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We compute bounds on screened scalar field theories from hydrogenlike systems. New light scalar fields
generically have a direct coupling to matter. Such a coupling is strongly constrained by myriad
experimental measurements. However, certain theories possess a screening mechanism that allows the
effects of this coupling to weaken dynamically, and to evade many such bounds. We compute the
perturbations to the energy levels of hydrogenlike systems due to screened scalar fields. We then use this
result in two ways. First, we compute bounds from hydrogen spectroscopy, finding significantly weaker
bounds than have been reported before as screening effects were overlooked. Second, we show that
muonium is an intrinsically much more sensitive probe of screened scalar fields. For chameleon models,
muonium experiments probe a large part of the parameter space that is as yet unexplored by low-energy
physics and has so far only been tested by high-energy particle physics experiments.
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I. INTRODUCTION

Einstein’s theory of gravity, with a small cosmological
constant, and the Standard Model of particle physics are
both staggeringly successful models of our universe.
Nevertheless, it is still useful to consider additions to these
models, as there are multiple well-known puzzles associ-
ated with the standard paradigm. For instance, the accel-
erated expansion of the Universe has motivated a wide
range of models that modify our theory of gravity
(for recent reviews, see [1–3]). Likewise, new physics
has also recently been invoked to explain the 4.2σ tension
between the Standard Model prediction [4–23] and exper-
imental measurements [24,25] of the muon’s anomalous
magnetic dipole moment, the observed electron recoil in
XENON1T [26], and the planar arrangement of satellite
galaxies [27]. These puzzles justify the addition of at least
one new particle species to alleviate tension between theory
and experiment.
The minimal addition is a single degree of freedom,

typically in the form a new scalar field. In order for this
approach to work it is important that this addition does not

create new tensions. Crucially, a generic feature of new
scalar fields is an explicit coupling to matter. This coupling
enables the new scalar to mediate a “fifth force” between
matter particles, which is subject to strong constraints from
laboratory, solar system, and astrophysical tests of gravity.
The conventional wisdom is that the new scalar’s coupling
to matter fields must be exceedingly weak, or the scalar
particle’s mass must be sufficiently large that the fifth force
is too short-ranged to be detectable.
A powerful loophole to this argument exists, however.

For certain matter couplings and scalar self-interactions, the
fifth force can weaken dynamically. This property, dubbed
a “screening mechanism”, enables a theory with intrinsi-
cally strong, and long-ranged, fifth forces to pass experi-
mental tests [28]. There are three broad classes of screening
mechanisms known to date. First, there is chameleon
screening [29], in which scalar particles’ mass becomes
large in dense environments, making the fifth force short-
ranged. Second, symmetron screening [30–32] involves a
matter coupling that depends on the average ambient matter
density, such that the field decouples in dense environ-
ments. Finally, there is derivative-induced screening, for
instance the Vainshtein mechanism [33,34] of massive
gravity [35,36] and galileons [37], for example, in which
the fifth force law departs from 1=r2 at near distances.
Since their proposal approximately fifteen years ago,

a number of laboratory experiments and astrophysical
observations have targeted screened theories and have
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made great progress in constraining their available parameter
space. Some of most relevant laboratory tests include atom
interferometers [38–43], cold bouncing neutrons [44–46],
electron g − 2 measurements [47], and torsion balances
[48,49], all of which have been recently reviewed in
[3,50–52]. Although these theories were originally moti-
vated by dark energy, they have since found application in
other arenas, such as the effects of dark matter [53–58], or to
explain the muon’s anomalous magnetic moment [59] and
the electron recoil in XENON1T [60].
One of the most stringent bounds to date on new scalar

fields has derived from hydrogen spectroscopy, and it has
been used in the past to place bounds on Yukawa-like
forces [61–63] aswell as to search for extra dimensions [64].
If the scalar coupling to matter is strong enough, and the
scalar particle’s Compton wavelength is longer than 1 Å,
then the new scalar field behaves as a potential that perturbs
the energy levels in the hydrogen atom. This was computed
for a generic scalar field in [61], implicitly assuming the
hydrogen nucleus was unscreened. However, this bound
does not extend in a straightforward manner to screened
theories, as has been sometimes claimed. This bound
essentially treats the hydrogen nucleus as a pointlike particle
that is therefore exempt from screening. The resulting
bounds are too stringent; an appropriate treatment would
account for the finite size and radius of the hydrogen nucleus
and the resulting screening effect of the fifth force sourced
by it.
The purpose of this paper is twofold. First, we revisit the

spectroscopy bounds of [61] within the context of chame-
leon and symmetron theories, carefully accounting for the
screening behavior of the scalar field around the nucleus.
We will find that this process relaxes the bounds consid-
erably. Second, we will consider a closely related system
that turns out to be a far more sensitive probe of screened
theories: muonium. This system, composed of an antimuon
and an electron, has a spectrum nearly identical to that of
hydrogen, yet is composed entirely of fundamental par-
ticles. As the constituent particles are truly pointlike in
nature, they are not subject to the screening effect that is
found for extended objects like hydrogen nuclei. We find
bounds on screened scalar fields that are limited only by the
finite range of the fifth force.
The plan of the paper is as follows. In Sec. II we derive

expressions for a scalar field with a screening mechanism
around an extended object. Our expressions apply only to
canonical scalar fields like chameleon or symmetron
theories. We do not consider Vainshtein-screened theories,
as a proper treatment would require accounting for the
presence of the Earth and Sun nearby, and is therefore
outside the scope of this article. In Sec. III we compute the
fifth-force perturbations to a hydrogenlike atom’s energy
levels. In Secs. IV and V we apply our results to compute
bounds on chameleon theories from the hydrogen and
muonium spectroscopy, respectively. In Sec. VI we repeat

this analysis for symmetron theories, and we make con-
cluding remarks in Sec. VII.
Conventions: We adopt the mostly-plus metric signature

ημν ¼ diagð−1; 1; 1; 1Þ, define the reduced Planck mass as
M2

Pl ¼ ð8πGÞ−1, and use natural units such that c ¼ ℏ ¼ 1.

II. SCREENED MODIFIED GRAVITY

In this section we derive the screened scalar field profile
around a spherical source, which in this paper will represent
the nucleus of a hydrogenlike system. This treatment is
standard, so the reader already familiar with this calculation
may wish to skip ahead to the final result of Eq. (21).
We begin with the action for a canonical scalar field with

an explicit coupling to the local density ρ of matter fields
which are nonrelativistic,1

L ¼ −
1

2
ð∂ϕÞ2 − VðϕÞ − AðϕÞρ: ð1Þ

The field dynamics respond to the “effective potential”

VeffðϕÞ ¼ VðϕÞ þ AðϕÞρ: ð2Þ

The scalar field equation of motion is

□ϕ ¼ Veff;ϕðϕÞ; ð3Þ

where the comma denotes the differentiation f;ϕ ≡ d
dϕ f.

The scalar field mediates an attractive force between
objects, causing a test particle to accelerate as

a⃗ ¼ −∇⃗ΦN − ∇⃗AðϕÞ; ð4Þ

where ΦN is the Newtonian gravitational potential.2 As
such, the coupling function AðϕÞ behaves as a potential for
the fifth force.
Let us solve for the field around a spherical source mass,

surrounded by a uniform density background,

ρ ¼
�
ρin r ≤ R

ρout r > R:
ð5Þ

We solve in a piecewise manner, inside and outside the
source. First we expand around a fixed value ϕ̄,

1The matter coupling in Eq. (1) results from a conformal
coupling to the Standard Model in the nonrelativistic limit.
This couples the scalar field ϕ to the trace of the Standard
Model energy-momentum tensor. Notably, this procedure does
not couple the scalar field to electromagnetism, as the trace
of the energy-momentum tensor of the electromagnetic field
is zero.

2Strictly speaking the fifth force is given by −∇⃗ lnA which
coincides with −∇⃗A when A is close to unity as required to avoid
large deviations from Newton’s law.
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ϕ ¼ ϕ̄þ φ: ð6Þ

The value we choose for ϕ̄ allows us to handle the several
different cases.
If ϕ̄ corresponds to a minimum of VeffðϕÞ, then the

leading terms in the expanded action are

L ¼ −
1

2
ð∂φÞ2 − 1

2
Veff;ϕϕ

����
ϕ¼ϕ̄

φ2: ð7Þ

The quadratic term behaves as a mass for the perturbations
φ, hence we define the “effective mass” as

m2
effðϕÞ≡ Veff;ϕϕðϕÞ; ð8Þ

in terms of which the equation of motion is

□φ ¼ m2
effφ: ð9Þ

On the other hand, if ϕ̄ does not minimize Veff , then the
leading terms in the expansion are

L ¼ −
1

2
ð∂φÞ2 − Veff;ϕðϕ̄Þφ: ð10Þ

This behaves like a source for the perturbations φ, hence we
define the term “effective source” as3

ρeffðϕÞ ¼ Veff;ϕðϕÞ: ð11Þ

A. Case I: Field becomes heavy inside the source

In the first case we consider, we expand about ϕin inside
the sphere and ϕout outside the sphere, where both field
values minimize the effective potentials in their respective
regions. We also define the effective masses about those
minima as min;out. Then the solution is

ϕ ¼
�
ϕin þ Ã sinhminr

r r ≤ R;

ϕout þ B̃ e−moutr

r r > R:
ð12Þ

We can solve for the integration constants Ã; B̃ by matching
ϕ and its derivative at r ¼ R. However, we are only
interested in the fifth force outside the object, so we only
need B̃,

B̃ ¼ −ðϕout − ϕinÞRemoutR

�
minR − tanh minR

minRþmoutR tanh minR

�
:

ð13Þ

This result is not particularly edifying, so let us make some
simplifying assumptions. First, in cases of screening, we
typically have jϕinj ≪ jϕoutj, otherwise there would not be
much fifth force to speak of. Furthermore, we have in mind
moutR≲ 1, without which the fifth force would be very
short-ranged relative to the size of the system being
considered. These two assumptions leave us with

B̃ ¼ −ϕoutR

�
1 −

tanh minR
minR

�
: ð14Þ

Let us now take the limit in which the field is very heavy
inside the source. That is, the field’s Compton wavelength
inside the object is much shorter than the object’s radius,
minR ≫ 1, and consequently the field easily reaches ϕmin.
In this case, we have

ϕðr > RÞ ¼ ϕout − ϕoutR
e−moutr

r
: ð15Þ

This leaves us with the quintessential screened field profile
of a Yukawa field profile outside a spherical object, subject
to the boundary condition that ϕ ≈ 0 at the surface of the
sphere.

B. Case II: Field remains light everywhere

If the field remains light inside the source, minR ≪ 1,
then the field cannot deviate far from ϕout even deep inside
the source. In this case, it is not sensible to expand about ϕin
inside the source, as was done in the previous subsection.
Instead, we will expand about ϕout both inside and outside
the source.
Inside the source, then, we expand about ϕout, which is

not the minimum of VeffðϕÞ in this region. Consequently,
the equation of motion for perturbations inside the source
takes the form

□φ ¼ V;ϕ ðϕoutÞ þ A;ϕ ðϕoutÞρin: ð16Þ
The right hand side is further simplified in the following
way. Far away from the source, the field is in equilibrium, so

jA;ϕ ðϕoutÞρoutj ¼ jV;ϕ ðϕoutÞj: ð17Þ

Inside the source, we have

jA;ϕ ðϕoutÞρinj ≫ jA;ϕ ðϕoutÞρoutj ¼ jV;ϕ ðϕoutÞj; ð18Þ

where we have used the fact that the source is much
denser than its surroundings, ρin ≫ ρout. This justifies
dropping the first term on the right hand side of Eq. (16),
and the solution is

ϕ ¼
�
ϕout þ A;ϕ ðϕoutÞρin r2

6
þ Ã r ≤ R;

ϕout þ B̃ e−moutr

r r > R;
ð19Þ

3The effective source has mass dimension three here. It usually
coincides with ρ=M where ρ is the matter density of the source,
either ρin or ρout, and M is a coupling scale.
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where Ã; B̃ are integration constants. These are fixed by
matching the field and its first derivative at r ¼ R, leaving us
with the exterior solution

ϕðr > RÞ ¼ ϕout − A;ϕ ðϕoutÞ
msrc

4π

e−moutr

r
: ð20Þ

We have now solved the scalar field in two limiting
cases: first, where the field is heavy inside the source and
second, where the field remains very light inside the source.
It is convenient to encompass both of these limiting cases
with the single expression

ϕðr > RÞ ¼ ϕout − A;ϕ ðϕoutÞλsrcmsrc
e−moutr

4πr
;

λsrc ≡min
�

3ϕout

A;ϕ ðϕoutÞρinR2
; 1
�
; ð21Þ

where we have introduced the “screening factor” of the
source λsrc. The total scalar charge carried by the object
is Qsrc ¼ λsrcmsrc.
It is seen that the screening behavior and coupling

strength depend on the ambient scalar field value ϕout.
Determining ϕout for a specific setup, such as a vacuum
chamber, requires accounting for the nonlinear dynamics of
the theory, and is consequently a model-dependent quan-
tity. We will discuss how to determine ϕout in specific
examples as we encounter them.

III. PERTURBED ENERGY LEVELS

In this section we compute the perturbation to a hydro-
genic atom’s energy levels due to the new scalar fifth force.
If the fifth force contribution to the electron’s Hamiltonian
is δH, the perturbation to the electron’s energy levels are
given by the classic formula

δEn ¼ hψnjcδHjψni; ð22Þ
where ψn is the wavefunction of the nth energy level. We
will only be interested in the first and second energy levels,
for which we have

ψ1s ¼
1ffiffiffi
π

p
�
Z
a0

�
3=2

e−Zr=a0 ;

ψ2s ¼
1

4
ffiffiffiffiffiffi
2π

p
�
Z
a0

�
3=2

�
2 −

Zr
a0

�
e−Zr=a0 ; ð23Þ

where a0 is the Bohr radius and Z ¼ 1 is the atomic number
of the hydrogenic atom.
The perturbation to the electron’s Hamiltonian4 follows

from Eq. (4) as

δH ¼ meAðϕÞ: ð24Þ

Taylor expanding this expression to linear order about the
ambient field value ϕout and dropping the irrelevant
constant term yields

δH ¼ meA;ϕ ðϕoutÞðϕ − ϕoutÞ

¼ −A;ϕ ðϕoutÞ2λNmNme
e−moutr

4πr
; ð25Þ

where in the second line we have used the field profile in
Eq. (21). Here λN and mN refer to the screening factor and
mass of the atom’s nucleus, respectively.
The 1s and 2s energy level perturbations may now be

computed via Eq. (22), and are

δE1s ¼ A;ϕ ðϕoutÞ2
λNmNme

π

Z3

a30ð2Za0 þmoutÞ2
;

δE2s ¼ A;ϕ ðϕoutÞ2
λNmNme

16π

Z3ðZ2 þ 2a20m
2
outÞ

a0ðZ þ a0moutÞ4
: ð26Þ

These perturbations shift the energy gap between the 1s and
2s energy levels by an amount

δE1s−2s ¼ jδE2s − δE1sj: ð27Þ

Taking the unscreened limit in which λN → 1 and
mouta0 ≪ 1, we obtain for hydrogen (Z ¼ 1)

δE1s−2s ¼ A;ϕ ðϕoutÞ2
3mNme

16πa0
; ð28Þ

precisely matching the result of [61]. This serves as a useful
check, but in what follows we will mostly use the more
general expressions in Eqs. (26) and (27).

IV. HYDROGEN SPECTROSCOPY

The 1s − 2s transition of hydrogen has been measured to
a fractional uncertainty of 4.2 × 10−15 [67], indicating an
absolute uncertainty of δE1s−2s ¼ 4.3 × 10−14 eV. This
measurement, along with Eq. (27), can constrain the
parameters of canonical scalar field theories that couple
to matter. For concreteness, in this section and the next we
adopt the chameleon as the prototypical model of screened
modified gravity. The simplest chameleon model is char-
acterized by the following self-interaction potential and
matter coupling:

VchamðϕÞ ¼
Λ5

ϕ
; AchamðϕÞ ¼

ϕ

M
: ð29Þ

In the unscreened limit of this theory, we can apply Eq. (28)
to obtain a constraint from hydrogen spectroscopy of

4In this work we treat the electron as completely nonrelativ-
istic, as is appropriate for hydrogenlike systems. A relativistic
treatment would start with the Dirac-Lagrangian for electrons
[65,66].
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M ≳ 10 PeV; ð30Þ

improvement of three orders of magnitude over what has
been reported previously for unscreened fields [61] thanks to
the updated experimental measurement of [67]. The edge of
this exclusion region should be interpreted with some
caution, however, as the hydrogen 1s − 2s transition energy
is also used to determine some of the fundamental constants
of nature. However, in this work we will not consider
uncertainties in the fundamental constants. We will see that,
in the case of the chameleon, the parameter space tested by
hydrogen is also tested by other experiments, so a detailed
analysis of these uncertainties is not of pressing importance.
To extend bounds into the regime where screening can

occur we will use the more general result of Eq. (27), which
relies on further experimental details. The proton, of
course, has finite radius and density, and can therefore
be screened. Its screening factor must be computed via
Eq. (21).
As seen in Sec. II, screening behavior relies on the

ambient scalar field value ϕout. For the specific case of a
chameleon field, this is determined in the following way.
First, one computes the minimum of the effective potential
inside a region of constant density ρ,

ϕmin ¼
ffiffiffiffiffiffiffiffiffiffi
MΛ5

ρ

s
: ð31Þ

The walls of the vacuum chamber are made of dense metal,
and the density inside the vacuum chamber is tiny, so in
general the field rolls from a small value near the walls to a
large value in the center. If there is sufficient room inside
the vacuum chamber, the field levels off at ϕmin towards the
middle of the chamber. This rolling behavior takes place
over a distance ≈m−1

out. However, if the vacuum chamber is
smaller than m−1

out, then there is not sufficient room for this
to take place, and instead the field will only reach a central
value ϕvac such that Rvac ≈meffðϕvacÞ−1 [38–40]. This
corresponds to a field value

ϕvac ¼ ξð2Λ5R2
vacÞ1=3; ð32Þ

where ξ is an Oð1Þ factor that depends on the geometry of
the vacuum chamber. For a spherical vacuum cham-
ber, ξ ¼ 0.55.
To summarize, the field rolls from a small value near the

vacuum chamber walls to ϕmin or ϕvac in the center,
whichever is smaller, so we have

ϕout ¼ min ðϕvac;ϕminÞ: ð33Þ

Alternatively, one could compute the field value ϕout
numerically, as was done in [40].
With the details of how to compute ϕout in hand, we can

use Eqs. (26) and (27) along with the experimental values

in Table I to compute the constrained region of parameter
space. This was done numerically, resulting in the bound
shown in Fig. 1. We see the vertical boundary correspond-
ing to the unscreened limit of the theory, as well as a slanted
line which is a result of the screening of the proton.

TABLE I. Experimental parameters for the measurement of the
1s − 2s transition energy in hydrogen [67] and muonium [68].
For hydrogen, the density of the gas in the vacuum chamber
follows from the reported pressure of 10−8 mbar of hydrogen gas
at a temperature of 20 K. For muonium, the density of the gas in
the vacuum chamber follows from the reported pressure of
10−6 mbar of helium gas at a temperature of 296 K. The total
size of the vacuum chamber is not reported, but the experiment
was performed 8 mm above a surface, so that is taken as the
chamber radius.

Quantity Symbol Hydrogen Muonium Units

Uncertainty δE1s−2s 4.3 × 10−14 4.1 × 10−8 eV
Source radius R 0.877 � � � fm
Source mass mN 938 106 MeV
Vacuum chamber radius Rvac ≈1 0.8 cm
Vacuum chamber density ρvac 10−14 10−13 g=cm3

FIG. 1. Bounds on chameleon theory parameter space. Before
this work, the right edge of the hydrogen bound extended
indefinitely downwards. We have found that accounting for
the screening of the proton results in significantly weakened
hydrogen constraints. Conversely, we find that muonium bounds
are limited only by the Compton wavelength of the chameleon
particle. The red line indicates chameleon models that alleviate
the muon g − 2 tension [59]. This line extends vertically down-
wards to Λ ≈ 10−7 eV. We see that muonium rules out approx-
imately half of those models.
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V. MUONIUM SPECTROSCOPY

Muonium is a hydrogenlike system consisting of a
single electron orbiting an anti-muon. The antimuon has
a positive charge and is much heavier than the electron,
resulting in an energy spectrum that is nearly identical to
that of hydrogen.5

The key advantage that muonium presents relative to
hydrogen is that the source mass, the muon, is a funda-
mental particle with no internal structure. That is, the muon
has zero finite extent and is always unscreened.6 Muonium
thus represents an intrinsically more sensitive probe to
screened scalar fields.
That being said, there are two disadvantages that

muonium has relative to hydrogen. First, the experimental
uncertainty on the 1s − 2s transition energy is larger by a
factor of 100. Second, in the unscreened limit the fifth
force’s perturbation to the energy levels depends linearly on
the mass of the nucleus [as can be seen in Eq. (26)], and a
proton is heavier than a muon by a factor of 9. In the limit in
which the proton is unscreened, then, hydrogen bounds are
superior, although this space is already excluded by other
experiments.
As long as the Compton wavelength of the scalar field is

much longer than the typical muon-electron separation (one
Bohr radius a0), we can use Eq. (28) to find the general
bound on the chameleon parameter

M ≳ 550 GeV: ð34Þ

At small values of Λ, however, the chameleon field
becomes short-ranged inside the vacuum chamber, and
the fifth force is exponentially suppressed by distance.
Precisely when this occurs depends on the experimental
details of the muonium spectroscopy measurement [68],
which are summarized in Table I. The determination of ϕout
proceeds in the same way as the previous section, and the
resulting bounds on chameleon parameter space are shown
in Fig. 1.
Before moving on, we briefly consider one potential area

of concern in this calculation. We have used the static

chameleon field profile to compute the perturbations to the
energy levels, but the muonium atom itself is a transient
phenomenon, with a half-life of order ∼μs. Although a
detailed consideration of time-dependent effects in chame-
leon theories is well beyond the scope of this work, an order
of magnitude estimate demonstrates that the relevant
physics should be well captured in the static approximation.
The muonium atoms form when incident muons interact
with an SiO2 powder, and are measured roughly 1 μs later
[68]. Fluctuations in the chameleon field propagate at the
speed of light, and in that time can travel a distance 12
orders of magnitude greater than the size of the muonium
atom itself. As such, there should be ample time for the
chameleon field to relax to its classical profile around the
muon in that time.

VI. SYMMETRON

In the past two sections we applied our results to a
specific model, the chameleon, for concreteness. In this
section we compute bounds on another theory of modified
gravity, the symmetron. This model exhibits screening
similar to, but distinct from, the chameleon.
The symmetron’s couplings are given by its self-

interaction potential VðϕÞ and matter coupling AðϕÞ:

VsymmðϕÞ¼−
1

2
μ2ϕ2þ1

4
λϕ4; AsymmðϕÞ¼

1

2M2
ϕ2: ð35Þ

The symmetron’s Lagrangian is symmetric under ϕ → −ϕ.
However, examining the field’s effective potential shows
that this symmetry can be spontaneously broken in regions
with sufficiently small matter density ρ,

VeffðϕÞ ¼
1

2

�
ρ

M2
− μ2

�
ϕ2 þ 1

4
λϕ4: ð36Þ

In regions where the ambient matter density is large,
ρ > μ2M2, the sign of the quadratic term in the effective
potential is positive and is minimized when ϕ ¼ 0.
However, in underdense regions, where ρ < μ2M2, the
quadratic term becomes negative, giving an effective
potential that spontaneously breaks the ϕ → −ϕ symmetry.
In this case, given sufficient room the field rolls to a
vacuum expectation value (vev)

v ¼ � μffiffiffi
λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

μ2M2

r
: ð37Þ

This is the ambient field value inside a vacuum chamber,
provided that the chamber is larger than the symmetron’s
Compton wavelength ≈μ−1. Scalar fluctuations about the
vev have an effective mass

5One might wonder about positronium spectroscopy as well, a
system composed of an electron and an anti-electron. The
experimental uncertainty on the 1s − 2s transition energy is
approximately 1 order of magnitude smaller than that of
muonium, but the source (an electron or a positron) has a mass
that is one order of magnitude smaller as well, so the bounds on
modified gravity are comparable to those from muonium. As
such, we focus on muonium in this paper, as the mechanics of the
system are slightly simpler and are nearly identical to hydrogen.

6Coupling a scalar field with a nonlinear potential to point
particles raises subtleties regarding the precise strength of the
interaction. These were considered, along with quantum fluctua-
tions, in [69]. In this work we take the simpler view that point
particles are completely unscreened. This is akin to assuming that
the muon-electron interaction is dominated by the Feynman
diagram in which a single scalar particle is exchanged.
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meff ¼
ffiffiffi
2

p
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

μ2M2

r
: ð38Þ

Using ϕout ¼ v and this expression for meff in Eq. (21), the
symmetron screening factor for a uniform-density, spheri-
cal object of mass mN and radius R is

λscr ¼ min

�
4πRM2

mN
; 1

�
: ð39Þ

If the vacuum chamber is smaller than the symmetron’s
Compton wavelength μ−1, the field remains at the false
vacuum ϕ ¼ 0 everywhere [49]. This is because the stable
field configuration is the one that minimizes the energy, and
therefore balances energy in the field’s potential Veff

against gradient energy ð∇⃗ϕÞ2. Achieving a nonzero field
profile necessitates that the gradient energy cost of rolling
to a nonzero value is outweighed by the energy savings of
the field sitting at the true vacuum ϕ ¼ v in the central
regions of the vacuum chamber. In a small vacuum chamber
where Rvac < μ−1, there is insufficient room for this to
occur, and the field consequently remains at ϕ ¼ 0 every-
where inside the chamber.
With these considerations for the symmetron field, the

computation of the constraints from hydrogen and muo-
nium spectroscopy proceeds in exactly the same way as
before. One of the theoretically best-motivated values of μ
is to set it to the dark energy scale, μ ¼ meV, as the vacuum
fluctuations of the symmetron would account for dark
energy. The bounds we obtain in this case are plotted in
Fig. 2. We see that the bounds from muonium are slightly
superior to bounds from electron g − 2 experiments.
Meanwhile, we see that hydrogen, when the proton is
unscreened (that is, for M ≳ 100 MeV) is the leading
experimental constraint.
In Fig. 3 we show bounds for a range of μ values

spanning 14 orders of magnitude. It is remarkable that a
single experiment can constrain such a wide range in μ.
This is possible for the following reason. A laboratory
experiment employing extended objects can only constrain
a narrow range Lsystem < μ−1 < Rvac, where Lsystem is the
size of the system being measured and Rvac is the size of the
chamber the experiment is performed in. This is because a
Compton wavelength μ−1 that is smaller than the distance
between an experiment’s source and test masses leads to an
exponentially suppressed symmetron force as e−μr. On the
other hand, we have already seen that a Compton wave-
length μ−1 that is larger than the vacuum chamber leads to a
vanishing vev and matter coupling. For an atom interfer-
ometry test, this hierarchy of scales is of order
Lsystem=Rvac ≈ mm

10 cm ≈ 10−2. For a hydrogen or muonium
spectroscopy experiment, this hierarchy is much larger
Lsystem=Rvac ≈ Å

10 cm ≈ 10−9, allowing sensitivity to symme-
tron models with a much wider range of μ values. This trait

is shared by other experiments that probe very short length
scales, notably bouncing neutrons [70,71] and g − 2
measurements [47].
In the case of muonium, the constraint takes a particu-

larly simple form as there is no screening of the nucleus to
account for. In this case, the perturbation to the 1s − 2s
energy gap is

δE1s−2s ¼
3μ2

λM2

mμme

16πa0
; ð40Þ

so long as the vacuum’s density is below the symmetron’s
critical density, ρvac < μ2M2, and the symmetron Compton
wavelength lies between the average muon-electron sepa-
ration distance and the vacuum chamber size, 1 Å <
μ−1 < 1 cm. The constraint may then be expressed eco-
nomically as

μffiffiffi
λ

p
M

< 10−12 eV; ð41Þ

so long as the above-mentioned inequalities are satisfied.
This bound can be observed as a diagonal line in constraint
plots for a range of symmetron masses in Figs. 2 and 3.
We observe that the muonium bounds are competitive

with the electron g − 2 experiment and (along with the
g − 2 experiment) are the leading source of constraints
when the symmetron mass is greater than an MeV.

FIG. 2. Bounds on symmetron models with mass at the
dark energy scale μ ¼ meV. We see that hydrogen is the
leading constraint when the proton is unscreened. Meanwhile
muonium bounds are comparable to those from electron g − 2
experiments [47].
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FIG. 3. Bounds on symmetron parameters. It can be seen that experiments employing extended objects test a limited range of
symmetron masses, while those employing only fundamental particles access a much wider range of parameter space.
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VII. CONCLUSIONS

In this paper we have computed the perturbations to the
spectra of hydrogenlike systems due to screened scalar
fields. We applied our results first to hydrogen, as its
1s − 2s energy level spacing is known to great precision.
We then applied the same techniques to muonium.
Although muonium’s spectrum has not been measured to
the same degree of accuracy, the fact that it is composed
entirely of fundamental particles makes it an excellent
probe of screened theories. We have presented bounds for
two prototypical examples of screened theories: the cha-
meleon and the symmetron.
We have shown that the muonium bounds on these

theories are approximately an order of magnitude stronger
than those derived electron g − 2 experiments, as long as
the scalar field’s Compton wavelength is larger than the
average muon-electron separation distance in muonium.
Furthermore, the new muonium bounds rule out about half
of the viable chameleon models that eliminate the muon
g − 2 tension [47], although it is worth noting that those
models are already in some tension with bounds from kaon
decays. That being said, those bounds originate from
particle physics experiments where the validity of the

screened modified gravity models as effective field theories
is not guaranteed. Here we have focused on low-energy
physics only and therefore can trust the effective
description.
This result makes it clear that a reduction in the

uncertainty of muonium’s 1s − 2s transition energy by
one to two orders of magnitude could play a major role in
constraining, or ruling out, relevant screened modified
gravity theories. This would directly test the models that
seek to explain the muon anomalous magnetic moment
results. It would also test chameleon models that are
currently being investigated within the context of cosmic
voids [72].
In the future, it would also be of interest to include

couplings to other Standard Model gauge fields, most
notably the photon. This would modify the scalar field
profile that is sourced by the nucleus and would enable
spectroscopy measurements to also place bounds the
photon-scalar coupling. This is left for future work.
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