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We explore a model introduced by Cyr-Racine et al. [Phys. Rev. Lett. 128, 201301 (2022)] that resolves
the Hubble tension by invoking a “mirror world” dark sector with energy density a fixed fraction of the
“ordinary” sector of Λþ cold dark matter. Although it reconciles cosmic microwave background and large-
scale structure observations with local measurements of the Hubble constant, H0, the model requires a
value of the primordial helium mass fraction, Yp ¼ 0.170� 0.025, that is discrepant with observations and
with the predictions of big bang nucleosynthesis. We consider a variant of the model with standard helium
mass fraction but with the value of the electromagnetic fine-structure constant, α, slightly different during
photon decoupling from its present value. If α at that epoch is lower than its current value by
Δα ≃ −2 × 10−5, then we can achieve the same Hubble tension resolution as in the work by Cyr-Racine
et al. but with consistent helium abundance. As an example of such time evolution of α, we consider a toy
model of an ultralight scalar field, with mass m < 4 × 10−29 eV, coupled to electromagnetism, which
evolves after photon decoupling at redshift z ≃ 103, and that with appropriate coupling appears to be
consistent with late-time constraints on α variation and the weak equivalence principle.
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I. INTRODUCTION

In recent years, local measurements of the current
expansion rate of the Universe, the Hubble constant H0,
have differed systematically from inferences for H0 from
observations of structure in the Universe in the context of
the Λþ cold dark matter (ΛCDM) model. For example, the
most recent analysis from the SH0ES team finds H0 ¼
73.04� 1.04 km= sec =Mpc [1] based on Cepheid variable
stars and type Ia supernovae, more than 5σ discrepant from
the value inferred from the final Planckþ ΛCDM cosmic
microwave background (CMB) analysis, H0 ¼ 67.4�
0.5 km s−1Mpc−1[2]. H0 inferences from measurements
of large-scale galaxy clustering in ΛCDM that rely partly
on or are independent of the CMB have yielded values
generally consistent with the Planck estimate and also in
tension with the SHOES result [3,4]. On the other hand,
the Carnegie-Chicago local measurements that rely on the
Tip of the Red Giant Branch (instead of Cepheids) and
Carnegie Supernova Project supernovae found H0 ¼
69.8� 0.6� 1.6 km= sec =Mpc [5,6], consistent with both
sets of measurements.

Many theories have been proposed to solve the Hubble
tension by invoking new ingredients beyond ΛCDM; these
include early dark energy models, which invoke ultralight
scalar fields that dominate the energy density just before the
epoch of recombination [7], and models such as interacting
darkmatter or radiation (e.g., Ref. [8]), decaying darkmatter,
primordial magnetic fields, etc; for a summary of the tension
and various theoretical approaches, see Refs. [9–12].
However, many of these models fail to adequately match
CMB or large-scale structure measurements or both [13,14].
Recently, Cyr-Racine et al. [15] proposed a different

kind of model to resolve the Hubble tension. The model
appears promising in that it implements a scaling trans-
formation of cosmologically relevant length scales that
leaves CMB anisotropy and large-scale structure observ-
ables nearly unchanged, thus preserving the remarkable
successes of the ΛCDMmodel (for earlier related work, see
Ref. [16]). The model features a dark, hidden sector that
interacts with ordinary matter only gravitationally and
mirrors the ordinary sector by having the same kinds of
ingredients (dark sector photons, dark baryons, etc.) and the
same interactions within the dark sector as the ordinary
sector (see, e.g., Refs. [17–21]). In its simplest incarnation,
the energy density of each component in the dark sector
is a fixed fraction ðλ2 − 1Þ of the energy density of the*jfrieman@uchicago.edu
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corresponding component in the ordinary sector, so the
total energy density is changed from the ΛCDM value
ρΛCDM to ρ ¼ λ2ρΛCDM. In the limit of thermal equilibrium,
CMB and large-scale structure observables are unchanged
from their ΛCDM values to lowest order if the photon
scattering rate around the time of photon decoupling is also
scaled from σTne to λ0σTne, with the symmetry condition
λ0 ¼ λ; here, σT is the Thomson cross section, and ne is the
number density of free electrons [22]. This can be under-
stood qualitatively by recalling that the redshift of photon
decoupling, zdec, is defined as the epoch when photons last
scatter, i.e., when ðneσT=HÞ ≃ 1. Scaling the scattering rate
and the expansion rate by the same amount preserves zdec
and, more generally, preserves the photon visibility func-
tion, a measure of the probability density that a photon last
scatters at redshift z, given by gðzÞ ¼ ðdτ=dzÞ expð−τðzÞÞ,
where the derivative of the optical depth τ is proportional to
the scattering rate.
Cyr-Racine et al. find that the Hubble tension can be

largely resolved, that is, CMB and large-scale structure
measurements made consistent with local measurements
of H0, if λ ≃ λ0 ≃ 1.08. Since, by the Friedmann equation,
H ∝ ffiffiffi

ρ
p ∝ λ, this scaling accounts for the difference

between the low (CMB/large-scale structure) and high
(local) H0 values. The model also requires a scaling of
the primordial density fluctuation amplitude.
In Ref. [15], λ is determined by the energy density (or

alternatively the relative temperature) of the mirror sector,
while λ0 is determined by a change in the primordial helium
mass fraction, Yp, from its canonical value, since the free
electron number density ne ¼ XenH ¼ XenBð1 − YpÞ ¼
1.1 × 10−5XeΩbh2ð1þ zÞ3ð1 − YpÞ cm−3, where Xe ≡
ne=nH is the ionization fraction, nH is the number density
of hydrogen nuclei, nB is the baryon number density, Ωb is
the baryon density as a fraction of the critical density, and the
dimensionless Hubble constant h ¼ H0=100 km= sec =Mpc
[23,24]. The symmetry condition λ0 ¼ λ therefore requires
a corresponding decrease in Yp from its ΛCDM value to
Yp ¼ 0.170� 0.025 [15], which disagrees at 3σ with the
inferred value from observation, Yp ¼ 0.2453� 0.0034
[25], so the model is not consistent with all observations.
In this paper, we hold Yp to its canonical value and

consider an alternative physical mechanism that can scale
the photon scattering rate by the requisite amount. In
Sec. II, we consider the possibility that the electromagnetic
fine structure constant, α, and thus the Thomson cross
section, σT ¼ ð8π=3Þðαℏc=mec2Þ2, was slightly different
around the time of photon decoupling than at the present
and show that this can lead to the appropriate enhancement
in the photon scattering rate. A change in α also alters the
energy levels of atomic hydrogen and thus the dynamics of
hydrogen recombination and the ionization fraction, Xe.
As a result, the requisite change in α from its current value,
Δα ≃ −2 × 10−5, turns out to be of opposite sign to and

over an order of magnitude smaller than that naively
expected from the above scaling of σT . In Sec. III, we
consider a simple toy model of an ultralight scalar field
coupled to electromagnetism that relaxes the value of α
from its primordial to its current value in a manner
consistent with observational constraints. Such dynamical
models of time-varying α have a long history in the context
of extensions of the Standard Model and in cosmology
(e.g., Refs. [26–40]).

II. VARIATIONOF FINE-STRUCTURECONSTANT
AND THE PHOTON MEAN FREE PATH

We consider a model in which the value of the electro-
magnetic fine-structure constant prior to some time after
photon decoupling, α, was different from its currently
measured value, α0 ≃ 1=137. We define the fractional differ-
ence δα such thatα ¼ α0ð1þ δαÞ, and thus thedifference inα
between early and late times isΔα ¼ α0δα; we assume δα≪1
throughout and later show that this condition is satisfied in
the scaling symmetry limit. With this assumption, to lowest
order, the corresponding fractional change in the Thomson
cross section between early and late times is δσT ≃ 2δα. Since
the current binding energy of atomic hydrogen is given by
B0 ¼ α2mec2=2 ¼ 13.6 eV, its fractional change at early
times is also given by δB ≃ 2δα. This change in B and in
associated hydrogen energy levels propagates to a change in
the ionization fraction Xe and thus ne at fixed temperature.

A. Decoupling in thermal equilibrium

To get a first estimate of the change in Xe due to a change
in α, we assume that electrons, protons, H nuclei, and
photons remain in thermal equilibrium until photon decou-
pling, at temperature Tdec, defined as the epoch when the
photon scattering rate, λ−1γ ¼ neσT , drops below the expan-
sion rate, HðTÞ. In Sec. II B, we follow the nonequilibrium
evolution of Xe, but the approximation here of equilibrium
followed by decoupling provides some insight into the
expected behavior.
In thermal equilibrium, the ionization fraction is given by

the familiar Saha equation (e.g., Refs. [41,42]),

X2
e

1 − Xe
¼ 1

nB

�
meT
2π

�
3=2

expð−B=TÞ; ð1Þ

where the baryon density nB ¼ ηnγ ¼ 6 × 10−10

ðΩbh2=0.022Þnγ ¼ 2.5 × 10−7ðΩbh2=0.022Þð1þ zÞ3, and
we are using units in which ℏ ¼ c ¼ kB ¼ 1. At early
times, at temperatures above the binding energy of hydro-
gen, Xe ¼ 1 to excellent approximation, and the Universe
is fully ionized; once the temperature drops well below B,
Xe plummets to a value Xe ≪ 1. By the time of decoupling,
when neσT ¼ HðTdecÞ, which corresponds to a temperature
of Tdec ≃ 0.26 eV and redshift zdec ≃ 1100 in the standard
model, XeðTdecÞ ∼ 0.01 (e.g., Ref. [42]). The equilibrium
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evolution of Xe is shown by the blue curve in the top panel
of Fig. 1 for the Planck-ΛCDM value of Ωbh2 ¼ 0.022.
In the evolving-α model, prior to and including the

decoupling epoch the binding energy of hydrogen is given
by B ¼ B0 þ ΔB ≃ B0ð1þ 2δαÞ. Defining Xe;0 to be the
canonical ΛCDM value of the ionization fraction, the Saha
equation becomes

X2
e

1 − Xe
¼ X2

e;0

1 − Xe;0
expð−ΔB=TÞ: ð2Þ

Defining the perturbed ionization fraction by Xe ¼
Xe;0ð1þ δXÞ and expanding to linear order in δX, we find

δX ≃
�
1 − Xe;0

Xe;0 − 2

��
exp

�
2δαB0

T

�
− 1

�
: ð3Þ

Finally, around the time of photon decoupling, we have
Xe ≪ 1, and the scaling of the photon inverse mean free
path due to change in α is given to leading order by

λ0ðTdecÞ ¼
ðneσTÞdec
ðneσTÞdec;0

¼ ð1þ δσT þ δXÞ

≃
�
1þ 2δα −

1

2

�
exp

�
2δαB0

Tdec

�
− 1

��
: ð4Þ

In the limit that the CMB anisotropy is imprinted
instantaneously at the epoch of decoupling, what we care

about is the value of λ0 at that epoch, λ0ðTdecÞ. From Eq. (4),
since the scaling of H keeps the decoupling temperature
Tdec at its canonical ΛCDM value, we find λ0ðTdecÞ ¼ 1.08
(the required value from Ref. [15]) for δα ¼ −1.6 × 10−3,
or Δα ¼ −1.2 × 10−5. The required variation in α is about
50 times smaller than one would naively expect, due to the
exponential term in Eq. (3). The blue curve in the bottom
panel of Fig. 1 shows the evolution of δX from Eq. (3) for
this value of δα. This is our first rough estimate of the
needed variation in α for this model.
Note that, strictly speaking, in the model of Ref. [15], we

should have λ0 ¼ λ at all times in order to preserve the
scaling symmetry that keeps the CMB and large-scale
structure predictions of ΛCDM intact. In principle, this
could be arranged through an appropriately time- or
temperature-varying δα that leaves the rhs of Eq. (4)
approximately temperature independent.
A simpler dynamical model (see Sec. III) instead assumes

that δα has a fixed, nonzerovalue in the earlyUniverse until at
least the epoch of photon decoupling and then relaxes to zero
sometime after that. In this case, from Eq. (4), λ0 is not
constant in time prior to decoupling; that is, the symmetry
condition does not hold at all times. We can estimate how
much this simpler model of α variation breaks the scaling
relation λ0 ¼ λ during the epoch when CMB anisotropies are
imprinted. The visibility function hasmost of its support over
the range zdec ¼ 1100� 100 [42], which corresponds to a
temperature range Tdec ¼ 0.26� 0.023 eV. Over this tem-
perature range, from Eq. (4), for constant δα, λ0 varies by
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FIG. 1. Top: ionization fraction Xe vs redshift in the standard ΛCDM model. Blue curve: equilibrium (Saha) solution; red curve:
nonequilibrium solution with C ¼ 1 (see text); black curve: nonequilibrium solution with C factor. Bottom: fractional change in
ionization fraction, δX, vs redshift, due to shift in α. Blue curve: equilibrium solution from Eq. (3) for δα ¼ −1.6 × 10−3; red curve:
nonequilibrium evolution from differencing solutions of Eq. (5) with C ¼ 1 and δα ¼ −3 × 10−3; black curve: same, but including C
factor.
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roughly �0.5%, which appears to fall within the parameter
uncertainty of Ref. [15]. We therefore expect a model in
which δα ¼ constant prior to and during the epoch of photon
decoupling to satisfy the scaling symmetry to the needed
level, given current observational uncertainties.

B. Nonequilibrium evolution

The assumption of thermal equilibrium breaks down
during the epoch of hydrogen recombination and photon
decoupling. A more accurate estimate of λ0ðTdecÞ requires
solution of the nonequilibrium evolution of the ionization
fraction Xe. For purposes of illustration, we follow the
standard approach based upon the effective three-level
atom model [43,44]; approximating the matter and radia-
tion temperatures as equivalent, the evolution is given by

dXe

dt
¼ C½ð1 − XeÞβ − X2

enBαð2Þ�; ð5Þ

where nB is the baryon density, and following Ref. [42], we
can write the recombination and photoionization rates as

αð2Þ ¼ 9.78
α2

m2
e

�
B
T

�
1=2

ln
�
B
T

�
ð6Þ

and

β ¼ αð2Þ
�
meT
2π

�
3=2

exp

�
−
B
T

�
: ð7Þ

The Peebles C factor can be expressed as (e.g., Ref. [42])

C ¼ Λα þ Λ2γ

Λα þ Λ2γ þ βð2Þ
; ð8Þ

where the two-photon decay rate is Λ2γ ¼ 8.227 s−1 and
scales as α8 [39], the Lyman alpha production term is
βð2Þ ¼ β expð3B=4TÞ, and the rate of escape of Lyman-α
photons is given by

Λα ¼
Hð3BÞ3

nBð1 − XeÞð8πÞ2
: ð9Þ

While more realistic and accurate recombination models
involving multilevel atoms have been developed and will
be invoked below [23,24,45,46], the standard approach
again provides some insight into the result.
The black curve in the top panel of Fig. 1 shows a

numerical solution of Eq. (5) with standard values of
parameters. For comparison, the red curve shows the
solution with the Peebles C factor of Eq. (8) set to unity;
deviation from the equilibrium solution of Eq. (1) becomes
apparent around the redshift of decoupling. Since C < 1
and depends on temperature, its inclusion leads to a delay in
the epoch of recombination and thus photon decoupling.

We now consider how a change in α impacts recombi-
nation. We set α → α0ð1þ δαÞ in Eq. (5) and plot the
resulting fractional change in Xe in the bottom panel of
Fig. 1. The black curve shows δX for δα ¼ −3 × 10−3; the
red curve shows δX for the same value of δα but setting
C ¼ 1 for comparison. This value of δα yields a peak value
of δX ¼ 0.086 at redshift z ≃ 910; in combination with the
much smaller variation in σT , this yields a value of
λ0ðTdecÞ ¼ 1.08, as desired for the scaling solution of the
Hubble tension. For z > 900, the evolution of δX for this
value of δα (black curve) in the nonequilibrium model
traces quite well the evolution of δX in the Saha approxi-
mation (blue curve) for the smaller value of δα inferred in
the previous subsection.
While the three-level atom model should provide a more

accurate estimate than the equilibrium approach of the Saha
equation, this model is itself an approximation to a full
multilevel approach to recombination [24,45,46]. In fact,
the impact of δα in a full multilevel calculation has been
considered by a number of authors (Refs. [39,40] and
references therein). In particular, comparing our results
(black curve in Fig. 1) to Fig. 3 of Ref. [39] for the same
value of δα, we find that the three-level calculation agrees
qualitatively with their results but appears to underestimate
the peak value of δX by about 7.5%. With this recalibration,
we find that the desired value of δα ¼ −2.7 × 10−3 for the
scaling model, and we use this as our final estimate. More
generally, in the perturbative limit (δX; δα ≪ 1), the results of
Ref. [39] imply δmax

X ¼ −31δα and therefore λ0 ≃ 1–29δα.
This increase in Xe at fixed temperature compared to the

canonical ΛCDM case can alternatively be thought of as
slightly delaying the onset of photon decoupling and thus
shifting the visibility function gðzÞ to lower redshift. Very
roughly, the shift in the centroid or peak redshift zp of gðzÞ
is of order Δzp ≃ −ð2=3ÞðδX þ 2δαÞð1þ zpÞ. As Ref. [39]
shows, the shape of the visibility function is left largely
unchanged. For fixed Ωbh2, the upward shift in the Hubble
parameter, H → Hð1þ δHÞ, due to the dark sector in this
model approximately restores zp and thus gðzÞ to its
canonical value if δX þ 2δα ≃ δH or δα ≃ −0.034δH.

C. Big bang nucleosynthesis

In the mirror world model, the expansion rate at given
temperature is λ − 1 ¼ 8% higher than in the Planck-
ΛCDM model at all temperatures. Thus, the weak inter-
actions freeze out of equilibrium at higher temperature than
in ΛCDM, leading to a higher primordial helium abun-
dance prediction from big bang nucleosynthesis (BBN),
Yp ¼ 0.261� 0.004 [15,47], than in the canonical model
and in 3σ tension with the primordial helium mass fraction
inferred from observations, Yp ¼ 0.2453� 0.0034 [25,48].
Consistency with the observed helium abundance could
be restored by violating one or more additional assump-
tions of the standard cosmology. For example, through
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particle decay or annihilation, one could arrange entropy
injection into the dark sector between the time of nucleo-
synthesis and photon decoupling (although this would
violate the mirror symmetry between the two sectors)
[15,49]; in this way, one could have had λ − 1 ≪ 0.08
at the time of nucleosynthesis, recovering the standard
BBN prediction of Yp, which is in good agreement with
observation. Alternatively, as we did here for the electro-
magnetic fine-structure constant, one might invoke an
appropriately boosted value of the weak coupling constant
at the time of nucleosynthesis relative to the present;
this would also lower the predicted BBN Yp value
closer to that observed. Finally, we note that BBN places
a weak upper bound on deviation of the fine-structure
constant at redshift z ∼ 109 from its current value, of order
jδBBNα j < 10−2 − 10−1 [29,32], which is consistent with the
variation invoked here.

III. SCALAR FIELD MODEL FOR
TIME-VARYING α

We consider a simple model of an ultralight scalar field ϕ
phenomenologically coupled to electromagnetism, such
that late-time classical evolution of the field is responsible
for relaxation of α from its value at photon decoupling to its
present value. We explore whether such a simple model is
consistent with observed constraints.

A. Scalar field coupling to electromagnetism

The Lagrangian for the scalar field is given by [26,28,30]

L ¼ 1

2
∂μϕ∂

μϕ − VðϕÞ − 1

4
ZF

�
ϕ

MPl

�
FμνFμν; ð10Þ

where ZF is a dimensionless function of its argument, and
the Planck mass MPl ¼ ð8πGÞ−1

2. Following Ref. [30], we
have assumed that the scalar field does not couple appreci-
ably to matter fields. Defining ΔϕðtÞ ¼ ϕðtÞ − ϕ0, with
ϕ0 ≡ ϕðt0Þ the present value of ϕ, which we assume to be
at or close to the minimum of its potential, and assuming
that the deviation of ϕðtÞ from its present value is small
compared to the Planck mass at all times of interest,
Δϕ < MPl, which ensures that quantum gravity corrections
should be under control (see, e.g., Refs. [50,51]), we can
expand the coupling term as

ZF

�
ϕ

MPl

�
¼ 1þ κ1

Δϕ
MPl

þ κ2

�
Δϕ
MPl

�
2

þ � � � : ð11Þ

Assuming δα ≪ 1, from the r.h.s. of Eq. (11), we have [28]

δα ¼
Δα
α

≃ −κ1
Δϕ
MPl

− ðκ2 − κ21Þ
�
Δϕ
MPl

�
2

ð12Þ

to quadratic order in Δϕ=MPl.

We consider classical evolution of the scalar field in the
expanding Universe, assuming it to be approximately
homogeneous over scales of interest, in which case

ϕ̈þ 3H _ϕ ¼ −
∂V
∂ϕ

; ð13Þ

and the energy density of the field is given by

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ: ð14Þ

While one could consider a variety of models for the scalar
field potential VðϕÞ, here we focus only on the simplest
case of a free, massive field, with VðϕÞ ¼ m2ϕ2=2. We
assume that self-interactions or quantum corrections to
VðϕÞ do not generate terms large compared to the mass
term; this requires an extremely small upper bound on the
quartic self-coupling of the field, as is the case with
axionlike fields. We make no attempt here to embed ϕ
into a fundamental theory.
With these assumptions, the scalar equation of motion

becomes

ϕ̈þ 3H _ϕþmϕ2 ¼ 0: ð15Þ

We now consider various phases in and constraints upon
the evolution of ϕ, subject to the constraint that it imple-
ments the scaling solution for λ0 before and during photon
decoupling.
We focus on the simple model of α evolution discussed

in Sec. II, in which δα ¼ −2.7 × 10−3 is a nonzero constant
prior to the time of photon decoupling and subsequently
relaxes to zero. From Eq. (12), this implies Δϕ ¼ constant
until at least zdec ¼ 1100; the scalar field must be frozen
until the time that photon decoupling is nearly completed.
From Eq. (15), at early times, when the expansion rate
H ≫ m, the solution is indeed ϕ ¼ constant. The field
begins to evolve when H ≃ 2m=3, which gives an approxi-
mate upper bound on the scalar mass

m <
3

2
HðTdecÞ ≃

3

2
H0Ω0.5

m ð1þ zdecÞ3=2 ≃ 4 × 10−29 eV:

ð16Þ

From Eq. (16), the field starts to evolve at redshift zc
given by

1þ zc ≃ 1100

�
m

4 × 10−29 eV

�
2=3

: ð17Þ

At redshifts z < zc, the field undergoes damped oscillations
around ϕ ¼ 0, and its oscillation-average energy density
redshifts like nonrelativistic matter,

MIRROR DARK SECTOR SOLUTION OF THE HUBBLE TENSION … PHYS. REV. D 107, 043529 (2023)

043529-5



ρϕðz < zcÞ ≃
1

2
m2ϕ2

i

�
1þ z
1þ zc

�
3

¼ 0.005

�
ϕi

MPl

�
2
�
1þ z
1100

�
3

eV4; ð18Þ

where ϕi ≃ ϕðtcÞ is the initial field amplitude.
An important constraint is that the energy density of ϕ

must be at all times subdominant compared to that of other
species that contribute significantly to the energy density of
the Universe: in this model, ϕ is not the dark energy
component. Its energy density relative to matter reaches a
maximum at zc (and is constant thereafter), at which point
ρϕðzcÞ ≃ ρðϕiÞ ¼ m2ϕ2

i =2. Since the matter density at that
time is given by ρm ¼ Ωmρcritð1þ zcÞ3, using Eq. (17)
gives

ρϕðzcÞ
ρmðzcÞ

≃ 0.3

�
ϕi

MPl

�
2

; ð19Þ

independent of m or zc. Thus, the energy density in the
scalar field remains subdominant compared to matter
provided that the field excursion is sufficiently sub-
Planckian. For example, requiring that the energy density
in the scalar field be smaller than that in the mirror dark
sector implies jϕij=MPl < 0.5, a relatively mild constraint.
The scalar field oscillation-average amplitude decays as

ϕðzÞ ≃ ϕi

�
1þ z
1þ zc

�
3=2

: ð20Þ

Thus, from Eq. (12), assuming ϕ0 ≪ ϕi, we have the initial
condition

2.7 × 10−3 ≃ κ1
ϕi

MPl
þ ðκ2 − κ21Þ

�
ϕi

MPl

�
2

; ð21Þ

and at later times, z < zc, the fractional deviation of α from
its present value is given by

δαðzÞ ¼ κ1
ϕi

MPl

�
1þ z
1þ zc

�
3=2

þ ðκ2 − κ21Þ
�

ϕi

MPl

�
2
�
1þ z
1þ zc

�
3

: ð22Þ

We consider two qualitatively different parameter
regimes for the scalar coupling to electromagnetism: 1)
κ1 ≫ κ2ðϕi=MPlÞ, i.e., the term linear in ϕ dominates in
Eq. (22) for all times, and 2) κ1 ≪ κ2ðϕi=MPlÞð1þ zcÞ−3=2,
in which case the quadratic term always dominates. For
case 1, from Eq. (21), κ1ðϕi=MPlÞ ¼ 2.7 × 10−3, which
from the field excursion limit above implies the lower
bound jκ1j > 5.4 × 10−3. For case 2, we instead have
κ2ðϕi=MPlÞ2 ¼ 2.7 × 10−3, with the lower bound κ2 >
0.01 from Eq. (19).

B. Scalar field constraints from observational bounds
on time variation of α

Observations at late times impose strict bounds on Δα=α
at low redshift. We separately consider bounds on cases 1
and 2 as defined above, i.e., for linear and quadratic scalar
coupling to electromagnetism.

1. Case 1: Linear coupling κ1
Observational constraints can be couched in terms of an

upper bound on the fractional deviation in α at redshift zx,
which we denote by δmax

α ðzxÞ. In the case that the linear κ1
term dominates, then from Eqs. (20) and (22), a late-time
constraint at redshift zx translates to

1þ zc >

����� δαðzdecÞδmax
α ðzxÞ

����
�

2=3
ð1þ zxÞ; ð23Þ

where from Sec. II we have δαðzdecÞ ¼ −2.7 × 10−3. For
example, consistency with quasi-stellar object (QSO)
spectra yields δmax

α ≃ 10−5 at redshift zx ≃ 4 [32]. From
Eq. (23), this implies zc > 250; from Eq. (17), this yields a
lower bound on the scalar field mass,

m > 4 × 10−30 eV ðQSOÞ: ð24Þ

Similarly, the meteorite bound, δmax
α ðz ¼ 0.45Þ ¼ 3 × 10−7

[30], implies 1þ zc > 627 or

m > 1.7 × 10−29 eV ðmeteoriteÞ: ð25Þ

Finally, the bound from element ratios in the Oklo natural
reactor, δmax

α ¼ 10−7 at z ¼ 0.14, gives 1þ zc > 1025 and

m > 3.6 × 10−29 eV ðOkloÞ: ð26Þ

From Eqs. (16)–(26), we see that the scalar field mass is
constrained to the narrow range m ¼ ð3.6–4Þ × 10−29 eV,
and the redshift zc when the field begins to oscillate is
constrained to 1025 < 1þ zc < 1100, with the tightest
late-time constraints coming from the Oklo natural reactor.

2. Case 2: Quadratic coupling κ2
The scalar mass constraints derived above assume that

the linear κ1 term dominates in Eq. (11). If an approximate
symmetry forbids the linear term or makes it subdominant,
then the quadratic term drives a more rapid transition in α
for given scalar field evolution ϕðtÞ and yields conse-
quently weaker constraints on m and zc from observational
bounds on α variation. Considering only the quadratic term
in Eq. (11), the late-time constraints become

1þ zc >

����� δαðzdecÞδmax
α ðzxÞ

����
�

1=3
ð1þ zxÞ; ð27Þ
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for constraints at z ¼ zx. The corresponding zc and m
constraints become zc > 32 and m > 2 × 10−31 eV
(QSOs), zc > 30 and m > 1.8 × 10−31 eV (meteorites),
zc > 34 and m > 2.2 × 10−31 eV (Oklo). In this case, all
three constraints provide comparable bounds on the scalar
mass, which has an allowed range of approximately 2
orders of magnitude.

3. Constraints on VðϕÞ
Finally, we note that other choices for the form of the

scalar field potential, VðϕÞ, lead to different evolutionary
behaviors once H < m, which would change the con-
straints above. For example, for a monomial potential of the
form VðϕÞ ∝ ϕ2n, the oscillation-average equation of state
parameter for the field is given by ωϕ ≃ ðn − 1Þ=ðnþ 1Þ,
and the average energy density of the oscillating field
redshifts as ρϕ ∝ a−3ð1þωϕÞ [52], which is faster than that of
nonrelativistic matter for n > 1, but the field amplitude
redshifts as ϕ ¼ ϕi½ð1þ zÞ=ð1þ zcÞ�3=ðnþ1Þ, which is
slower than for the n ¼ 1 case discussed above. Given
the very narrow range of allowed scalar mass in the n ¼ 1
case above for linear coupling to electromagnetism, values
of n > 1 appear to be excluded by the late-time constraints
on Δα unless the electromagnetic coupling is quadratic or
higher.

C. Constraints from equivalence principle tests

Following earlier work of Dicke, Beckenstein [26] noted
that, if the electromagnetic coupling involves a dynamical
field that can vary in space as well as time, then it can lead
to composition-dependent inertial forces that violate the
very precise tests of the equivalence principle. Olive and
Pospelov [28] used this to derive constraints on the linear
and quadratic coupling terms in Eq. (11). Specifically, they
derived an upper bound that corresponds to jκ1j < 10−3

from differential acceleration of the Earth and the Moon
toward the Sun. This is in conflict with the lower bound of
κ1 > 5.4 × 10−3 derived from the scaling solution to the
Hubble tension and the energy density of the scalar field.
Moreover, for values of ϕi ≪ MPl, this lower bound on κ1
is correspondingly larger. As a consequence, the linear
coupling model appears to be disfavored, at least in the
context of a single massive, free scalar field.
For case 2, Olive and Pospelov [28] find that the

differential acceleration is approximately (translated to
our notation)

Δg
g

≃ 8 × 10−6κ22

�
ϕ0

MPl

�
2

f; ð28Þ

where f is an order unity function that depends on the
composition difference between two test masses in a
gravitational field. The MICROSCOPE Collaboration
recently obtained a stringent constraint on the differential

acceleration of titanium and platinum in orbit around the
Earth, Δg=g < 10−15, over an order of magnitude stronger
than previous constraints [53]. Imposing this bound and
using Eq. (20), we find the constraint

1þ zc > 2000f1=3
�
κ2

ϕi

MPl

�
2=3

≃ 278ðκ2fÞ1=3; ð29Þ

where the second equality comes from the initial condition
for δα. Since the energy density bound is κ2 > 0.01, and to
reasonable approximationwe can take f1=3 ≃ 1, this provides
the constraint zc > 60 in this model. This lower bound on zc,
which corresponds to a scalar mass boundm>5×10−31 eV,
is stronger than the bounds from α variation at late times for
this case [zc > 34 fromEq. (27)].However, even ifwewere to
require ϕi ≪ MPl and thus larger values of κ2 for the Hubble
tension solution, this bound does not close off a very large
portion of the parameter space, since the scaling of the lower
bound on zc with κ2 is weak.

IV. CONCLUSION

We have developed a variant of the mirror world dark
sector model proposed in Ref. [15] to resolve the Hubble
tension between CMB and large-scale structure measure-
ments in the context of ΛCDM and local measurements
of the expansion rate. We replace the ad hoc adjustment
of the primordial helium abundance in Ref. [15], which
disagrees with both observation and the self-consistent
prediction of big bang nucleosynthesis, with a dynamical
model for evolution of the electromagnetic fine-structure
constant, α, prior to photon decoupling. The scaling
symmetry exploited in Ref. [15] to resolve the Hubble
tension is approximately realized if the value of α prior
to photon decoupling is lower than its current value by
Δα ¼ −2 × 10−5. This shift boosts the photon inverse
mean free path primarily by reducing the binding energy
of atomic hydrogen at early times by 0.07 eV, which
increases the free electron number density ne at fixed
temperature. The requisite change in α is smaller than one
might naively expect, due to the strong sensitivity of the
free electron density to the H binding energy.
We then considered a simple scalar field model with

phenomenological coupling to electromagnetism as a toy
model that instantiates α evolution after photon decoupling
via classical relaxation of the field. For the case of linear
field coupling, consistency with stringent late-time con-
straints on variation of α from its current value constrains
the mass of the field to the relatively narrow range
m ¼ ð3.6 − 4Þ × 10−29 eV, corresponding to a critical red-
shift range zc ¼ 1025–1100. However, in this case, equiv-
alence principle tests place an upper bound on the value of
the linear coupling constant κ1 < 10−3 that conflicts with
the lower bound required by the Hubble tension solution
and the scalar field energy density, κ1 > 5.4 × 10−3, so this
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version of the model appears to be disfavored. For
quadratic coupling of the field to electromagnetism, late-
time α variation constraints bound the scalar field mass
to the range 2.6 × 10−31 eV < m ¼ 4 × 10−29 eV, which
implies that the field and α begin relaxing toward their
current values in the redshift range 37 < zc ∼ 1100. In this
case, the recent equivalence principle limit, in combination
with the requirement that the scalar field energy density be
subdominant compared to that of the dark sector, provides
a stronger constraint, 5 × 10−31 eV < m ¼ 4 × 10−29 eV
and 60 < zc ∼ 1100.
A feature of this model, as in that of Ref. [15], is that the

physical origin of the λ0 shift in the photon scattering rate
(dynamical evolution of α) is completely different from that
of the λ shift in density and thusH0 (the mirror dark sector),

so there is no symmetry or physical mechanism that drives
the requirement λ0 ¼ λ. One hopes that a more compelling
version of the model could be found that provides a
rationale for this coincidence.
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