D14) that the distribution (102)
on the real line does not allow any asymptotic expansion
around k → ∞. Moreover, if we just naively substitute the
general expansion (111) into Eq. (112), everything vanishes
in the limit ϵ → 0.
Finally, it is important to mention that Padé approxim-

ants to the Hamburger series (111) are convergent [113].
However, as for the series itself, we cannot take the limit of
these Padé approximants to the real line because otherwise
Eq. (112) would give a vanishing result.

VIII. CONCLUSIONS AND DISCUSSION

In this work, we have shown that the BH greybody
factors are uniquely determined by the set of KdV integrals
associated with the BH potential barrier that describes the
response of the BH to gravitational perturbations. This
result is a consequence of the rich structure and properties
of the space of master functions and equations that was
presented in previous works [54,55]. In these works, it was
shown that the space of master functions and equations
admits different types of isospectral transformations/sym-
metries. First of all, DTs connect all possible master
functions and equations and preserve the spectrum of
QNMs as well as the transmission and reflection coef-
ficients, characterizing the continuous part of the spectrum
of the associated time-independent Schrödinger operator
[See Eq. (40)]. For these reasons, we called Darboux
covariance the existence of this symmetry. On the other
hand, the time-independent master equations admit KdV
deformations that are isospectral and that leave invariant the
Bogoliubov coefficient aðkÞ (the inverse of the BH trans-
mission coefficient). This conservation law gives rise to the
infinite sequence of KdV integrals which, in turn, we have

shown to determine completely the BH greybody factors.
Moreover, the KdV integrals do not depend on the specific
choice of master function/equation, they are the same for all
the elements of the space of master functions/equations.
This deep connection between greybody factors, DTs,

and KdV integrals has been shown to take place via a
moment problem, i.e., the problem of finding a probability
distribution given its moments. In our case, the moments
are essentially given by the KdV integrals [see Eq. (101)].
Among the different possible moment problems, we have
shown that the BH moment problem is of the (symmetric)
Hamburger type. We have argued that, due to the particular
characteristics of the moment sequence, the moment
problem admits a solution and that such solution is actually
uniquely determined. However, there is no universal recipe
to invert the moment problem and find the distribution
given the sequence of moments. Only in a few particular
cases, this inversion has been carried out analytically. In
particular, when the sequence of moments corresponds to
the Catalan numbers [114], and also in the case of the
Pöschl-Teller potential VII, as we have seen in Sec. VII.
This work brings a completely new perspective to the

study of BH scattering via the moment problem and the
mathematical structures that have made it possible to arrive
to this result. In a subsequent paper [115], we present some
new approximate semianalytical techniques for the solution
of the BH moment problem (i.e., obtaining the BH grey-
body factors from the KdV integrals) and compare the
results with previous works in the literature, showing that
our new methods appear to be quite competitive and have a
wide range of applications.
The results of this paper are restricted to the case of

Schwarzschild BH scattering processes. But it is important
to stress that the conclusions we have obtained are actually
quite general. The only requirement is that the problem
studied is described by a time-independent Schrödinger
equation with an integrable potential barrier without bound
states. In this sense, the developments of this paper can be
extended directly to other physical problems of interest, in
particular to rotating Kerr BHs by using the results that
come from the Teukolsky master equations and their
separable structure [116,117]. We can also go further in
the development of these techniques to try to come out with
a new perspective for the computation of quasinormal
modes, which is of great interest in the context of
gravitational wave physics. Finally, we can try to transfer
these developments to other theories of gravity, with
different action principle, and/or different dimensions,
and/or extra fields.
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APPENDIX A: GAUGE-INVARIANT METRIC
PERTURBATIONS

Under gauge transformations, spacetime perturbations
transform according to Eq. (6). To understand how the
different harmonic transform, we have to decompose the
generator of the gauge transformation, ξμ [see also Eq. (5)],
in harmonics [we drop out the harmonic indices ðl; mÞ]:

ξμdxμ ¼
�
r2γXAdΘA; odd parity

αadxa þ r2βYAdΘA; even parity
ðA1Þ

where the gauge functions ðγ; αa; βÞ are functions of theM2

coordinates fxag. Then, odd-parity metric perturbations
transform as

h0a ¼ ha − r2γ∶a; ðA2Þ

h02 ¼ h2 − 2r2γ: ðA3Þ

and even-parity metric perturbations transform as

h0ab ¼ hab − 2αða∶bÞ; ðA4Þ

|0a ¼ |a − ðαa þ r2β∶aÞ; ðA5Þ

K0 ¼ K þ lðlþ 1Þβ − 2
r∶a

r
αa; ðA6Þ

G0 ¼ G − 2β: ðA7Þ

From this transformations we find that, for the odd-parity
sector, we have two gauge-invariant quantities:

h̃a ¼ ha −
1

2
h2∶a þ

ra
r
h2; ðA8Þ

and there four more for even-parity perturbations:

h̃ab ¼ hab − κa∶b − κb∶a; ðA9Þ

K̃ ¼ K þ lðlþ 1Þ
2

G − 2
ra

r
κa; ðA10Þ

where

κa ¼ |a −
r2

2
G∶a; ra ¼ r∶a ⇒ ra ¼ gabrb: ðA11Þ

APPENDIX B: HAMILTONIAN FORMALISM
IN THE INFINITE-DIMENSIONAL CASE

In this case we have a continuous of dynamical variables,
here labeled by the coordinate x. The changes with respect
to the finite-dimensional case are that trajectories are
replaced by smooth functions Vðτ; xÞ and phase space
functions are replaced by functionals. A functional of V is
defined via integration as follows:

F½V� ¼
Z

∞

−∞
dxfðV; V;x; V;xx;…Þ: ðB1Þ

Functional (Frèchet) derivatives are defined as [118]:

δF
δVðxÞ ¼

X∞
n¼0

ð−1Þn ∂
n

∂xn
∂f

∂VðnÞ

¼ ∂f
∂V

−
∂

∂x
∂f
∂V;x

þ ∂
2

∂x2
∂f

∂V;xx
þ…; ðB2Þ

where VðnÞ ¼ dnVðxÞ=dxn and one has to take into account
that

δVðxÞ
δVðx0Þ ¼ δðx − x0Þ; ðB3Þ

where δðxÞ denotes the Dirac delta distribution. We can
build Poisson brackets as

fF;Gg ¼
Z

∞

−∞
dx

Z
∞

−∞
dx0ωðx; x0; VÞ δF

δVðxÞ
δG

δVðx0Þ ; ðB4Þ

where ωðx; x0; VÞ, the symplectic form, has to be such
that the Poisson bracket is antisymmetric. A common
choice is [83]

ωðx; x0; VÞ ¼ 1

2
ð∂x − ∂x0 Þδðx − x0Þ: ðB5Þ

Since the partial derivative operator ∂x is antiself-adjoin
with respect to the inner scalar product

ðV;WÞ ¼
Z

∞

−∞
dxVðxÞWðxÞ; ðB6Þ

the Poisson bracket can be written as:

fF;GgGZF ¼
Z

∞

−∞
dx

δF
δVðxÞD

δG
δVðxÞ ; ðB7Þ
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where

D ¼ ∂

∂x
: ðB8Þ

the Poisson bracket in Eq. (B7) is sometimes referred to
as the Gardner-Zakharov-Faddeev bracket [67,83]. In this
way, Hamilton’s equations can be written as follows:

∂V
∂τ

¼ fV;H½V�gGZF ¼ D
δH½V�
δVðxÞ : ðB9Þ

A different choice of symplectic form was introduced by
Magri [85]

ωðx; x0; VÞ ¼
�
−
1

2
ð∂3x − ∂

3
x0 Þ þ 2ðVðxÞ∂x − Vðx0Þ∂x0 Þ

�

× δðx − x0Þ: ðB10Þ

This leads to the following Poisson bracket:

fF;GgM ¼
Z

∞

−∞
dx

δF
δVðxÞ EV

δG
δVðxÞ ; ðB11Þ

where EV is the following operator

EV ¼ −
∂
3

∂x3
þ 4VðxÞ ∂

∂x
þ 2V;xðxÞ; ðB12Þ

It is known that the Magri bracket is closely related to the
Virasoro algebra [119].

APPENDIX C: 1D SCATTERING FROM A
POTENTIAL BARRIER

We provide some basic elements of one-dimensional
scattering theory [58–62], assuming an integrable potential
barrier without bound states, only with continuous spec-
trum. We start by considering a set of independent solutions
to the time-independent Schrödinger equation (40) near
x → ∞ (spatial infinity for Schwarzschild BHs)

f1ðx;kÞ¼eikxþOð1Þ; f2ðx;kÞ¼e−ikxþOð1Þ; ðC1Þ

and a second set satisfying analogous conditions at
x → −∞ (the BH horizon)

g1ðx;kÞ¼eikxþOð1Þ; g2ðx;kÞ¼e−ikxþOð1Þ: ðC2Þ

Since the potential is real we have

f1ðx; kÞ ¼ f̄2ðx; kÞ; g1ðx; kÞ ¼ ḡ2ðx; kÞ; ðC3Þ

and, in addition,

f1ðx; kÞ ¼ f2ðx;−kÞ; g1ðx; kÞ ¼ g2ðx;−kÞ: ðC4Þ

Therefore, the pairs ffðx; kÞ; f̄ðx; kÞg and fgðx; kÞ;
ḡðx; kÞg, where f1 ≡ f and g1 ≡ g, form two fundamental
sets of solutions (for k ≠ 0), known as the Jost solu-
tions [91,92].
The time-independent Schrödinger equation, with

boundary conditions given by Eqs. (C1) and (C2), is
equivalent to the following Volterra-type integral equations
(see [59,60])

fðx; kÞ ¼ eikx þ
Z

∞

−∞
dyG1ðx − y; kÞVðyÞfðy; kÞ; ðC5Þ

ḡðx; kÞ ¼ e−ikx þ
Z

∞

−∞
dyG2ðx − y; kÞVðyÞḡðy; kÞ; ðC6Þ

where G1 and G2 are Green’s functions given by

G1ðx − y; kÞ ¼ −θðy − xÞ sin ½kðx − yÞ�
k

; ðC7Þ

G2ðx − y; kÞ ¼ θðx − yÞ sin ½kðx − yÞ�
k

; ðC8Þ

and θðxÞ is the Heaviside theta function, defined as

θðxÞ ¼
�
1 for x > 0;

0 for x < 0:
ðC9Þ

Starting from the Volterra equations one can: prove that
the Jost functions are solutions of (40) using the method
of successive approximations [59,60]; show the linear
independence of the pairs of solutions ffðx; kÞ; f̄ðx; kÞg,
fgðx; kÞ; ḡðx; kÞg; and study their analytic properties in the
complex k-plane. Indeed, the Wronskians read

W½f; f̄� ¼ W½g; ḡ� ¼ 2ik; ðC10Þ

where we just considered Eqs. (C5) and (C6) and the
Wronskian (42). They are different form zero whenever
k ≠ 0, thus we have two pairs of linearly independent
solutions which we can express as linear combinations of
each other, that is,

fðx; kÞ ¼ aðkÞgðx; kÞ þ bðkÞḡðx; kÞ; ðC11Þ

f̄ðx; kÞ ¼ b̄ðkÞgðx; kÞ þ āðkÞḡðx; kÞ: ðC12Þ

Here, we identify the transition matrix T

T ¼
�
aðkÞ bðkÞ
b̄ðkÞ āðkÞ

�
; ðC13Þ

which relates solutions with asymptotics at x → −∞ to
solutions with asymptotics at x → þ∞. The coefficients
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aðkÞ; bðkÞ; āðkÞ; b̄ðkÞ can be expressed in terms of the
Wronskians of the solutions

aðkÞ ¼ W½f; ḡ�
2ik

; bðkÞ ¼ W½g; f�
2ik

; ðC14Þ

āðkÞ ¼ W½g; f̄�
2ik

; b̄ðkÞ ¼ W½f̄; ḡ�
2ik

; ðC15Þ

so that, using Eqs. (C3) and (C4), we have

að−kÞ ¼ āðkÞ; bð−kÞ ¼ b̄ðkÞ: ðC16Þ
After replacing Eqs. (C11) and (C12) in the first equality of
Eq. (C10) we obtain

jaðkÞj2 − jbðkÞj2 ¼ 1: ðC17Þ

The physical properties of scattering processes are
described by the scattering matrix, S, which relates out-
going and ingoing states with respect to the barrier. It is
completely determined by the components of T . Let us
consider the outgoing states f and ḡ as functions of the
ingoing f̄ and g states:

fðx; kÞ ¼ 1

āðkÞ gðx; kÞ þ
bðkÞ
āðkÞ f̄ðx; kÞ ðC18Þ

ḡðx; kÞ ¼ −
b̄ðkÞ
āðkÞ gðx; kÞ þ

1

āðkÞ f̄ðx; kÞ; ðC19Þ

where we used Eqs. (C11) and (C12). The scattering matrix
S reads

S ¼

0
B@

1
āðkÞ

bðkÞ
āðkÞ

− b̄ðkÞ
āðkÞ

1
āðkÞ

1
CA: ðC20Þ

Consider now the solution

fðx; kÞ ¼
�
aðkÞeikx þ bðkÞe−ikx for x → −∞;

eikx for x → ∞;
ðC21Þ

which corresponds to the situation in Fig. 2, where
fðx; kÞ=aðkÞ represents an incoming plane wave from
x → −∞. The coefficients of the transition matrix define
the transmission and reflection coefficients

tðkÞ ¼ 1

aðkÞ ; rðkÞ ¼ bðkÞ
aðkÞ ; ðC22Þ

and then

fðx; kÞ
aðkÞ ¼

�
eikx þ rðkÞe−ikx for x → −∞;

tðkÞeikx for x → ∞;
ðC23Þ

The transmission and reflection probabilities, also known
as greybody factors, are given by the modulus square of the
corresponding coefficients for real k

TðkÞ ¼ jtðkÞj2RðkÞ ¼ jrðkÞj2: ðC24Þ

Looking at Eq. (C17) we notice that the scattering matrix is
unitary, i.e., S†S ¼ SS† ¼ 1, and

TðkÞ þ RðkÞ ¼ 1: ðC25Þ

Let us now rewrite Eq. (C5) in terms of the function
χ ¼ fe−ikx [61] as follows

χðx; kÞ ¼ 1þ
Z

∞

x
dy

e−2ikðx−yÞ − 1

2ik
VðyÞχðy; kÞ: ðC26Þ

where we have used Eq. (C7). Since we assume the
potential to be integrable, χðx; kÞ admits an analytical
continuation into ℑðkÞ > 0, and so does the Jost function
f ¼ χeikx. The same procedure leads to the conclusion that
ḡ can also be analytically continued into ℑðkÞ > 0 while
f̄ and g can be continued into the lower half-plane,
i.e., ℑðkÞ < 0.
Finally, Eqs. (C14) and (C15) show that: (i) aðkÞ can be

completely expressed in terms of f and ḡ, and hence it can
be analytically continued into the region ℑðkÞ > 0, having
the following asymptotic behavior

aðkÞ ¼ 1þOð1=kÞ for jkj → ∞;ℑðkÞ > 0: ðC27Þ

(ii) āðkÞ can be expressed in terms of f̄ and g and therefore,
it can be analytically continued into the region ℑðkÞ < 0.
(iii) The integrability of the potential is not enough to
guarantee the analyticity of b and b̄.

APPENDIX D: THE PÖSCHL-TELLER
POTENTIAL

The time-independent Schrödinger equation (40) for the
case of a Pöschl-Teller potential [see Eq. (115)] can be
solved [120,121] by using a new coordinate, y ¼ tanhðαxÞ,
and use a new unknown

ψðyÞ ¼ 2ik=αð1 − y2Þ−ik=2ανðyÞ; ðD1Þ

such that it satisfies the Jacobi equation

ð1 − y2Þν00ðyÞ þ 2y

�
ik
α
− 1

�
ν0ðyÞ

−
�
λð1 − λÞ − k2

α2
−
ik
α

�
νðyÞ ¼ 0: ðD2Þ

Introducing another coordinate, z ¼ ð1 − yÞ=2, the Jacobi
equation becomes a hypergeometric equation [111,112]
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zð1 − zÞν00ðzÞ þ
��

1 −
ik
α

�
− 2

�
1 −

ik
α

�
z

�
ν0ðzÞ

−
�
λ −

ik
α

��
1 − λ −

ik
α

�
νðzÞ ¼ 0: ðD3Þ

The general solution reads

ψðx; kÞ ¼ A2ik=α½1 − tanh2ðαxÞ�−ik=2α2F1

×

�
λ −

ik
α
; 1 − λ −

ik
α
; 1 −

ik
α
;
1 − tanhðαxÞ

2

�

þ B½1 − tanhðαxÞ�ik=2α½1þ tanhðαxÞ�−ik=2α2F1

×

�
λ; 1 − λ; 1þ ik

α
;
1 − tanhðαxÞ

2

�
: ðD4Þ

The reflection and transmission coefficients can be found
from the asymptotics of the hypergeometric function [112].
First, the asymptotic behavior for ψðx; kÞ is

ψðx; kÞ ¼
�
Aeikx þ Be−ikx x → ∞;

A0eikx þ B0e−ikx x → −∞;
ðD5Þ

where

A0 ¼ A
Γð1 − ik

αÞΓð− ik
αÞ

Γðλ − ik
αÞΓð1 − λ − ik

αÞ
þ B

Γð1þ ik
αÞΓð− ik

αÞ
ΓðλÞΓð1 − λÞ ðD6Þ

B0 ¼ A
Γð1 − ik

αÞΓðikαÞ
ΓðλÞΓð1 − λÞ þ B

Γð1þ ik
αÞΓðikαÞ

Γðλþ ik
αÞΓð1 − λþ ik

αÞ
: ðD7Þ

The physical situation of Fig. 2 requires

A ¼ 1; B ¼ 0; A0 ¼ aðkÞ; B0 ¼ bðkÞ; ðD8Þ

so that

aðkÞ ¼ Γð1 − ikÞΓð−ikÞ
Γðλ − ikÞΓð1 − λ − ikÞ ðD9Þ

bðkÞ ¼ Γð1 − ikÞΓðikÞ
ΓðλÞΓð1 − λÞ ; ðD10Þ

where we set α ¼ 1 to simplify the notation. Then, the
transmission and reflection coefficients (C22) are

tðkÞ ¼ Γðλ − ikÞΓð1 − λ − ikÞ
Γð1 − ikÞΓð−ikÞ ðD11Þ

rðkÞ ¼ ΓðikÞΓðλ − ikÞΓð1 − λ − ikÞ
Γð−ikÞΓð1 − λÞΓðλÞ : ðD12Þ

When the Pöschl-Teller potential is a high barrier, i.e.,
when λ ¼ 1

2
þ il with l > 0 [121], the transmission coef-

ficient reads

tðkÞ ¼ Γð1
2
− iðk − lÞÞΓð1

2
− iðkþ lÞÞ

Γð1 − ikÞΓð−ikÞ : ðD13Þ

Then, the transmission probability, or greybody factor,
can be evaluated by taking the square of the modulus of
Eq. (D13):

TðkÞ ¼ sinh2ðπkÞ
cosh2ðπkÞ þ sinh2ðπlÞ ; ðD14Þ

where here k ∈ R.

APPENDIX E: KdV INTEGRALS FOR THE
REGGE-WHEELER POTENTIAL

The first KdV integrals for the Regge-Wheeler potential
read (where we use the definition: L ¼ lðlþ 1Þ):

I1 ¼
1

rs

�
L −

3

2

�
; ðE1Þ

I3 ¼
−1
r3s

�
1

12
L2 −

3

10
Lþ 3

10

�
; ðE2Þ

I5 ¼
1

r5s

�
2

105
L3 −

83

840
L2 þ 5

28
L −

29

280

�
; ðE3Þ

I7¼
−1
r7s

�
1

168
L4−

53

1386
L3þ 263

2772
L2−

147

1430
Lþ 222

5005

�
;

ðE4Þ

I9 ¼
1

r9s

�
14

6435
L5 −

41

2574
L4 þ 8

165
L3 −

2557

34320
L2

þ 1203

19448
L −

723

38896

�
; ðE5Þ

I11 ¼
−1
r11s

�
1

1144
L6 −

67

9724
L5 þ 73

2992
L4 −

186859

3879876
L3

þ 2253239

38798760
L2 −

19129

587860
Lþ 64759

5173168

�
; ðE6Þ

I13 ¼
1

r13s

�
11

29393
L7 −

1529

503880
L6 þ 3091

251940
L5

−
103699

3527160
L4 þ 2719789

60843510
L3 −

8348939

243374040
L2

þ 39

1292
Lþ 4803

772616

�
; ðE7Þ
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I15 ¼
−1
r15s

�
13

77520
L8 −

13

9690
L7 þ 91

14535
L6 −

28639

1671525
L5 þ 81283

2674440
L4 −

7109

222870
L3 þ 111529

2228700
L2 þ 17637

566950
L

þ 1194813

21544100

�
; ðE8Þ

I17 ¼
1

r17s

�
26

334305
L9 −

131

222870
L8 þ 16

4845
L7 −

217519

23401350
L6 þ 750447

37702175
L5 −

1106101

37702175
L4 þ 83799194

1676927175
L3

þ 18613463771

176316914400
L2 þ 1930951511

7260108240
Lþ 83062407817

246843680160

�
; ðE9Þ

I19 ¼
−1
r19s

�
17

458850
L10 þ 1003

3991995
L9 þ 48841

26613300
L8 −

886822

206253075
L7 þ 148953983

9900147600
L6 −

1144342879

54450811800
L5

þ 600058031

24200360800
L4 þ 19712925427

163352435400
L3 þ 290243073581

326704870800
L2 −

43168543419

21880401400
Lþ 4524494561511

1662910506400

�
: ðE10Þ
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