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This paper investigates the coplanar and circular three-body problem in the parametrized post-
Newtonian (PPN) formalism, for which we focus on a class of fully conservative theories characterized
by the Eddington-Robertson parameters β and γ. It is shown that there can still exist a collinear equilibrium
configuration and a triangular one, each of which is a generalization of the post-Newtonian equilibrium
configuration in general relativity. The collinear configuration can exist for arbitrary mass ratio, β, and γ.
On the other hand, the PPN triangular configuration depends on the nonlinearity parameter β but not on γ.
For any value of β, the equilateral configuration is possible, if and only if three finite masses are equal or
two test masses orbit around one finite mass. For general mass cases, the PPN triangle is not equilateral as
in the post-Newtonian case. It is shown also that the PPN displacements from the Lagrange points in the
Newtonian gravity L1, L2, and L3 depend on β and γ, whereas those to L4 and L5 rely only on β.
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I. INTRODUCTION

The three-body problem is among the classical ones in
physics. It led to the notion of chaos [1]. On the other hand,
particular solutions such as Euler’s collinear solution and
Lagrange’s equilateral one [2,3] express regular orbits and
they have still attracted interest, e.g., [4–8]. If one mass is
zero and the other two masses are finite, the collinear
solution and triangular one correspond to Lagrange points
L1, L2, L3, L4, and L5 as particular solutions for the
coplanar restricted three-body problem.
In his pioneering work [9], Nordtvedt found that the

position of the triangular points is very sensitive to the ratio
of the gravitational mass to the inertial mass in gravitational
experimental tests, where the post-Newtonian (PN) terms
are not fully taken into account.
Krefetz [10] and Maindl [11] studied the restricted three-

body problem in the PN approximation and found the PN
triangular configuration for a general mass ratio between
two masses. These investigations were extended to the PN
three-body problem for general masses [12–17], and the PN
counterparts for Euler’s collinear [12,13] and Lagrange’s
equilateral solutions [14,15] were obtained. It should be
noted that the PN triangular solutions are not necessarily
equilateral for general mass ratios and they are equilateral
only for either the equal mass case or two test masses. The
stability of the PN solution and the radiation reaction at
2.5PN order were also examined [16,17].

In a scalar-tensor theory of gravity, a collinear configu-
ration for three-body problem was discussed [18]. In
addition to such fully classical treatments, a possible
quantum gravity correction to the Lagrange points was
proposed [19,20].
Moreover, the recent discovery of a relativistic hierar-

chical triple system including a neutron star [21] has
generated renewed interest in the relativistic three-body
problem and the related gravitational experiments [22–24].
The main purpose of the present paper is to reexamine

the coplanar and circular three-body problem especially
in the PPN formalism. One may ask if collinear and
triangular configurations are still solutions for the coplanar
three-body problem in the PPN gravity. If so, how large are
the PPN effects of the three-body configuration? We focus
on the Eddington-Robertson parameters β and γ, because
the two parameters are the most important ones; βmeasures
how much nonlinearity there is in the superposition law for
gravity and γ measures how much space curvature is
produced by unit rest mass [25,26]. Hence, preferred
locations, preferred frames or a violation of conservation
of total momentum will not be considered in this paper. We
confine ourselves to a class of fully conservative theories.
See, e.g., [27] for the celestial mechanics in this class of
PPN theories.
This paper is organized as follows. In Sec. II, collinear

configurations are discussed in the PPN formalism.
Section III investigates PPN triangular configurations. In
Sec. IV, the PPN corrections to the Lagrange points are
examined. For brevity, the Lagrange points defined in
Newtonian gravity are referred to as the Newtonian
Lagrange points in this paper. Section V summarizes this
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paper. Throughout this paper, G ¼ c ¼ 1. A;B, and C ∈
f1; 2; 3g label three masses.

II. COLLINEAR CONFIGURATION
IN PPN GRAVITY

A. Euler’s collinear solution in Newton gravity

Let us begin with briefly mentioning the Euler’s collinear
solution for the circular three-body problem in Newton
gravity [2,3], for which each massMA (A ¼ 1, 2, 3) at xA is
orbiting around the common center of mass (COM) at xG,
and the orbital velocity and acceleration are denoted as vA
and aA, respectively. In this section, we suppose that three
masses are always aligned, for which it is convenient to use
the corotating frame with a constant angular velocity ω on
the orbital plane chosen as the x-y plane.
Without loss of generality, we assume x1 > x2 > x3

for xA ≡ ðxA; 0Þ. Let RA denote the relative position of
each mass MA from the COM at xG ≡ ðxG; 0Þ. Namely,
RA ¼ xA − xG. Note that jRAj ≠ jxAj unless xG ¼ 0 is
chosen. We define the relative vector between masses as
RAB ≡ xA − xB, forwhich the relative length isRAB ¼ jRABj.
SeeFig. 1 for a configurationof theEuler’s collinear solution.
The coordinate origin x ¼ 0 is chosen between M1 and

M3, such that R1 > R2 > R3, R1 > 0 and R3 < 0. By
taking account of this sign convention, the equation of
motion becomes

R1ω
2 ¼ M2

R2
12

þ M3

R2
13

; ð1Þ

R2ω
2 ¼ −

M1

R2
12

þ M3

R2
23

; ð2Þ

R3ω
2 ¼ −

M1

R2
13

−
M2

R2
23

: ð3Þ

We define the distance ratio as z≡ R23=R12, which plays
a key role in the following calculations. Note that z > 0 by
definition. We subtract Eq. (2) from Eq. (1) and Eq. (3)
from Eq. (2). By combining the results including the same
angular velocity ω, we obtain a fifth-order equation for z as

ðM1þM2Þz5þð3M1þ2M2Þz4þð3M1þM2Þz3
− ðM2þ3M3Þz2− ð2M2þ3M3Þz− ðM2þM3Þ¼ 0; ð4Þ

for which there exists the only positive root [2,3]. In order
to obtain Eq. (4), we do not have to specify the coordinate
origin, e.g., xG ¼ 0. This is because Eq. (4) does not refer
to any coordinate system. Once Eq. (4) is solved for z, we
can obtain ω by substituting z into any of Eqs. (1)–(3).

B. PPN collinear configuration

In a class of fully conservative theories including only
the Eddington-Robertson parameters β and γ, the equation
of motion is [25,26]

aA ¼−
X
B≠A

MB

R2
AB

nAB−
X
B≠A

MB

R2
AB

�
γv2A−2ðγþ1ÞðvA · vBÞþðγþ1Þv2B−

3

2
ðnAB · vBÞ2− ð2γþ2βþ1ÞMA

RAB
−2ðγþβÞMB

RAB

�
nAB

þ
X
B≠A

MB

R2
AB

fnAB · ½2ðγþ1ÞvA− ð2γþ1ÞvB�gðvA− vBÞþ
X
B≠A

X
C≠A;B

MBMC

R2
AB

�
2ðγþβÞ
RAC

þ2β−1

RBC
−
1

2

RAB

R2
BC

ðnAB ·nBCÞ
�
nAB

−
1

2
ð4γþ3Þ

X
B≠A

X
C≠A;B

MBMC

RABR2
BC

nBCþOðc−4Þ; ð5Þ

where

nAB ≡ RAB

RAB
: ð6Þ

For three aligned masses, Eq. (5) becomes the force-
balance equation as

lω2 ¼ FN þ FM þ FVω
2; ð7Þ

where we define l≡ R31, the mass ratio νA ≡MA=M for
M≡P

A MA, and

FN ¼ M
l2z2

½1 − ν1 − ν3 þ 2ð1 − ν1 − ν3Þz
þ ð2 − ν1 − ν3Þz2 þ 2ð1 − ν1 − ν3Þz3
þ ð1 − ν1 − ν3Þz4�; ð8Þ

FIG. 1. Schematic figure for the collinear configuration of three
masses.
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FM ¼ −
M2

l3z3
½f2ðβ þ γÞν2 þ ð1þ 2β þ 2γÞν3gν2 þ fð−1þ 4β þ 2γÞν1 þ 6ðβ þ γÞν2 þ 3ð1þ 2β þ 2γÞν3gν2z

þ fð−5þ 12β þ 4γÞν1 þ 6ðβ þ γÞν2 − ð1 − 10β − 4γÞν3gν2z2
þ f2ðβ þ γÞν21 þ 4ðβ þ γÞν22 − ð7 − 14β − 2γÞν2ν3 þ 2ðβ þ γÞν23 þ ðð−7þ 14β þ 2γÞν2 þ 2ð1þ 2β þ 2γÞν3Þν1gz3
þ fð−1þ 10β þ 4γÞν1 þ 6ðβ þ γÞν2 þ ð12β þ 4γ − 5Þν3gν2z4
þ f3ð1þ 2β þ 2γÞν1 þ 6ðβ þ γÞν2 þ ð−1þ 4β þ 2γÞν3gν2z5 þ fð1þ 2β þ 2γÞν1 þ 2ðβ þ γÞν2gν2z6�; ð9Þ

and

FV ¼ M
ð1þ zÞ2z2 ½−ν

2
1ν2 − 2ν1ν2ð2ν1 þ ν2Þzþ fγν31 þ ðð−2þ 4γÞν2 þ 3ð1þ γÞν3Þν21

þ ð2ν2 þ ν3Þðγν22 þ ð1þ 2γÞν2ν3 þ γν23Þ þ ðð−1þ 5γÞν22 þ 8ð1þ γÞν2ν3 þ 3ð1þ γÞν23Þν1gz2
þ 2ðν1 þ 2ν2 þ ν3Þfγν21 þ γν22 þ ð1þ 2γÞν2ν3 þ γν23 þ ðð1þ 2γÞν2 þ ð3þ 2γÞν3Þν1gz3
þ fγν31 þ 2γν32 − ð1 − 5γÞν22ν3 − 2ð1 − 2γÞν2ν23 þ γν33 þ ðð1þ 4γÞν2 þ 3ð1þ γÞν3Þν21
þ ðð2þ 5γÞν22 þ 8ð1þ γÞν2ν3 þ 3ð1þ γÞν23Þν1gz4 − 2ν2ν3ðν2 þ 2ν3Þz5 − ν2ν

2
3z

6�: ð10Þ

By rearranging Eq. (5) for the collinear configuration by
the same way as in Sec. II A, we find a seventh-order
equation for z as

X7
k¼0

Akzk ¼ 0; ð11Þ

where the coefficients are

A7 ¼
M
l
½−2ðβ þ γÞ − 2ν1 þ 4ðβ þ γÞν3 þ 2ν21 þ 4ν1ν3

− 2ðβ þ γÞν23 − 2ν21ν3 − 2ν1ν
2
3�; ð12Þ

A6 ¼ 1−ν3

þM
l
½−ð6βþ7γÞ− ð6þ2βþ2γÞν1

− ð2−8β−11γÞν3þ4ν21þð12þ2βþ2γÞν1ν3
þð4−2β−4γÞν23þ2ν31−4ν21ν3−6ν1ν

2
3−2ν33�; ð13Þ

A5 ¼ 2þ ν1 − 2ν3

þM
l
½−3ð2βþ 3γÞ − 3ð2þ 2βþ 2γÞν1 − ð6− 11γÞν3

þ ð12þ 6βþ 2γÞν1ν3 þ ð12þ 6β − 2γÞν23
þ 6ν31 − 6ν1ν

2
3 − 6ν33�; ð14Þ

A4 ¼ 1þ2ν1−ν3

þM
l
½−2β−4γ− ð2βþ8γÞν1− ð6þ6β−8γÞν3

− ð6þ4β−2γÞν21þð4þ2β−2γÞν1ν3
þð12þ8β−4γÞν23þ6ν31þ2ν21ν3−4ν1ν

2
3−6ν33�; ð15Þ

A3 ¼−1þν1−2ν3

þM
l
½2βþ4γþð6þ6β−8γÞν1þð2βþ8γÞν3

− ð12þ8β−4γÞν21− ð4þ2β−2γÞν1ν3
þð6þ4β−2γÞν23þ6ν31þ4ν21ν3−2ν1ν

2
3−6ν33�; ð16Þ

A2 ¼ −2þ 2ν1 − ν3

þM
l
½6β þ 9γ þ ð6 − 11γÞν1 þ ð6þ 6β þ 6γÞν3

− ð12þ 6β − 2γÞν21 − ð12þ 6β þ 2γÞν1ν3
þ 6ν31 þ 6ν21ν3 − 6ν33�; ð17Þ

A1 ¼ −1þ ν1

þM
l
½6βþ 7γ þ ð2 − 8β − 11γÞν1 þ ð6þ 2β þ 2γÞν3

− ð4 − 2β − 4γÞν21 − ð12þ 2βþ 2γÞν1ν3
− 4ν23 þ 2ν31 þ 4ν1ν

2
3 þ 6ν21ν3 − 2ν33�; ð18Þ

A0 ¼
M
l
½2β þ 2γ − 4ðβ þ γÞν1 þ 2ν3 þ 2ðβ þ γÞν21

− 4ν1ν3 − 2ν23 þ 2ν21ν3 þ 2ν1ν
2
3�: ð19Þ

It follows that Eq. (11) recovers the PN collinear configu-
ration by Eq. (13) of Ref. [13] if and only if β ¼ γ ¼ 1. The
uniqueness is because the number of the parameters β, γ is
two for eight coefficients A0;…; A7.
From Eq. (7) for z obtained above, the angular velocity

ωPPN of the PPN collinear configuration is obtained as
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ωPPN ¼ ωN

�
1þ FM

2FN
þ FV

2l

�
; ð20Þ

where ωN ¼ ðFN=lÞ1=2 is the Newtonian angular velocity.
The subscript N denotes the Newtonian case.

III. TRIANGULAR CONFIGURATION
IN PPN GRAVITY

A. Lagrange’s equilateral solution in Newtonian gravity

In this subsection, we suppose that the three masses are
in coplanar and circular motion with keeping the same
separation between the masses, namely RAB ¼ a for a
constant a.
It is convenient to choose the coordinate origin as the

COM,

X
A

MAxA ¼ 0; ð21Þ

for which the equation of motion for each mass in the
equilateral triangle configuration takes a compact form
as [2]

d2xA
dt2

¼ −
M
a3

xA: ð22Þ

See e.g., Eq. (8.6.5) in Ref. [2] for the derivation of
Eq. (22). A triangular configuration is a solution, if the
Newtonian angular velocity ωN satisfies

ðωNÞ2 ¼
M
a3

: ð23Þ

The orbital radius lA of each mass around the COM
is [2]

l1 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν22 þ ν2ν3 þ ν23

q
; ð24Þ

l2 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν21 þ ν1ν3 þ ν23

q
; ð25Þ

l3 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν21 þ ν1ν2 þ ν22

q
: ð26Þ

B. PPN orbital radius

We suppose again that three masses in circular motion
are in a triangular configuration with a constant angular
velocity ω. By noting that a vector in the orbital plane can
be expressed as a linear combination of x1 and v1, Eq. (5)
becomes

−ω2x1¼−ðωNÞ2x1þg1ðωNÞ2x1

þ
ffiffiffi
3

p
M

16a
ν2ν3ðν2−ν3Þð16β−1−9ν1Þ

ν22þν2ν3þν23
ωNv1; ð27Þ

where Eq. (23) is used and

g1 ¼
M
a

��
2β þ γ þ ðν2 þ ν3Þðν2 þ ν3 − 1Þ − 7

16
ν2ν3

�

þ 3

16

ν2ν3f9ν2ν3 þ 2ðν2 þ ν3Þð8β − 5Þg
ν22 þ ν2ν3 þ ν23

�
: ð28Þ

By a cyclic permutation, we obtain the similar equations for
M2 and M3.
The second and third terms in the right-hand side of

Eq. (27) are the PPN forces. The second term is parallel to
x1, whereas the third term is parallel to v1 Note that v1 is not
parallel to x1 in circular motion.
The location of the COM in the fully conservative

theories of PPN [28,29] remains the same as that in the
PN approximation of general relativity [30,31]

GPN ¼ 1

E

X
A

MAxA

�
1þ 1

2

�
v2A −

X
B≠A

MB

RAB

��
; ð29Þ

where E is defined as

E≡X
A

MA

�
1þ 1

2

�
v2A −

X
B≠A

MB

RAB

��
: ð30Þ

This coincidence allows us to obtain the PPN orbital
radius lPPN

A around the COM by straightforward calcu-
lations. The orbital radius of M1 is formally obtained as

ðlPPN
1 Þ2 ¼ ðl1Þ2 þ

aM
2

�
1 −

a3ω2
N

M

�

× ð−2ν21ν22 − 2ν22ν
2
3 − 2ν23ν

2
1

þ 2ν1ν
3
2 þ ν2ν

3
3 þ ν32ν3 þ 2ν33ν1

− 2ν21ν2ν3 þ ν1ν
2
2ν3 þ ν1ν2ν

2
3Þ; ð31Þ

and the similar expressions of lPPN
2 and lPPN

3 for the orbital
radius of M2 and M3 are obtained.
Unless the second term of the right-hand side in Eq. (31)

vanishes, the difference between lPPN
1 and l1 would make

our computations rather complicated. However, it vanishes
because ωN satisfies Eq. (23). As a result, the PPN orbital
radius remains the same as the Newtonian one. Namely,
lPPN
A ¼ lA.

C. Equilateral condition

First, we discuss a condition for an equilateral
configuration.
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For Eq. (27) to hold, the coefficient of the velocity vector
v1 must vanish, because there are no other terms including
v1. The coefficient is proportional to ν2ν3ðν2 − ν3Þ. The
same thing is true also of M2 and M3. For any value of β,
therefore, the equilateral configuration in the PPN gravity
can be present if and only if three finite masses are equal or
two test masses orbit around one finite mass.
Note that one can find a very particular value of β

satisfying

16β − 1 − 9ν1 ¼ 0; ð32Þ

which leads to the vanishing coefficient of the velocity
vector v1. However, this choice is very unlikely, because the
particular value of β is dependent on the mass ratio ν1 and it
is not universal. Hence, this case will be ignored.

D. PPN triangular configuration for general masses

Next, let us consider a PPN triangle configuration for
general masses. For this purpose, we introduce a non-
dimensional parameter εAB at the PPN order, such that each
side length of the PPN triangle can be expressed as

RAB ¼ að1þ εABÞ: ð33Þ

The equilateral case is achieved by assuming εAB ¼ 0
for every masses. See Fig. 2 for the PPN triangular
configuration.
In order to fix the degree of freedom corresponding

to a scale transformation, we follow Ref. [15] to suppose
that the arithmetic mean of the three side lengths is
unchanged as

R12 þ R23 þ R31

3
¼ a

�
1þ 1

3
ðε12 þ ε23 þ ε31Þ

�
: ð34Þ

The left-hand side of Eq. (34) is a in the Newtonian case,
which leads to

ε12 þ ε23 þ ε31 ¼ 0: ð35Þ

This is a gauge fixing in εAB.
In terms of εAB, Eq. (27) is rearranged as

−ω2x1 ¼ −ðωNÞ2x1 −
3

2

ðωNÞ2
ν22 þ ν2ν3 þ ν23

×

�
fν2ðν1 − ν2 − 1Þε12 þ ν3ðν1 − ν3 − 1Þε31gx1

þ
ffiffiffi
3

p
ν2ν3ðε12 − ε31Þ

v1
ωN

�
þ δ1; ð36Þ

where

δ1 ¼ g1ðωNÞ2x1þ
ffiffiffi
3

p
Mν2ν3ðν2−ν3Þð16β−1−9ν1Þ

16aðν22þν2ν3þν23Þ
ωNv1:

ð37Þ

By a cyclic permutation, the equations for M2 and M3 can
be obtained.
A triangular equilibrium configuration can exist if and

only if the two conditions (A) and (B) are simultaneously
satisfied; (A) Each mass satisfies Eq. (36), and (B) the
configuration is unchanged in time.
Equation (36) is the equation of motion for M1. To be

more accurate, therefore,ω in Eq. (36) should be denoted as
ω1. Similarly, we introduce ω2 and ω3 in the equations of
motion for M2 and M3, respectively. Then, condition
(B) means ω1 ¼ ω2 ¼ ω3.
Condition (A) is equivalent to condition (A2); The

coefficient of vA in the equation of motion vanishes as

ε12 − ε31 −
M
24a

ðν2 − ν3Þð16β − 1 − 9ν1Þ ¼ 0; ð38Þ

ε23 − ε21 −
M
24a

ðν3 − ν1Þð16β − 1 − 9ν2Þ ¼ 0; ð39Þ

ε31 − ε23 −
M
24a

ðν1 − ν2Þð16β − 1 − 9ν3Þ ¼ 0: ð40Þ

From Eqs. (38)–(40) and the gauge fixing as
ε12 þ ε23 þ ε31 ¼ 0, we obtain

ε12 ¼
M
72a

½ðν2 − ν3Þð16β − 1 − 9ν1Þ
− ðν3 − ν1Þð16β − 1 − 9ν2Þ�; ð41Þ

ε23 ¼
M
72a

½ðν3 − ν1Þð16β − 1 − 9ν2Þ
− ðν1 − ν2Þð16β − 1 − 9ν3Þ�; ð42Þ

FIG. 2. Schematic figure for the PPN triangular configuration
of three masses. An inequilateral triangle is described by the
parameter εAB. RA coincides with lA in the Newtonian limit, for
which εAB vanishes.
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and

ε31 ¼
M
72a

½ðν1 − ν2Þð16β − 1 − 9ν3Þ
− ðν2 − ν3Þð16β − 1 − 9ν1Þ�: ð43Þ

Therefore, the PPN triangle is inequilateral depending on
β via εAB but not on γ. This suggests that also the PPN
Lagrange points corresponding to L4 and L5 are sensitive to
β but are free from γ, as shown in Sec. IV.
It follows that Eqs. (41)–(43) recover the PN counterpart

of Eqs. (26)–(28) of Ref. [15] if and only if β ¼ 1. The
uniqueness is because the PPN parameter is only β for three
equations as Eqs. (41)–(43).
Condition (B) is satisfied, if ω1 ¼ ω2 ¼ ω3 ≡ ωPPN ,

where ωPPN means the angular velocity of the PPN
configuration. By substituting Eqs. (41) and (43) into
Eq. (36), ωPPN is obtained as

ωPPN ¼ ωNð1þ δωÞ; ð44Þ

where, by using Eq. (28), the PPN correction δω is

δω¼
3

4

ν2ðν1−ν2−1Þε12þν3ðν1−ν3−1Þε31
ν22þν2ν3þν23

−
1

2
g1

¼−
M
48a

f64βþ24γ−1−42ðν1ν2þν2ν3þν3ν1Þg: ð45Þ

There is a symmetry among M1, M2, M3 in the second
line of Eq. (45), which means that δω is the same for all
bodies. Condition (B) is thus satisfied.

IV. PPN CORRECTIONS TO THE
LAGRANGE POINTS

A. PPN Lagrange points L1, L2, and L3

In this section, we discuss PPN modifications of
the Lagrange points that are originally defined in the
restricted three-body problem in Newton gravity. We
choose νA ¼ 1 − ν, νB ¼ ν, and νC ¼ 0, where ν is the
mass ratio of the secondary object (a planet).
First, we seek PPN corrections to L1, L2, and L3. There

are three choices of how to correspond M1, M2, and M3 to
the Sun, a planet and a test mass in the collinear configu-
ration. Indeed the three choices lead to the Lagrange points
L1, L2, and L3.
We consider the collinear solution by Eq. (11). We

denote the physical root for Eq. (11) as z ¼ zNð1þ εÞ for
the Newtonian root zN with using a small parameter ε
(jεj ≪ 1) at the PPN order. We substitute z into Eq. (11) and
rearrange it to obtain ε as

ε ¼ −
P

7
k¼0 A

PPN
k ðzNÞkP

6
k¼1 kA

N
k ðzNÞk

; ð46Þ

where Oðε2Þ is discarded because of being at the 2PN
order, and AN

k and APPN
k denote the Newtonian and PPN

parts of Ak, respectively, as Ak ¼ AN
k þ εAPPN

k (AN
0 ¼ 0

and AN
7 ¼ 0 because there are no counterparts in the

Newtonian case).
Equation (46) is used for calculating the PPN corrections

to L1, L2, and L3. The PPN displacement from the
Newtonian Lagrange point L1 is thus obtained as

δPPNR23 ≡ R23 − ðR23ÞN ¼ εzN
ð1þ zNÞ2

lþOðlε2Þ; ð47Þ

where M1, M2, and M3 are chosen as a planet, a test mass,
and the Sun, respectively.
Similarly, the PPN displacement from the Newtonian

Lagrange point L2 becomes

δPPNR31 ≡ R31 − ðR31ÞN ¼ εzN
ð1þ zNÞ

lþOðlε2Þ; ð48Þ

whereM1,M2, andM3 are chosen as the Sun, a planet, and
a test mass, respectively. The PPN displacement from the
Newtonian Lagrange point L3 is

δPPNR23 ≡ R23 − ðR23ÞN ¼ εzN
ð1þ zNÞ

lþOðlε2Þ; ð49Þ

whereM1,M2, andM3 are chosen as a planet, the Sun. and
a test mass, respectively. Here, a value of zN depends on L1,
L2, or L3, which is given by Eq. (4).

B. PPN Lagrange points L4 and L5

Next, we discuss PPN corrections to the Lagrange points
L4 and L5, for which we consider the PPN triangular
solution. Let a denote the orbital separation between the
primary object and the secondary one, which equals to
R12 ¼ lð1þ ε12Þ. Therefore, l ¼ að1 − ε12Þ þOðaε2Þ,
where ε2 denotes the second order in εAB. By using this
for R23 and R31, we obtain R23 ¼ að1þ ε23 − ε12Þ þ
Oðaε2Þ, and R31 ¼ að1þ ε31 − ε12Þ þOðaε2Þ.
The PPN displacement from the Newtonian Lagrange

point L4 (and L5) with respect to the Sun is obtained as

δPPNR31 ≡ R31 − a

¼ aðε31 − ε12Þ þOðaε2Þ

¼ −
νð16β − 10þ 9νÞ

24
M þO

�
M2

a

�
; ð50Þ

where ν1 ¼ 1 − ν, ν2 ¼ ν, and ν3 ¼ 0 are used in the
last line.
In the similar manner, the PPN displacement from the

Newtonian Lagrange point L4 (and L5) with respect to the
planet
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δPPNR23 ≡ R23 − a

¼ aðε23 − ε12Þ þOðaε2Þ

¼ −
ð1 − νÞð16β − 1 − 9νÞ

24
M þO

�
M2

a

�
: ð51Þ

Equation (51) can be obtained more easily from Eq. (50)
if the correspondence as 1 − ν ↔ ν is used.

C. Example: The Sun-Jupiter case

The PPN corrections to the L1, L2, and L3 can be
expressed as a linear function in β and γ. The PPN
corrections to L4 and L5 are in a linear function only of
β. The results for the Sun-Jupiter system are summarized in
Table I, where the sign convention is chosen along the
direction from the Sun to a planet.
Before closing this section, we mention gravitational

experiments. The lunar laser ranging experiment put a
constraint on η≡ 4β − γ − 3 as jηj < Oð10−4Þ [32,33]. If
one wishes to constrain 1 − β at the level of Oð10−4Þ by
using the location of the Lagrange points, the Lagrange

point accuracy of about a few millimeters (e.g., for L4) is
needed in the solar system, though this is very unlikely in
the near future.
On the other hand, possible PPN corrections in a three-

body system may be relevant with relativistic astrophysics
in, e.g., a relativistic hierarchical triple system and a
supermassive black hole with a compact binary [34–38].
This subject is beyond the scope of the present paper.

V. CONCLUSION

The coplanar and circular three-body problem was
investigated for a class of fully conservative theories in
the PPN formalism, characterized by the Eddington-
Robertson parameters β and γ.
The collinear configuration can exist for arbitrary mass

ratio, β and γ. On the other hand, the PPN triangular
configuration depends on the nonlinearity parameter β but
not on γ. This is far from trivial, because the parameter β is
not separable from γ apparently at the level of Eq. (5). For
any value of β, the equilateral configuration in the PPN
gravity is possible, if and only if three finite masses are
equal or two test masses orbit around one finite mass. For
general mass cases, the PPN triangle is not equilateral.
We showed also that the PPN displacements from the

Newtonian Lagrange points L1, L2, and L3 depend on both
β and γ, while those to L4 and L5 rely only upon β. It is left
for future to study the stability of the PPN configurations.
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