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Collinear and triangular solutions to the coplanar and circular three-body
problem in the parametrized post-Newtonian formalism
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This paper investigates the coplanar and circular three-body problem in the parametrized post-
Newtonian (PPN) formalism, for which we focus on a class of fully conservative theories characterized
by the Eddington-Robertson parameters f and y. It is shown that there can still exist a collinear equilibrium
configuration and a triangular one, each of which is a generalization of the post-Newtonian equilibrium
configuration in general relativity. The collinear configuration can exist for arbitrary mass ratio, f#, and y.
On the other hand, the PPN triangular configuration depends on the nonlinearity parameter $ but not on y.
For any value of 3, the equilateral configuration is possible, if and only if three finite masses are equal or
two test masses orbit around one finite mass. For general mass cases, the PPN triangle is not equilateral as
in the post-Newtonian case. It is shown also that the PPN displacements from the Lagrange points in the
Newtonian gravity L, L,, and L3 depend on f and y, whereas those to L4 and L5 rely only on }j.
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I. INTRODUCTION

The three-body problem is among the classical ones in
physics. It led to the notion of chaos [1]. On the other hand,
particular solutions such as Euler’s collinear solution and
Lagrange’s equilateral one [2,3] express regular orbits and
they have still attracted interest, e.g., [4-8]. If one mass is
zero and the other two masses are finite, the collinear
solution and triangular one correspond to Lagrange points
Ly, Ly, L3, Ly, and L5 as particular solutions for the
coplanar restricted three-body problem.

In his pioneering work [9], Nordtvedt found that the
position of the triangular points is very sensitive to the ratio
of the gravitational mass to the inertial mass in gravitational
experimental tests, where the post-Newtonian (PN) terms
are not fully taken into account.

Krefetz [10] and Maindl [11] studied the restricted three-
body problem in the PN approximation and found the PN
triangular configuration for a general mass ratio between
two masses. These investigations were extended to the PN
three-body problem for general masses [12—17], and the PN
counterparts for Euler’s collinear [12,13] and Lagrange’s
equilateral solutions [14,15] were obtained. It should be
noted that the PN triangular solutions are not necessarily
equilateral for general mass ratios and they are equilateral
only for either the equal mass case or two test masses. The
stability of the PN solution and the radiation reaction at
2.5PN order were also examined [16,17].
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In a scalar-tensor theory of gravity, a collinear configu-
ration for three-body problem was discussed [18]. In
addition to such fully classical treatments, a possible
quantum gravity correction to the Lagrange points was
proposed [19,20].

Moreover, the recent discovery of a relativistic hierar-
chical triple system including a neutron star [21] has
generated renewed interest in the relativistic three-body
problem and the related gravitational experiments [22-24].

The main purpose of the present paper is to reexamine
the coplanar and circular three-body problem especially
in the PPN formalism. One may ask if collinear and
triangular configurations are still solutions for the coplanar
three-body problem in the PPN gravity. If so, how large are
the PPN effects of the three-body configuration? We focus
on the Eddington-Robertson parameters f and y, because
the two parameters are the most important ones; f measures
how much nonlinearity there is in the superposition law for
gravity and y measures how much space curvature is
produced by unit rest mass [25,26]. Hence, preferred
locations, preferred frames or a violation of conservation
of total momentum will not be considered in this paper. We
confine ourselves to a class of fully conservative theories.
See, e.g., [27] for the celestial mechanics in this class of
PPN theories.

This paper is organized as follows. In Sec. II, collinear
configurations are discussed in the PPN formalism.
Section III investigates PPN triangular configurations. In
Sec. 1V, the PPN corrections to the Lagrange points are
examined. For brevity, the Lagrange points defined in
Newtonian gravity are referred to as the Newtonian
Lagrange points in this paper. Section V summarizes this

© 2023 American Physical Society
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paper. Throughout this paper, G =c=1. A,B, and C €
{1,2,3} label three masses.

II. COLLINEAR CONFIGURATION
IN PPN GRAVITY

A. Euler’s collinear solution in Newton gravity

Let us begin with briefly mentioning the Euler’s collinear
solution for the circular three-body problem in Newton
gravity [2,3], for which each mass M, (A = 1,2, 3) atx, is
orbiting around the common center of mass (COM) at x,
and the orbital velocity and acceleration are denoted as v4
and a,, respectively. In this section, we suppose that three
masses are always aligned, for which it is convenient to use
the corotating frame with a constant angular velocity @ on
the orbital plane chosen as the x-y plane.

Without loss of generality, we assume x; > x, > X3
for x4, = (x4,0). Let R4 denote the relative position of
each mass M, from the COM at x; = (x5,0). Namely,
R, = x4 —xg. Note that |R,| # |x4| unless x5 =0 is
chosen. We define the relative vector between masses as
R, = x, — xp, for which the relative lengthis R4z = |Ryp|-
See Fig. 1 for a configuration of the Euler’s collinear solution.

The coordinate origin x = 0 is chosen between M; and
M5, such that Ry > R, > R;, R; >0 and R; < 0. By
taking account of this sign convention, the equation of
motion becomes

M, M;
Riw? =243 (1)
R}, R
M, M;
Ry’ — + —, (2)
RY, R3
M, M,
R3(D2 R_2 - R_2 (3)
13 23

FIG. 1.
masses.

Schematic figure for the collinear configuration of three

We define the distance ratio as z = R»3/R1,, which plays
a key role in the following calculations. Note that z > 0 by
definition. We subtract Eq. (2) from Eq. (1) and Eq. (3)
from Eq. (2). By combining the results including the same
angular velocity @, we obtain a fifth-order equation for z as

(M +M3)2° + (3M, +2M5)z* + (3M, + M) 2
— (My+3M3)2” = (2My +3M3)z— (My + M3) =0, (4)

for which there exists the only positive root [2,3]. In order
to obtain Eq. (4), we do not have to specify the coordinate
origin, e.g., x; = 0. This is because Eq. (4) does not refer
to any coordinate system. Once Eq. (4) is solved for z, we
can obtain @ by substituting z into any of Egs. (1)—(3).

B. PPN collinear configuration

In a class of fully conservative theories including only
the Eddington-Robertson parameters  and y, the equation
of motion is [25,26]

M M 3 M M
@y == M=) B{yvi—2<y+1><vA-v3>+<y+1>v§—§<nAB-vB>2—<zy+zﬂ+1>—A—2<y+ﬂ>R—;}nAB

2 2
B#A Ryp B#A Riip

B#A
—%(4y+3);;{; ;‘j ﬁlﬁéccngcw(c“‘),
where
Rpp = I;—zi- (6)

For three aligned masses, Eq. (5) becomes the force-
balance equation as

fCO2:FN+FM+FVa)2, (7)

SR g 20+ Dpa= Gt i} a v+ 3 3 Mee (2L
Kis BZA CZA.B

RAB
26—1 1R,p
2R%.

(nap '”BC):| Rsp
R Ryc Rpc

(5)

where we define £ = R3;, the mass ratio v, = M, /M for
M= ZA MA, and

FN 252—Z2[1 — U] — U3 +2(1 — U —IJ3)Z
+Q2-v—13)2 +2(l —v; —13)2°
+ (1 =v; —13)7%, (8)
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2

FM:_KB—Z:i

{28+ 7)va + (1 + 28+ 2r)vstvy + {(=1 + 4B+ 27)vy +6(B +7)va +3(1 + 28+ 27)v3 )z

+{(=5+ 128 +4y)v; + 6(B + 7)o = (1 = 108 — 4y)v3}1r2?
{208+ 1) + 4B+ y)vs = (T =148 = 2p)vovs + 2(B + 703 + ((=7 + 146 4 27)vy + 2(1 + 26 + 2y)v3)v }2°
+{(=14+ 108+ 4y)v; +6(B+ y)vy + (128 + 4y — 5)v3 }vy2?
+ {31+ 28+ 27)v1 + 6(B + 1)y + (=1 + 4+ 27)v3 a2 + {(1 + 26 + 27)vy + 2(B + )2 122, )

and

M

R

12 [—11vs = 20105 20y +v2)z + {yi] + (=2 + 4y)vs + 3(1 + 7)vs)ed

+ vy +v3) (13 + (14 2p)vavs +713) + (=1 + 57)3 + 8(1 + p)vavs + 3(1 + y)i3)v 122

+2(v1 + 20 + ) {rd + 3 + (1+27)vars + 703 + (14 27)vs + 3+ 27)us )1 }2°

+{y} +2r3 — (1 = 5y)vsv3 — 2(1 = 29t} +yvs + (1 +4y)vs + 3(1 + y)vs)vd

+ ((2+57)03 +8(1 + y)vavs + 3(1 + ¥)3)v 2t = 2up03 (1 + 203)2° — 11320 (10)

By rearranging Eq. (5) for the collinear configuration by
the same way as in Sec. Il A, we find a seventh-order
equation for z as

> Ak =0, (11)

where the coefficients are

M
Ay = 7 [=2(B+7) —2vy +4(B + 7)vs + 20 + dv;

= 2(B + )3 = Wivs = 23], (12)
A6:1—l/3
M
+?[—(6ﬁ+7y)—(6+2ﬁ+2y)1/1
—(2=-88—11y)v3 +413 + (12+28+2y)v13
+(4-2—4y)3+203 — 43 —6v13 -213],  (13)
AS = 2+l/1 - 21/3
M
+? [=3(26+3y) =32 +28+2y)v; — (6 —11y)1;
+ (12+ 66 +2y)vyv3 + (12 + 68 —2y)13
+ 613 — 61113 —61/%], (14)
A4 = 1 +21/1 —1/3
M
=264y = (25 +8y)v1 ~ (6+6f ~8r)us

—(6+48=2y)13 + (4428 =2y)v v3
+ (124 88— 4y)13 + 603 4+ 20303 —4v15 — 613], (15)

|
A3:—1+1/1—21/3
M
+?[2ﬁ+4}/+ (64+68—8y)v+ (28+8y)v;
—(12+8p—4y)vi — (4 +24-2y)v1vs
+(6+48—=2y)13+ 613 +413v; —2u115—613],  (16)
A2:—2+21/1 — U3
M
+?[6/)’—|—9}/+ (6 —11y)v; + (6 + 64 + 6y)r;3

—(12+68=2y)1% — (124 68 + 2y)v 13
+ 617 + 613v3 — 613), (17)

A] :—1+l/]
M
+?[6ﬂ+7y+(2—8ﬂ—11y)1/1+(6+2ﬂ+2y)1/3

- (4-28- 47/)1/% — (124284 2y)v 13
— 43 + 203 + 4ui3 + 613 — 203, (18)

M
Ay = ?[2ﬁ+2y—4(ﬁ—|—y)l/1 + 21, +2(ﬂ+7/)y%

—4vyv3 — 203 + 20305 + 2u13). (19)

It follows that Eq. (11) recovers the PN collinear configu-
ration by Eq. (13) of Ref. [13] if and only if # = y = 1. The
uniqueness is because the number of the parameters £, y is
two for eight coefficients Ay, ..., A;.

From Eq. (7) for z obtained above, the angular velocity
wppy Of the PPN collinear configuration is obtained as
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Fu FV> 20)

a)ppN—a)N<1+m+2f

where wy = (Fy/£)'/? is the Newtonian angular velocity.
The subscript N denotes the Newtonian case.

III. TRIANGULAR CONFIGURATION
IN PPN GRAVITY

A. Lagrange’s equilateral solution in Newtonian gravity

In this subsection, we suppose that the three masses are
in coplanar and circular motion with keeping the same
separation between the masses, namely R,z = a for a
constant a.

It is convenient to choose the coordinate origin as the
COM,

> Myx, =0. (21)
A

for which the equation of motion for each mass in the
equilateral triangle configuration takes a compact form
as [2]

dzxA M

W = — EXA. (22)
See e.g., Eq. (8.6.5) in Ref. [2] for the derivation of
Eq. (22). A triangular configuration is a solution, if the
Newtonian angular velocity wy satisfies

(o) =5, 23)

The orbital radius 7, of each mass around the COM
is [2]

£1 = a\/V3 +vovs + 13, (24)
£y = a\/vi +vv; + 13, (25)
£y = a\/v} + v, + 13 (26)

B. PPN orbital radius

We suppose again that three masses in circular motion
are in a triangular configuration with a constant angular
velocity w. By noting that a vector in the orbital plane can
be expressed as a linear combination of x; and v, Eq. (5)
becomes

2

—’x; = —(wy)x; + g1 (0y)*x)
V3Muvs(vy —v3) (165 —1-9)
+ 2 2 NV1, (27)
16a Vs +1vus U3

where Eq. (23) is used and

M 7
D= [<2ﬁ+7+ (v +v3) (v +v3—1) —16’/2’/3>

3 vpu3{9uors +2(1y + 1/3)(8,5 5)}
16 V3 + s+ 13

(28)

By a cyclic permutation, we obtain the similar equations for
M, and M;.

The second and third terms in the right-hand side of
Eq. (27) are the PPN forces. The second term is parallel to
x1, whereas the third term is parallel to v; Note that v; is not
parallel to x; in circular motion.

The location of the COM in the fully conservative
theories of PPN [28,29] remains the same as that in the
PN approximation of general relativity [30,31]

1 1 Mp
GPN:_ MAxA|:1+_<U%— —>:|, (29)
where E is defined as

E= ZMA{1+ <

This coincidence allows us to obtain the PPN orbital
radius #4FVN around the COM by straightforward calcu-
lations. The orbital radius of M, is formally obtained as

aM A w?
:fz_l_ N
(1)+2< M)

x (= 2”1”2

S e

B#A

(f{’PN)2

20303 — 205173

+2u13 + 1/21/3 + Vv + 2v3v1

= 2V3yus + V3L + U 1a13), (31)

and the similar expressions of #4*N and £5" for the orbital
radius of M, and M5 are obtained.

Unless the second term of the right-hand side in Eq. (31)
vanishes, the difference between 77" and ¢, would make
our computations rather complicated. However, it vanishes
because wy satisfies Eq. (23). As a result, the PPN orbital
radius remains the same as the Newtonian one. Namely,
PN = ¢,

C. Equilateral condition

First, we discuss a condition for an equilateral
configuration.

044005-4
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For Eq. (27) to hold, the coefficient of the velocity vector
v, must vanish, because there are no other terms including
v1. The coefficient is proportional to v,r3(v, —v3). The
same thing is true also of M, and M. For any value of f,
therefore, the equilateral configuration in the PPN gravity
can be present if and only if three finite masses are equal or
two test masses orbit around one finite mass.

Note that one can find a very particular value of f
satisfying

168 —1 =91, =0, (32)

which leads to the vanishing coefficient of the velocity
vector v;. However, this choice is very unlikely, because the
particular value of 8 is dependent on the mass ratio v and it
is not universal. Hence, this case will be ignored.

D. PPN triangular configuration for general masses

Next, let us consider a PPN triangle configuration for
general masses. For this purpose, we introduce a non-
dimensional parameter £, at the PPN order, such that each
side length of the PPN triangle can be expressed as

Ryp = a(l + ep). (33)

The equilateral case is achieved by assuming &4 =0
for every masses. See Fig. 2 for the PPN triangular
configuration.

In order to fix the degree of freedom corresponding
to a scale transformation, we follow Ref. [15] to suppose
that the arithmetic mean of the three side lengths is
unchanged as

Ri» + Ry + Ry _

1
3 a 1+§(€12+823+€31) . (34)

R,=a(l +¢p,)

FIG. 2. Schematic figure for the PPN triangular configuration
of three masses. An inequilateral triangle is described by the
parameter £453. R, coincides with #, in the Newtonian limit, for
which &4 vanishes.

The left-hand side of Eq. (34) is a in the Newtonian case,
which leads to

€12 + €23 + &31 = 0. (35)

This is a gauge fixing in €45.
In terms of €45, Eq. (27) is rearranged as

3 (CUN)2

2 2
—Q) xl = —(a)N) xl —_— >
203 + v + 13

X {va(vy —vp = ey +u3(vy —v3 — ey Jx
v
+ \/§V21/3(812 - 831)w—1 + 6, (36)
N

where

V3Muyvs(vy —v3) (16— 1-91y)
16a(v3 +vovs3 +13)

61 =g1(wy)*x; + ONVy.

(37)

By a cyclic permutation, the equations for M, and M3 can
be obtained.

A triangular equilibrium configuration can exist if and
only if the two conditions (A) and (B) are simultaneously
satisfied; (A) Each mass satisfies Eq. (36), and (B) the
configuration is unchanged in time.

Equation (36) is the equation of motion for M. To be
more accurate, therefore, w in Eq. (36) should be denoted as
;. Similarly, we introduce m, and wj in the equations of
motion for M, and M;, respectively. Then, condition
(B) means o, = @0, = w;s.

Condition (A) is equivalent to condition (A2); The
coefficient of v, in the equation of motion vanishes as

M

€12 — €3 —%(Vz —u3)(16 = 1-9vy) =0, (38)
M

&3 — & —%(’G—Vl)(mﬂ—l —9’/2) =0, (39)

M
€31 — €23 —m(ld —1)(16f—1-913) =0.  (40)

From Egs. (38)-(40) and
€1y + €3 + €31 = 0, we obtain

the gauge fixing as

M =) (165 =1 - 90)

127 704

= (r3=1v)(168 =1 =91;)], (41)
€3 = % [(r3 = v1)(16 = 1 = 91;)

= (1) =) (168 =1 =9u3)], (42)
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and

M
&1 =75 (1) —12)(168 — 1 —9u3)

= (2 —v3)(168 =1 =9v,)]. (43)

Therefore, the PPN triangle is inequilateral depending on
f via g, but not on y. This suggests that also the PPN
Lagrange points corresponding to L4 and L5 are sensitive to
p but are free from y, as shown in Sec. IV.

It follows that Egs. (41)—(43) recover the PN counterpart
of Egs. (26)-(28) of Ref. [15] if and only if f = 1. The
uniqueness is because the PPN parameter is only j for three
equations as Eqgs. (41)—(43).

Condition (B) is satisfied, if w; = 0y, = w3 = @wppy,
where wppy means the angular velocity of the PPN
configuration. By substituting Eqs. (41) and (43) into
Eq. (36), wppy is obtained as

wppy = wn(1 +6,), (44)
where, by using Eq. (28), the PPN correction §,, is

s 3@ -—n-Deptuwi—rz—ley 1
4 i+ +13 27!

M
= —m{64/)’+24y— 1-42(vivs +vovs +usvy) ). (45)

There is a symmetry among M, M,, M3 in the second
line of Eq. (45), which means that §,, is the same for all
bodies. Condition (B) is thus satisfied.

IV. PPN CORRECTIONS TO THE
LAGRANGE POINTS

A. PPN Lagrange points L, L,, and L;

In this section, we discuss PPN modifications of
the Lagrange points that are originally defined in the
restricted three-body problem in Newton gravity. We
choose vy =1—v, vg =v, and ve =0, where v is the
mass ratio of the secondary object (a planet).

First, we seek PPN corrections to L, L,, and L3. There
are three choices of how to correspond M, M,, and M5 to
the Sun, a planet and a test mass in the collinear configu-
ration. Indeed the three choices lead to the Lagrange points
Ll’ L2, and L3.

We consider the collinear solution by Eq. (11). We
denote the physical root for Eq. (11) as z = zy(1 + &) for
the Newtonian root zy with using a small parameter ¢
(le| < 1) at the PPN order. We substitute z into Eq. (11) and
rearrange it to obtain € as

LA ) »

&= ,
2:1 kA;cv(ZN)k

where O(g?) is discarded because of being at the 2PN
order, and AY and AZPVN denote the Newtonian and PPN
parts of Ay, respectively, as A, = AY + eAPN (A =
and AY =0 because there are no counterparts in the
Newtonian case).

Equation (46) is used for calculating the PPN corrections
to L;, L,, and L;. The PPN displacement from the
Newtonian Lagrange point L, is thus obtained as

ez
SppnR23 = Ry — (Ry3)y = 2 504 0(¢€?),  (47)

(1+zy)

where M, M,, and M are chosen as a planet, a test mass,
and the Sun, respectively.

Similarly, the PPN displacement from the Newtonian
Lagrange point L, becomes

€z
SppnR31 = R3p — (R31)y = (I?A;)f +0(¢e*),  (48)
N

where M, M,, and M5 are chosen as the Sun, a planet, and
a test mass, respectively. The PPN displacement from the
Newtonian Lagrange point Lj is

€z
SppnR23 = Roz — (Ry3)y = (]T}\;N)f +0(¢€*),  (49)

where M|, M,, and M5 are chosen as a planet, the Sun. and
a test mass, respectively. Here, a value of z depends on L,
L,, or L3, which is given by Eq. (4).

B. PPN Lagrange points L, and Ls

Next, we discuss PPN corrections to the Lagrange points
L, and Ls, for which we consider the PPN triangular
solution. Let a denote the orbital separation between the
primary object and the secondary one, which equals to
Ry, =¢(1 +¢€,). Therefore, £ =a(l —¢,)+ O(ag?),
where &? denotes the second order in e45. By using this
for Ry; and Ry, we obtain Ry; = a(l + &3 —&15) +
O(ae?), and Ry = a(l + &3, — €1,) + O(ag?).

The PPN displacement from the Newtonian Lagrange
point L, (and Ls) with respect to the Sun is obtained as

OppnR31 = R31 —a
= a(e3) — €13) + O(ae?)

(16— 10+ %) M?
L0890 ()

where vy =1—-v, v, =v, and v3 =0 are used in the
last line.

In the similar manner, the PPN displacement from the
Newtonian Lagrange point L, (and Ls) with respect to the
planet
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TABLE 1. The PPN displacement from the Newtonian
Lagrange points of the Sun-Jupiter system. The PPN corrections
to Ly, L,, L3, and L, are listed in this table, where the sign
convention for Ly, L,, L; is chosen along the direction from the
Sun to the Jupiter, and the correction to Ls is identical to that to
Ly4. The PPN displacement for L, is two-dimensional and hence
they are indicated by the deviations from the Sun and from the
Jupiter.

Lagrange points PPN displacement [m]

L —0.000051 -+ 40.008 — 9.905y
L, 0.000040 — 50.278 + 12.40y
L, 0.000122 + 1.4248 + 0.01882y
Ly(Ls)-Sun —0.05875 x (—=9.991 + 163)

L4(Ls)-Jupiter —61.53 x (=1 + 16p)

OppnRoz = Rp3 —a

= a(ey — €12) + O(ag?)

e -1 -9 2
_a )(162ﬂ4 1 9)M+0(M7>. (51)

Equation (51) can be obtained more easily from Eq. (50)
if the correspondence as 1 — v < v is used.

C. Example: The Sun-Jupiter case

The PPN corrections to the L, L,, and L; can be
expressed as a linear function in f and y. The PPN
corrections to L, and Ls are in a linear function only of
p. The results for the Sun-Jupiter system are summarized in
Table I, where the sign convention is chosen along the
direction from the Sun to a planet.

Before closing this section, we mention gravitational
experiments. The lunar laser ranging experiment put a
constraint on 7 =48 —y —3 as |g| < O(107*) [32,33]. If
one wishes to constrain 1 — 3 at the level of O(107%) by
using the location of the Lagrange points, the Lagrange

point accuracy of about a few millimeters (e.g., for L) is
needed in the solar system, though this is very unlikely in
the near future.

On the other hand, possible PPN corrections in a three-
body system may be relevant with relativistic astrophysics
in, e.g., a relativistic hierarchical triple system and a
supermassive black hole with a compact binary [34-38].
This subject is beyond the scope of the present paper.

V. CONCLUSION

The coplanar and circular three-body problem was
investigated for a class of fully conservative theories in
the PPN formalism, characterized by the Eddington-
Robertson parameters £ and y.

The collinear configuration can exist for arbitrary mass
ratio, f and y. On the other hand, the PPN triangular
configuration depends on the nonlinearity parameter / but
not on y. This is far from trivial, because the parameter /3 is
not separable from y apparently at the level of Eq. (5). For
any value of f, the equilateral configuration in the PPN
gravity is possible, if and only if three finite masses are
equal or two test masses orbit around one finite mass. For
general mass cases, the PPN triangle is not equilateral.

We showed also that the PPN displacements from the
Newtonian Lagrange points L;, L,, and L5 depend on both
p and y, while those to L, and L5 rely only upon g. It is left
for future to study the stability of the PPN configurations.
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