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We derive a new soft theorem that corresponds to the spontaneous breaking of Lorentz boosts. This is
motivated by the dynamics of inflation in the subhorizon (flat-space) limit, where spacetime becomes flat
but Lorentz boosts are still broken. In this limit, the scattering amplitudes become sensible observables. We
relate the soft emission of a Goldstone boson to the (nonrelativistic) Lorentz boost of the hard scattering
amplitudes. This is the on-shell avatar of the spontaneous breaking of Lorentz boosts, analogous to the
Adler zero of pions in the chiral symmetry breaking. We comment on several applications to inflation,
including the demonstration that Dirac-Born-Infeld inflation is the unique theory that has an emergent
Lorentz invariance when the boosts are spontaneously broken.
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I. INTRODUCTION

Inflation is widely believed to be an essential part of the
history of the Universe. It explains numerous features of
the Universe we observe; significantly, the initial seeds of
structure are believed to have formed during this era from
quantum vacuum fluctuations. Observational tests of the
inflationary epoch are limited to the statistics of fluctua-
tions produced during inflation, including scalar and tensor
metric fluctuations. However, learning concrete lessons
from these fluctuations is limited by our ability to relate the
space of models of inflation with the space of consistent
statistical correlations.
Effective field theory (EFT) provides a natural frame-

work in which we can relate microscopic theories with
long-distance observables. The EFT of inflation [1,2] is
such an example where one can write a theory for the
fluctuations directly, where the microscopic details are
encoded in the particle content and couplings. For single-
field inflation specifically, the lone scalar degree of
freedom is the scalar metric fluctuation and is highly
constrained by symmetries [3,4]. For scale-invariant fluc-
tuations, the dynamics of the inflationary era are encoded in
higher-dimensional operators whose coefficients are con-
strained by primordial non-Gaussianity in the cosmic
microwave background [5] or distribution of galaxies
[6,7] (see Ref. [8] for a recent review).
In many contexts, it has been found that the space of

EFTs consistent with our short-distance symmetries is

significantly smaller than our naive EFT expectations
suggest [9]. This has been seen in countless examples
through the self-consistency of the scattering amplitudes
calculated within the EFT [10,11]. Naively, such an
approach does not apply to the EFT of inflation which is
defined in quasi–de Sitter space. However, ongoing work
on the cosmological bootstrap [12] has shown how cos-
mological correlators in inflation are tied to the scattering
amplitudes of the same theory in flat space [13–26]. In this
precise sense, understanding how amplitudes arise within
the flat-space limit of the EFTof inflation is directly related
to our understanding of cosmic observables. Preliminary
work in this direction has been initiated in [27–32], but
many questions about the general structure of the ampli-
tudes remain. The most natural context to discuss the flat-
space limit of the EFT of inflation is the so-called
decoupling limit [27]. In this regime, dynamical gravity
is decoupled from inflation and the scalar metric mode is
described by the Goldstone boson, π, associated with
spontaneously broken time diffeomorphism. The inter-
actions of π individually break Lorentz boosts but non-
linearly realize the symmetry. Much of this structure also
survives in cosmological correlators as the scalar metric
fluctuation, ζ, at horizon crossing is well described by the
Goldstone boson ζ ≈ −Hπ.
To flesh out the full constraints on inflation from

scattering amplitudes in the decoupling limit, it is imper-
ative to understand the full on-shell consequences of
spontaneous breaking of Lorentz boosts. The nature of
the nonlinearly realized symmetry is often tied to the soft
limit of the amplitude. A celebrated example is the Adler
zero of the soft pion [33] that reflects the underlying chiral
symmetry breaking [34–38]. This approach has been
revived recently to identify EFTs from an on-shell per-
spective [39–49]. In fact, these soft limits provide powerful
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means to reconstruct amplitudes [50–55] and classify the
space of EFTs [44,56,57]. On-shell methods have been
applied to nonrelativistic EFTs [30,58–63] and wave
functions [64]. For the nonlinearly realized Lorentz boosts,
which are of central interest to inflation, the Goldstone
theorem has been derived [65] and the applications to
conformal field theory have been studied [66], but the
analogous soft theorem is yet to be formulated.
In this paper, we will establish a soft theorem for flat-

space scattering amplitudes that reflects the spontaneous
breaking of Lorentz boosts. Our soft theorem summarized in
Sec. III E is the flat-space analog of the subleading con-
sistency condition on correlators [67]. The on-shell soft
theorem also complements the algebraic constructions of
boost-breaking EFTs [60]. Our results will be helpful in
understanding cosmological correlators in several ways.
First, it has been observed that Dirac-Born-Infeld (DBI)
inflation has an emergent Lorentz invariance in the broken
phase [60]. We will use the soft theorem to show that DBI
inflation is the unique model (to leading derivative expan-
sion) that has this property. Second, it was found in [30] that
boost-violating amplitudes are severely constrained by
consistency of the scattering amplitudes (when coupled
to gravity). These results seem inconsistent with the EFT of
inflation and the authors suggested it was a result of an
inconsistency of the EFTof inflation in flat space away from
the decoupling limit. Our investigation will show the origin
of these constraints and how they do not arise when the
nonlinear structure of the EFT is enforced. Finally, we will
see how the structure of on-shell observables in flat space
has nontrivial implications for inflationary correlators.
The paper is organized as follows. In Sec. II, we review

the EFT of inflation under the decoupling limit, with
emphasis on the nonlinearly realized Lorentz boosts and
dependence on the field basis. The main results of this
paper are given in Sec. III. After reviewing the necessary
tools, we prove the soft theorem for Goldstone-boson
scattering, the full general case with matter interaction,
and comment on the nonperturbative validity of the soft

theorem. For readers’ convenience, we summarize the final
soft theorem in Sec. III E. In Sec. IV, we discuss possible
applications to inflation. The final conclusion and future
directions are discussed in Sec. V.
Convention: We use the metric with mostly minus

signature throughout the paper and set the speed of light
c ¼ 1. The greek and roman indices denote components of
relativistic and spatial vectors. We use boldface v for a
spatial vector. For the scattering amplitudes, all momenta
are outgoing. We use the hard momentum pμ

a ¼ ðEa; paÞ for
particle a and the soft momentum qμ ¼ ðω; qÞ. We define a
rescaled inner product for general cs using Eq. (2.32). The
deviation of the propagation speed from the speed of light is
defined as δc ¼ c−2s − 1 and δϕ ¼ c−2ϕ − 1 for the Goldstone
boson π and a matter field ϕ, respectively.

II. THE EFT OF INFLATION IN FLAT SPACE

A. Action

The EFT of single-field inflation describes the fluc-
tuation of the inflaton field around a flat Friedmann-
Lemaître-Robertson-Walker (FLRW) background. Time
diffeomorphism, t → tþ ξ, is spontaneously broken by
the time dependence of the expansion parameter HðtÞ.
Therefore there exists a Goldstone boson π associated with
the breaking of such symmetry

t → t − ξ;

π → π þ ξ; ð2:1Þ

such that π realizes time diffeomorphism nonlinearly, but
U≡ tþ π transforms linearly as a scalar. Demanding that
the underlying theory is invariant under spacetime diffeo-
morphism, the most general effective action for the
Goldstone boson π is just a derivative expansion in U.
The resulting action truncated for simplicity at one deriva-
tive per field is then given by [2]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

plR −M2
pl
_Hgμν∂μðtþ πÞ∂νðtþ πÞ −M2

plð3H2 þ _HÞ

þ
X
n

Mnðtþ πÞ4
n!

ð1 − gμν∂μðtþ πÞ∂νðtþ πÞÞn þ � � �
�
; ð2:2Þ

where Mnðtþ πÞ are Wilson coefficients that are generally
time dependent. We will make the additional assumption
that the time variation is negligible, _M4

n ≪ HM4
n. This

choice corresponds to the addition of a global symmetry,
π → π þ c, and enforces that all the correlation functions
from inflation are scale invariant.
In the EFT of inflation, terms with more than one

derivative per field can be described geometrically in terms

of the extrinsic curvature of the time slices in unitary gauge
(i.e. the gauge where π ¼ 0). Here we are dropping higher
derivatives per field for two reasons: (1) In unitary gauge, a
term of the form δg00δKμ

μ cannot change the speed of sound
or contribute nonzero three-point amplitude in the flat-
space limit, and (2) in the decoupling limit, ðδKμ

μÞn only
contribute higher-derivative terms. When we take the
soft limit of the amplitude, the contribution from these
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higher-derivative terms is in general subdominant com-
pared to the terms in the action above. We leave the full
investigation with extrinsic curvature to the future.
We consider the subhorizon limit of the EFT of inflation

in this paper, where spacetime reduces to flat background.
The Goldstone boson propagates with a speed of sound
cs ≤ 1. Inflation is naturally described in terms of a
hierarchy of (energy) scales [27]

j _Hj2 ≪ H4 ≪ f4π ≡ 2M2
plj _Hjcs ≪ M4

pl ð2:3Þ

where fπ is the decay constant of the Goldstone boson and
the symmetry breaking scale, f4π ¼ 2M2

plj _Hjcs, illustrated
in Fig. 1. Concretely, in single-field slow-roll inflation
(cs ¼ 1), the scale of symmetry breaking is f4π ¼ _φ2,
which is the scale associated with the time evolution of
the background scalar field φ. In our Universe,
2Δ2

ζ ¼H4=f4π , where Δ2
ζ is the amplitude of curvature

perturbation, so that fπ ¼ 59H [68]. We will therefore
consider energies H4 ≪ E4 ≪ f4π so that the EFT of
inflation applies but we can neglect the curvature of
spacetime. Within this context, we can consider scattering
amplitudes for π but they will not be Lorentz invariant.
The EFT of inflation has an additional scale Λ ¼ fπcs

associated with the strong coupling, or a breakdown of the
EFT description.1 Weak coupling requires that Λ > H but
Λ ≪ fπ arises for cs ≪ 1. Validity of the EFT then requires
E < Λ, which may further restrict the regime of validity of
the flat-space approximation during inflation (in our
Universe). As our primary interest is to understand the

structure of the EFT in general, we can take H=E → 0
holding the other scales fixed so that the flat-space limit
applies, as shown in Fig. 1. The soft limit we will use later
should be taken after this flat-space limit. In other words,
the energy of the soft particle is small compared to others,
but still much greater than H.
In the subhorizon limit described above, the breaking of

the time diffeomorphism reduces to the breaking of Lorentz
boosts, but we still keep spacetime translation and SOð3Þ
spatial rotation. The action in the flat-space limit reduces to

S¼
Z

d4x

�
−M2

pl
_Hgμν∂μðtþπÞ∂νðtþπÞ

þ
X
n

M4
n

n!
ð1−gμν∂μðtþπÞ∂νðtþπÞÞnþ���

�
: ð2:4Þ

The metric can be set to ημν if we are not interested in
graviton fluctuation.2 Crucially, if the couplings are time
independent ( _Mn → 0), the Goldstone boson is derivatively
coupled, reflecting the fact that the Goldstone boson has an
additional (global) shift symmetry. As a consequence, the
action (with no time-dependent couplings) has an emergent
time-translation symmetry that is distinct from the one that
is generated by the stress tensor. As a result, we can still
label the physical states by energy and momentum. In the
subhorizon limit, the EFT of inflation coincides with the
PðXÞ theory where the scalar obtains a vacuum expectation
value that breaks Lorentz boosts

FIG. 1. The hierarchy of scales that defines the EFT of inflation. The scale f4π ¼ 2M2
plj _Hjcs defines the Goldstone boson decay

constant and is associated with the scale of symmetry breaking. The region in orange is where the EFT of inflation in under control,
while the region in blue is where flat-space scattering is a valid approximation. Left: the range of scales applicable to single-field
inflation with a large non-Gaussian signature (Λ < fπ). Center: the decoupling limit around a fixed de Sitter background, _H → 0,
Mpl → ∞ with fπ fixed. Right: flat-space limit of the EFTof inflation, in the decoupling limit. The soft theorems in the paper apply here
where energies can be taken to zero.

1It is conventional to write M4
n ¼ cnf4πðfπ=ΛÞ2n−1 with

cn ¼ Oðð1 − c2sÞÞ so Λ controls the scale of irrelevant operators,
after canonically normalizing π.

2To make the flat-space limit precise, one often takes the
decoupling limit Mpl → ∞ and _H → 0 holding fπ fixed. One
can relax this limit by considering large Mpl which allows
(perturbative) graviton fluctuation.
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X ¼ gμν∂μðtþ πÞ∂νðtþ πÞ: ð2:5Þ
Although we obtain the action Eq. (2.4) by considering the
subhorizon limit of the EFT of inflation, the results can be
derived purely within flat spacetime by considering the
breaking of Lorentz boosts while all other spacetime
symmetries are preserved. Therefore, the same action
applies to other physical systems with the same symmetry
breaking pattern. For instance, this action also describes the
dynamics of superfluid [69].
We can expand the action Eq. (2.4) in the order of the

number of π-fields. We will make the unconventional
choice of picking units such that

−2M2
pl
_H ¼ 1: ð2:6Þ

Notice that with this choice f4π → cs and Λ4 → c5s . The
reason for this choice is to simplify the expression for our
amplitudes while keeping track of the cs dependence. The
nonlinearly realized Lorentz boosts are defined in terms of
the speed of light, c, and therefore we do not want to
obscure the role of cs in their Ward identities. In these units,
the action reads

S ¼
Z

d4x

�
1

2
þ _π þ 1

2
ðc−2s _π2 − ð∂jπÞ2Þ

þ g3 _π3 þ g3;1 _πðc−2s _π2 − ð∂jπÞ2Þ þOðπ4Þ
�
; ð2:7Þ

where _π ¼ ∂0π and g3 and g3;1 are coupling constants.
Matching to the original action in Eq. (2.4), we find the
deviation of cs from the speed of light is given by the
coupling M4

2,

δc ≡ 1

c2s
− 1 ¼ 4M4

2; ð2:8Þ

which is positive by causality. The cubic couplings g3 and
g3;1 are also related to M4

2 and M4
3,

g3 ¼ −2δcM4
2 −

4

3
M4

3 ¼ −
1

2
δ2c −

4

3
M4

3;

g3;1 ¼ 2M4
2 ¼

1

2
δc: ð2:9Þ

The equation of motion (EOM) for π up to quadratic order
is then

EOM ¼ ∂μ

�
δL
δ∂μπ

�
−
δL
δπ

ð2:10Þ

¼ 1

c2s
π̈ −∇2π þ 3g3∂0ð _π2Þ

þ δc
2
∂0

�
3

c2s
ð _π2Þ − ð∂jπÞ2

�
− δc∂jð _π∂jπÞ þOðπ3Þ: ð2:11Þ

Higher-order terms in π are straightforward to determine
from expanding Eq. (2.4).

B. Symmetry

In the energy scale that we consider in Eq. (2.3) (with the
assumption _Mn ¼ 0), the breaking of time diffeomor-
phisms reduces to the breaking of Lorentz boosts.
Consider an infinitesimal Lorentz boost along a spatial
vector b,

δxμ ¼ ðδt; δxÞ ¼ ð−b · x;−btÞ; ð2:12Þ

δπ¼ b · ðxþx _πþ t∇πÞ¼ b ·xþb · ðx∂0þ t∇Þπ; ð2:13Þ

where x∂0 þ t∇ is the linear boost operator.3 Crucially the
transformation of π includes the nonlinear term, as well as
the usual linear transformation. Note that the boost operator
here is the standard relativistic boost, even when the
Goldstone boson propagates with generic cs.
The breaking of Lorentz boosts can be analyzed through

conserved currents, which can be obtained via the Noether
approach or gravitational stress-energy tensor. We find the
two approaches agree up to quadratic order which is
sufficient to derive the soft theorem. The stress-energy
tensor can be obtained via

Tμν ¼ 2
δL
δgμν

− ημνL ð2:14Þ

¼ 2∂μðtþ πÞ∂νðtþ πÞ dL
dX

− ημνL: ð2:15Þ

Recall that X is defined in Eq. (2.5). In terms of the
components of Tμν, we find

T00¼1þð1þδcÞ _πþ…; Tj0¼−∂jπþ…; Tji¼δij _πþ…

ð2:16Þ

up to higher orders in π. Even though the stress-energy
tensor contains linear terms in π, this does not imply that
the translations are spontaneously broken. One has to check
whether the vacuum expectation value of an operator is
transformed under the temporal and spatial translations,
whose generators are H ¼ R

d3xT00 and Pi ¼ R
d3xT0i. In

our case, U ¼ tþ π is such an operator as hUi ≠ 0 and
h½H;U�i ≠ 0. Recall that there can still be an emergent
time-translation symmetry of the EFT that is not generated
by T00, as explained below Eq. (2.4).
From the stress-energy tensor, the currents associated

with Lorentz generators are defined as

3In components, this is the usual boost as can be seen from
Ki0 ¼ xi∂0 − t∂i ¼ xi∂0 þ t∂i.
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Mμρσ ¼ xρTμσ − ðρ ↔ σÞ: ð2:17Þ

The current associated with a boost along direction i is
given by

Jμ;i ¼ Mμi0 ¼ xiTμ0 − tTμi: ð2:18Þ

Combining the expressions above we find the current in
terms of the Goldstone field

J0;i ¼ xi þ ð1þ δcÞxi _π þ t∂iπ þ…; ð2:19Þ

Jj;i ¼ −δijt − xi∂jπ − δijt _π þ…: ð2:20Þ

The matrix elements for boost currents with a single
Goldstone state are given by

hπðqÞjJ0;ij0i ¼ ieiq·x
�
1

c2s
xiq0 − tqi

�
; ð2:21Þ

hπðqÞjJj;ij0i ¼ ieiq·xðxiqj − tδijq0Þ; ð2:22Þ

which one can check that they obey the Goldstone theorem
in [65] and verify that the order parameters are nonzero in
the broken phase.
Later we will use the Ward identity to prove the

corresponding soft theorem from spontaneously broken
Lorentz boosts. Given a boost along b, the current is

Jμ ¼ biJμ;i; ð2:23Þ

and its divergence can be evaluated simply from the EOM

∂μJμ ¼ δπ · EOM

¼ b · xðc−2s π̈ − ∂
2
jπÞ þOðπ2Þ: ð2:24Þ

By construction, the current is conserved under the EOM.
But the nonlinear term in δπ leads to a nonzero matrix
element between the vacuum and the one-particle state of
the Goldstone boson. This will be the starting point of the
soft theorem derivation.
Of course all of the discussions so far are well known.

However, the use of local fields and conserved currents
obscures the actual physical behavior. To elaborate on this
point, consider the following change of field basis [60]:

π → π þ Δπ ¼ π þ απ _π: ð2:25Þ

This induces a change on the action L → Lþ δL, where

δL ¼ −EOM · Δπ

¼ −ðc−2s π̈ −∇2πÞ · ðαπ _πÞ þOðπ2Þ

¼ 1

2
α _πðc−2s _π2 − ð∇πÞ2Þ þOðπ2Þ; ð2:26Þ

where we use π _π□π ¼ − 1
2
_πðc−2s _π2 − ð∇πÞ2Þ modulo total

derivative. This implies a shift in the cubic coupling g3;1 →
g3;1 þ α=2 in the action Eq. (2.7). Given that g3;1 ¼ δc=2,
we can eliminate this vertex by choosing

α ¼ −δc: ð2:27Þ

The fact that the vertex _πðc−2s _π2 − ð∇πÞ2Þ can be removed
by field definition is not surprising since the corresponding
three-particle amplitude vanishes.
Crucially, the change of field basis also modifies the

transformation of π under nonlinearly realized boosts. The
transformation of the field now becomes

δπ ¼ b · xþ b · ðx∂0 þ t∇Þπ → δπ

¼ b · xþ b · ðx∂0 þ t∇Þπ − α _πδπ þOðπ2Þ
¼ b · xþ b · ðð1 − αÞx∂0 þ t∇Þπ þOðπ2Þ; ð2:28Þ

where terms that are higher order in π under the new basis
are omitted. The crucial difference here is that the linear
transformation now depends on α. In other words, we show
that the symmetry transformation in Eq. (2.13) is not
invariant under field redefinitions. Using the value in
Eq. (2.27) yields

δπ ¼ b · xþ b ·

�
1

c2s
x∂0 þ t∇

�
π þOðπ2Þ ð2:29Þ

where we define the boost operator with generic cs as

1

c2s
x∂0 þ t∇: ð2:30Þ

In particular, this operator commutes with the light cone
defined using speed cs,�

1

c2s
x∂0 þ t∇

�
· ðc2st2 − x2Þ ¼ 0: ð2:31Þ

In momentum space, this implies boosts that preserve the
on-shell condition are the ones with nontrivial cs. As we
will see, these are the correct boost operators used in the
soft theorem with generic cs.

C. Amplitudes

We use all outgoing conventions. For a scalar with
outgoing momentum pμ ¼ ðE; pÞ, the corresponding
Feynman rule for ∂μϕ then yields ipμ ¼ ðiE;−ipÞ. Since
boost invariance is spontaneously broken, the n-particle
scattering amplitudes no longer only depend on the Lorentz-
invariant momentum inner product. For Goldstone boson
scattering, we can always write the amplitude An as a
function of the energy Ei and rescaled inner product
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t̃ij ≡ 2p̃i · p̃j ≡ c−2s EiEj − pi · pj ð2:32Þ

between external momenta pi and pj. The on-shell con-
dition then reads

p̃2
i ¼ 0: ð2:33Þ

Notice that we organized the action in Eq. (2.7) so
that contraction of indices will give this rescaled inner
product.
Three-particle amplitudes in a Lorentz-invariant theory is

trivial for scalar, since all the Mandelstam variables vanish.
However, since boosts are broken here, we find nontrivial
three-particle amplitudes for the Goldstone boson

A3 ¼ −6ig3E1E2E3 ð2:34Þ

which only depends on energies. Note that g3;1 does not
appear, which is consistent with the earlier discussion that it
can be removed by a field redefinition. See Ref. [30] for a
more general classification.
The four-particle amplitude is given by

A4 ¼ A4;contact þAs þAt þAu ð2:35Þ

where As;contact is a purely local term that comes from the
four-particle vertex in the original action, and As, At, Au
are the terms from s, t, u exchange diagrams. The contact
term reads

A4;contact ¼ 24

�
1

8
δ3c þ 2δcM4

3 þ
2

3
M4

4

�
E1E2E3E4 þþδc½t̃212 þ t̃213 þ t̃214�

× 4

�
−
1

4
δ2c − 2M4

3

�
½ðE1E2 þ E3E4Þt̃12 þ ðE1E3 þ E2E4Þt̃13 þ ðE1E4 þ E2E3Þt̃14�:

Note that we have a new coupling M4
4 entering the four-

particle scattering. The contributions from exchange dia-
grams read

As ¼ E2
12

�
−18g23

E1E2E3E4

t̃12

− 12g3g3;1ðE1E2 þ E3E4Þ − 8g23;1t̃12

�
;

At ¼ Asjð1;2;3;4Þ→ð1;4;2;3Þ;

Au ¼ Asjð1;2;3;4Þ→ð1;3;2;4Þ: ð2:36Þ

Note even though the amplitudes do not depend on the
field basis we use, the couplings constants g3;1 do change
under our field redefinition. Here we have written the
three- and four-point amplitudes in terms of the original
field basis.
As we can see from the action and the above explicit

example, there is always one more new coupling constant
M4

nþ1 in Anþ1 when comparing to An. Therefore, the soft
limit of Anþ1 cannot be trivially related to An. As we will
see, the Ward identity arranges the soft limit in a clever way
to circumvent the mismatch.

III. SOFT THEOREMS

In this section, we will derive the soft theorems for
scattering amplitudes associated with the spontaneously

broken boosts in the EFT of inflation. We begin with the
Ward-Takahashi identity

∂μh0jTðJμðxÞπðx1Þ…πðxnÞÞj0i

¼ −i
Xn
a¼1

δðx − xaÞh0jTðπðx1Þ…δπðxaÞ…πðxnÞÞj0i:

ð3:1Þ
In order to apply this to amplitudes, we use the Lehmann-
Symanzik-Zimmermann (LSZ) reduction to πðxiÞ and
Fourier transform the current to momentum space

lim
q→0

Z
x
eiq·xhp1;…;pnj∂μJμðxÞj0i

¼−
Xn
a¼1

lim
q→0

lim
p̃2
a→0

p̃2
a

Z
x
eiðqþpaÞ·xhfpiji≠ agjδπðxÞj0i¼ 0;

ð3:2Þ
where

R
x ≡

R
d4x and we amputate πðxaÞ by applying

limp̃2
a→0

R
xa
eipa·xð−ip̃2

aÞ. The amputation leads to the
one-particle state, hpij. The subscript i runs from 1 to n
modulo the additional conditions we specified. Note that
the momentum q is injected into δπðxÞ on the right-hand
side (rhs). This causes a mismatch between the momentum
pa, the one we use for amputation, and the momentum
pa þ q associated with the operator insertion. One
needs to be careful with the order of imposing the
on-shell condition and taking the soft limit in intermediate
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steps.4 Although the final conclusion is the same, we will
impose the on-shell condition first before taking the soft
limit for most of the discussion. The rhs of Eq. (3.2)
vanishes in this case since the momentum of amputation
differs from the momentum associated with the δπðxÞ.
The goal is to translate the Ward-Takahashi identity into

statements about on-shell amplitudes, also known as the
Ward identity. In particular, in the kinematic limit where the
momentum q becomes soft for both energy and spatial
components

qμ ¼ ðω; qÞ → 0: ð3:3Þ
To maintain momentum conservation, this can be achieved
by tuning one of the hard momenta, which we pick to be p1,

p1 ¼ −
Xn
i¼2

pi − q: ð3:4Þ

It is important to impose the on-shell condition on p1,
c−21 E2

1 − p21 ¼ 0, where we assume particle 1 has the speed
of propagation c1, which can differ from cs or c. Under
momentum conservation the on-shell condition leads to

c−21

�Xn
a¼2

Ea

�
2

−
�Xn

a¼2

pa

�
2

¼ −2
�
c−21 ω

Xn
a¼2

Ea − q ·

�Xn
a¼2

pa

��
− ðc−21 ω2 − q2Þ:

ð3:5Þ
This implies the left-hand side is actually OðqÞ under the
soft limit which is needed for the soft theorem.

A. Preliminary: Semi-on-shell currents

It is useful to consider the semi-on-shell form factor
of a field π between an n-particle state and the vacuum,
hp1;…; pnjπðxÞj0i, as a bridge between the off-shell
correlation functions and on-shell amplitudes. See
Refs. [41,43,45,70] for previous applications to soft the-
orems. This section reviews the basics of form factors and
the closely related Berends-Giele (BG) current. Readers
familiar with the subject can skip this section.
The BG current is the Fourier transform of the form

factorZ
x
eiq·xhp1;…;pnjπðxÞj0i ¼

Z
x
eiðqþPÞ·xJ n ¼ δ̂ðqþPÞJ n

ð3:6Þ
where

R
x≡

R
d4x, Pμ ≡P

n
i¼1 p

μ
i is the total momentum of

external particles, and J n is the BG current with outgoing

momentum q induced by an n-particle state. See the left of
Fig. 2 for the corresponding diagram. We use the definition
δ̂ðzÞ≡ ð2πÞ4δðzÞ throughout the paper. In the first equality
of Eq. (3.6), we factor out the x dependence and J n is
defined as the rest of the contribution. In the on-shell limit,
q̃2 → 0, the current develops a pole whose residue is given
by the on-shell amplitude Anþ1 of the n particles and the
additional leg with momentum q,

J n⟶
q̃2→0 i

q̃2
iAnþ1 þ…; ð3:7Þ

while the regular terms in the ellipsis depend on off-shell
degrees of freedom. A special case is the overlap with a
single-particle state

hpjπðxÞj0i ¼ eip·x; ð3:8Þ
which implies J 1 ¼ 1.
We also need the form factor of the πðxÞ2 operator

insertion depicted in the right of Fig. 2. The form factor can
be evaluated in terms of BG current using perturbation
theory. Using the tree-level approximation, the form factor
is given by the sum over disconnected terms, as shown in
the left of Fig. 3,

FIG. 2. Left: the semi-on-shell Berends-Giele current J n that
corresponds to the πðxÞ operator insertion between the
n-particle state and the vacuum. Right: the matrix element of
πðxÞ2 operator insertion between the n-particle state and the
vacuum. The solid external lines are on-shell particles with
momentum pi. The dashed lines denote generically off-shell
particles. When momentum q becomes on shell, the current J n

on the left develops a 1=q̃2 singularity whose residue is given by
the on-shell amplitude Anþ1.

FIG. 3. Left: the tree-level approximation of the matrix element
of πðxÞ2 shown in the right of Fig. 2. We need to sum over all
possible partitions L and R of on-shell particles. Right: the
dominant subset of the same matrix element under the soft limit
q → 0, given by when either L or R contains only a single on-
shell particle. The propagator of the dashed line scales as Oðq−1Þ
under the soft limit.

4Since δπðxÞ in the rhs generates a single-particle pole
1=ðp̃a þ q̃Þ2, the ratio p̃2

a=ðp̃a þ q̃Þ2 actually depends on the
order of on-shell limit p2

a → 0 and the soft limit q → 0.
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Z
x
eiq·xhp1;…;pnjπðxÞ2j0i!tree

Z
x
eiq·x

X
L;R

hfpiji∈ LgjπðxÞj0ihfpiji∈RgjπðxÞj0i;¼ δ̂ðqþPÞ
X
L;R

J LJ R ð3:9Þ

where we sum over all possible partitions of the n particles
into disjoint sets L and Rwhose corresponding BG currents
are J L and J R. When we consider the soft limit q → 0,
Eq. (3.9) is dominated by the subset in which an internal
propagator goes on shell. This subset is depicted by the
right diagram in Fig. 3, where either L or R contains a
single particle a. In this case, the dashed line is nearly on
shell since the momentum injection from q is small, as can
be seen from its propagator

i
Da

≡ i
c−2a ðEa þωÞ2 − ðpa þ qÞ2

¼ i
c−2a ð2ωEa þω2Þ− ð2q · pa þ q2Þ∼Oðq−1Þ; ð3:10Þ

where particle a propagates with the speed of sound ca,
such that c−2a E2

a − p2a ¼ 0. Therefore if we first impose the
on-shell condition and then take the soft limit, the propa-
gator scales as Oðq−1Þ. Combining Eq. (3.8) and the on-
shell approximation we find

Z
x
eiq·xhpajπðxÞj0ihp1;…;pa−1;paþ1;…;pnjπðxÞj0i

¼ δ̂ðqþPÞJ 1J n−1;=a

¼ δ̂ðqþPÞ i
Da

iAnðp1;…;pa−1;paþq;paþ1;…;pnÞþ…

¼ δ̂ðqþPÞ i
Da

i

�
1þqμ

∂

∂pμ
a

�
Anðp1;…;pnÞþ… ð3:11Þ

where we add the subscript =a to the current J n−1 denoting
that pa is not included. In the second equality, we use
J 1 ¼ 1 and only keep the singular part of the current
J n−1;=a and replace the residue with an on-shell amplitude

similar to Eq. (3.7). As written explicitly, the momentum
of the ath leg in the amplitude An is extended to pa þ q
which maintains the conservation of total momentum. This
is an off-shell extension but the deviation is proportional to
the inverse propagator Da, such that an off-shell deviation
does not leave any nonlocal term and behaves asOðqÞ=Da.
In other words, all the residual terms are not only overall
Oð1Þ under the soft limit but also local in q. Such an off-
shell extension will be crucial for the subleading soft
theorem. In the last equality, we realize the extension by a
differential operator on the hard amplitude. Summing over
a in Eq. (3.11) and including the symmetry factor, we
finally arrive at the leading contribution to Eq. (3.9) under
the soft limit

Z
x
eiqxhp1;…; pnjπðxÞ2j0i

⟶
tree;q→0

δ̂ðqþ PÞ
"Xn
a¼1

2i
Da

�
1þ qμ

∂

∂pμ
a

�
iAn þOð1Þ

#
:

ð3:12Þ

We drop the momentum arguments of An for simplicity.

B. Goldstone boson amplitudes

1. Relativistic Goldstone bosons

Let us first consider the simple case with only Goldstone
boson scattering and cs ¼ 1, or equivalently δc ¼ 0. In this
case, we can use p̃i · p̃j ¼ pi · pj andDa ¼ 2pa · q. We are
only interested in terms in the Ward-Takahashi identity up
to Oð1Þ under the soft limit. Consider the left-hand side
(lhs) of Eq. (3.2). Even though the conserved current
contains an infinite tower of terms, it drastically simplifies
under the soft limit. Since ∂μJμðxÞ ∼ qμJμðqÞ in momentum
space, most of their contribution to the Ward identity is
only of the order ofOðqÞ.5 The only possibility to getOð1Þ
contribution is when the matrix element of JμðxÞ becomes
singular. As we reviewed in the previous section, this only
occurs in the form factors of πðxÞ and πðxÞ2, whose
singular behavior is given by Eqs. (3.7) and (3.12). This
implies that we can truncate ∂μJμðxÞ in Eq. (3.2) to
quadratic order in the field.
To evaluate the matrix element of ∂μJμðxÞ, it is simpler to

use Eq. (2.24) to relate it to the equation of motion
Eq. (2.11)

∂μJμðxÞ¼ δπ ·EOM

¼ b ·xð□πþ3g3∂0ð _πÞ2Þþb · ðx∂0þ t∇Þπ□πþ…;

ð3:13Þ

5Astute readers may be concerned here. Since JμðxÞ depends
on the coordinate xν, ∂μJμðxÞ may contain terms that have no
derivative and not suppressed by the soft limit. For instance,
∂μðxνfðxÞÞ ¼ δνμfðxÞ þ xν∂μfðxÞ. However, the Fourier trans-
form yields

Z
x
eiq·x∂μðxνfðxÞÞ ¼ −qμ

�
∂

∂qν
fðqÞ

�
;

which is still suppressed by q as long as fðqÞ is regular in soft q.

GREEN, HUANG, and SHEN PHYS. REV. D 107, 043534 (2023)

043534-8



where we set cs ¼ 1 (δc ¼ 0) and truncate to quadratic
order in π. The first and second parts originate from the
nonlinear and linear transformation of δπ interfering with
the equation of motion. All these terms can be evaluated
using Eqs. (3.6), (3.7), and (3.12). Let us discuss them
in turn.
First, the contribution from the nonlinear part of δπ

leads to

lim
q→0

Z
x
eiq·xb · xhp1;…; pnj□π þ 3g3∂0ð _πÞ2j0i

¼ lim
q→0

ib ·∇q

�Z
x
eiq·xhp1;…; pnj□π þ 3g3∂0ð _πÞ2j0i

�

¼ lim
q→0

ib ·∇q

�
δ̂ðqþ PÞ

�
−q2J n −

Xn
a¼1

A3;aJ n−1;=a

��
;

ð3:14Þ

where ∇q is the derivative with respect to q and the vertex
3g3∂0ð _πÞ2 in momentum space reads

A3;a≡A3ðq;pa;−ðqþpaÞÞ ¼ 6ig3ωEaðωþEaÞ: ð3:15Þ

We denote this vertex by the same notation as the three-
particle amplitude since they coincide. The three-particle
amplitude is written in terms of energies which trivializes
the off-shell extension of the leg with momentum ðqþ paÞ.
To express the above in terms of on-shell amplitudes, we

use the dominant behaviors of J n and J n−1;=a in Eqs. (3.7)
and (3.12). Next, we only consider the term where the
derivative ∇q acts on the parentheses instead of the delta
function δ̂ðqþ PÞ. This is well defined since we already
impose the choice in Eq. (3.4) before taking the derivative
which eliminates off-shell ambiguity from momentum
conservation.6 Combining the above yields

lim
q→0

Z
x
eiq·xb · xhp1;…; pnj□π þ 3g3∂0ð _πÞ2j0i

¼ δ̂ðqþ PÞib ·∇q

�
Anþ1 þ

Xn
a¼1

A3;a

2pa · q

×

�
1þ qμ

∂

∂pμ
a

�
An

�
þOðqÞ; ð3:16Þ

where we drop the momentum arguments in Anþ1 for
simplicity. In the presence of three-particle coupling, there
is an Oðq−1Þ soft singularity in Anþ1 as a result of
factorization. But we observe that the An term precisely
cancels this singularity in Anþ1. This is not a coincidence,
since this combination originates from the equation of
motion which should vanish in a correlation function
modulo local contact terms. From Eqs. (3.14) to (3.16),
we replace J n and J n−1;=a with amplitudes which are both

valid up to Oð1Þ correction. These corrections can only
lead to the OðqÞ terms in the above equation which is the
same order as the other terms we drop in the current
conservation. While this is obvious to see for ∇qðq2J nÞ by
naive counting, one needs to be careful with the Oð1Þ
residual terms in J n−1;=a. The specific off-shell extension in

Eq. (3.11) is important here, since it ensures that the Oð1Þ
correction in J n−1;=a can only be local in q. The derivative

∇q on this local Oð1Þ correction can only be at most Oð1Þ
under the soft limit. Combining with the fact that A3;a only
depends on ω but not q, we find∇qðA3;a ×Oð1ÞÞ ∼A3;a ×
∇qðOð1ÞÞ ∼A3;a ×Oð1Þ ∼OðqÞ if the Oð1Þ term is local
in q. Therefore we conclude that the above equation is
indeed valid.
The linear part of δπ can be evaluated similarly using

tree-level expansion

lim
q→0

Z
x
eiq·xhp1;…; pnjðb · ðx∂0 þ t∇ÞπðxÞÞ□πðxÞj0i

¼ lim
q→0

Z
x
eiq·x

Xn
a¼1

½hfpiji ≠ agjb · ðx∂0 þ t∇ÞπðxÞj0ihpaj□πðxÞj0i þ hfpiji ≠ agj□πðxÞj0ihpajb · ðx∂0 þ t∇ÞπðxÞj0i�

¼
Xn
a¼1

lim
q→0

lim
p2
a→0

�
−b · K̂a

Z
x
eiðpaþqÞ·xhfpiji ≠ agj□πðxÞj0i

�

¼
Xn
a¼1

lim
q→0

lim
p2
a→0

b · K̂a½δ̂ðqþ PÞððqþ paÞ2J n−1;=aÞ�: ð3:17Þ

6More rigorously, we can change the variable p1 ¼ P − q −
P

n
i¼2 pi, where P ¼ Pþ q is the total momentum. Evaluating the

derivative in Eq. (3.14) then yields a term where the derivative acts on δ̂ðPÞ and a term where it acts on the parentheses. Since they are
formally separated when integrating with a test function, we only keep the latter.
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To arrive at the third line, we use the following identities on
the single-particle state:

hpaj□πðxÞj0i ¼ −p2
aeipa·x → p2

a → 00; ð3:18Þ

hpajb · ðx∂0 þ t∇ÞπðxÞj0i ¼ b · xhpaj _πðxÞj0i
þ tb · hpaj∇πðxÞj0i

¼ −b · K̂aeipa·x; ð3:19Þ

and integration by parts. Here the relativistic boost gen-
erator K̂a for particle a reads

K̂a → Ea
∂

∂pa
þ pa

∂

∂Ea
: ð3:20Þ

Note that for generic cs, the above will be replaced with a
more general definition in Eq. (3.24). Similar to Eq. (3.16),
we move the boost operator past the momentum-conserving
delta function in Eq. (3.17) and use Eq. (3.12) to replace
J n−1;=a. This yields

lim
q→0

Z
x
eiq·xhp1;…; pnjðb · ðx∂0 þ t∇ÞπðxÞÞ□πðxÞj0i

¼ −δ̂ðqþ PÞ
Xn
a¼1

b · K̂a

��
1þ qμ

∂

∂pμ
a

�
An

�
þOðqÞ

¼ −δ̂ðqþ PÞ
Xn
a¼1

b · K̂aAn þOðqÞ: ð3:21Þ

Unlike Eq. (3.16), the off-shell extension pa → pa þ q is
only OðqÞ so we can simply use the hard amplitude An in
the last line.
Combining Eqs. (3.16) and (3.21), we find the Ward-

Takahashi identity (3.2) yields the soft theorem for sponta-
neously broken boosts on on-shell amplitudes

lim
q→0

i∇q

�
Anþ1 þ

Xn
a¼1

A3;a

2pa · q

�
1þ qμ

∂

∂pμ
a

�
An

�

¼
Xn
a¼1

K̂aAn þOðqÞ: ð3:22Þ

This relates the soft Goldstone boson emission, after
subtracting out the singularity from three-particle ampli-
tudes, to the boost of hard amplitude. We verify the above
theorem with tree-level scattering amplitudes up to n ¼ 7
by explicit calculation.
Let us emphasize the caveats in evaluating the above

soft theorem, since derivatives acting on on-shell amplitudes
are not always well defined. For soft theorems beyond
leading order, it is common to take certain prescriptions
in order for the theorems to hold [41,43,45,70], and our
soft theorem here is no exception. As explained below

Eq. (3.21), the off-shell extension in K̂aAn is not relevant
under the soft limit. On the lhs, we avoid the ambiguities
from momentum conservation and on-shell conditions by
applying the prescription Eqs. (3.4) and (3.5) before taking
the derivative ∇q.
As we pointed out earlier, since Anþ1 contains one more

coupling constant M4
nþ1 compared to An, the soft limit of

the former cannot be fully fixed by the latter. Here we see
that the Ward identity only relates the spatial derivative of
the soft emission to the hard amplitude. Since the coupling
M4

nþ1 only contributes to Anþ1 as a contact term that only
depends on energies, this new coupling is projected out by
the derivative and therefore does not obstruct the soft
theorem. On the other hand, we do not have full control of
the soft limit which is needed to construct on-shell
recursion relations for amplitudes [50,51,55].

2. Goldstone bosons with generic cs
For the case of generic cs, the form of the soft theorem is

not immediately obvious, since the boost operator actually
depends on the field basis, as we have demonstrated
explicitly in Eq. (2.28). Scattering amplitudes, which are
always defined up to on-shell conditions, provide a clean
perspective here. In order to have a valid soft theorem, the
boost operator has to commute with on-shell conditions (at
least before imposing momentum conservation). This is
only true if the boost is with respect to cs. We will see this is
indeed the case.
Mathematically, the soft theorem for generic cs can be

derived in any basis. However, it is much easier to use the
basis in Eq. (2.25) with α ¼ −δc since the current con-
servation is almost identical to the relativistic case

∂μJμðxÞ ¼ δπ · EOM

¼ b · xððc−2s ∂
2
0 −∇2Þπ þ 3g3∂0ð _πÞ2Þ

þ ðb · ðc−2s x∂0 þ t∇ÞπÞðc−2s ∂
2
0 −∇2Þπ þ…:

ð3:23Þ

Comparing to the relativistic case in Eq. (3.13), we only
have to modify the boost and d’Alembert operators with
respect to nontrivial cs. But crucially we stick to the same
three-particle amplitude A3;a in Eq. (3.15), since the addi-
tional cubic vertex when δc ≠ 0 is canceled in the new basis
by setting α ¼ −δc in Eq. (2.26). Therefore we just need to
change the soft theorem with the new propagators and boost
operators. The boost operator for particle a with respect to
the speed of propagation ca is given by

K̂a ≡ Ea

c2a

∂

∂pa
þ pa

∂

∂Ea
: ð3:24Þ
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For pure Goldstone boson scattering we have ca ¼ cs. In
particular, the boost operator commutes with the on-shell
condition of particle a,

K̂aðp2
aÞ ¼ K̂aðE2

a=c2a − p2aÞ ¼ 0: ð3:25Þ

The soft theorem with generic cs then has exactly the same
form as Eq. (3.22) but with the full boost operator (3.24) and
propagator Da defined in Eq. (3.10)

lim
q→0

i∇q

�
Anþ1 þ

Xn
a¼1

A3;a

Da

�
1þ qμ

∂

∂pμ
a

�
An

�

¼
Xn
a¼1

K̂aAn þOðqÞ: ð3:26Þ

We also check this up to n ¼ 7. The same caveats on off-
shell extensions discussed in the paragraph after Eq. (3.22),
apply to here as well.
The same soft theorem can be derived in the original

field basis, although the calculation is more involved. The
relativistic boost operator needs extra care since it does not
commute with the propagator. In the end, the additional
three-particle vertex modifies the relativistic boost operator
into the one with respect to cs. We can see that the standard
basis, while it yields a simple action, does obscure the
actual infrared behavior of physical observables.

C. Coupling to matter

During inflation, we can have spectator fields other than
the inflaton and the metric. In general, the spectator can
have its own speed of propagation that is neither c nor cs.
Let us first review the construction in terms of action, and
then discuss the soft theorem.
Consider a scalar field ϕ that propagates with speed cϕ

whose action is

Lϕ ⊃
1

2
ðc−2ϕ _ϕ2 − ð∇ϕÞ2Þ þ…:

If we want to realize Lorentz invariance nonlinearly, the
deviation from the relativistic kinetic term has to be assisted
by coupling to the Goldstone boson

Lϕ ¼ 1

2
∂
μϕ∂μϕþ δϕ

2
ð∂μðtþ πÞ∂μϕÞ2

þ y1
2
ð1 − gμν∂μðtþ πÞ∂νðtþ πÞÞ∂ρϕ∂ρϕ

þ y2
2
ð1 − gμν∂μðtþ πÞ∂νðtþ πÞÞð∂μðtþ πÞ∂μϕÞ2;

ð3:27Þ

where we define δϕ ≡ c−2ϕ − 1. To illustrate the full soft
theorem, we also include two possible interactions starting

at cubic order with couplings y1 and y2. In general there are
other possible interactions one can write down. The theory
is now also invariant under boosts. Under the infinitesimal
transformation in Eq. (2.13), the scalar ϕ undergoes the
linear relativistic boost

δϕ ¼ b · ðx∂0 þ t∇Þϕ: ð3:28Þ

Crucially the nonlinearly realized Lorentz invariance
implies that the modification of the kinetic term goes hand
in hand with a cubic interaction with the Goldstone boson.
Expanding Eq. (3.28) to cubic order yields

Lϕ ¼ 1

2
ðc−2ϕ _ϕ2 − ð∇ϕÞ2Þ þ δϕ _ϕ∂

μϕ∂μπ − y1 _πð∂ϕÞ2

− y2 _π _ϕ
2 þ…: ð3:29Þ

We can also compute the corresponding amplitudes. For
instance, the amplitude with two ϕ and one π from
Eq. (3.29) reads

A3ðqπ; pϕ; ð−q − pÞϕÞ
¼ −2iðδ2ϕ þ 2y1δϕ þ y2ÞωEðEþ ωÞ

− i

�
δϕ
2
− y1

�
ðδϕ − δcÞω3; ð3:30Þ

where the subscripts on the momenta label the particle
species; i.e., particles with momentum p and −q − p in the
above correspond to the ϕ field and particle with momen-
tum q is the Goldstone boson.
As in the Goldstone boson case, we can also do a field

redefinition to change the linear boost and the cubic
vertices. Observe that under integration by parts

δϕ _ϕ∂
μϕ∂μπ ¼ −δ2ϕ _π _ϕ

2 þ δϕ
4
ðδϕ − δcÞ ⃛πϕ2

− δϕϕ _ϕðc−2s ∂
2
0 −∇2Þπ

− δϕ

�
π _ϕþ 1

2
ϕ _π

�
ðc−2ϕ ∂

2
0 −∇2Þϕ: ð3:31Þ

The second line is proportional to the leading equations of
motion. Thus they can be removed by the following field
redefinitions:

π → π þ Δπ ¼ π − δϕϕ _ϕ;

ϕ → ϕþ Δϕ ¼ ϕ − δϕ

�
π _ϕþ 1

2
ϕ _π

�
; ð3:32Þ

where the shift Δπ and Δϕ is related to the terms propor-
tional to equations of motion (3.31).
The transformation of ϕ and π under the Lorentz boost is

also modified accordingly. Since the original ϕ transforms
linearly, δπ remains the same up to linear order in the new
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basis. However, the original δπ has a nonlinear term which
modifies the δϕ at linear order

δϕ¼ b · ðx∂0 þ t∇Þϕþ δϕ

�
δπ _ϕþ 1

2
ϕð∂0δπÞ

�
þOðϕ2;πϕÞ

¼ b · ðc−2ϕ x∂0 þ t∇Þϕ: ð3:33Þ

We find that under this field basis, δϕ is given by the boost
with respect to its own speed cϕ. The action in the new
basis reads

Lϕ ¼ 1

2
ðc−2ϕ _ϕ2 − ð∇ϕÞ2Þ − δ2ϕ _π _ϕ

2 þ δϕ
4
ðδϕ − δcÞ⃛πϕ2

− y1 _πð∂ϕÞ2 − y2 _π _ϕ
2 þ…: ð3:34Þ

Similar to the earlier discussion, the derivation of the soft
theorem with coupling to matter will be more straightfor-
ward in this field basis.
The soft theorem in the general case with π and the

matter ϕ also follows similarly. We use the new basis
combining Eqs. (3.32) and (2.25) (with α ¼ −δc) such that
the linear boosts of π and ϕ are with respect to its own
speed of propagation cs and cϕ. So the soft theorem is still
given by Eq. (3.26), but with the generalization to include
the π − ϕ − ϕ cubic vertex and the boost with the speed of
each particle. The general three-particle vertices are

A3;a ¼ Aðqπ; pa;X; ð−q − paÞXÞ

¼
�
Aðqπ; pa;π; ð−q − paÞπÞ if a ∈ π;

Aðqπ; pa;ϕ; ð−q − paÞϕÞ if a ∈ ϕ
ð3:35Þ

where X denotes the species of particle a and the off-shell
leg −q − pa,

Aðqπ; pa;π; ð−q − paÞπÞ ¼ 6ig3ωEaðωþ EaÞ; ð3:36Þ

Aðqπ; pa;ϕ; ð−q − paÞϕÞ
¼ −2iðδ2ϕ þ 2y1δϕ þ y2ÞωEaðEa þ ωÞ

− i

�
δϕ
2
− y1

�
ðδϕ − δcÞω3: ð3:37Þ

Again, it turns out that the vertices in all the cases coincide
with the three-particle amplitudes when written in terms of
energy.7 If we include other interactions between the matter
and the Goldstone boson,Aðqπ; pa;ϕ; ð−q − paÞϕÞ needs to
be modified accordingly.

D. Nonperturbative validity

The beauty of symmetry is that the many consequences
are valid even nonperturbatively. For instance, both the
Ward-Takahashi identity and the Goldstone theorems on
the correlation functions hold for any couplings. Although
our derivation starts with Ward-Takahashi identity, tree-
level expansion is needed to evaluate the correlation
functions of πðxÞ2 shown in Eq. (3.12). Therefore, the full
soft theorem is only valid for tree-level scattering ampli-
tudes. Nevertheless, the need of perturbative expansion can
be circumvented when three-particle amplitudes vanish.
In this case, our soft theorem can be lifted to the non-
perturbative level. This is analogous to the Adler zero for
soft pion emission in QCD, which also holds nonpertur-
batively under the same condition.8

Let us specify the assumptions we use in the non-
perturbative regime.
(1) Lorentz boosts are spontaneously broken but trans-

lations are unbroken.
(2) The Goldstone boson propagates with speed of

light, cs ¼ 1.
(3) The matrix elements of the boost current Jμ;i

between the single-particle state and the vacuum
are given by Eqs. (2.21) and (2.22).

(4) No three-particle amplitudes and the soft limit of
amplitudes start at OðqÞ. These two statements are
equivalent at tree level but we list them separately for
the sake of the generic case.

Consider the Ward-Takahashi identity (3.1) under these
assumptions. As we mentioned, one needs to be careful
with the order between soft limit q → 0 and the on-shell
limits of hard particles, p2

a → 0. In the earlier sections with
generic three-particle amplitudes, we take the on-shell
limits first and then the soft q limit. In the perturbative
regime with zero three-particle amplitudes, one can take the
order of limits in either way and still find the same
conclusion. Here we will show the derivation of the soft
theorem in the opposite order which is valid when three-
particle amplitudes vanish. As we will see, this derivation
does not need perturbative expansion and therefore holds
more generally under the assumptions. Taking the q → 0
limit first and applying the LSZ reduction on the Ward-
Takahashi identity yields

½LSZ�lim
q→0

Z
x
eiq·x∂μh0jTðJμðxÞπðx1Þ…πðxnÞÞj0i

¼ −
Xn
a¼1

lim
p2
a→0

p2
a

Z
xa

eipa·xhfpiji ≠ agjδπðxÞj0i

7From the action in Eq. (3.34), the vertex actually has an extra
term proportional to ωDa which only leads to OðqÞ correction in
the soft theorem. Therefore effectively the π − ϕ − ϕ vertex is
still given by the three-particle amplitudeA3;a. This is the case in
general as long as the three-particle vertex is proportional to ω.

8The vanishing of three-pion amplitude in QCD is guaranteed
from parity, while the pion-nucleon-nucleon amplitude is not
zero. So Adler zero holds nonperturbatively for pion scattering,
but breaks down in the presence of a nucleon.
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where ½LSZ�≡Q
n
a¼1 limp2

a→0ð−ip2
aÞ
R
xa
eipa·xa and we

have already applied q → 0 in the rhs. Let us consider
each side of the equation in turn.
On the rhs, the momentum from the Fourier transform

matches the one used for amputation. So it no longer
vanishes in contrast to the other order of limits taken in
Eq. (3.2). Given that δπðxÞ in Eq. (2.13), we see that the
nonlinear term does not generate a pole and thus drops out,
so we only need to keep the linear part in δπðxÞ,

−
Xn
a¼1

lim
p2
a→0

p2
a

Z
xa

eipa·xhfpiji ≠ agjδπðxÞj0i

¼ −
Xn
a¼1

lim
p2
a→0

p2
a

Z
xa

eipa·xhfpiji ≠ agjb · ðx∂0 þ t∇ÞπðxÞj0i

¼ −
Xn
a¼1

lim
p2
a→0

p2
aðb · K̂aÞ

Z
xa

eipa·xhfpiji ≠ agjπðxÞj0i

¼
Xn
a¼1

b · K̂aðδðPÞAnÞ: ð3:38Þ

We use the fact that p2
a commutes with the boost operator

K̂a with cs ¼ 1.
The lhs is very similar to the tree-level calculation. The

crucial difference is that we first take the soft limit before
the amputation,

½LSZ�lim
q→0

Z
x
eiq·x∂μh0jTðJμðxÞπðx1Þ…πðxnÞÞj0i

¼ ½LSZ�lim
q→0

�Z
x
eiq·xxih0jTð□πðxÞπðx1Þ…πðxnÞÞj0i

þOðqÞ�: ð3:39Þ

We use the assumption that the only pole created by the
current in an off-shell correlation function is the single-
particle emission. So effectively we can use the leading

term in ∂μJμ;i ∼ xi□π. The rest of the contribution is
suppressed by OðqÞ due to the derivative on the current.
It is crucial that we take the soft limit before on-shell limits.
If this is not the case, the current can be inserted into an
external on-shell line and generate a 1=ðpa þ qÞ2 ∼
1=ð2pa · qÞ pole.9 Now keeping only the leading-order
contribution in the above equation leads to

½LSZ�lim
q→0

Z
x
eiq·x∂μh0jTðJμðxÞπðx1Þ…πðxnÞÞj0i

¼ ½LSZ�lim
q→0

b · ∇qhqjTðπðx1Þ…πðxnÞÞj0i

¼ lim
q→0

b ·∇qðδðqþ PÞiAnþ1Þ: ð3:40Þ

When we commute the on-shell conditions with the deriva-
tive, one needs to apply the same prescription as before.
Equating both sides of the Ward identity given in

Eqs. (3.38) and (3.40), and factoring out the momentum
conservation delta functions, we find

lim
q→0

i∇qAnþ1 ¼
Xn
a¼1

K̂aAn þOðqÞ: ð3:41Þ

Crucially, we do not need perturbative expansion in this
derivation, under the assumptions listed earlier; therefore we
believe it also holds nonperturbatively. The final theorem is
the same as the tree-level results (3.26) when V3;a ¼ 0 and
cs ¼ 1. It is possible that the nonperturbative theorem also
extends to generic cs when three-particle amplitudes vanish.
But we leave this investigation to the future.

E. Summary

In this section we derived a soft theorem for the
spontaneous breaking of boosts in the EFT of inflation.
The final form of this soft theorem is given by

lim
q→0

i∇q(Anþ1 þ
Xn
a¼1

A3;a

Da

�
1þ qμ

∂

∂pμ
a

�
An) ¼

Xn
a¼1

K̂aAn þOðqÞ; ð3:42Þ

Da ≡ c−2a ðEa þ ωÞ2 − ðpa þ qÞ2; K̂a ≡ Ea

c2a

∂

∂pa
þ pa

∂

∂Ea
; ð3:43Þ

A3;a ¼
(
6ig3ωEaðωþ EaÞ if a ∈ π;

−2iðδ2ϕ þ 2y1δϕ þ y2ÞωEaðEa þ ωÞ − iðδϕ
2
− y1Þðδϕ − δcÞω3 if a ∈ ϕ:

ð3:44Þ

9In the previous perturbative derivation, ∂μJμ contains quadratic terms in field, even in the absence of three-particle amplitudes, which
leads to the boost on hard amplitude as shown in Eqs. (3.17) and (3.21). But if we first take the soft limit, the quadratic in π contribution
is suppressed. The soft theorem remains the same, but the boost on hard amplitudes is now reproduced by the other side of the Ward
identity as shown in Eq. (3.38).
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The prescriptions in Eqs. (3.4) and (3.5) need to be applied
before taking the derivative ∇q. For matter coupling we
assume the interaction in Eq. (3.28). When the three-
particle amplitudes vanish and ca ¼ 1 for all particles, the
soft theorem becomes nonperturbative. A nontrivial feature
of this result is the appearance of a modified boost operator
K̂a associated with the speed of propagation of a given
particle, ca, even though it is derived from the Ward
identity for the broken relativistic boosts (i.e. c ¼ 1) of
the microscopic theory.

IV. IMPLICATIONS FOR INFLATION

A. Dirac-Born-Infeld inflation

Our soft theorem applies to generic models of inflation.
But we can ask if there are any “special” models for
inflation from this on-shell point of view. For Lorentz-
invariant theories, this is analogous to the “exceptional”
Goldstone boson EFTs identified through the enhanced soft
limit [39,56]. As an example, the DBI action

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂

μϕ∂μϕ
q

ð4:1Þ

is a special case of PðXÞ theory, where there is one
derivative per scalar field. When the momentum q of a
scalar becomes soft, we expect the amplitudes scale as
OðqÞ which is the case for a generic PðXÞ theory. However,
the DBI model is special since the leading OðqÞ soft limit
of amplitudes cancels and the soft behavior is lifted to
Oðq2Þ. In fact, one can prove that the DBI theory is the
unique one in the class of PðXÞ models that has such a soft
limit [39,56]. The special soft limit can be linked to the
symmetry in the DBI action

δνϕ ¼ xν þ ϕ∂νϕ: ð4:2Þ

This symmetry is natural when one views the DBI theory
as the EFT of a d-brane in dþ 1 dimension, where ϕðxÞ
parametrizes the position of the brane in extra dimension
[71]. The above symmetry is then the boost invariance
involving the extra dimension. We can see that examining
the soft limit is a bottom-up approach to identify special
theories without diving into the details in traditional
symmetry construction.
Equipped with the universal soft theorem for the EFT of

inflation in our disposal, we can ask if there are any special
models of inflation from this point of view. Back to the DBI
theory, it is also a popular model for inflation due to its
connection to string theory [72,73] (see e.g. [74] for
review). For the applications to inflation, we consider
the fluctuation around the boost-breaking vacuum

ϕ ¼ hϕi þ π ¼ μtþ π: ð4:3Þ

However, as pointed out by Ref. [60], one can use the
symmetry in Eq. (4.2) to restore hϕi to zero. Beyond the
level of vacuum expectation value, Ref. [60] shows one can
construct an unbroken boost from a linear combination of
the original boost and the one from Eq. (4.2). The new
symmetry generators form a Poincaré algebra if one
rescales time t → t=cs. In other words, the DBI theory
in the boost-breaking vacuum has an emergent Lorentz
invariance under the rescaled time. Motivated by this
behavior, we ask the following question: What are the
boost-breaking EFTs that have an emergent Lorentz invari-
ance with respect to the speed of sound?
We will see that DBI inflation is the unique boost-

breaking EFT that has such an emergent Lorentz invari-
ance. The proof is quite simple. After we rescale the time,
the theory should behave like an ordinary Lorentz-invariant
theory. Therefore, the action for a derivatively coupled π
must be in the form of a PðXÞ theory. This enforces the
three-particle vertex to vanish. In addition, the amplitudes
are functions of the rescaled inner product p̃i · p̃j defined in
Eq. (2.32), and they satisfy

P
n
a¼1 K̂aAn ¼ 0. On the other

hand, the amplitudes must satisfy the soft theorem from the
nonlinearly realized boost. Given the vanishing of three-
particle vertices and

P
n
a¼1 K̂aAn ¼ 0, our soft theorem for

an EFT with emergent Lorentz invariance reduces to

lim
q→0

i∇qAnþ1 ¼ 0 ð4:4Þ

up to higher-order terms in q. Since Anþ1 is a function of
p̃i · p̃j, the above soft theorem implies that the full OðqÞ
soft limit ofAnþ1 vanishes. So after we rescale the time, the
soft theorem from the boost demands that the Goldstone
boson must be a PðXÞ theory with Oðq2Þ soft behavior.
From the previous discussion, we find that the DBI action is
the unique theory that has such a behavior [39,56]. All the
amplitudes of the Goldstone boson π can be obtained from
original DBI theory (with hϕi ¼ 0) by replacing pi · pj

with p̃i · p̃j.
Note that this feature is far from obvious if one expands

the original action in Eq. (4.1) around the boost-breaking
vacuum in Eq. (4.2). A nontrivial field redefinition is
needed to render the action of π into the form of DBI action
[60]. But using on-shell construction, we see that it is a
natural solution to the soft theorem. In addition, it also
proves the uniqueness of DBI inflation under such an
emergent Lorentz invariance.
For the above reason, DBI inflation corresponds to a

special point in the space of inflationary models and
therefore also the space of non-Gaussian statistics. This
is well known for the three- and four-point functions of the
primordial density fluctuations. Our observation about the
soft limit of the scattering amplitude in DBI could be useful
in bootstrapping the predictions of DBI for higher-point
cosmological correlators.
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B. Coupling to gravity

One goal of studying amplitudes in the EFT of inflation
would be to understand inflation itself. One might conclude
that the scattering amplitudes are a valid probe of inflation
in the subhorizon regime where the geometry is approx-
imately flat.10 Yet, in the process we took the decoupling
limit, Mpl → ∞ which, of course, does not hold in our
Universe.
It was argued in [30] that the self-consistency of

amplitudes in Lorentz violating EFTs only holds for flat
space with no gravitational interactions. In particular, they
argue that coupling to gravity forbids the scalar amplitudes
we discuss in the previous section and thus cannot be
arrived at as a limit of the EFT of inflation. If we wish to
apply our soft theorems to inflation itself, it is therefore
essential that we understand any potential limitations of this
kind. We will show that there is no contradiction introduced
by coupling to gravity, or at least not one that is visible in
the four-point amplitude for the production of a grav-
iton, φφ → φγ.
We can understand the problem, and its resolution, most

straightforwardly by considering a spectator scalar field, φ,
with a Lorentz violating interaction λ _φ3. If we include the
relativistic graviton coupling that arises from the canonical
kinetic term, then our action would take the form

L ⊃
1

2
∂μφ∂

μφþ λ

3!
_φ3 þ 1

2Mpl
γμν∂μφ∂νφ ð4:5Þ

where we used gμν ¼ ημν þM−1
pl γμν with γμμ ¼ 0 and kept

only the leading gravitational term. If we compute the
φφ → φγ amplitude, we get

Aðp1;φ; p2;φ; p3;φ; p4;γÞ

¼ −i
λ

Mpl

�
E1E2E12

2p1 · p2

pμ
3p

ν
3 þ

E1E3E13

2p1 · p3

pμ
2p

ν
2

þ E2E3E23

2p2 · p3

pμ
1p

ν
1

�
ϵμνðp4Þ ð4:6Þ

where Eij ¼ Ei þ Ej and ϵμνðp4Þ is the polarization tensor
for the graviton. In writing this expression, we used
ðpi þ p4Þμϵμνðp4Þ ¼ pμ

i ϵμνðp4Þ. Normally one would pre-
fer to use spinor-helicity variables for the graviton ampli-
tude, but hopefully our reason for avoiding them will be
clear below.
Now suppose we perform a gauge transformation,

ϵμνðp4Þ → ϵμνðp4Þ þ ipμ
4f

νðp4Þ þ ipν
4f

μðp4Þ ð4:7Þ

for some unknown set of functions fμðp4Þ. The amplitude
will shift by Aðp1;φ; p2;φ; p3;φ; p4;γÞ → Aðp1;φ; p2;φ;
p3;φ; p4;γÞ þ δAðp1;φ; p2;φ; p3;φ; p4;γÞ,

δAðp1;φ; p2;φ; p3;φ; p4;γÞ ¼
λ

Mpl
ðE1E2E12p

μ
3 þ E1E3E13p

μ
2

þ E2E3E23p
μ
1Þfμðp4Þ: ð4:8Þ

Given that gμνϵμνðp4Þ ¼ 0, we can remove a term propor-
tional to pμ

4fμðp4Þ by subtracting a term proportional to
gμν from polarization-stripped amplitude Aðp1;φ; p2;φ; p3;

φ; p4;γÞ before the gauge transformation. We then notice
that we can write δA as

δAðp1;φ; p2;φ; p3;φ; p4;γÞ ¼ −
λ

Mpl
ðE1E2p

μ
3 þ E1E3p

μ
2

þ E2E3p
μ
1ÞE4fμðp4Þ

− E1E2E3p
μ
4fμðp4Þ; ð4:9Þ

so that the final term can be removed without changing the
amplitude. However, the first term does not vanish and
reflects a failure of the Ward identify for the graviton [75].
This failure of the Ward identity also implies that the
amplitude written in spinor-helicity variables is not well
defined, as was observed in [30].
The origin of this problem is that our action is not

diffeomorphism invariant. As gravity is gauging a local
Lorentz transformation, it is therefore not surprising that
the gravitational scattering is inconsistent if Lorentz invari-
ance is explicitly broken. Following the construction of the
EFT of inflation, we can make the action invariant by
introducing the Goldstone boson

L ¼ 1

2
∂μφ∂

μφþ λ

3!
ðgμν∂μðtþ πÞ∂νφÞ3 þ

1

2Mpl
γμν∂μφ∂νφ

ð4:10Þ

¼ 1

2
∂μφ∂

μφþ 1

3!
λ _φ3 þ 1

2Mpl
γμν∂μφ∂νφþ λ

2Mpl
γμ0∂μφ _φ2

þ λ

2
∂μπ∂

μφ _φ2; ð4:11Þ

where in the second line we dropped interactions that
contribute only higher multiplicity or loop amplitudes. We
now see there are two additional contact contributions to
the amplitude

Aðp1;φ; p2;φ; p3;φ; p4;γμ0Þ ¼ −i
λ

Mpl
ðpμ

1E2E3 þ pμ
2E1E3

þ pμ
3E1E2Þϵμ0ðp4Þ; ð4:12Þ

10Although, one may worry that the soft limit, q → 0, is in
tension with the subhorizon limit.
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Aðp1;φ; p2;φ; p3;φ; p4;πÞ ¼ λðpμ
1E2E3 þ pμ

2E1E3

þ pμ
3E1E2Þp4;μ: ð4:13Þ

Finally, we need to determine the relationship between π
and γ0μ, which is determined by the EFT of inflation. So to
simplify the discussion, we will assume cs ¼ 1 for π so that
π and γ propagate at the same speed. The kinetic term for π
introduces a metric coupling,

L ¼ 1

2
ðgμν∂μðtþ πÞ∂νðtþ πÞ − 1Þ

¼ 1

2
∂μπ∂

μπ þ 1

Mpl
γ0μ∂μπ þ total derivative: ð4:14Þ

In addition, under a diffeomorphism, πðp4Þ → πðp4Þ−
f0ðp4Þ. Putting this all together, the amplitude shifts by

δAðp1;φ; p2;φ; p3;φ; p4;γÞ þ δAðp1;φ; p2;φ; p3;φ; p4;γμ0Þ

þ 1

Mpl
δAðp1;φ; p2;φ; p3;φ; p4;πÞ ð4:15Þ

under a diffeomorphism and dropping terms proportional to
pμ
4 we have

δAðp1;φ; p2;φ; p3;φ; p4;γÞ ¼ −
λ

Mpl
ðE1E2p

μ
3 þ E1E3p

μ
2 þ E2E3p

μ
1ÞE4fμðp4Þ; ð4:16Þ

δAðp1;φ; p2;φ; p3;φ; p4;γμ0Þ ¼
λ

Mpl
ðpμ

1E2E3 þ pμ
2E1E3 þ pμ

3E1E2Þðp4;μf0ðp4Þ þ E4fμðp4ÞÞ; ð4:17Þ

δAðp1;φ; p2;φ; p3;φ; p4;πÞ ¼ −
λ

Mpl
ðpμ

1E2E3 þ pμ
2E1E3 þ pμ

3E1E2Þp4;μf0ðp4Þ: ð4:18Þ

With all three contributions, we see that δA ¼ 0 under
diffeomorphisms, as required.
The general constraints on couplings of gravity to a

theory with spontaneously broken Lorentz invariance are
beyond the scope of this work. However, we see that the
most basic constraint is that Lorentz invariance is sponta-
neously broken (and then weakly gauged by gravity). At
the same time, deriving additional constraints on the EFT
from the consistency of graviton amplitudes is plausible but
would likely require a more suitable treatment of the
spinor-helicity variables.

C. Cosmological correlators

The physics of inflation is encoded in cosmological
correlators: equal time in-in correlation functions calcu-
lated around the quasi–de Sitter background that describes
inflation. The EFT of inflation is particularly useful in
characterizing non-Gaussian cosmological correlators.
Concretely, for single-field inflation, the scalar metric
fluctuation, ζ, eats the Goldstone boson such that
ζ ≈ −Hπ [3] outside the horizon. With the additional
assumption of time-independent couplings, the bispectrum
gives the leading in-in [76,77] non-Gaussian correlator,
which is given by [21,78,79]

hζðk⃗1Þζðk⃗2Þζðk⃗3Þi0 ¼ Δ4
ζ

12 g3c2s
f4π

e23 −
δc
2f4π

ð−4kTe2e3 − 4k2Te
2
2 þ 11k3Te3 − 3k4Te2 þ k6TÞ

e33k
3
T

; ð4:19Þ

where Δζ ¼ H2=ð ffiffiffi
2

p
f2πÞ, we dropped terms that are slow-

roll suppressed, and defined the symmetric polynomials
of ki in terms of the total energy kT ¼ k1 þ k2 þ k3,
e2 ¼ k1k2 þ k1k3 þ k2k3, and e3 ¼ ðk1k2k3Þ.
One of the key concepts of the cosmological bootstrap

is the idea that the residue of the total-energy pole (i.e.
the leading pole when we analytically continue to kT → 0)
is the flat-space scattering amplitude [13,14]. Indeed,
in this case we see that the leading behavior,

Δ4
ζ36g3c

2
sðk1k2k3Þ=ðk1k2k3k3TÞ, contains the amplitude

A3 ¼ −6ig3E1E2E3 after identifying ki → Ei for a mass-
less particle. However, we can tune g3 → 0 such that the
on-shell three-point amplitude vanishes, A3 ¼ 0. In fact,
in flat space the field redefinition π → π − δc _ππ removes
the δc _π∂μπ∂

μπ interaction from the action. Yet, the
bispectrum contains a number of terms that appear to
follow from this interaction, including several with poles
at kT → 0.
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The resolution of this tension is that the field redefinition
does not remove all the interactions in the inflationary
background [60]. The action in a FLRW background
S ¼ R

d4xa3ðtÞL with the same Lagrangian

L ¼ 1

2
∂μπ∂

μπ þ δc
2
_π∂μπ∂

μπ þ g3 _π3: ð4:20Þ

Performing the field redefinition π → π − δc _ππ gives the
shift of the action

L → L − δc _π∂μπ∂
μπ − δcπ∂μ _π∂

μπ þOðπ4Þ: ð4:21Þ

In flat space, these two terms are related by a total
derivative. However, in our FLRW background the total
derivative takes the form

d
dt

ða3π∂μπ∂μπÞ ¼ a3ð _π∂μπ∂μπ þ 2∂μ _π∂
μπ

þ 3Hc−2s π _π2 − aHπ∂iπ∂
iπÞ: ð4:22Þ

As a result, after the field redefinition we have

L →
1

2
∂μπ∂

μπ þ δc
2
ð3Hc−2s π _π2 −Hπa−2∂iπ∂iπÞ þ g3 _π3:

ð4:23Þ

Given that _ππ → 0 as aðtÞ → ∞, we can still calculate the
contribution to the scalar metric fluctuation with ζ ¼ −Hπ.
Using these three operators we have three contributions to
the bispectrum [79]

B _π3 ¼ Δ4
ζ

g3c2s
f4π

12e23
e33k

3
T
; ð4:24Þ

Bπ _π2 ¼ Δ4
ζ

δc
f4π

−6e3k3T þ 3k2Te
2
2 þ 3kTe2e3

e33k
3
T

; ð4:25Þ

Bπ∂iπ∂
iπ ¼ Δ4

ζ

δc
2f4π

e3k3T − 2k2Te
2
2 − 2kTe3e2 þ 3k4Te2 − k6T

e33k
3
T

:

ð4:26Þ

Combining these terms we reproduce the bispectrum in
Eq. (4.19).
Interestingly, when we set g3 ¼ 0, the flat-space ampli-

tude vanishes but there remains a total-energy pole in the
correlator [60], which arises in DBI inflation for example.
However, this is a result of how we take the flat-space limit.
Concretely, the interaction π _π2 also contributes a nonzero
amplitude in flat space. This interaction is present after
our field redefinition in de Sitter space, but would vanish in
the H → 0 limit. However, this does not imply a suppres-
sion of the cosmological correlator as the powers of H are
fixed by dimensional analysis. The end result is that there

remains a total-energy pole when g3 ¼ 0 associated with
the π _π2 amplitude.

D. Multifield and quasi-single-field inflation

The unique relationship between soft theorems and the
predictions of inflation are specific to single-field inflation.
Concretely, when the dynamics of inflation are controlled
by a single degree of freedom, we can always choose a
gauge where that degree of freedom is the scalar mode of
the metric, or equivalently, the Goldstone boson π.
However, in the presence of multiple degrees of freedom,
the relationship between the observable scalar fluctuation
and the Goldstone boson π is not longer fixed by diffeo-
morphism invariance.
In the presence of multiple light scalar fields, we can pick

a gauge where fluctuations along the inflationary trajectory
are given by the Goldstone π, and all additional fields ϕ⃗ are
transverse. During inflation, π is eaten by the metric and the
ϕ⃗ fields are effectively isocurvature modes (at least at linear
order). However, the dynamics of the inflationary or post-
inflationary universe can convert the isocurvature fluctua-
tions into metric fluctuations. Such processes are local on
the scales we will observe and therefore ζ ¼ F½π; ϕ⃗� for
some model-dependent function F [80]. One can easily
arrange models where ζ is determined by a single transverse
scalar ζ ≈ κϕ so that the statistics of the metric fluctuations
are not fixed by π or the Ward identities discussed here.
Quasi-single-field inflation [81–84], also known as cos-

mological collider physics [15,85–89], provides an interest-
ing middle ground where additional fields are important but
do not destroy the relationship between the metric fluctua-
tions and the Goldstone boson of the EFT of inflation.
Additional massive fields, m ¼ OðHÞ, and particles with
spin will decay outside the horizon. They do not survive
until the end of inflation and therefore reheating and
subsequent evolution is determined solely by π via
ζ ≈ −Hπ. These particles can still alter the statistics of π,
and therefore ζ, through interactions during inflation. These
interactions are governed by the EFT of inflation coupled to
additional matter and are subject to the same mixed
constraints discussed in Sec. III C.

V. OUTLOOK AND CONCLUSIONS

The structure of cosmological correlators is deeply tied to
scattering amplitudes in flat space. At the level of a
Lagrangian, this may seem like a vacuous statement, as
both the amplitudes and correlators can be determined via
the Feynman rules. Yet, amplitudes are known to display a
wide range of constraints and simplifications that are hardly
apparent from the Lagrangian. This same simplicity is
hiding in cosmological correlators, which are known to
contain the amplitude as the residue of the total-energy pole.
In recent years, this relationship has inspired the cosmo-
logical bootstrap program [12], which aims to understand
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the structure and consistency of our cosmological observ-
ables without directly appealing to the Lagrangian or the
Feynman rules.
A unique challenge of this program is that inflation is

described by a nonrelativistic EFT [1,2]. If amplitudes serve
as a model for our understanding of cosmology, then it is
noteworthy that we understand considerably less about
amplitudes when time translation and/or boosts are broken.
Our goal in this paper was to understand how the structure
of the EFT of inflation is reflected in the scattering
amplitudes. As inflation spontaneously breaks Lorentz
boosts, the constraints from Lorentz invariance manifest
themselves in Ward identities that connect the soft
Goldstone boson emission to the hard scattering process.
The self-consistency of amplitudes is known to place

nontrivial constraints on the space of EFTs and their Wilson
coefficients [9]. Famously some higher-derivative couplings
are forced to be positive [10,11]. In addition, consistency of
the soft theorems may determine the full structure of the
amplitude. Any hope of deriving similar results in the
inflationary context relies on a deeper understanding of
amplitudes with broken Lorentz boosts [28]. As we have
seen, this is particularly challenging for couplings to the
graviton, as it gauges the broken symmetries. Yet, even for
scalars, our limited understanding of the analytic structure
of the amplitude and the absence of crossing symmetry are
clear obstacles to using flat-space techniques directly (see
e.g. [29,31,32] for recent progress).
There are several avenues for future work. A

natural next step for this work would be to apply the soft
theorem to derive recursion relations for on-shell ampli-
tudes [50,51,55]. Since the inflaton we considered is
derivatively coupled, we need to have full control of the
OðqÞ soft behavior in order to derive the recursion
relations. The soft theorem we derived here only applies
the spatial component of the soft momentum q. The soft
behavior of the energy component depends both on lower-
order scattering amplitudes and a new coupling constant
M4

n for an n-particle amplitude. One needs to disentangle
the two contributions in order to derive the recursion
relations.
As the Goldstone boson naturally mixes with the

graviton, it would be interesting to extend the soft theorem

to include gravitons. We expect that gravitons and
Goldstone bosons are closely related since the gauge
invariance is only restored after considering the combina-
tion of the two. Their dependence could lead to a “trans-
mutation” at the level of on-shell amplitudes [90]. It would
also be great to understand the soft theorems of derivatively
coupled Goldstone bosons in terms of a geometric per-
spective [70,91,92].
For cosmological applications, one would like to explore

the relationship between soft theorems in cosmology and
soft theorems in amplitudes [93], particularly in the context
of multifield inflation. It would also be interesting to
investigate the full soft theorem for loop amplitudes;
extending the nonperturbative statements to the cs ≤ 1
case would be important for a large class of inflation
models. These results could sharpen our understanding of
amplitudes in the context of inflation, with the hope to
place stringent constraints on the candidates of inflationary
models [9].
Finally, while our work focuses on the EFT of inflation,

there is a zoo of EFTs for spontaneous breaking of Lorentz
boosts, such as framid, phonons, and galileid [94]. For
theories with enhanced Adler zeros, the on-shell methods
naturally unify different EFTs and impose sharp con-
straints [56]. It would be fascinating to unify all boost-
breaking EFTs also from the on-shell perspective.
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