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With certain nonminimal coupling between a massless scalar field and the Gauss-Bonnet curvature
invariant in the extended scalar-tensor-Gauss-Bonnet (ESTGB) field theory, tachyonic instability of the
Kerr-Newman (KN) black hole is promoted. Critical spin and charge for the onset of the spontaneous
scalarization phenomenon for the KN black hole are calculated in the infinitely large coupling limit. Then
the analytical formula for the coupling-strength-dependent critical existence line is obtained for the black-
hole-scalar-field configuration in a finite large coupling regime. Moreover, numerical methods are used to
perform threshold curves that are boundaries between bald KN black holes and their hairy counterparts.
Intriguingly, we get to know the KN black hole can be scalarized in the vanishing spin limit in ESTGB
theory.
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I. INTRODUCTION

According to the well-known no-hair theorem, an
asymptotically flat and stationary black hole spacetime
can be characterized at most by three conserved quantities,
i.e., mass, angular momentum, and electric charge [1],
which are subject to the Gauss law. What this uniqueness
theorem implies is that matter fields propagating in a
stationary spacetime will be either absorbed or scattered
by the black hole. The theorem, though robust in Einstein’s
electrovacuum general relativity (GR), sees some evasion
beyond GR or even in GR with typical nonlinear matter
sources [2]. Black holes with additional stable primary or
secondary hairs were found, e.g., in Refs. [3–8].
Recently, great progress in investigations of the destabi-

lization of hair-free black holes and the occurrence of hairy
black holes, dubbed spontaneous scalarization, was made.
In fact, earlier in the 1990s, neutron star solution of the
scalar-tensor theory was found to be capable of being
scalarized induced by scalar field nonminimally coupled
with Ricci curvature [9]. For the past few years, sponta-
neous scalarization mechanisms of black holes due to
tachyonic instability were disclosed in charged induced cases
[10–16] as well as in curvature induced cases [17–20].
Furthermore, it was shown that the rotating Kerr black hole
can also be scalarized with a specific domain of the spin
parameter in the extended scalar-tensor-Gauss-Bonnet
(ESTGB) theory, where the electrovacuum GR is minimally
coupled to the Gauss-Bonnet (GB) quadratic curvature

invariant through a scalar coupling function fðϕÞ < 0
[21–23]. ESTGB theory is a natural extension of the standard
scalar-tensor theory as it is free from ghosts.
Moreover, there are other mechanisms that can result in

the spontaneous scalarization phenomena, such as by mag-
netic charges [24], nonlinear electromagnetic field [25],
and quasitopological electromagnetism field [26,27], in the
contexts of different coupling functions [28], in asymp-
totically (Anti)-de Sitter [(A)dS] background [29,30],
dynamical nonlinear accretion scalarization [31]. One
can see the latest review Ref. [32] on spontaneous scala-
rization, or even spontaneous vectorization [33,34] and
spontaneous tensorization [35,36] of both black holes or
neutron stars.
Intriguingly, spin charge induced scalarization of Kerr-

Newman (KN) black hole spacetime was studied analyti-
cally [37] and numerically [38] a few months ago. It was
shown that in the Einstein-Maxwell-scalar (EMs) field
theory, where the scalar field configuration is nonminimally
coupled with the Maxwell electromagnetic invariant of the
background spacetime by a negative coupling function, the
massless scalar field can be stably supported by the KN
black hole. Remarkably, this spontaneous scalarization can
only be induced by nonzero spin and charge [37].
Natural questions may arise: can the charged and rotating

KN black hole be scalarized by curvature coupling in the
ESTGB theory? If the spontaneous scalarization phenome-
non occurs, is it induced by only nonzero spin and charge?
What is the interplay between the coupling strength,
charge, and angular momentum in stimulating tachyonic
instability, which is the hallmark of spontaneous scalariza-
tion of the KN black hole? In this paper, we will try to
clarify these questions and investigate the tachyonic
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instability of the Einstein-Maxwell-scalar theory nonmini-
mally coupled with the Gauss-Bonnet (GB) invariant of the
background spacetime by a negative coupling function.
This exponentially growing instability signifies the onset of
the spontaneous scalarization of the bald background
spacetime, in which we specifically choose the KN one
as a prototype. Explicitly, we will investigate the spin
induced scalarization of the KN black hole using both
analytic and numerical techniques. To this end, we will first
calculate critical angular momentum and charge, which
mark the boundary between the bald spinning charged KN
black hole and its scalarized counterpart in Sec. II. In fact,
these critical values correspond to the case where the
coupling strength is infinitely large. We will then derive
a compact analytic formula for the existence line in the
finitely large coupling regime in Sec. III. In Sec. IV, we will
numerically study the scalarization of the KN black hole in
the ESTGB theory to obtain the whole existence line with
arbitrary coupling strength discerning bald and scalarized
KN black holes and confirm our analytical results in former
sections. Section V will be devoted to our concluding
remarks.

II. ONSET OF SPONTANEOUS SCALARIZATION
OF KERR-NEWMAN BLACK HOLE

In this section, we will investigate the onset of sponta-
neous scalarization of the KN black hole in the ESTGB
field theory, which can be described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − FμνFμν −

1

2
∇μϕ∇μϕþ fðϕÞR2

GB

�
;

ð1Þ

where R is the Ricci scalar, Fμν is the electromagnetic
strength tensor, ϕ is a real scalar field, and fðϕÞ is some
coupling function controlling the nonminimal coupling
between the scalar field and the GB invariant, which
explicitly reads

R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2: ð2Þ

We shall show that the nontrivial coupling between the
scalar function fðϕÞ and the GB curvature term yields
spontaneous scalarization of the KN black hole, which can
be viewed as a tachyonic instability at a linear level. To this
end, we choose the coupling function to be a universal
quadratic form

fðϕÞ ¼ −
1

8
λϕ2; ð3Þ

where the coupling strength parameter λ is dimensionful. It
guarantees that the bald KN black hole is an electrovacuum
solution of the ESTGB theory in the limit ϕ → 0. The
coupling parameter can be either positive or negative. To be

specific, we will focus on the case λ > 0 in what follows.
In the terminology of Ref. [39], this case corresponds to the
GB− scalarization. We will show that the KN black hole
can support linearized spatially regular scalar configura-
tions in case of a negative coupling between the GB
invariant of the background spacetime and the scalar field.
The action (1) admits a bald KN spacetime solution

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdφÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ
ρ2

½adt − ðr2 þ a2Þdφ�2 ð4Þ

in the vanishing scalar field limit, where Δ ¼ r2 − 2Mrþ
a2 þQ2, ρ2 ¼ r2 þ a2cos2θ. M; a, and Q, are, respec-
tively, the mass, spin, and electric charge of the black
hole. When a ¼ 0, we obtain the Reissner-Nordström (RN)
black hole. The event horizon locates at r� ¼ M �
ðM2 − a2 −Q2Þ1=2. The equation of motion for the scalar
field derived from the action (1) is given by the Klein-
Gordon (KG) equation

ð∇μ∇μ − μ2effÞϕ ¼ 0; ð5Þ

where the effective mass is explicitly given by

μ2effðr; θ;M;Q; aÞ ¼ λ

4
· R2

GBðr; θ;M;Q; aÞ; ð6Þ

with

r8

Q4
R2
GB ¼ 8

ȳ2ð1þ x̄Þ6 ½−6x̄
6 þ 5ȳ2 − 12ȳþ 6

þ 5x̄4ðȳ2 − 12ȳþ 18Þ
− 2x̄2ð19ȳ2 − 60ȳþ 45Þ�; ð7Þ

where we have defined two dimensionless quantities

x̄ ¼ a cos θ
r

; ȳ ¼ Q2

Mr
: ð8Þ

Not loss of generality, we can choose a ≥ 0. It is evident
that

0 ≤ x̄ ≤
a2

r2
≤
a2

r2þ
≤

a2

M2
≤ 1; ð9Þ

0 ≤ ȳ ≤
Q2

M2
≤ 1: ð10Þ

To expand KG equation (5), we can define a tortoise
coordinate x by

dx
dr

¼ r2 þ a2

Δ
ð11Þ
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and introduce an alternative azimuthal coordinate φ̄ via

dφ̄ ¼ dφþ a
Δ
dr: ð12Þ

As a result, the problem of the Boyer-Lindquist coordinate
φ being ill-defined on the horizon is resolved. Then we
separate the azimuthal dependence of the scalar field ϕ by

ϕ ¼ 1

r
Ψðt; r; θÞeimφ̄; ð13Þ

where m is an azimuthal harmonic index for perturbation
modes of the scalar field. This decomposition leads to a
(2þ 1)-dimensional equation

f−Σ2
∂tt þ ðr2 þ a2Þ2∂xx þ 2iamðQ2 − 2MrÞ∂t

þ ½2iamðr2 þ a2Þ − 2a2Δ=r�∂x − V̂gΨ ¼ 0; ð14Þ

where

Σ2 ¼ ½ðr2 þ a2Þ2 − a2Δ� þ a2Δ cos2 θ; ð15Þ

V̂ ¼ Δ
�
−
�
∂θθ þ cot θ∂θ −

m2

sin2θ

�
þ 2M

r

�
1 −

a2 þQ2

Mr

�

þ 2iam
r

þ ðr2 þ a2cos2θÞμ2eff
�
: ð16Þ

We will use this equation to numerically solve the scalar
field in Sec. IV. On the other hand, as suggested in
Refs. [21,40], we can project Eq. (5) onto a basis of
spherical harmonic functions YjmðθÞ, yielding evolution
equations in coordinates t and r for the components of the
scalar field ψ lmðt; rÞ,

½ðr2 þ a2Þ2 − a2Δð1 − cmll Þ�ψ̈ lm

þ a2Δðcml;lþ2ψ̈ lþ2;m þ cml;l−2ψ̈ l−2;mÞ
þ 2iamð2Mr −Q2Þ _ψ lm − ðr2 þ a2Þ2ψ 00

lm

− ½2iamðr2 þ a2Þ − 2a2Δ=r�ψ 0
lm

þ Δ½lðlþ 1Þ þ 2M=r − 2ða2 þQ2Þ=r2 þ 2iam=r�ψ lm

þ Δ
X
j

hlmjμ2effðr2 þ a2 cos2 θÞjjmiψ jm ¼ 0; ð17Þ

where we have denoted

cmjl ¼ hlmj cos2 θjjmi; ð18Þ

ψ lmðt; rÞ ¼
Z

rϕYlmY�
lmdΩ≡ hlmjrϕjlmi: ð19Þ

0 and _ denote the derivative with respect to r and t,
respectively. l; j are spheroidal harmonic indexes for
perturbation modes of the scalar field.

According to the illustration in [21], the main tachyonic
instability of the black hole–scalar field system comes from
the m ¼ 0 mode with an infinitely long instability time-
scale, so at the late time we haveX

j

hlmjμ2effðr2 þ a2 cos2 θÞjjmiψ jm ð20Þ

¼ hl10jμ2effðr2 þ a2 cos2 θÞjl20iψ l20: ð21Þ
Moreover, the spontaneous scalarization of the black

hole–scalar field system is closely related to a negative
effective squared mass term (or in other words, a negative
binding potential well) nearby the black hole’s event horizon,
with a relation rout ≥ rin ¼ rþ, where rin and rout are two
turning points of the effective potential. Specifically, the
boundary between the bald KN black hole and the scalarized
black hole corresponds to a degenerate effective potential
well characterized by two turning points merging at the event
horizon of the black hole. Similar to theKerr case inRef. [21]
(as will be proved numerically in Sec. IV), the boundary is
characterized by a coupling parameter of λ → ∞, which
results in that all terms except the last one in Eq. (17) can be
neglected. That is, for some critical angular momentum ac
and electric charge Qc, we have

hl10jμ2effðr2 þ a2 cos2 θÞjl20ir¼rin¼rout¼rþðac;QcÞ ¼ 0; ð22Þ

which is equivalent toZ
π

0

μ2effðr2 þ a2cos2θÞYl1m�¼0ðcos θÞ

· Yl2m�¼0ðcos θÞ sin θdθ ¼ 0: ð23Þ

As Yl0ðcos θÞ becomes gradually close to a delta function
peaking at θ ¼ 0; π in the regime l1 ¼ l2 → ∞, we obtain

6x̄6 − 5x̄4ðȳ2 − 12ȳþ 18Þ þ 2x̄2ð19ȳ2 − 60ȳþ 45Þ
− 5ȳ2 þ 12ȳ − 6 ¼ 0: ð24Þ

Taking the restriction (10) into account, we have

ȳ ¼ 1

5x̄4 − 38x̄2 þ 5
ð30x̄4 − 60x̄2 þ 6

−
ffiffiffi
6

p
ðx̄2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x̄6 þ 27x̄4 − 9x̄2 þ 1

p
Þ: ð25Þ

So for any given critical value of x̄c ∈ ½0; 1�, we can obtain
the other critical of ȳc ∈ ½0; 1� by using the above expression.
Then according to Eq. (8), we have

x̄c ¼
ac
rþ

; ȳc ¼
Q2

c

Mrþ
: ð26Þ

Consequently, the critical angular momentum ac and
electric charge Qc that signify the beginning of the
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scalarization for the KN black hole can be calculated.
For instance: for ȳ ¼ 1=5, we get ac ¼ 0.41748M;
Qc ¼ 0.58263M; for ȳ ¼ 7=10, we have ac ¼ 0.05859M;
Qc ¼ 0.95297M. All values ofQc and ac form an existence
line for the infinitely large coupling case λ → ∞. To facilitate
comparing between analytical and numerical results, we plot
the relation between ac andQc in Fig. 1. Evidently, we have
ac ¼ 0.5M for Qc ¼ 0, which is in accordance with the
result obtained numerically in Ref. [21] and analytically in
Ref. [16]. At the same time, we have Qc → 0.957M in the
limit ac → 0. This is intriguing as it means that the charged
RN black hole in the ESTGB theory can be scalarized in
the highly charged regime. Similar results are found in
Refs. [17,18,41], where the onset of spontaneous scalariza-
tion of the RN black hole was found in the EMs theory.

III. EXISTENCE LINE IN THE LARGE
COUPLING REGIME

In the last section, we obtained the critical values of
angular momentum ac and electric charge Qc characteriz-
ing the onset of the scalarization of the KN black hole in the
infinitely large coupling regime λ → ∞ for the ESTGB
theory. In what follows, we will calculate the existence line
λ̄ ¼ λ̄ðā; Q̄Þ for the black hole–scalar field system in the
large coupling regime λ̄ ≫ 1, where we have defined

λ̄ ¼ λ

M2
; ā ¼ a

M
; Q̄ ¼ Q

M
: ð27Þ

The line gives the boundary between the bald KN black
hole and the scalarized KN black hole supporting spatially
regular hairy scalar configurations in the ESTGB theory,
and it exhibits a constraint condition between the reduced
angular momentum ā, reduced electric charge Q̄, and the
reduced coupling parameter λ̄ of the black hole–scalar field

system in the large (but finite) coupling regime. To this end,
we substitute the KN metric into KG equation (5) and
obtain

�
1

Δ
½ðr2 þ a2Þ2 − Δa2sin2θ� ∂

2

∂t2

−
∂

∂r

�
Δ

∂

∂r

�
−

1

sin θ
∂

∂θ

�
sin θ

∂

∂θ

�

−
1

Δsin2θ
ðΔ − a2sin2θÞ ∂

2

∂φ2
−
2að2Mr −Q2Þ

Δ
∂
2

∂t∂φ

þ ðr2 þ a2cos2θÞμ2effðr; θÞ
�
ϕ ¼ 0: ð28Þ

Then we substitute a decomposition [42]

ϕðr; θ;φÞ ¼
X
j

RjðrÞYj0ðθÞ ð29Þ

for the static massive scalar field with zero frequency into
Eq. (28) and multiply it with Y�

l0 before integrating θ and ϕ,
resulting in a simpler form

d
dr

�
Δ
dRl

dr

�
− lðlþ 1ÞRl

−
X
j

RjðrÞ
Z

2π

0

Z
π

0

ðr2 þ a2 cos2 θÞ

· μ2effðr; θÞY�
l0Yj0 sin θdθdφ ¼ 0: ð30Þ

In the near-critical regime ā ∼ āc; Q̄ ∼ Q̄c, with
āc ≡ ac=M; Q̄c ≡Qc=M, the hairy KN black hole is
characterized by the large coupling λ̄ ≫ 1. We shall
consider a marginally stable scalar mode with an infinitely
long instability timescale. In this regime, other modes
decay in time, leaving Eq. (30) to be

d
dr

�
Δ
dRl

dr

�
− lðlþ 1ÞRl − Rl

Z
2π

0

Z
π

0

ðr2 þ a2cos2θÞ

· μ2effðr; θÞY�
l0Yl0 sin θdθdφ ¼ 0; ð31Þ

which can be further simplified as

d
dr

�
Δ
dRl

dr

�
þ
�ðr2 þ a2Þμ2eff

2π
− lðlþ 1Þ

�
Rl ¼ 0 ð32Þ

after considering asymptotic eikonal limit l ≫ 1.
We can redefine the scalar field by

ϒ≡ rR ð33Þ

and use a new coordinate

0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

Qc /M

a c
/ M

FIG. 1. Variation of the critical electric charge Qc with respect
to the critical angular momentum ac, which marks the onset of the
scalarization of the KN black hole in the unit of black hole
mass M.
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dr� ¼
r2

Δ
· dr: ð34Þ

Then we obtain a Schrödinger-like differential equation

d2ϒ
dr2�

− Vϒ ¼ 0; ð35Þ

where the effective potential can be split into two parts,

VðrÞ ¼ VlðrÞ þ VGBðrÞ; ð36Þ

which individually reads

M2VlðrÞ ¼
ΔðΔ0 þ lðlþ 1ÞrÞ

r5
−
2Δ2

r6

¼ M2

r2

�
−
2a2

r2
þ l2 þ lþ 2M

r
−
2Q2

r2

�
hðrÞ; ð37Þ

M2VGBðrÞ ¼
Δμ2effða2 þ r2Þ

2πr4

¼ −
λ̄M6

πr6
×

1

ða2r2 þ 1Þ5

×

�
6a6

r6
− 6 −

5a4Q4

M2r6
þ 60a4Q2

Mr5
−
90a4

r4

þ 38a2Q4

M2r4
−
120a2Q2

Mr3
þ 90a2

r2
12Q2

Mr
−

5Q4

M2r2

þ 12Q2

Mr

�
: ð38Þ

Note that we have defined

hðrÞ≡ Δ
r2

¼ 1 −
2M
r

þ a2

r2
þQ2

r2
ð39Þ

in Eq. (37).
Using the Wentzel–Kramers–Brillouin (WKB) method

[43], we have the discrete quantization condition for the
Schrödinger-like differential equation (35) as

Z
r�þ

r�−
dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Vðr�;M; a;Q; λ̄Þ

q
¼

�
nþ 1

2

�
π; ð40Þ

where n ¼ 0; 1; 2;… is the overtone number and fr�−; r�þg
are the classical turning points of the effective binding
potential function V, which satisfies Vðr�−Þ¼Vðr�þÞ¼0.
The existence line is determined by the fundamental mode
n ¼ 0. According to Eq. (34), the WKB resonance equa-
tion (40) can be rewritten as

Z
rtþ

rt−

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Vðr;M; a; λ̄Þ

p
hðrÞ ¼

�
nþ 1

2

�
π: ð41Þ

As we aim to attain the existence line between the bald
and scalarized KN black hole in the large coupling regime
λ̄ ≫ 1, which corresponds to the near-critical regime
ā ∼ āc; Q̄ ∼ Q̄c, it turns out to be convenient to introduce
some dimensionless parameters ϵ, χ, and σ, which are
defined by

a≡ ac · ð1þ ϵÞ; ð42Þ

Q≡Qc · ð1þ χÞ; ð43Þ

r≡ rþ · ð1þ σÞ: ð44Þ

As a result, we can, respectively, express r=M; a=r;Q=r as

r
M

¼ −a2cðσ þ ϵþ 1Þ −Q2
cðχ þ σ þ 1Þ þ ðτ þ 1Þðσ þ 1Þ

τ

þOðσ2; ϵ2; χ2; σϵ; σχ; ϵχÞ; ð45Þ

a
r
¼ 2acð−σ þ ϵþ 1Þ

τðτ þ 1Þ2 −
a3cðϵ − ðσ − 1Þðτ þ 2ÞÞ

τðτ þ 1Þ3

þ acQ2
cðσðτ þ 2Þ þ τχ − τ þ χ − ðτ þ 2Þϵ − 2Þ

τðτ þ 1Þ3
þOðσ2; ϵ2; χ2; σϵ; σχ; ϵχÞ; ð46Þ

Q
r
¼ a2cQcððτ þ 2Þðσ − χ − 1Þ þ ðτ þ 1ÞϵÞ

τðτ þ 1Þ3

−
2Qcðσ − χ − 1Þ

τðτ þ 1Þ2 þQ3
cðσðτ þ 2Þ − τ − χ − 2Þ

τðτ þ 1Þ3
þOðσ2; ϵ2; χ2; σϵ; σχ; ϵχÞ; ð47Þ

where we have denoted

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

c − a2c

q
: ð48Þ

Besides, near the horizon, we have

hðrÞ ¼ ϖ1 · σ þOðx2; ϵ2; χ2; σϵ; σχ; ϵχÞ ð49Þ

with ϖ1 ¼ ϖ1ðac;QcÞ > 0 a dimensionless number
though its explicit form is lengthy. Intriguingly, it is
independent of the angular momentum and electric charge
of the black hole.
Using Eqs. (45)–(49), we obtain

M2
VðrÞ
½hðrÞ�2 ¼

λ̄

4

�
ϖ2

ϖ1

−
ϖ3ϵþϖ4χ

ϖ1σ

�
; ð50Þ
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where ϖ2 ¼ϖ2ðac;QcÞ > 0;ϖ3 ¼ϖ3ðac;QcÞ> 0;ϖ4 ¼
ϖ4ðac;QcÞ> 0 are dimensionless numbers which are quite
cumbersome. Then the WKB resonance equation (41)
becomes

rþ
M

·
Z ϖ1

ϖ2
·
ϖ3ϵþϖ4χ

ϖ1

0

dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̄

4
·
ϖ2

ϖ1

·

�
ϖ1

ϖ2

·
ϖ3ϵþϖ4χ

ϖ1σ
− 1

�s

¼
�
nþ 1

2

�
π: ð51Þ

To work out this integral, we can introduce a dimensionless
quantity z by

z ¼ ϖ1

ϖ3ϵþϖ4χ
: ð52Þ

Then Eq. (51) becomes

rþ
M

·

ffiffiffiffiffiffiffiffiffiffiffiffi
λ̄

4
·
ϖ2

ϖ1

s
·
ϖ3ϵþϖ4χ

ϖ1

·
ϖ1

ϖ2

Z
1

0

dz

ffiffiffiffiffiffiffiffiffiffiffi
1

z
− 1

r

¼
�
nþ 1

2

�
π: ð53Þ

Subsequently, we get an explicit form of the discrete
resonance spectrum equation of the KN black hole–scalar
field system in the large coupling regime, which reads

λ̄ ¼ 16ϖ1ϖ2

ð1þ τÞ2ðϖ3ϵþϖ4χÞ2
�
nþ 1

2

�
2

: ð54Þ

Using Eqs. (42)–(44), the above relation can be equiv-
alently expressed as

ϖ3

ā
ac

þϖ4

Q̄
Qc

¼ ϖ3 þϖ4 þ
4ðnþ 1

2
Þ

1þ τ

ffiffiffiffiffiffiffiffiffiffiffiffi
ϖ1ϖ2

λ̄

r
: ð55Þ

The critical existence line can be extracted from the above
resonance formula (54) by considering the fundamental
mode n ¼ 0,

ffiffiffī
λ

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
ϖ1ϖ2

p

ϖ3ð āac − 1Þ þϖ4ð Q̄Qc
− 1Þ

·
1

1þ τ
; ð56Þ

where τ has been defined in Eq. (48). This compact
characterized line formula marks the boundary between
the hairy charged spinning black hole and the bald KN
black hole in the large coupling regime λ̄ ≫ 1. Evidently, it
means that the value of a (or Q) on the existence line
decreases with increasing λ for fixed Q (or a). The logic
here is that, for instance, with a given electric charge Q,
which can be viewed as Qc, we can first calculate the
critical value of the spin ac in the infinitely large coupling
limit. Then a perturbation can be conducted based on those

values and an existence line can be obtained. Values of spin
and charge on that line denote critical values of the onset of
the spontaneous scalarization in the finitely large coupling
regime. In the vanishing electric charge limit, the result
reduces to the one in Ref. [42].

IV. NUMERICAL APPROACH AND RESULT

We are now ready to numerically solve the (2þ 1)-
dimensional partial differential equation (14) with some
properly chosen boundary and initial conditions. The
approach makes us directly evolve the scalar wave function
in time so that we can determine the threshold for the KN
black hole’s destabilization. The angular boundary con-
dition is imposed to ensure smoothness of the solution at
the rotation axis (θ ¼ 0; π); i.e., the scalar field must be
vanishing at the rotation axis form > 0, and its θ derivative
at the rotation axis has to be zero for m ¼ 0. At the radial
direction, the ingoing (outgoing) boundary condition at the
horizon (infinity) should be imposed. However, the com-
putational domain is always finite, and its edge can reach
neither the horizon nor the infinity, which will lead to
undesired reflections from the boundaries. To overcome
this problem, we push the outer boundary sufficiently far
away from the location where the signal is extracted. Under
this setup, the radial boundary conditions will not affect our
numerical result.
We choose Gaussian initial conditions

Ψðt ¼ 0; x; θÞ ∼ YlmðθÞ exp
�
−ðx − xcÞ2

2σ2

�
ð57Þ

centered at xc for each mode, with YlmðθÞ a θ-dependent
spherical harmonics and σ the width of the Gaussian bell.
It is worth noting that the coefficients of the field

equation (14) become singular at the rotation axis. To
eliminate the singularity of the equation, we introduce

Ψðt; x; θÞ ¼ sinm θψ̄ðt; x; θÞ: ð58Þ

After substituting the above equation into Eq. (14) and
multiplying both sides by sin−m θ, we get a regular equation
about ψ̄ðt; x; θÞ at the rotation axis. From the field equa-
tion (17), we can see that the even-l and odd-l modes
decouple, i.e., the time evolution of a mode ðl; mÞ is only a
combination of all the modes ðlþ 2k;mÞ with k some
integer. Choosing the initial condition Eq. (57), the prop-
erty means that ψ̄ðt; x; θÞ ¼ ψ̃ðt; x; yÞ for even (l −m) and
ψ̄ðt; x; θÞ ¼ cos θψ̃ðt; x; yÞ for odd (l −m), in which we
define y ¼ cos2 θ. Using the new variable y, Eq. (14) can be
written as an equation about ψ̃ðt; x; yÞ. Then it is not hard to
verify coefficients of the field equation about ψ̃ðt; x; yÞ are
analytic with respect to y at the domain ½0; 1� and thus
ψ̃ðt; x; yÞ is also analytic. Then we can use the pseudo-
spectral method to solve the y-differential equation, i.e., we
can do an expansion
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ψ̃ðt; x; yÞ ¼
XN
i¼0

ψ̃ iðt; xÞCiðyÞ; ð59Þ

in which

CiðyÞ ¼
2

Npi

XN
m¼0

1

pm
Tmð1 − 2yiÞTmð1 − 2yÞ;

p0 ¼ pN ¼ 2; pj ¼ 1 ðj ¼ 1; 2;…; N − 1Þ; ð60Þ

where yi ¼ 1 − cosðiπ=NÞ is an Nth order cardinal func-
tion formed by Chebyshev polynomial TnðxÞ, and it
satisfies CiðyjÞ ¼ δij. Then, it is straightforward to show

ψ̃ iðt; xÞ ¼ ψ̃ðt; x; yiÞ;

∂yψ̃ðt; x; yiÞ ¼
XN
i¼0

XN
j¼0

C0
iðyjÞψ̃ iðt; xÞCjðyÞ;

∂
2
yψ̃ðt; x; yiÞ ¼

XN
i¼0

XN
j¼0

C00
i ðyjÞψ̃ iðt; xÞCjðyÞ: ð61Þ

With these in mind, we can expand the field equation
by a cardinal function and it becomes (N þ 1) equations
about ψ̃ iðt; xÞ with i ¼ 0;…; N. To evolve Eq. (14), we

also apply the finite difference method to calculate the x
direction, and the time integration is conducted by a fourth-
order Runge-Kutta method, in which we introduce an
auxiliary field Πðt; x; yÞ ¼ ∂tψ̃ðt; x; yÞ to decompose the
field equation into two coupled equations with only a first-
order time derivative.
To ensure that our result is reliable, we also use the

numerical method to solve the field equation (14) about
Ψðt; x; θÞ by applying the finite difference method at
x and θ directions andRunge-Kuttamethod at time direction.
The corresponding boundary conditions at the rotation axial
are discussed in the first paragraph of this section. We will
denote this method and the pseudospectral method at the y
direction as “FFR” (Runge-Kutta) and “FPR” (pseudospec-
tral) methods individually. Moreover, to guarantee the
physical viability of our numerical results, we consider the
following conserved law of the scalar perturbation:

∇μJμ ¼ 0 ð62Þ

with

Jμ ≡ 2∇μϕ∂tϕ − δμt ð∇νϕ∇νϕþ μ2effϕ
2Þ; ð63Þ

which can be directly verified from the field equation (5) of
the scalar perturbation and can be regarded as the energy

TABLE I. The quantity I with t1 ¼ 10 and t2 ¼ 110 with the coupling constant λ ¼ 10 and different Q and a calculated from the
numerical result via the FFR method for step lengthsΔx ¼ 1=20, Δθ ¼ 1=100, and Δt ¼ 1=30. The initial mode is chosen to be the one
with l ¼ m ¼ 0.

Q ¼ 0.2, a ¼ 0.7 Q ¼ 0.2, a ¼ 0.71 Q ¼ 0.2, a ¼ 0.72 Q ¼ 0.2, a ¼ 0.73 Q ¼ 0.2, a ¼ 0.74 Q ¼ 0.2, a ¼ 0.75

I 0.996338 0.998786 0.998124 0.997414 0.996650 0.995825

Q ¼ 0.4, a ¼ 0.7 Q ¼ 0.4, a ¼ 0.71 Q ¼ 0.4, a ¼ 0.72 Q ¼ 0.4, a ¼ 0.73 Q ¼ 0.4, a ¼ 0.74 Q ¼ 0.4, a ¼ 0.75

I 0.999406 0.995425 0.99442 0.997414 0.993602 0.996482

FIG. 2. The time evolution of perturbation of the scalar field for M ¼ 1 obtained via the FFR method (dashed lines) and the FPR
method (solid lines) with different coupling constants λ. The initial mode is chosen to be the one with l ¼ m ¼ 0. One can see that the
same behaviors of the massless scalar field’s late-time tails are shared between results via both ways.
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conservation associatedwith the time evolution. Considering
a spacetime region B, Eq. (62) impliesZ

∂B
JμdΣμ ¼ 0; ð64Þ

in which dΣμ is the induced volume element of the boundary
∂B. Set Σ1, Σ2, Σ3, and Σ4 are the hypersurfaces determined

by ðt ¼ t0;−20 ≤ x ≤ 20Þ, ðt ¼ t1;−20 ≤ x ≤ 20Þ, ðx ¼
−20; t0 ≤ t ≤ t1Þ, and ðx ¼ 20; t0 ≤ t ≤ t1Þ separately,
and B is bounded by these hypersurfaces. Then, the
conservation law (64) indicates

I ≡
R
B2∪B3∪B4

JμdΣμR
B1
JμdΣμ

¼ 1: ð65Þ

FIG. 3. The existence lines discriminate the parameter space spanned by λ and a with a different Q forM ¼ 1 between the upper blue
unstable region and the bottom stable region (between the horizontal dashed green line and the solid blue existence line). We have also
plotted the lower and upper bounds of a. Note thatQ here in the diagram is, in fact, the chosen critical valueQc in Fig. 1, and the value of
a corresponding to the horizontal dashed green line is, in fact, critical value ac in Fig. 1.

MING ZHANG and JIE JIANG PHYS. REV. D 107, 044002 (2023)

044002-8



Using the numerical result obtained from the FFR method,
we checked the conservation law (65) and showed
some relevant results at Table I. Our numerical results are
consistent with the conservation law (65) within the
margin of error of the finite difference method, i.e.,
I ¼ 1þOðΔx;Δθ;ΔtÞ.
Note that as we are dealing with scalar perturbations on a

rotating spacetime background, experience tells us that
different l-led modes become coupled to each other, even
with a specifically chosen initial l, as different l-modes with
the same azimuthal mode number m will be excited. The
l ¼ jmj mode will play a dominant role at the late times if
we consider the stable modes, as pointed out in Ref. [44].
To be specific, we will consider spherical l ¼ m ¼ 0
mode in what follows. In fact, the m ¼ 0 mode owns
the shortest growth times and is most relevant to the
instabilities of the KN black hole. Among the dominant
m modes, the unstable region for the m ¼ 0 is the largest
one. A similar situation is shown for the Kerr black hole
[21,44] in the Gauss-Bonnet gravity and for the Chern-
Simons gravity [45]. Therefore, in the following, we only
consider the field equation (14) with m ¼ 0 and the initial
condition with l ¼ m ¼ 0. In the FPR method, this initial
condition becomes

ψ̃ iðt ¼ 0; xÞ ∼ e
−ðx−xcÞ2

2σ2 : ð66Þ

We show the time evolution of the dominant mode l ¼
m ¼ 0 of the scalar perturbation wave function ψðt; x; θÞ at
x ¼ 0 and θ ¼ π=2 with different coupling constants λ
in Fig. 2 by using two different numerical methods which
ensure our results are correct. Here we set x ¼ 0 to
correspond to r ¼ r0 which is the maximal point of
Δ=ðr2 þ a2Þ. By the time-domain behavior of the scalar
perturbation, we get to know that the tachyonic instability,
which is the hallmark of spontaneous scalarization of the
KN black hole in the linearized regime, depends on λ̄; ā; Q̄
[see Eq. (27)].
We also show the critical lines dividing parameter space

into unstable regions which correspond to scalarized black
holes and stable regions, which correspond to bald KN
black holes in Fig. 3, which are dependent on the character-
istic parameters ā; Q̄; λ̄ of black hole-field system. In our
simulations, we reach up to λ̄ ∼ 105 and find the numerical
results of the lower bound for critical ā are in good

agreement with the analytical results obtained from
Eq. (24). The upper bound of ā corresponds to the extremal
KN black hole with ā2 þ Q̄2 ¼ 1.
On the other hand, from Fig. 3, we see that near large

coupling regime λ ≫ 1, the critical values of a (or Q)
decrease with increasing λ for fixed Q (or a). This
qualitative behavior is completely compatible with the
analytical result about the existence line in Eq. (55).

V. CONCLUDING REMARKS

We have shown that a negative coupling between a scalar
field and the GB invariant can lead to tachyonic instability
for the KN black hole, which is the hallmark of sponta-
neous scalarization of the black hole in the linearized
regime. First, we analytically calculated critical black hole
angular momentum and electric charge, which are the
minimal necessary values for which spin charge scalariza-
tion occurs in the infinitely large coupling limit that
corresponds to the onset of the instability; see Fig. 1.
Then we further corrected the result in the large but finite
coupling regime to obtain the existence line Eq. (55) which
is the boundary of the bald KN black hole and the hairy
scalarized black hole. It was revealed that for fixed spin
(charge), the characterized charge (spin) that triggers
tachyonic instability decreases with increasing coupling
strength between the scalar field and the GB invariant.
Finally, our analytical results were numerically verified,
and we carried out the whole threshold curve with the
negative coupling parameter varying in its domain. Both of
our analytical and numerical results are compatible with the
ones in Refs. [16,21,44] in the vanishing electric charge
limit. An extra lesson is that, we found in the vanishing spin
limit, the spontaneous scalarization of the RN black hole
can be triggered in the domain Q̄≳ 0.957.
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