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Pulsar timing offers an independent avenue to test general relativity and alternative gravity theories.
This requires an understanding of how metric polarizations beyond the familiar transverse tensor ones
imprint as a stochastic gravitational wave background and correlate the arrival time of radio pulses from a
pair of millisecond pulsars. In this work, we focus on an isotropic stochastic gravitational wave background
and present a straightforward, self-contained formalism for obtaining the power spectrum and the overlap
reduction function, the relevant physical observable in a pulsar timing array, for generic gravitational
degrees of freedom featuring both transverse and longitudinal modes off the light cone. We additionally
highlight our consideration of finite pulsar distances, which we find significant in two ways: first, making
all the modes well defined, and second, keeping the small-scale power that is contained by pulsars of
subdegree separations in the sky. We discuss this for tensor, vector, and scalar polarizations, for each one
focusing on the angular power spectrum and the overlap reduction function for an isotropic stochastic
gravitational wave background. Our results pave the road for an efficient numerical method for examining
the gravitational wave-induced spatial correlations across millisecond pulsars in a pulsar timing array.
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I. INTRODUCTION

The ground-breaking direct discovery of gravitational
waves by the LIGO/Virgo collaborations was probably the
last decade’s most significant scientific breakthrough [1].
This has ushered in the era of gravitational wave
astronomy, opening up a novel observational window into
the Universe and letting in new independent opportunities
to test our fundamental understanding of nature. The first
few years alone have already made an outstanding impact,
telling us that the graviton cannot be heavier than 10−22

electron volts and that gravitational waves—spacetime
distortions that displace masses on its path—should practi-
cally be as fast as light in vacuum [2–4]. These observations
in the hundred- to kilohertz gravitational wave band will
soon be supported by space-based observations, relieved of
the terrestrial restrictions, that aim to probe the millihertz
frequencies [5]. The science that gravitational wave obser-
vations promises, from learning their sources to the physics
behind them, is simply astonishing and captures the interest
and imagination of both the scientific community and the
public alike.
At the same time, pulsar timing brings another piece into

the picture, providing gravitational wave observations in
the nanohertz frequency band. This is done by observing

the arrival time of radio pulses by millisecond pulsars
which should be spatially correlated due to the stochastic
gravitational wave background [6]. The targeted sources
here are phase transitions in the early universe, cosmic
strings, and supermassive binary black holes, all of which
carry information about the cosmological history [7].
Recently, pulsar timing array efforts by the North
American Nanohertz Observatory for Gravitational
Waves (NANOGrav) [8], the Parkes Pulsar Timing
Array (PPTA) [9], the European Pulsar Timing Array
(EPTA) [10], or jointly the International Pulsar Timing
Array (IPTA) which take in years of observation of about a
hundred millisecond pulsars in the sky have presented
strong evidence for a common spectrum process. This
teases an intriguing departure from the quadrupolar domi-
nated spatial correlation sourced by the transverse tensor
modes expected in general relativity [8,11–13]. Granted,
the uncertainties in the present dataset are quite large due to
the limitations in the optimal statistic analysis, but this also
advances alternative scenarios where nontensorial spatial
correlations weigh in the stochastic gravitational wave
background. Perhaps tensor modes off the light cone,
say, by a dispersive gravitational wave [14], or additional
gravitational degrees of freedom such as the ones that come
in modified gravity theories [15–19] can explain this
correlation. Unequivocally, the science we have yet to
learn about the nanohertz gravitational wave sky is rich and
exquisite [20–22].
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In this work, we study an isotropic stochastic gravita-
tional wave background, utilizing a Sachs-Wolfe line of
sight integral, in the setting of a pulsar timing array. We do
so by directly constructing the power spectrum through
which the overlap reduction function (ORF), describing the
cross-correlated power across pulsars in the sky, the main
physical observable of interest, can be obtained [23–27].
We argue this alternative to the so-called real-space
formalism [28–30] is numerically efficient for the present
dataset, requiring only the first few multipoles since each
pulsar pair has at least about a three -degree separation. We
further take into consideration finite pulsar distances and
arbitrary propagation velocities, which make all of the
metric polarizations well defined unlike their infinite
distance and luminal counterparts. To the best of our
knowledge, this is the most general setup that takes finite
pulsar distances and arbitrary velocities in the literature.
Our main results are presented in Sec. II for future data
analysis work, whereas the rest of the paper is spent on the
derivation and a discussion of the phenomenological
signatures of an isotropic stochastic gravitational wave
background in a pulsar timing array.
After the summary (Sec. II), we lay down the formalism

we follow in calculating the stochastic gravitational wave
background’s power spectrum and overlap reduction func-
tion (Sec. III). This includes a brief review of the real-space
formalism which we also use to confirm our power-
spectrum calculations. Then, we derive the power spectrum
and the overlap reduction function for tensor (Sec. IV),
vector (Sec. V), and scalar (Sec. VI) metric polarizations,
and for each one study their phenomenology. We discuss
the advantages and disadvantages of the power-spectrum
calculation and how it can be improved (Sec. VII). We
remark on several future works including possible anisot-
ropies in the stochastic gravitational wave background
(Sec. VIII). In the appendixes, we explicitly write down
the polarization tensors considered in our analysis
(Appendix A) and list identities for spherical harmonics
relevant to the calculations in the main text (Appendix B).
We also briefly review another approach to obtaining the
overlap reduction function (Appendix C) and outline some
of the well-known analytical results in the literature
(Appendix D).
We work with the mostly plus metric signature

(−, þ, þ, þ) and geometrized units c ¼ 8πG ¼ 1. Also,
we list the symbols often mentioned in this paper in Table I.

II. SUMMARY OF MAIN RESULTS

We summarize the main results of this paper intended for
future work with spatial correlation data from a pulsar
timing array.
The overlap reduction function, or rather the cross-

correlated power between pulsars in the sky, sourced by
an isotropic stochastic gravitational wave background, is
given by

γabðζÞ ¼
X
l

2lþ 1

4π
ClPlðcos ζÞ; ð1Þ

where ζ is the angle between a pulsar pair and the Cl’s are
the power-spectrum multipoles. The gravitational degrees
of freedom determine which polarizations contribute to Cl.
We write this formally as

CA
l ¼ JAl ðfDaÞJA�l ðfDbÞffiffiffi

π
p ; ð2Þ

where the superscript index A determines the mode
contributing to the gravitational wave, f is the gravitational
wave frequency, and Di is the distance to the pulsars. This
is an efficient formula in practice since only a small number
of multipoles need to be considered. To elucidate this point,
consider for example, the smallest pulsar-pair separation in
NANOGrav’s 12.5-yr dataset, which is about 3°. In this
case, even the first 60 multipoles, resolving angular
separations ζ ≳ 180°=lmax ¼ 3°, are sufficient for the
analysis.

TABLE I. Description of the common symbols appearing
throughout this paper.

Symbol Description

γabðζÞ Overlap reduction function
ζ Angular separation

γabð0Þ Overlap reduction function
at ζ ¼ 0° (“zero lag”)

γaa Autocorrelation function
l Multipole number/index
Cl Power-spectrum multipole
Da Distance to pulsar a
f Gravitational wave frequency
v Group velocity
PlðxÞ Legendre polynomial
jlðxÞ Spherical Bessel function
Ylmðk̂Þ Spherical harmonics

sYlmðk̂Þ Spin-weighted spherical harmonics
hij Gravitational wave

k⃗ ¼ kk̂ Wave vector
εij Gravitational wave polarization basis tensor
êa Unit vector from Earth to pulsar a
dij Detector tensor êi ⊗ êj

zðt; êÞ Redshift fluctuation
rðt; êÞ Pulsar timing residual
FA
a ðk̂Þ Antenna pattern for polarization A

Dl
m0mð−α;−θ;−ϕÞ Wigner D matrix

ΓðxÞ Gamma function

2F1ða; b; c; xÞ Hypergeometric function

2F̃1ða; b; c; xÞ
Regularized hypergeometric
function 2F1ða; b; c; xÞ=ΓðcÞ

2F2ða; b; c; d; xÞ Hypergeometric function

2F̃2ða; b; c; d; xÞ
Regularized hypergeometric function

2F1ða; b; c; d; xÞ=ðΓðcÞΓðdÞÞ
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We enumerate in what follows the JAl ðxÞ’s appearing in
(2) for modes propagating at a velocity v. For the tensor
polarizations, the JAl ðxÞ’s are given by

JTl ðfDÞ ¼
ffiffiffi
2

p
πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
2πfDv

0

dx
v
eix=v

jlðxÞ
x2

; ð3Þ

while for the vector polarizations these are

JVl ðfDÞ ¼ 2
ffiffiffi
2

p
πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p Z
2πfDv

0

dx
v
eix=v

d
dx

�
jlðxÞ
x

�
;

ð4Þ

where jlðxÞ is the spherical Bessel function of the first kind.
On the other hand, for the scalar transverse polarization,
this is given by

JSTl ðfDÞ ¼ 2
ffiffiffi
2

p
πil

Z
2πfDv

0

dx
v
eix=vðj00l ðxÞ þ jlðxÞÞ; ð5Þ

and for the scalar longitudinal polarization, this is

JSLl ðfDÞ ¼ −2πil
Z

2πfDv

0

dx
v
eix=vjlðxÞ: ð6Þ

The above integrals admit analytical expressions in the
infinite-distance limit (see for instance [25]). In general, for
finite pulsar distances, fDi < ∞, and subluminal velocities
v < 1, these integrals can be evaluated using computer
algebra systems such as PYTHON andMathematica, leading
to the power spectrum, and the overlap reduction function.
A simple algorithm for spatial correlation data analysis is

shown below:
(1) Select a gravitational wave mode A and provide its

velocity v and frequency f.
(2) Calculate the power spectrum (2) given the set of

pulsar distances Di.
(3) Calculate the overlap reduction function γAabðζÞ

using (1).
(4) Obtain the normalized overlap reduction function

ΓA
abðζÞ ¼ 0.5 × γAabðζÞ=γHDab ð0Þ where γHDab ð0Þ ¼

γTabðζ ¼ 0°ÞjfD→∞;v→1.
(5) Compare the curve A2

GWΓA
abðζÞ with the observed

½A2
GWΓA

abðζÞ�PTA from pulsar timing array, where
AGW is the characteristic gravitational wave strain.

These steps are easy to implement and, as we advocate for
the current dataset, require only about 60 multipoles,
making the computation very fast [22]. We mention that
the normalization (step 4) is an aesthetic choice. Overlap
reduction functions used for data analysis are normalized
relative to the traditional Hellings-Downs curve as ΓA

abð0Þ,
such that ΓHD

ab ð0Þ ¼ 0.5. We put all these steps together
with a calculation of the variances of the ORF [31] in a
PYTHON code “PTAfast” [32].

We spend the bulk of this paper deriving the above
equations in detail and studying their phenomenology in a
pulsar timing array. We emphasize that this was not the first
time the power-spectrum approach was marketed for pulsar
timing array analysis (see [23–26]). Instead we present the
most general output from this, keeping the pulsars at finite
distances throughout and the propagationvelocities arbitrary.
Our derivation is in addition self-contained and arguably
pedagogical, requiring only a few textbook material on
spherical harmonics and Bessel functions [33,34].

III. PULSAR TIMING OBSERVABLES

We briefly discuss the pulsar timing residual and overlap
reduction function [26,28].

A. Pulsar timing and gravitational waves

We consider a gravitational wave propagating along the
k̂ direction in a mixture of various polarizations A. In this
context, for concreteness, “polarization” means the various
independent ways a gravitational wave displaces masses on
its path—scalar transverse, scalar longitudinal, transverse
vector, and transverse-traceless ðþ;×Þ tensor modes—that
is induced by the propagating degrees of freedom. In
symbols, we represent this as a typical plane-wave super-
position,

hijðη; x⃗Þ ¼
X
A

Z
∞

−∞
df

Z
S2
dk̂hAðf; k̂ÞεAije−2πifðη−vk̂·x⃗Þ; ð7Þ

where εAij are basis polarization tensors (Appendix A) and
v ¼ dω=dk is the group velocity.
Now, the main observable in a pulsar timing experiment

is the timing residual rðtÞ. Our goal is to single out the
influence of a gravitational wave on this observable. We
proceed to do this through the power spectrum.
To start, in terms of the redshift space fluctuation zðtÞ,

we write down the timing residual as

rðtÞ ¼
Z

t

0

dt0 zðt0Þ; ð8Þ

where t is the duration of an observation. For a passing
gravitational wave hijðη; x⃗Þ, the redshift fluctuation con-
sidering a photon emitted at time ηe and received by the
detector at time ηr is given by

zðt0; êÞ ¼ −
1

2

Z
t0þηr

t0þηe

dηdij∂ηhijðη; x⃗Þ; ð9Þ

where dij ¼ êi ⊗ êj is the detector tensor with ê being a
unit vector pointing toward the pulsar from Earth, in other
words, the projections along the pulsar’s line of sight.
Substituting the gravitational wave (7), we have
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rðt; êÞ¼
Z

t

0

dt0ðt; êÞ
Z

t0þηr

t0þηe

dηdij
X
A

Z
∞

−∞
df

×
Z
S2
dk̂hAðf; k̂ÞεAijðk̂Þð−2πifÞe−2πifðη−vk̂·x⃗Þ: ð10Þ

We move forward by expanding the plane wave in terms of
spherical harmonics, YlmðêÞ,

e2πifvk̂·x⃗ ¼ 4π
X
lm

iljlð2πfvjx⃗jÞY�
lmðk̂ÞYlmðêÞ; ð11Þ

such that

rðt; êÞ ¼
Z

t

0

dt0
�
−
1

2

�Z
t0þηr

t0þηe

dη dij
X
A

Z
∞

−∞
df

Z
S2
dk̂

× hAðf; k̂ÞεAijðk̂Þð−2πifÞe−2πifη4π
×
X
lm

iljlð2πfvðt0 þ ηr − ηÞÞY�
lmðk̂ÞYlmðêÞ; ð12Þ

where x⃗ ¼ jx⃗jê ¼ ðt0 þ ηr − ηÞê is the position vector to
the pulsar at time t0 and jlðxÞ is the spherical Bessel
function of the first kind. We consider the following
integral identities to simplify this:

Z
t

0

dt0
Z

t0þηr

t0þηe

dη0 e−2πifη0Wðt0 þ ηr − η0Þ

¼
�
1 − e−2πift

2πif

�Z
ηr

ηe

dη e−2πifηWðηr − ηÞ ð13Þ

and

Z
ηr

ηe

dηe−2πifηjlð2πfvðηr − ηÞÞ

¼
�
e−2πifηr

2πfv

�Z
2πfDv

0

dx eix=vjlðxÞ: ð14Þ

These can be proven by a dummy variable change. The
timing residual simplifies to

rðt; êÞ ¼ 2π
X
A

Z
∞

−∞
df

Z
S2
dk̂ð1 − e−2πiftÞ

�
e−2πifηr

2πf

�

× hAðf; k̂Þ
Z

2πfDv

0

dx
v
eix=v½dijεAij�

×
X
lm

iljlðxÞY�
lmðk̂ÞYlmðêÞ: ð15Þ

We proceed to use this to calculate the timing residual
power spectrum and the overlap reduction function.

B. Timing residual power spectrum and overlap
reduction function

We expand the timing residual in spherical harmonics,

rðt; êÞ ¼
X
l;m

almYlmðêÞ: ð16Þ

Following the previous calculation, in the presence of a
stochastic gravitational wave background comprising a set
of polarizations A, it can be shown that the two-point
function is given by

hrðta; êaÞrðtb; êbÞi
¼

X
l1;m1

X
l2;m2

hal1m1
a�l2m2

iYl1m1
ðêaÞY�

l2m2
ðêbÞ; ð17Þ

where

hal1m1
a�l2m2

i ¼
Z

∞

−∞

df
ð2πfÞ2 ð1 − e−2πiftaÞð1 − e2πiftbÞ

×
X
A1;A2

Z
S2
dk̂ PA1A2

ðf; k̂ÞJA1

l1m1
ðfDa; k̂Þ

× JA2�
l2m2

ðfDb; k̂Þ ð18Þ
and

JAlmðfD; k̂Þ ¼
Z

2πfDv

0

dx
v
eix=v

X
LM

2πiLY�
LMðk̂ÞjLðxÞ

×
Z
S2
dê dijεAijðk̂ÞYLMðêÞY�

lmðêÞ: ð19Þ

In (18) and (19), we remind that dij ¼ êi ⊗ êj is the
detector tensor, εAijðk̂Þ is the polarization basis tensor of a

metric polarization A propagating toward k̂, and PA1A2
ðf; k̂Þ

is the frequency-space amplitude of the gravitational wave
two-point function, i.e.,

hhAðf; k̂Þh�Bðf0; k̂0Þi ¼ δðf − f0Þδðk̂ − k̂0ÞPABðf; k̂Þ: ð20Þ
Focusing on an isotropic stochastic gravitational wave

background, such that PAB ¼ δABPAAðfÞ, which is not
directional dependence, the overlap reduction function
measuring the angular correlation between pulsar pairs
in harmonic space can be shown to be1

γAabðζ; fDiÞ ¼
X
l1;m1

X
l2;m2

Yl1m1
ðêaÞY�

l2m2
ðêbÞ

×
Z
S2
dk̂ Y00ðk̂ÞJAl1m1

ðfDa; k̂ÞJA�l2m2
ðfDb; k̂Þ;

ð21Þ

1The anisotropic case can be tackled by the replacement
Y00ðk̂Þ → Ylmðk̂Þ in the integral. We shall discuss this elsewhere.
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where ζ is the angular separation between the pulsars, i.e.,
êa · êb ¼ cos ζ, and Y00ðk̂Þ ¼ 1=

ffiffiffiffiffiffi
4π

p
. This is the physical

observable we intend to calculate throughout this work.

C. Real-space formalism

It is useful to confirm that our calculations agree with the
real-space formalism [21,28]. In this direction, starting with
the gravitational wave (7) and the redshift fluctuation (9),
but this time evaluating the time integrals explicitly, we find
the pulsar timing residual to be

rðt; êÞ ¼ 1

4π

X
A

Z
∞

−∞

df
f

Z
S2
dk̂ ð1− e−2πiftÞe−2πifηrhAðf; k̂Þ

× dijεAijðk̂Þ½1− e2πifDð1þvk̂·êÞ�
�

i

1þ vk̂ · ê

�
: ð22Þ

The first term in the square brackets is referred to as the
“Earth” term whereas the second one is the “pulsar” term,
which becomes a highly oscillatory function in k̂.
Nonetheless, for the angular scales relevant in current
observations, the pulsar term may be safely neglected
for simplicity. Even so, we always keep the pulsar term
in the formalism.
We calculate the two-point function, following [21], for

an isotropic stochastic gravitational wave background,

hrðta; êaÞrðtb; êbÞi ¼
X
A

Z
∞

−∞
df ð1 − e−2πiftaÞð1 − e2πiftbÞ

×
PAAðfÞ
2π3=2f2

× γAabðζ; fDiÞ; ð23Þ

from which we identify the overlap reduction function
to be

γAabðζ;fDiÞ¼
Z
S2

dk̂ffiffiffiffiffiffi
4π

p UaðfDa;k̂ÞU�
bðfDb;k̂ÞFA

aðk̂ÞFA�
b ðk̂Þ;

ð24Þ

where

FA
aðk̂Þ ¼

dij · εAijðk̂Þ
2ð1þ vk̂ · êaÞ

ð25Þ

and

UaðfDa; k̂Þ ¼ 1 − e2πifDað1þvk̂·êaÞ: ð26Þ

The quantity FA
aðk̂Þ are the so-called antenna pattern

functions. The quantity HðfÞ ∼ PAAðfÞ is the one-sided
power-spectral density of the gravitational wave back-
ground [21,28], and is related to the fractional energy
density ΩGWðfÞ via HðfÞ¼ð3H2

0=ð2π2ÞÞ×ðΩGWðfÞ=f3Þ,

where H0 is the Hubble constant and ΩGWðfÞ ¼
ðdρGW=d lnðfÞÞ=ρc for the critical energy density ρc and
gravitational wave energy density ρGW.
We utilize the real-space formalism to confirm the

power-spectrum calculations particularly for the autocor-
relation function γAaa. This physical quantity takes in the
small-scale power encoded in the stochastic gravitational
wave background, and so must involve at least a few
thousand multipoles. By this standard, it is an incredible
assessment tool for the power-spectrum calculation. Our
computations are presented in Table II for fD ¼ 100 or
D ∼ 30 parsecs, showing the agreement between the
canonical real-space formalism and the power-spectrum
method. It is worth noting that at nonrelativistic speeds the
low multipoles (l≲ 100) are enough to calculate the small-
scale gravitational wave power for each metric polarization.
In Appendix C, we present an alternative real-space

formalism that is also often considered in the literature but
which starts with an explicit decomposition of the redshift
fluctuation into Earth and pulsar terms. It can be confirmed
that this leads to the same overlap reduction function, apart
from an overall factor.

IV. TENSOR POLARIZATIONS

We derive the power spectra and overlap reduction
functions for the tensor polarizations and discuss their
phenomenology.

A. Calculation of Jlm
We follow [26]. For convenience, we simply point the k̂

direction to the ẑ direction and take the magnitude to
proceed.

TABLE II. Autocorrelation γaa calculated using the power
spectrum (l ≤ lmax) and the RSF with fD ¼ 100. The modes
T, V, ST, and SL stand for “tensor,” “vector,” “scalar transverse,”
and “scalar longitudinal,” respectively. teval are the corresponding
numerical evaluation times (in seconds) in a 12th Gen Intel Core
i7-12700, 2100-Mhz Processor computer.

Mode v γl≤30aa teval (s) γl≤1000aa teval (s) γRSFaa teval (s)

T 0.99 1.08 0.26 2.17 46 2.17 0.03
0.50 0.53 0.81 1.06 11 1.06 0.01
0.01 0.97 0.30 0.97 1.0 0.97 10−3

V 0.99 7.92 1.4 15.7 15 15.7 0.03
0.50 0.67 0.80 1.34 6.5 1.34 0.01
0.01 1.20 0.33 1.20 0.83 1.20 10−3

ST 0.99 1.08 3.9 2.17 59 2.17 0.02
0.50 0.53 2.2 1.06 20 1.06 0.01
0.01 0.97 1.1 0.97 2.1 0.97 10−3

SL 0.99 81.8 3.3 151 45 151 0.03
0.50 0.65 2.3 1.26 15 1.26 0.01
0.01 0.40 0.80 0.40 1.6 0.40 10−3
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We make use of the right- and left-handed complex
circular polarization basis tensors:

εR ¼ εþ þ iε×ffiffiffi
2

p and εL ¼ εþ − iε×ffiffiffi
2

p : ð27Þ

The contraction of the detector tensor with the basis tensors
gives

dijεR;Lij ¼
ffiffiffiffiffiffiffiffi
16π

15

r
Y2�2ðêÞ; ð28Þ

where the helicity R (L) takes on m ¼ þ2 (−2).
Substituting this into (19), and noting that

YLMðk̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

4π

r
δM0 ð29Þ

since k̂ ¼ ẑ, we obtain

JR;Llm ðfD; k̂Þ ¼
Z

2πfDv

0

dx
v
eix=v

X
L

4πiL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

15

r
jLðxÞ

×
Z
S2
dê Y2�2ðêÞYL0ðêÞY�

lmðêÞ: ð30Þ

The triple spherical harmonics integral (Appendix B)
vanishes unless m ¼ �2 and L ¼ l − 2, l, lþ 2. The
nonvanishing integrals are

Z
S2
dê Y2�2ðêÞYðl−2Þ0ðêÞY�

l�2ðêÞ

¼
ffiffiffiffiffiffiffiffi
15

32π

r � ðl − 1Þlðlþ 1Þðlþ 2Þ
ð2l − 3Þð2l − 1Þ2ð2lþ 1Þ

�
1=2

; ð31Þ

Z
S2
dê Y2�2ðêÞYl0ðêÞY�

l�2ðêÞ

¼ −
ffiffiffiffiffiffi
15

8π

r �ðl − 1Þlðlþ 1Þðlþ 2Þ
ð2l − 1Þ2ð2lþ 3Þ3

�
1=2

; ð32Þ

Z
S2
dê Y2�2ðêÞYðlþ2Þ0ðêÞY�

l�2ðêÞ

¼
ffiffiffiffiffiffiffiffi
15

32π

r � ðl − 1Þlðlþ 1Þðlþ 2Þ
ð2lþ 1Þð2lþ 3Þ2ð2lþ 5Þ

�
1=2

: ð33Þ

Subsituting into the last expression, we obtain

JR;Llm ðfD; ẑÞ ¼ −δm�22πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

8π

ðlþ 2Þ!
ðl − 2Þ!

s Z
2πfDv

0

dx
v
eix=v

×

�
jl−2ðxÞ

ð2l − 1Þð2lþ 1Þ þ
2jlðxÞ

ð2l − 1Þð2lþ 3Þ

þ jlþ2ðxÞ
ð2lþ 1Þð2lþ 3Þ

�
: ð34Þ

Then, through the recursion relation,

jlðxÞ
x

¼ jl−1ðxÞ þ jlþ1ðxÞ
2lþ 1

; ð35Þ

we are able to compactify the last expression to

JR;Llm ðfD;ẑÞ

¼−δm�2

ffiffiffiffiffiffiffiffiffiffiffi
2lþ1

4π

r � ffiffiffi
2

p
πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ2Þ!
ðl−2Þ!

s Z
2πfDv

0

dx
v
eix=v

jlðxÞ
x2

�
:

ð36Þ

We note that the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þ=4πp

corresponds to an
arbitrary rotational degree of freedom. The magnitude we
are interested in for an isotropic stochastic gravitational
wave background is thus the one enclosed in the paren-
theses in the above result.
To generalize the result, we merely rotate the ẑ axis into

the k̂ ¼ ðθ;ϕÞ direction. This way, we obtain

JAlmðfD; k̂Þ ¼
X
m0

Dl�
m0mð−α;−θ;−ϕÞJAlm0 ðfD; ẑÞ; ð37Þ

where Dl
m0mð−α;−θ;−ϕÞ is the Wigner-D matrix given by

Dl
m0mð−α;−θ;−ϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
−m0Ylmðθ;ϕÞeim

0α: ð38Þ

Above, sYlmðêÞ is a spin-weighted spherical harmonic
(Appendix B). Rotating the ẑ to an arbitrary direction k̂,
we obtain

JR;Llm ðfD; k̂Þ
¼ −∓2Y

�
lmðk̂Þe∓2iα

×

� ffiffiffi
2

p
πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
2πfDv

0

dx
v
eix=v

jlðxÞ
x2

�
; ð39Þ

where the upper (lower) signs belong to R (L). We remind
that the factor eim

0α is a redundant phase owing to a
remaining rotational degree of freedom about the k̂ axis.
It does not enter the observables we are interested in.
In the infinite-distance limit, we may confirm that the

integral admits an analytical expression:
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Z
∞

0

dx
v
eix=v

jlðxÞ
x2

¼ i
ffiffiffi
π

p
2−ðlþ1ÞðivÞl−2Γðl − 1Þ

× 2F̃1

�
l − 1

2
;
l
2
; lþ 3

2
; v2

�
; ð40Þ

where 2F̃1ða; b; c; xÞ ¼ 2F1ða; b; c; xÞ=ΓðcÞ is a regular-
ized hypergeometric function. With v ¼ 1, this simplifies
further to

Z
∞

0

dx eix
jlðxÞ
x2

¼ 2il−1
ðl − 2Þ!
ðlþ 2Þ! ; ð41Þ

which can be used to get to the Hellings-Downs correlation.

B. ORF and power spectra

Inserting the result into (21), using the spherical har-
monics addition theorem

Plðêa · êbÞ ¼
4π

2lþ 1

X
m

YlmðêaÞY�
lmðêbÞ; ð42Þ

and adding the contributions of the right- and left-handed
helicity contributions, we obtain the overlap reduction
function:

γabðζ; fDiÞ ¼
X
l

2lþ 1

4π
ClPlðcos ζÞ; ð43Þ

where êa · êb ¼ cos ζ, and the tensor power-spectrum
multipoles are given by

CT
l ¼ JTl ðfDaÞJT�l ðfDbÞffiffiffi

π
p ; ð44Þ

with

JTl ðfDÞ ¼
ffiffiffi
2

p
πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
2πfDv

0

dx
v
eix=v

jlðxÞ
x2

: ð45Þ

For luminal tensor degrees of freedom (v ¼ 1) and large
pulsar distances, fDa;b ≫ 1, this reduces to the Hellings-
Downs power spectrum, that is,

CT
l ∼

8π3=2

ðlþ 2Þðlþ 1Þlðl − 1Þ : ð46Þ

We check the power-spectrum calculation compared
with the real-space formalism through the autocorrelation
function. This requires the antenna pattern functions for the
tensor þ and × modes, which are given by

Fþ
a ðk̂ ¼ ðθ;ϕÞÞ ¼ cosð2ϕÞsin2θ

2ð1þ v cos θÞ ð47Þ

and

F×
a ðk̂ ¼ ðθ;ϕÞÞ ¼ sinð2ϕÞsin2θ

2ð1þ v cos θÞ : ð48Þ

The tensor autocorrelation is then given by the integral

γTaa ¼
Z

π

0

dθffiffiffiffiffiffi
4π

p
�
2πsin5θsin2ðπfDð1þ v cos θÞÞ

ð1þ v cos θÞ2
�
: ð49Þ

C. Phenomenology

We view the power-spectrum multipoles and the ORF for
various velocities and pulsar distances in Fig. 1. This is
displayed together with the Hellings-Downs correlation
(v ¼ 1 and fD → ∞) for reference.
In the near-luminal (v ∼ 1) tensor case [Figs. 1(a) and

1(b)], we reflect the small angle modifications highlighted
in [26,27] when finite pulsar distances are considered. The
trend is, instead of continuously dropping as l increases, the
multipoles Cl for finite fD feature a slight growth about
some l ∼ 30–50, corresponding to an angular resolution of
about θ ∼ 3.6°–6°. Also, notably, the further the pulsars are,
the higher l becomes to exhibit this partial sustenance. The
difference is inconceivable as can be seen in the overlap
reduction function where it is only the Hellings-Downs
curve (v ¼ 1) that is visually distinguishable from the v ¼
0.99 cases. This could be of course expected as the power
spectra in all cases are dominated by the quadrupole.
This canonical picture gradually changes as the modes

go further away from the light cone. At half the speed of
light [Figs. 1(c) and 1(d)], it can be seen that the finite-
distance modification approaches much larger scales, now
with l ∼ 10–20 being the multipole number where the Cl’s
sustain itself. In both the finite and infinite-distance case, it
is most noteworthy that the spectrum becomes almost
completely dominated by the quadrupole at this velocity.
This manifests as an enhanced difference between the
v ¼ 1=2-ORF and the Hellings-Downs curve, although
the finite-distance cases remain indistinguishable from the
infinite-distance limit. This no longer holds for extreme
subluminal, nonrelativistic, modes [Figs. 1(e) and 1(f)]. In
this limit, the infinite-distance case can practically be
considered a pure quadrupole. On the other hand, the
finite-distance cases showcase an increase at low l up to
some maximum power that is competitive to the quadru-
pole, giving a nonquadrupolar dominated power spectrum,
quite like the Hellings-Downs curve but exhibiting angular
oscillations beginning at the peak l > 2. As the peak of the
power spectrum depends on the distance, the overlap
reduction function also becomes distinguishable by shape,
depending on the distance. This clearly manifests in the
overlap reduction function at this extreme subluminal
velocity.
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Understandably, current gravitational wave astronomy
constraints in the ∼100-Hz band indicate that the tensor
degrees of freedom propagate on the light cone, with very
little wiggle room for uncertainty. This may change in a

different frequency band, as is allowed in effective-field
theory. However, even if it does not, we can be conservative
and take the tensor modes to just be on the light cone in
all frequencies, and find the analogous modifications

FIG. 1. Isotropic power-spectra multipoles Cl and the overlap reduction functions γabðζ; fDÞ of the tensor polarizations with group
velocities v ¼ 99=100, v ¼ 1=2, and v ¼ 1=100. The overlap reduction functions were constructed with only the first 60 multipoles.
The Hellings-Down correlation (HD) is shown in all plots for reference, where CHD

2 ¼ 1.86 and the HD correlation at zero lag
γHDab ð0Þ ¼ 1.18. The autocorrelation γaa’s are computed from (49).
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for nontensor polarizations that could hint at modified
gravity.
We interpret the enhanced small angle correlation due to

the finite distance as the pulsars’ perhaps interacting by
some physical mechanism. Of course, such would not be
the case in the infinite-distance limit, since the pulsars
would be too far apart regardless of the size of their angular
separation in the sky. This is also exhibited by the vector
and scalar polarizations, as we are about to see.

V. VECTOR POLARIZATIONS

We derive the power spectra and the overlap reduction
functions for the vector polarizations and discuss their
phenomenology.

A. Calculation of Jlm
We simplify the calculation considerably by pointing the

gravitational wave to the ẑ direction and taking the

magnitude of the result. This is sufficient for an isotropic
stochastic gravitational wave background analysis.
As with the tensor polarizations, we rely on right- and

left-handed helicity basis tensors,

εVR ¼ εx þ iεyffiffiffi
2

p and εVL ¼ εx − iεyffiffiffi
2

p ; ð50Þ

to derive the transverse vector power spectrum. The
contraction of the detector tensor with the basis tensors
gives

dijεVR;VLij ¼ ∓
ffiffiffiffiffiffiffiffi
16π

15

r
Y2�1ðêÞ; ð51Þ

where the upper (lower) signs belong to VR (VL). The
relevant spherical harmonics integrals are

Z
dê Y21ðêÞYL0ðêÞYlmðêÞ ¼

ffiffiffiffiffiffi
15

2π

r
ð−lþ Lþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þð2lþ 1Þð2Lþ 1Þp ð−ðl − 1Þðlþ 2Þ þ L2 þ LÞ
ð−lþ L − 2Þðlþ L − 1Þðlþ Lþ 1Þðlþ Lþ 3Þðl − LÞ!ð−lþ Lþ 2Þ! ; ð52Þ

which holds for m ¼ −1; l ≥ 1; l − 2 ≤ L ≤ lþ 2 and Lþ l ≥ 2 andZ
dê Y2−1ðêÞYL0ðêÞYlmðêÞ ¼ ð−1ÞLþl

Z
dê Y21ðêÞYL0ðêÞYlmðêÞ; ð53Þ

which holds form ¼ 1, l ≥ 1, l − 2 ≤ L ≤ lþ 2 and Lþ l ≥ 2. Since Lþ l is even, the two integrals become equal except
with m ¼ ∓1. We write this compactly as

Z
dêY2�1ðêÞYL0ðêÞYlmðêÞ¼δm∓1

�
δl1δL1

�
−

ffiffiffiffiffiffiffiffi
3

20π

r �
þδl1δL3

ffiffiffiffiffiffiffiffiffiffi
9

140π

r

þΘðl−2Þ
�
δLðl−2Þ

�
−

ffiffiffiffiffiffi
15

2π

r
ðl−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð4l3−7l−3Þ

p
2ð2l−3Þð2l−1Þð2lþ1Þ

�
þδLl

�
−

ffiffiffiffiffiffi
15

2π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þð2lþ1Þ2

p
2ð2l−1Þð2lþ1Þð2lþ3Þ

�

þδLðlþ2Þ

� ffiffiffiffiffiffi
15

2π

r
lðlþ1Þðlþ2Þ

2ð2lþ3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þð2lþ1Þð2lþ5Þp ���

; ð54Þ

where ΘðxÞ is the step function. Substituting this into (19), we get to

JVR;VLlm ðfD; ẑÞ ¼
Z

2πfDv

0

dx
v
eix=v

X
LM

2πiLY�
LMðk̂ÞjLðxÞ

Z
S2
dê ðdijεVR;VLij ðk̂ÞÞYLMðêÞY�

lmðêÞ

¼ ∓
ffiffiffiffiffiffiffiffi
16π

15

r Z
2πfDv

0

dx
v
eix=v

X
L

2πiL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

4π

r
jLðxÞ

Z
S2
dê Y2�1ðêÞYL0ðêÞY�

lmðêÞ

¼ ∓
ffiffiffiffiffiffiffiffi
16π

15

r Z
2πfDv

0

dx
v
eix=vδm�1

�
−δl1

3i

2
ffiffiffi
5

p ðj1ðxÞ þ j3ðxÞÞ

þ Θðl − 2Þ
ffiffiffiffiffi
15

2

r
il

2

�ðl − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þð2lþ 1Þp

jl−2ðxÞ
4l2 − 1

−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þð2lþ 1Þp

jlðxÞ
8lðlþ 1Þ − 6

−
2ðlþ 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þð2lþ 1Þp
jlþ2ðxÞ

8lðlþ 2Þ þ 6

��
: ð55Þ
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The last expression simplifies to

JVR;VLlm ðfD; ẑÞ ¼ ∓
ffiffiffiffiffiffiffiffi
16π

15

r
δm�1

�
−δl1

3i

2
ffiffiffi
5

p
Z

2πfDv

0

dx
v
eix=vðj1ðxÞ þ j3ðxÞÞ

þ Θðl − 2Þ
ffiffiffiffiffi
15

2

r
il

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þð2lþ 1Þ

p Z
2πfDv

0

dx
v

eix=v
d
dx

�
jlðxÞ
x

��
: ð56Þ

Now, the l ¼ 1 piece above can be continued to give the same expression as the l ≥ 2 pieces. We therefore have

JVR;VLðl≥1ÞmðfD; ẑÞ ¼ ∓δm�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r �
2

ffiffiffi
2

p
πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p Z
2πfDv

0

dx
v
eix=v

d
dx

�
jlðxÞ
x

��
: ð57Þ

We take the magnitude above aside from the rotation factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þ=4πp

to compute the overlap reduction function of an
isotropic gravitational wave background.
We rotate the ẑ direction to an arbitrary k̂. This leads to

JVR;VLðl≥1ÞmðfD; k̂Þ ¼ ∓∓1Y
�
lmðk̂Þe∓iα

�
2

ffiffiffi
2

p
πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p Z
2πfDv

0

dx
v

eix=v
d
dx

�
jlðxÞ
x

��
: ð58Þ

By integration by parts, it is useful to note that the integral can be written as

Z
2πfDv

0

dx
v

eix=v
d
dx

�
jlðxÞ
x

�
¼ −

i
v

Z
2πfDv

0

dx
v

eix=v
jlðxÞ
x

þ e2πifD

v
jlð2πfDvÞ
2πfDv

−
ffiffiffi
π

p
2−ðlþ1Þ

vΓðlþ ð3=2ÞÞ ϵ
l−1

���
ϵ→0þ

: ð59Þ

The phase factor e�iα corresponds to an arbitrary rotational
degree of freedom along the k̂ direction. This drops out in
the physical observables of interest in this work. We also
give attention to the boundary terms (second and third
terms in the right-hand side) in (59). The first one comes
from the finite-distance modification, as it is clear this
vanishes when fD→∞. The second one vanishes for l > 1
but reduces to a constant (∼1=v) for the dipole l ¼ 1.
We note that the integral admits an analytical expression

for the infinite-distance case:

Z
∞

0

dx
v

eix=v
jlðxÞ
x

¼ ffiffiffi
π

p
2−ðlþ1Þilvl−1ΓðlÞ

× 2F̃1

�
l
2
;
lþ 1

2
; lþ 3

2
; v2

�
: ð60Þ

In the luminal limit, this further simplifies to

Z
∞

0

dx eix
jlðxÞ
x

¼ il
ðl − 1Þ!
ðlþ 1Þ! ; ð61Þ

which can be used to derive the analogous Hellings-Downs
correlation (v ¼ 1 and fD → ∞) for the vector modes.

B. ORF and power spectra

Inserting the result to (21), using the addition theorem,
and taking in the contributions from the left- and
right-handed helicity vector polarizations, we obtain the

overlap reduction function for a vector sourced isotropic
stochastic gravitational wave background:

γabðζ; fDiÞ ¼
X
l

2lþ 1

4π
ClPlðcos ζÞ; ð62Þ

where the vector power spectrum is

CV
l ¼ JVl ðfDaÞJV�l ðfDbÞffiffiffi

π
p ; ð63Þ

with the function JVl ðfDÞ given by

JVl ðfDÞ ¼ 2
ffiffiffi
2

p
πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p Z
2πfDv

0

dx
v

eix=v
d
dx

�
jlðxÞ
x

�
:

ð64Þ

As with the tensor, we validate the power-spectrum
calculation by comparing it with the realspace formalism
through the calculation of the autocorrelation function. The
antenna pattern functions for the vector x and y modes are

Fx
aðk̂ ¼ ðθ;ϕÞÞ ¼ sinð2θÞ cosϕ

2ð1þ v cos θÞ ð65Þ

and
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Fy
aðk̂ ¼ ðθ;ϕÞÞ ¼ sinð2θÞ sinϕ

2ð1þ v cos θÞ : ð66Þ

The vector autocorrelation reduces to the integral

γVaa ¼
Z

π

0

dθffiffiffiffiffiffi
4π

p
�
8πsin3θcos2θsin2ðπfDð1þ v cos θÞÞ

ð1þ v cos θÞ2
�
:

ð67Þ

C. Phenomenology

Figure 2 presents the power spectra multipoles and the
corresponding ORFs for vector polarizations of various
velocities and distances.
For the near-luminal vector [Figs. 2(a) and 2(b)], it can

be seen that throughout the vector power spectrum drops
differently compared with the Hellings-Downs correlation.
It is noteworthy that the dipolar power is also suppressed
compared to the quadrupole and the succeeding multipoles
such as the octupole and so on, regardless of the pulsars’
distances. This shows up as a difference in the ORF at
large angles for the vector-induced correlation compared
with the Hellings-Downs curve. As with the tensor
modes, the power spectrum starts to sustain itself at some
l ∼ 30–50, corresponding to an angular resolution 3.6°–6°.
However, this difference is realizable only at small angles,
irrelevant for the current pulsar timing array data, which
reflect as the indistinguishability of the ORFs for various
pulsar distances and the infinite-distance limit. We realize
an angular dependence due to the pulsar distance to be
more pronounced for subluminal velocities.
At half the speed of light [Figs. 2(c) and 2(d)], we find that

the dipole becomes more relevant, but still suppressed
compared to the quadrupole and the octupole. This is
reflected in the power spectrum and the ORF, which appears
to be shaped more like the Hellings-Downs curve compared
with the luminal vector case. The difference can be attributed
due to the quadrupole, being too dominant in the vector
power spectrum. This time, the multipole number at which
higher modes start to sustain themselves becomes lower,
l ∼ 5–10, making the small angle departure more realizable
provided sufficient sensitivity. Yet, as the power drop per
multipole becomes steeper for subluminal velocity, it
remains to distinguish between the finite and infinite pulsar
distance cases. This picture drastically changes for the
nonrelativistic vector [Figs. 2(e) and 2(f)], where low multi-
poles other than the dipole and the quadrupole contribute
significantly to the power spectrum. In particular, in Fig. 2(f),
the ORF for the vector with fD ¼ 100 becomes strikingly
similar to theHellings-Downs curve,while for thefD ¼ 500
and infinite-distance cases, it is not. This can also be realized
in the vector power-spectrum multipoles for fD ¼ 100
where it can be seen that the dipole is suppressed at this
extreme subluminal velocity while the low multipoles
beginning with the quadrupole and the octupole follow
the trend of the Hellings-Downs correlation. The picture

changes further for more distant pulsars, at fD ¼ 500, in
which case the higher multipoles l ∼ 20–30 can be seen to
even be as significant as the quadrupole. This changes the
shape of the vector ORF at all angles while still being
dominated by the quadrupole, as it manifests visually.
The above results tease a degeneracy in the tensor and

vector degrees of freedom, particularly with the luminal
tensor and nonrelativistic vector, in the ORF and the present
dataset. Nonetheless, this can be settled by resolving small
angular separations, which may be realizable in upcoming
pulsar timing array missions.

VI. SCALAR POLARIZATIONS

We derive the power spectra and the overlap reduction
functions for the scalar polarizations and study their
phenomenology.

A. Calculation of Jlm
As we did with the tensor and vector cases, to calculate

the overlap reduction function for an isotropic gravitational
wave background, we simply choose k̂ ¼ ẑ direction and
pick up the magnitude to take in (21).
The contraction dijεij of the detector tensor and the

polarization basis for the scalar transverse and scalar
longitudinal modes becomes

dijεSTij ¼ sin2 θ ð68Þ
and

dijεSLij ¼
ffiffiffi
2

p
cos2 θ: ð69Þ

Since these appear in (19) together with two more spherical
harmonics YlmðêÞ in an integral, it is useful to express the
above contractions as a spherical harmonic series:

dijεSTij ¼ 4
ffiffiffi
π

p
3

Y00ðêÞ −
4

3

ffiffiffi
π

5

r
Y20ðêÞ ð70Þ

and

dijεSLij ¼
ffiffiffi
2

p �
2

ffiffiffi
π

p
3

Y00ðêÞ þ
4

3

ffiffiffi
π

5

r
Y20ðêÞ

�
: ð71Þ

We perform the summation and integration in (19) for each
of the scalar polarizations. After simplification, a rotation is
then acted on the result to generalize it to a gravitational
wave propagating in an arbitrary direction k̂.
We start with the scalar transverse polarization. The only

term which survives the sum over L, M in (19) is M ¼ 0.
Consequently, the three spherical harmonics integrals we
need are Z

dê Y00ðêÞYL0ðêÞYlmðêÞ ¼
δm0δlLffiffiffiffiffiffi

4π
p ð72Þ
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and

Z
dê Y20ðêÞYL0ðêÞYlmðêÞ ¼

δm0

2

ffiffiffi
5

π

r
ðL − lþ 1Þ2ðLþ lÞðLþ lþ 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Lþ 1Þð2lþ 1Þp

Γð−Lþ lþ 3Þ
ð−Lþ lþ 2Þ2ðLþ l − 1ÞðLþ lþ 1ÞðLþ lþ 3ÞΓðl − Lþ 1Þ2ΓðL − lþ 3Þ ; ð73Þ

FIG. 2. Isotropic power-spectra multipoles Cl and the overlap reduction functions γabðζ; fDÞ of the vector polarizations with group
velocities v ¼ 99=100, v ¼ 1=2, and v ¼ 1=100. The overlap reduction functions were constructed with only the first 60 multipoles.
The autocorrelation γaa’s are computed from (67).
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where (73) holds provided l − 2 ≤ L ≤ lþ 2 and
Lþ l ≥ 2; otherwise, it is zero. Now, in performing the
sum over L, we note that l1 þ l2 þ l3 in the Wigner-3j
symbol must be an even integer for our purposes since
m1 ¼ m2 ¼ 0 (thus consequently setting up m3 ¼ 0). This
leaves three terms corresponding to L ¼ l − 2, l, lþ 2.

Also, from the L ¼ lþ 2 contribution, we may pull out
l ¼ 0, 1 terms. Likewise, from the L ¼ l contribution, we
may pull out l ¼ 1. In this way, we can add the terms for
l ≥ 2 coming from all L ¼ l − 2, l, lþ 2 terms. This way,
we are able to write down the last integral as

Z
dêY20ðêÞYL0ðêÞYlmðêÞ ¼

8>>>>><
>>>>>:

3δm0

4

ffiffi
5
π

q
ðl−1Þlffiffiffiffiffiffiffi

2l−3
p ð2l−1Þ ffiffiffiffiffiffiffiffi

2lþ1
p ; L¼ l− 2; l≥ 2

δm0

ffiffi
5
π

q
lðlþ1Þ

2ð2l−1Þð2lþ3Þ ; L¼ l; l≥ 1

3δm0

4

ffiffi
5
π

q
ðlþ1Þðlþ2Þ

ð2lþ3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þð2lþ5Þ

p ; L¼ lþ 2; l≥ 0:

ð74Þ

Using the above identities, and carefully performing the sum over L, we get to

JSTlmðfD; ẑÞ ¼ δm0δl0
2

ffiffiffi
π

p
3

Z
2πfDv

0

dx
v
eix=vðj0ðxÞ þ j2ðxÞÞ þ δm0δl1

2
ffiffiffiffiffiffi
3π

p
i

5

Z
2πfDv

0

dx
v
eix=vðj1ðxÞ þ j3ðxÞÞ

− δm0Θðl − 2Þ4πil
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r Z
2πfDv

0

dx
v
eix=v

�
d
dx

�
jlðxÞ
x

�
−
ðl − 1Þðlþ 2Þ

2

jlðxÞ
x2

�
: ð75Þ

By using the spherical Bessel function differential equation,

x2j00l ðxÞ þ 2xj0lðxÞ þ ðx2 − lðlþ 1ÞÞjlðxÞ ¼ 0; ð76Þ
and (35), we simplify this further to

JSTlmðfD; ẑÞ

¼ δm0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r �
2πil

Z
2πfDv

0

dx
v

eix=vðj00l ðxÞ þ jlðxÞÞ
�
:

ð77Þ
The factor we need for the isotropic stochastic gravitational
wave background is enclosed in the parentheses.Making use

of the observation JSTlmðfD; ẑÞ ∝ δm0, andperforming a three-
dimensional rotation, we finally get to

JSTlmðfD;k̂Þ¼Y�
lmðk̂Þ

�
2πil

Z
2πfDv

0

dx
v
eix=vðj00l ðxÞþjlðxÞÞ

�
:

ð78Þ

Now, moving onto the scalar longitudinal polarization,
starting with the contraction (69) and performing the sum
overLwith the same spherical harmonics identities, we end
up with

JSLlmðfD; ẑÞffiffiffi
2

p ¼ δm0δl0
2

ffiffiffi
π

p
3

Z
2πfDv

0

dx
v
eix=v

�
j0ðxÞ
2

− j2ðxÞ
�
þ δm0δl1

2
ffiffiffiffiffiffi
3π

p
i

5

Z
2πfDv

0

dx
v
eix=v

�
3j1ðxÞ

2
− j3ðxÞ

�

þ δm0Θðl − 2Þ4πil
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r Z
2πfDv

0

dx
v

eix=v
�
d
dx

�
jlðxÞ
x

�
−
ðl − 1Þðlþ 2Þ

2

jlðxÞ
x2

þ jlðxÞ
2

�
: ð79Þ

By using the Bessel function differential equation and
identity, we are further able to express this simply as

JSLlmðfD; ẑÞffiffiffi
2

p ¼ −δm0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r �
2πil

Z
2πfDv

0

dx
v

eix=vj00l ðxÞ
�
:

ð80Þ

Rotating the ẑ axis to a general k̂ direction, we get to

JSLlmðfD;k̂Þffiffiffi
2

p ¼−Y�
lmðk̂Þ

�
2πil

Z
2πfDv

0

dx
v
eix=vj00l ðxÞ

�
: ð81Þ

We proceed to calculate the isotropic stochastic gravita-
tional wave background’s overlap reduction function using
the magnitude in the parentheses. As with the tensor and
vector polarizations, we evaluate these integrals numeri-
cally to compute the scalar power spectrum.
Wenote that the scalar transverse integral can be recast as a

total boundary for v ¼ 1. This can be realized by writing
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eix=vðj00l ðxÞ þ jlðxÞÞ ¼
d
dx

�
eix=v

�
j0lðxÞ −

i
v
jlðxÞ

��

þ v2 − 1

v2
eix=vjlðxÞ; ð82Þ

which reduces to a boundary term if v ¼ 1. Therefore, by
noting the asymptotic expansion

eix=v
�
j0lðxÞ −

i
v
jlðxÞ

�

∼
ffiffiffi
π

p
2−ðlþ1Þ

Γðlþ ð3=2ÞÞ x
l

�
l
x
þ i
v
ðl − 1Þ þOðxÞ

�
; x → 0þ

ð83Þ

and the integral identity

Z
r

0

dx eixjlðxÞ ¼ 2lrlþ1Γðlþ 1Þ2

× 2F̃2ðlþ 1; lþ 1; lþ 2; 2lþ 2; 2irÞ;
ReðlÞ > −1; ð84Þ

we may obtain the following analytical expressions for
finite fD and v ¼ 1:

Z
2πfD

0

dx eixðj00l ðxÞ þ jlðxÞÞ

¼ e2πifD½j0lð2πfDÞ − ijlð2πfDÞ� ð85Þ

and

Z
2πfD

0

dx eixj00l ðxÞ

¼ e2πifD½j0lð2πfDÞ − ijlð2πfDÞ�
− 2lð2πfDÞlþ1Γðlþ 1Þ2
× 2F̃2ðlþ 1; lþ 1; lþ 2; 2lþ 2; 4πifDÞ; ð86Þ

where 2F̃2ða; b; c; d; xÞ ¼ 2F2ða; b; c; d; xÞ=ðΓðcÞΓðdÞÞ is
a regularized hypergeometric function. These help signifi-
cantly to reduce the numerical evaluation time of the power
spectra, at least for v ¼ 1. Analytical expressions for
arbitrary v in the infinite-distance limit may also be
obtained by utilizing (82) and noting that

Z
∞

0

dx
v
eix=vjlðxÞ ¼

ffiffiffi
π

p
2−ðlþ1ÞðivÞlþ1Γðlþ 1Þ

× 2F̃1

�
lþ 1

2
;
lþ 2

2
; lþ 3

2
;v2

�
: ð87Þ

This may be used to speed up the numerical integration for
the infinite-distance limit.

B. ORF and power spectra

We take the calculated magnitudes in the previous
section to compute the overlap reduction function for an
isotropic stochastic gravitational wave background (21).
This way, doing it separately for the scalar transverse and
scalar longitudinal polarizations, using the addition theo-
rem (42), we get to the result

γabðζ; fDiÞ ¼
X
l

2lþ 1

4π
ClPlðcos ζÞ; ð88Þ

where the scalar power-spectrummultipolesCl are given by

Cl ¼
32π2FlðfDaÞF�

l ðfDbÞffiffiffiffiffiffi
4π

p ; ð89Þ

with the quantity FlðfDÞ being

FlðfDÞ ¼ −
i
2

Z
2πfDv

0

dx
v
eix=vRlðxÞ: ð90Þ

In the above expression, RSL
l ðxÞ ¼ j00l ðxÞ for the scalar

longitudinal polarization and RST
l ðxÞ ¼ −ðRSL

l ðxÞ þ
jlðxÞÞ=

ffiffiffi
2

p
for the scalar transverse polarization. These

RlðxÞ functions can be confirmed to be same ones singled
out in [25] in their Appendix A. The quantity Flð∞Þ are
the projection factors considered in [25] such that Cl ∝
32π2Flð∞ÞF�

l ð∞Þ. We highlight the main difference to be
that the upper limit of the integral is finite, which keeps the
power spectra defined for either polarization.
In the limit fD → ∞ and v → 1, for the scalar transverse

monopole and dipole, it can be checked that FST
0 ð∞Þ ¼

−1=ð2 ffiffiffi
2

p Þ and FST
1 ð∞Þ ¼ −i=ð6 ffiffiffi

2
p Þ. In the same limit,

the scalar longitudinal monopole and dipole projection
factors become undefined. On the other hand, in the
infinite pulsar distance limit, fD → ∞, but with arbitrary
group velocity v, the higher-order multipoles l ≥ 2 become
constrained as FST

l ð∞Þ þ ð1 − v2ÞðFSL
l ð∞Þ= ffiffiffi

2
p Þ ¼ 0. All

these agree with [25].
We calculate the autocorrelation using the power spec-

trum and the real-space formalism to assess the validity of
our power-spectrum calculation. The antenna pattern func-
tions for the scalar transverse and longitudinal modes are

FST
a ðk̂ ¼ ðθ;ϕÞÞ ¼ sin2θ

2ð1þ v cos θÞ ð91Þ

and

FSL
a ðk̂ ¼ ðθ;ϕÞÞ ¼ cos2 θffiffiffi

2
p ð1þ v cos θÞ : ð92Þ

The scalar autocorrelation reduces to the integrals

REGINALD CHRISTIAN BERNARDO and KIN-WANG NG PHYS. REV. D 107, 044007 (2023)

044007-14



γSTaa ¼
Z

π

0

dθffiffiffiffiffiffi
4π

p
�
2π sin5 θ sin2ðπfDð1þ v cos θÞÞ

ð1þ v cos θÞ2
�

ð93Þ

and

γSLaa ¼
Z

π

0

dθffiffiffiffiffiffi
4π

p
�
4π sin θcos4θsin2ðπfDð1þ v cos θÞÞ

ð1þ v cos θÞ2
�
:

ð94Þ

It is interesting that γSTaa coincides with the transverse
tensor γTaa.

C. Phenomenology

We present the power spectra and resulting overlap
reduction functions individually for each of the scalar
polarizations. Figure 3 shows this for the scalar transverse
polarization with v ∼ 1, v ¼ 1=2, and v ¼ 10−2 at various
pulsar distances.
This again echoes the important physical difference

between the finite and infinite pulsar distance cases. In
the infinite case [24,25], the power spectra drop continu-
ously at large l, or small angles, as Cl ∼ 1=lk for some
positive k. This implies that the correlations vanish for
pulsars that are infinitesimally separated in the sky.
However, in a real setting, pulsars are separated at a finite
line of sight distance from the observer (“Us”). Figure 3(a)
shows that at some l ∼ 20–50 with a nearly luminal scalar
degree of freedom (v ∼ 1), the power spectra cease to drop
and instead sustain a slow increase. This tells that corre-
lations at small angular separations are strengthened for
nearby pulsars, which makes sense for neighboring astro-
physical sources [22]. We recognize this partial sustenance
in the transverse-traceless tensor as well as the vector
polarizations for finite pulsar distances in the previous
sections. The corresponding ORF is shown in Fig. 3(b).
This presents the scalar transverse signal resembling what
looks like a dipole [8] understandably because its power
spectrum is dominated by the dipole. In this near-luminal
limit, we also find that the finite pulsar distance curves by
themselves are not so much distinguishable, as in the tensor
and vector cases. However, the finite and infinite pulsar
distance cases are visually distinguishable, unlike their
tensor and vector counterparts.
Figures 3(c) and 3(d) show the multipoles and the ORFs

when the scalar modes propagate at half the speed of light.
In this case, we find that the power-spectra multipoles
feature an overall decrease in magnitude, and come with an
even sharper drop at small l. This is reflected in the ORF
which tends to flatter values, obviously being dominated by
the monopole, as compared with the near-luminal scalar
case. Take note that the ORFs for large angles relevant for
pulsar timing array for the finite pulsar distance cases are
visually indistinguishable as displayed by their multipoles
[Fig. 3(c)]. It is worth noting that the monopole in

this velocity in the infinite-distance limit diverges. In
Fig. 3(d), the infinite-distance curve was as a matter of
fact divided by 20 in order to be shown together with the
other signals. This divergence will be even more drastic at
lower velocities.
When the velocity is decreased further to the non-

relativistic limit and infinite-distance limit, the power-
spectrum multipoles drop sharper beginning with the
monopole, and so the ORF reduces to practically a flat
horizontal line. However, for the finite-distance cases, at
some point, we find that the dipole, and even the quadru-
pole, becomes suppressed compared to the succeeding low
multipoles until a peak of the power spectrum appears. This
manifests itself as an oscillation in the ORF, at an angle
ζ ¼ 180°=lpeak defined by the multipole number lpeak at
which the power spectrum peaks. Figures 3(e) and 3(f)
explicitly show this with v ¼ 0.01. As alluded, for this
case, the low multipoles for the finite-distance cases can
now be distinguished, as contributions beyond the monop-
ole and dipole become significant, and this manifests in the
ORF at large angular separations. A drastic technical
difference in the ORF between the finite and infinite pulsar
distance case with v ≪ 1 can also be realized. The ORF for
the infinite distance limit in Fig. 3(f) was divided by
2 × 108 to be comparable with the other curves. Further,
whereas the infinite-distance limit signal reduces to a
monopole (a mere horizontal line), the finite-distance cases
present oscillations owing to the fact that pulsars are
astrophysical objects in an observable universe.
Figure 4 shows the power-spectra multipoles and the

ORFs for the scalar longitudinal polarization with the
previous choices for the velocity.
First, we recall that the scalar longitudinal mode is

undefined with v ¼ 1 and infinite pulsar distances. For this
alone, we realize the practical advantage of keeping the
pulsars at finite distances. In [22], we even find compelling
statistical evidence of scalar longitudinal polarization in
pulsar timing array data.
In the nearly luminal scalar case [Figs. 4(a) and 4(b)], we

find the power spectrum to be dominated by the low
multipoles aside from the dipole and the quadrupole. This
translates to the particular shape of the ORF at low angles,
as shown. As with the scalar transverse polarization, the
power drop is eventually disrupted at some sufficiently
large l, or small angles, where real, neighboring pulsars
may be correlated in their history. However, in the infinite
pulsar distance case, the dipole drops compared to the
monopole and others close by, resulting in the overlap
reduction function being distinguishable for large angles
compared to the finite pulsar distance cases. This large
angular separation distinction between the finite and
infinite pulsar distance cases also manifests at other
velocities. We find the similar behavior in the scalar
transverse case where the monopolar and dipolar powers
numerically diverge as seen in the power-spectrum plots.
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Again, as in the scalar transverse polarization, at half the
speed of light, the scalar longitudinal power spectra feature
a steeper drop beginning with the quadrupole as l increases
[Figs. 4(c) and 4(d)]. However, it can be seen that in the

infinite-distance case, the dipolar contribution is larger than
the quadrupole, while for the finite-distance cases, the
dipolar power is otherwise suppressed. This clearly reflects
in the ORFs, where the infinite-distance curve can be seen

FIG. 3. Isotropic power spectra multipoles Cl and the overlap reduction functions γabðζ; fDÞ of the scalar transverse polarization with
group velocities v ¼ 99=100, v ¼ 1=2, and v ¼ 1=100. Overlap reduction functions were constructed with only the first 60 multipoles.
The fD ¼ ∞ curves in (d) and (f) were divided by 20 and 2 × 108, respectively. The autocorrelation γaa’s are computed from (93).
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to be shaped like a dipole, while the finite-distance curves
look like a quadrupole. We may mention that the monopole
also starts to contribute significantly in the infinite-distance
case at subluminal velocities [25]. The infinite-distance

curve in Fig. 4(d) was divided by 40 to be comparable with
the other curves. In this case, the infinite-distance corre-
lation becomes mainly dominated by the monopole and the
dipole, and so the corresponding ORF shapes appear like

FIG. 4. Isotropic power-spectramultipolesCl and the overlap reduction functions γabðζ; fDÞ of the scalar longitudinal polarizationwith
group velocities v ∼ 1, v ¼ 1=2, and v ¼ 1=100. The overlap reduction functions were constructed with only the first 60 multipoles. The
fD ¼ ∞ curves in (d) and (f) were divided by 40 and 4 × 108, respectively. The autocorrelation γaa’s were calculated from (94).
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the dipole at half the speed of light. The finite pulsar
distance cases, being more dominantly sourced by the
quadrupole, instead show a significant departure from the
infinite-distance limit, as now their shape resembles
the Hellings-Downs curve. This time, also, the ORFs for
the finite pulsar distance cases very much coincide.
We find that the situation changes in the nonrelativistic

scalar (v ¼ 1=100), in Figs. 4(e) and 4(f). In this case, in
the infinite-distance limit, the power spectrum is signifi-
cantly dominated by the monopole, which is reflected in the
ORF being practically a horizontal line [25]. As we have
also alluded a while ago, the monopole numerically
diverges at subluminal velocities, such that we had to
divide the infinite-distance curve in Fig. 4(f) by a factor
Oð108Þ. The situation also manifested in the scalar trans-
verse case. On the other hand, for finite pulsar distances, all
computations remain well at hand. In this case, we find that
most of the low multipoles continue to contribute to the
power spectrum, giving a nontrivial angular correlation,
and so producing an ORF that is distinguishable compared
with the infinite-distance limit. It is notable that the ORFs
for the finite-distance cases are also distinguishable
between themselves. This is teased by the scalar power
spectrum, which drops significantly beginning at l ∼ 10 for
fD ¼ 100 and beginning at l ∼ 30 for fD ¼ 500. The ORF
of the scalar longitudinal polarization remains completely
nontrivial in all cases for finite distance and subluminal
velocities.

VII. DISCUSSION

We have presented a power-spectrum method for cal-
culating the overlap reduction function in a pulsar timing
array. We argue that this is fast and efficient, particularly
with the present dataset in which the pulsar pairs have about
at least three degrees angular separation, thus requiring
only the first few of the power-spectrum multipoles. This is
its main advantage over the real-space formalism, which is
challenged numerically by integration over a pole of the
integrand. The two methods lead to the same result
regardless, as captured by the autocorrelation computations
in Table II.
The autocorrelation can be interpreted as the correlation

of a pulsar with itself and embodies the small-scale power
in a pulsar timing array. To compute this using the power-
spectrum formalism requires at least a few thousand
multipoles to guarantee a degree of numerical convergence.
This is shown in Table II for fD ¼ 100, or D ∼ 30 parsecs,
where it can be seen that the large-scale multipoles (l ≤ 30
or ζ ≥ 6°), those which we have utilized in the overlap
reduction functions in the previous sections, only capture
nearly half of the total power in small scales (l ≤ 1000 or
ζ ≥ 0.18°). We confirm that the real-space formalism gets
to the same numbers. Understandably this is because the
real-space formalism involves both Earth and pulsar terms,
thereby incorporating the small- and large-scale power at

the same time. The situation deviates in the nonrelativistic
modes (v ≪ 1) where nearly the full power is captured by
the low multiples (l≲ 100), but this can be explained quite
easily by looking at the power spectrum. The power peaks
and drops sharply within the first hundred multipoles for
nonrelativistic polarization modes (v ≪ 1). Figures 1–4
support this point that the low multipoles by themselves
effectively capture the full power at nonrelativistic speeds.
We also highlight in Table II the advantage of the real-

space formalism over the power-spectrum method when it
comes to the calculation of the autocorrelation. Clearly in
all cases it only takes the real-space formalism a tiny
fraction of a second to do the calculation. We however
emphasize that this is only for the autocorrelation where the
real-space two-dimensional integral (24) is easiest. As a
matter of fact, elsewhere, the real-space formalism is
challenging to compute if not too often spoiled by
numerical errors because of the poles of the integrand.
We demonstrate this in Fig. 5 for the ORF calculation in the
simple case of near-luminal tensor modes.
This showcases one of the pragmatic advantages of the

power-spectrum method over the real-space formalism. For
an angular grid of eight points, the real-space formalism
took about 300 s for this simple calculation with near-
luminal tensor modes, while the power-spectrum method
needed only a tenth of a second for the same task using only
ten multipoles. Most impressively, for a grid of 60 points,
the power-spectrum calculation time took only a little bit
longer than a tenth of second. The reason for this is that
after the multipoles have been computed, the sum in (1) can
be readily performed for any angles, or alternatively the
power spectrum allows control over the angular resolution
with the minimum information, i.e., few multipoles are
needed. On the other hand, the real-space two-dimensional

FIG. 5. Overlap reduction function produced by near-luminal
tensor polarizations (v ¼ 0.99) computed using the real-space
formalism (black crosses) and the power-spectrum method (red
squares) at eight equally spaced points in ζ ∈ ð0°; 180°Þ. The blue
solid curve is evaluated at a grid with 60 points. Legends show in
the parentheses the corresponding total evaluation times in a 12th
Gen Intel Core i7-12700, 2100-Mhz Processor computer.

REGINALD CHRISTIAN BERNARDO and KIN-WANG NG PHYS. REV. D 107, 044007 (2023)

044007-18



integral (24) generally takes a long time to compute since it
uses the same huge amount of information at small and
large scales. This explains the computation times in Fig. 5
for near-luminal tensor modes.
The real-space formalism performs worse in the more

general case not only in terms of the computation times but
also in the matter of numerical errors. Nonetheless these
issues can be circumvented with enough computational
power and that in fact the overlap reduction functions can
be precomputed prior to stochastic gravitational wave
background searches in pulsar timing array data analysis
[12,35].
We strongly emphasize that the perks of the power-

spectrum method are not even limited to the control over
the angular resolution, accuracy, and computation times.
This algorithm unifies the stochastic gravitational wave
background phenomenology in a pulsar timing array in a
coherent few lines (Sec. II) for all possible gravitational
wave polarizations, putting together decades of work in
pulsar timing array cosmology. We moreover expect that as
more millisecond pulsars are utilized in pulsar timing
arrays, thereby covering more sky and data points, the
analysis would eventually resort to the power spectrum, as
did cosmic microwave background science. In addition, the
multipoles also give a direct route to the calculation of the
higher moments of the correlation, or rather the variance of
the overlap reduction function, as we have shown in [31]
not only for the Hellings-Downs curve but for astonishingly
all possible modes. It is by these theoretical and practical
standards that we see the power-spectrum method a clear
cut above the real-space formalism for stochastic gravita-
tional wave background phenomenology.
We repeat the calculation for pulsars as far as fD ¼ 500

or D ∼ 150 parsecs, and can confirm similar observations.
At this larger distance, however, we find that the power-
spectrum method becomes quite challenged by the
extremely rapid oscillations in the integrand for large
multipole numbers. The computation slows down consid-
erably and the accuracy becomes less reliable, in addition to
needing more multipoles, this time with l ≤ 3000, for
numerical convergence. This shows where the real-space
formalism, providing autocorrelation functions instantly,
takes the advantage over the power-spectrum method. The
power spectrum even overestimates the autocorrelation
function, which we associate with a breakdown of precision
that the computation suffers with highly oscillating inte-
grands. Nonetheless, the power-spectrum method works
well for nearby pulsar distances and the real-space formal-
ism is always there to back up our calculations in this
regime.
We make some final remarks on the drawbacks of the

infinite distance limit, where the pulsars are at unreachable
distances from the observer, and the power-spectrum
method. Table III shows the autocorrelation calculated
using the power spectrum and the real-space formalism.

As expected, as the power-spectrum profile merely drops
sharply as the multipole number increases, the infinite-
distance power-spectrum calculation misses about half of
the total power that is contained in small angular scales,
regardless of how many multipoles are included. This is
reflected quite clearly for the tensor and vector modes in
Table III, where the γl≤30aa and γl≤1000aa are the same at this
reasonable level of precision. For the scalar polarizations,
the situation worsens, now that the monopole and dipole
spoil the power spectrum calculation through their domi-
nance at low velocities. In this limit, in fact, it can be shown
that the monopole and dipole behaves as 1=v4 and 1=v2,
respectively, at low speeds v ≪ 1 [25]. Exactly, a straight-
forward integration for the monopole in the limit fD → ∞
leads to CST

0 =ð4πÞ¼ ffiffiffi
π

p
=ð2v4Þ∼8.86×107 and CSL

0 =ð4πÞ¼ffiffiffi
π

p
=v4∼1.77×108 as v ∼ 1=100. This alone explains the

unphysical numbers in Table III for the scalar modes at half
the speed of light and the nonrelativistic cases. A similar
analytical calculation with the dipole can be done in this
limit. Just the same, it appears that only the real-space
formalism is trustworthy for the autocorrelation in the
infinite-distance limit. We take these considerations to add
more case to factoring in finite pulsar distances in pulsar
timing array analysis. Nonetheless, we can utilize analytical
expressions for the integrals in the infinite-distance limit, as
we derived in the previous sections, to aid in the numerical
evaluation and make the computation times competitive
with the real-space formalism counterparts.
In a future work, we look forward to a merging of the

power-spectrum method and the real-space formalism for
an accurate calculation of the overlap reduction function
in a pulsar timing array, in the same way post-Newtonian

TABLE III. Autocorrelation γaa calculated using the power
spectrum (l ≤ lmax) and the RSF in the infinite pulsar distance
limit, fD → ∞. The modes T, V, ST, and SL stand for tensor,
vector, scalar transverse, and scalar longitudinal, respectively.
teval are the corresponding numerical evaluation times (in
seconds) in a 12th Gen Intel Core i7-12700, 2100-Mhz Processor
computer.

Mode v γl≤30aa teval (s) γl≤1000aa teval (s) γRSFaa teval (s)

T 0.99 1.08 10−3 1.08 2×10−3 2.17 0.03
0.50 0.53 10−3 0.53 10−3 1.06 0.01
0.01 0.47 10−3 0.47 0.03 0.97 10−3

V 0.99 7.77 10−3 7.77 0.02 15.5 0.03
0.50 0.67 10−3 0.67 0.02 1.34 0.01
0.01 0.47 10−3 0.47 0.02 1.19 10−3

ST 0.99 1.24 10−3 1.24 0.02 2.17 0.03
0.50 15.4 10−3 15.4 0.02 1.06 0.01
0.01 8.86×107 10−3 8.86×107 0.02 0.97 10−3

SL 0.99 66.1 10−3 66.2 0.01 151 0.03
0.50 31.0 10−3 31.0 0.01 1.26 0.01
0.01 1.77×108 10−3 1.77×108 0.01 0.40 10−3
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gravity and numerical relativity are utilized in studying
gravitational waves from compact binaries. This will
become relevant as pulsar pairs of subdegree separation
are observed, something which we anticipate in future
pulsar timing array missions.

VIII. CONCLUSIONS

We have derived the overlap reduction functions of an
isotropic stochastic gravitational wave background sourced
by tensor, vector, and scalar metric polarizations, for finite
pulsar distances and subluminal velocities. This reveals for
one the importance of keeping the pulsars at realistic finite
distances, particularly, in letting all modes be well defined
and keeping the power in small scales, and in future pulsar
timing array data where millisecond pulsar pairs may be of
subdegree separations. Our technical results prepare the
general data analysis of the various possible metric polar-
izations which may be anchored in the nanohertz gravita-
tional wave sky, such as we have demonstrated in [22].
However the results may be, this would be complementary
to the picture provided by ground- and space-based
gravitational wave observatories about our Universe and
the matter that lives, and lived, within.
The power-spectrum calculation is an efficient way of

obtaining the pulsar timing array observables, in addition to
providing an independent check of the real-space formal-
ism, which is known to be technically challenged by poles
in numerical integration over an angular domain. Even so,
the power-spectrum calculation and the real-space formal-
ism for obtaining the overlap reduction function can be
complementary, particularly in future datasets with pulsar
pairs of subdegree separation, which will challenge the
power-spectrum calculation but not quite the real-space
formalism. We have shown this for the autocorrelation
function, describing pulsar pairs along the same line of
sight or the correlation of a pulsar with itself, where at least
a few thousand multipoles were needed to ensure the
numerical convergence of the sum in the power-spectrum
calculation but which was a quick calculation using the
real-space formalism. A merger of these two methods,
much in the sameway gravitational waveform analyses rely
on post-Newtonian and numerical relativity calculations,
would be something to look forward to in the pulsar timing
community.
This work sets up several future directions. First, it

would be interesting to see whether the tensor modes by
themselves, if they are freed from the light cone, could
match statistically the present pulsar timing array data. If
so, this hints at dispersive gravitational waves that only so
happen to be luminal in the ground-based detectors’
frequency band of about 100 Hz. Second, following on
[22,25], in theories, the various metric polarizations are
expected to be constrained by the theory parameters rather
than just independently contributing to the overall signal.
This calls on alternative gravity theorists to set up these

theoretical constraints, which would also reduce the
parameter space and lift potential degeneracy of the models
for data analysis. Lastly, building on [26], it remains to set
up the general formalism for scalar and vector polar-
izations, as well as tensors off the light cone, for studying
the anisotropies in the stochastic gravitational wave back-
ground. It may take a while for pulsar timing science to
mature to this level of sensitivity, but this takes it to a
different level, hinting at natural clocks and non-
Gaussianities in the primordial universe [36–38].
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APPENDIX A: GRAVITATIONAL WAVE
POLARIZATION BASIS

For a gravitational wave propagating along the Ω̂
direction, the polarization basis tensors can be expressed
as [29]

εþ ¼ m̂ ⊗ m̂ − n̂ ⊗ n̂; ðA1Þ

ε× ¼ m̂ ⊗ n̂þ n̂ ⊗ m̂; ðA2Þ

εx ¼ m̂ ⊗ Ω̂þ Ω̂ ⊗ m̂; ðA3Þ

εy ¼ n̂ ⊗ Ω̂þ Ω̂ ⊗ n̂; ðA4Þ

εST ¼ m̂ ⊗ m̂þ n̂ ⊗ n̂; ðA5Þ

εSL ¼
ffiffiffi
2

p
Ω̂ ⊗ Ω̂; ðA6Þ

where ðm̂; n̂; Ω̂Þ for an orthonormal basis. The ðεþ; ε×Þ
stand for the transverse-traceless tensor modes, ðεx; εyÞ for
the vector modes, and ðεST; εSLÞ for the scalar modes.
In practice, it is useful to orient Ω̂ along the ẑ direction.

In this case, the orthonormal basis ðm̂; n̂; Ω̂Þ may be
written as

m̂ ¼ cosφx̂þ sinφŷ; ðA7Þ

n̂ ¼ − sinφx̂þ cosφŷ; ðA8Þ

Ω̂ ¼ ẑ: ðA9Þ

With the Cartesian basis ðx̂; ŷ; ẑÞ, the polarization tensors
can be identified to be

εþ ¼

0
B@

cosð2φÞ sinð2φÞ 0

sinð2φÞ − cosð2φÞ 0

0 0 0

1
CA; ðA10Þ
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ε× ¼

0
B@

− sinð2φÞ cosð2φÞ 0

cosð2φÞ − sinð2φÞ 0

0 0 0

1
CA; ðA11Þ

εx ¼

0
B@

0 0 cosφ

0 0 sinφ

cosφ sinφ 0

1
CA; ðA12Þ

εy ¼

0
B@

0 0 − sinφ

0 0 cosφ

− sinφ cosφ 0

1
CA; ðA13Þ

εST ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA; ðA14Þ

and

εSL ¼
ffiffiffi
2

p
0
B@

0 0 0

0 0 0

0 0 1

1
CA: ðA15Þ

APPENDIX B: TRIPLE-SPHERICAL
HARMONICS INTEGRAL AND THE

WIGNER-3J SYMBOL

We put down identities on spin-weighted spherical
harmonics sYlmðn̂Þ [33,34].
First, for s ¼ 0, sYlmðn̂Þ reduces to the spherical har-

monic Ylmðn̂Þ. In general, sYlmðn̂Þ satisfies the orthogon-
ality relation

Z
S2
dn̂sY�

lmðn̂ÞsYl0m0 ðn̂Þ ¼ δll0δmm0 ; ðB1Þ

and completeness relation

X
lm

sY�
lmðn̂ÞsYlmðn̂0Þ ¼ δð2Þðn̂ − n̂0Þ

¼ δðϕ − ϕ0Þδðcos θ − cos θ0Þ: ðB2Þ

This also satisfies the conjugate identity:

sY�
lmðn̂Þ ¼ ð−1Þsþm

−sYl−mðn̂Þ: ðB3Þ

We progress in the text with triple-spherical harmonics
identity

Z
dês1Yl1m1

ðêÞs2Yl2m2
ðêÞs3Yl3m3

ðêÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3
−s1 −s2 −s3

�

×

�
l1 l2 l3
m1 m2 m3

�
; ðB4Þ

where ðad b
e

c
fÞ is the Wigner-3j symbol. The 3j symbol

vanishes unless jl1 − l2j < l3 < l1 þ l2 and m1 þ
m2 þm3 ¼ 0. Further, if m1 ¼ m2 ¼ m3 ¼ 0, then l1 þ
l2 þ l3 must be an even integer. It also satisfies a reflection
property

�
l1 l2 l3
m1 m2 m3

�
¼ð−1Þl1þl2þl3

�
l1 l2 l3

−m1 −m2 −m3

�
: ðB5Þ

APPENDIX C: ANOTHER
REAL-SPACE FORMALISM

Provided a passing gravitational wave in the direction k̂,
the redshift fluctuation is also often considered as the
Shapiro time delay [28]:

zðtÞ ¼ êi ⊗ êj

2ð1þ vk̂ · êÞ ðh
e
ij − hpijÞ; ðC1Þ

where heij ¼ hijðt; 0⃗Þ, the Earth term, is the metric pertur-
bation evaluated on Earth where the pulse is received, and
hpij ¼ hijðt −D;DêÞ, the pulsar term, is evaluated at the
pulsar during emission. Substituting (7), the redshift
fluctuation for a pulsar a can be simplified as

zaðtÞ ¼
X
A

Z
∞

−∞
df

Z
S2
dk̂ h̃Aðf; k̂ÞFA

aðk̂Þe−2πiftUaðf; k̂Þ;

ðC2Þ
where Fa are the antenna pattern functions (25) and Ua is
given by (26). Substituting (C2) into (8), one gets to the
two-point pulsar timing residual correlation function (23)
and the overlap reduction function (24).

APPENDIX D: A BRIEF REVIEW OF THE
OVERLAP REDUCTION FUNCTION

We briefly review the well-established results about the
overlap reduction function (see, e.g., [28]).
We start with the standard one, that is, due to the

transverse-traceless tensor polarizations predicted by
general relativity. The overlap reduction function is
given by

ΓTT
ab ¼ Γþ

ab þ Γ×
ab ≊ δab

2
þ CðζabÞ; ðD1Þ
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where ζab is the angular separation of two pulsars, and
CðζabÞ is the Hellings-Downs curve [11]:

CðζabÞ ¼
3

2

�
1

3
þ
�
1 − cos ζab

2

��
ln

�
1 − cos ζab

2

�
−
1

6

��
:

ðD2Þ

Provided tensor modes propagating at the speed of light, we
expect the stochastic gravitational wave background signal
to be given by the Hellings-Downs correlation.
There are also phenomenological ones, that are not

necessarily due to gravitational degrees of freedom, but
nonetheless present a competitive signal to noise ratio in the
current data [28]. These are the gravitational wave-like
monopole and dipole:

ΓGW mon
ab ¼ δab

2
þ 1

2
; ðD3Þ

and

ΓGW dip
ab ¼ δab

2
þ cos ζab

2
: ðD4Þ

The gravitational wave monopole particularly has a sig-
nificant signal to noise ratio, compared with the gravita-
tional wave dipole and the Hellings-Downs correlation, in
the present dataset.
We move on to non-Einsteinian polarization modes on

the light cone, and considering infinite pulsar distances.
The scalar transverse polarization (also often referred to as

the “breathing” mode) leads to the overlap reduction
function [15]:

ΓST
ab ≈

δab
2

þ 1

8
ð3þ cos ζabÞ: ðD5Þ

On the other hand, for the scalar longitudinal modes, the
overlap reduction function cannot be evaluated analytically
for arbitrary pulsar-pair angular separations. But, the more
prominent issue is that this cannot be defined for infinite
pulsar distances. Keeping the pulsars at a finite distance
fD ≫ 1, from the observer, the autocorrelation function
can be shown to be linearly divergent [15],

ΓSL
aa ∼

3π2

4
fD − 3 ln ð4πfDÞ þ 37

8
− 3γE; ðD6Þ

where γE is Euler’s constant. A similar situation arises for
the vector modes, whereas the overlap reduction function
can be determined to be [39]

ΓV
ab ¼ ΓðVÞx

ab þ ΓðVÞy
ab ≈ 3 log

�
2

1 − cos ζab

�
− 4 cos ζab − 3;

ðD7Þ
the autocorrelation function [39]

ΓV
aa ∼ 6 ln ð4πfDÞ − 14þ 6γE ðD8Þ

becomes undefined, diverges logarithmically, in the infinite-
distance limit, albeit not as strongly as the scalar longitudinal
polarization.
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