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We study the formation of primordial black holes and the generation of gravitational waves in a class of
cosmological models that are direct supersymmetric analogs of the observationally favored nonminimally
coupled Higgs inflation model. It is known that this type of model naturally includes multiple scalar fields
which may be regarded as the inflaton. For the sake of simplicity we focus on the case where the inflaton
field space is two dimensional. We analyze the multifield dynamics and find the region of parameters that
gives copious production of primordial black holes that may comprise a significant part of the present dark
matter abundance. We also compute the spectrum of the gravitational waves and discuss their detectability
by means of future ground-based and space-borne gravitational wave observatories.
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I. INTRODUCTION

In the radiation dominant era of the early Universe, the
horizon mass in a Hubble volume may collapse to form a
black hole if the density contrast is large enough. Such
primordial black holes (PBHs) can exist in a much wider
mass spectrum than the black holes resulting from the
standard stellar evolution, and are a subject of active
investigation since they were first postulated in the
1960s [1–4]. After the direct detection of gravitational
waves by the LIGO and Virgo collaborations [5–7], PBHs
received renewed interest as several groups suggested that
the source of the detected gravitational waves could be
binary black holes of primordial origin; see, e.g., [8–13] for
a review. PBHs interact only through gravitation and are an
excellent candidate of dark matter. The abundance of PBHs
is constrained by observation, e.g., microlensing, as well as
by theoretical consistency, e.g., successful big bang nucleo-
synthesis. While it is now well known that the PBHs of
LIGO-Virgo event mass scale ∼30M⊙ cannot account for
the total dark matter abundance of the present Universe
(see, e.g., [14]), there remains a mass window [11,15] at the
asteroid scale 3.5 × 10−17–4 × 10−12M⊙in which the whole

or a significant part of today’s dark matter abundance may
be attributed to PBHs.
Production of PBHs requires a large density contrast,

much larger than that at the horizon exit scale of the cosmic
microwave background (CMB). An important recent theo-
retical development is that if such large density contrast is
present, gravitational waves are generated at the second
order in perturbation theory [16–19], which may be large
enough to be detected by future gravitational wave observa-
tories; see, e.g., [10,20–24] for a review. If such gravita-
tional waves are to be detected in the future, that would
certainly mark a new era of cosmology, but even the null
result would also give important constraints on the physics
of the early Universe.
The power spectrum of the density perturbation needed

for the production of PBHs is estimated to be seven orders
of magnitude larger than that at the CMB scale, and thus it is
a major theoretical challenge to build a model that naturally
realizes the necessary enhancement of the power spectrum
at small scales. Single field inflation with an inflection point
is known to have the desired feature, and thus far many
models for enhancement of the scalar power spectrum have
been proposed; in some models, the enhancement is strong
enough and abundant PBHs are produced, so that the PBHs
may be considered as the dark matter of the Universe. One
example is the single field model involving nonminimal
Gauss-Bonnet coupling [25], in which the inflection-point
like structure is maintained by the balance between the
potential term and the Gauss-Bonnet coupling term [26].
High energy theories like string theory and supergravity

naturally involve multiple scalar fields, and thus it seems
fruitful to investigate possible production mechanisms of
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PBHs using the rich structure of the multifield dynamics.
Such studies, in turn, will be able to constrain the UV
physics if PBHs are to be found in the future within
predicted mass ranges. There are many studies on PBHs
and/or the associated gravitational waves in multifield
inflation models, including [27–54]. Of these, the hybrid
inflation type models are of particular interest, since many
phenomenological models of particle physics indeed have
such structure. A well-known drawback of the hybrid
inflation model is that its original version predicts an
observationally disfavored blue scalar spectrum ns ≳ 1,
and viable scenarios of hybrid inflation typically involve
some correction terms, rendering the scenarios less
predictive.
Below, we discuss production of PBHs and generation

of gravitational waves in a supergravity-based scenario of
cosmic inflation that seems to have eluded attention, but
still has interesting features. The model involves multiple
fields, but in one limit it approaches a single field model in
which the effective potential becomes identical to that of
the nonminimally coupled Higgs inflation model [55,56],
which predicts observationally favored scalar spectral index
ns ∼ 0.97 and small tensor-to-scalar ratio r ≪ 1. Adjusting
the parameters originating from the Kähler potential, the
model resembles the hybrid inflation model; nevertheless
the CMB spectrum still remains observationally favored.
Like in other known scenarios of inflationary cosmology
that generate PBHs, some degree of fine tuning is necessary
in our model, and we show that sufficient enhancement of
the scalar power is achieved by tuning some noncanonical
(higher order) terms in the Kähler potential. We show this
by carrying out detailed numerical study on two sets of
benchmark parameter values.
We start in the next section with the description of the

inflationary model. In Sec. III we show the dynamics of
inflation, and in Sec. IV we comment on the behavior of the
curvature power spectrum. Section V shows our analysis of
the PBH production and the gravitational wave spectrum.
We conclude in Sec. VI with brief comments.

II. NONMINIMALLY COUPLED
SUPERGRAVITY INFLATION

Let us start with the supergravity Lagrangian

L ⊃
Z

d4θϕ†ϕK þ
�Z

d2θϕ3W þ H:c:

�
; ð1Þ

where ϕ is the conformal compensator, W is the super-
potential, and K is the Kähler potential in the super-
conformal framework. For our model it is essential that
the superpotential includes a term

W ⊃ ySX̄X; ð2Þ

where ðX; X̄Þ are a vectorlike pair of superfields and S is a
singlet or an adjoint superfield under some gauge sym-
metry. While this structure is absent in the Minimal
Supersymmetric Standard Model (MSSM), it is commonly
found in supergravity embedding of particle theories
beyond the Standard Model [57–72]. We allow the
Kähler potential in the superconformal framework1 to be
slightly noncanonical, K ¼ −3M2

PΦ with 71

Φ ¼ 1 −
1

3M2
P
ðjSj2 þ jX̄j2 þ jXj2Þ þ γ

2M2
P
ðX̄X þ H:c:Þ

þ
ffiffiffi
2

p
κ3

3M3
P
ðS2S� þ H:c:Þ þ κ4

3M4
P
jSj4 þ κ6

3M6
P

jSj6: ð3Þ

The third term proportional to γ gives rise to the non-
minimal coupling, and the real constants κ3, κ4, and κ6
represent the parameter freedom of the model that are
adjustable as long as they are not ridiculously large.
Let us parametrize the flat direction h and the singlet

direction s along the scalar components of the multiplets

X ¼ h
2
; X̄ ¼ h

2
; S ¼ sffiffiffi

2
p : ð4Þ

In many examples of concrete inflationary models, the
inflaton trajectories are known to be stable along the real
directions of s and h, and we thus restrict s and h to take
real values below. Then the superpotential and the Kähler
potential read, setting MP ¼ 1 henceforth,

W ¼ y

4
ffiffiffi
2

p sh2; ð5Þ

Φ ¼ 1 −
1

6
s2 þ ξh2 þ κ3

3
s3 þ κ4

12
s4 þ κ6

24
s6; ð6Þ

where

ξ ¼ γ

4
−
1

6
: ð7Þ

Of course, other terms, such as the ones in the MSSM, may
be present in the theory but these will be neglected below,
with assumption that the initial vacuum expectation values
of the scalar components of the multiplets other than s and
h are sufficiently small.
The Lagrangian in the Einstein frame is obtained by the

Weyl transformation of the metric. It reads

LE ¼ ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
Gabgμν∂μφa

∂νφ
b − VE

�
; ð8Þ

1The Kähler potential in the Einstein frame isK ¼ −3M2
P lnΦ.

We choose the mass scale of the supergravity to be the reduced
Planck scale MP ¼ 2.44 × 1018 GeV.
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where φa ¼ ðh; sÞ and the components of the field space
metric are

Ghh ¼
6ξ2h2 þΦ

Φ2
; ð9Þ

Ghs ¼ −
ξhs
Φ2

�
1 − 3κ3s − κ4s2 −

3

4
κ6s4

�
; ð10Þ

Gss ¼
1

Φ2

�
4s4ð2κ23 þ κ4Þ þ κ6s6ð8 − 8κ3s − κ4s2Þ

48

þ ð1þ ξh2Þ
�
1 − 4κ3s − 2κ4s2 −

9

4
κ6s4

��
: ð11Þ

The two dimensional field space ðs; hÞ is curved. The scalar
potential in the Einstein frame is

VE ¼ VJ

Φ2
; ð12Þ

where

VJ ¼
y2h2s2

4
þ y2h4

4dðsÞ þ
y2h4s2½3

2
γ − fðsÞ�2

24 − 6γh2 þ 9γ2h2 þ gðsÞ ; ð13Þ

with

dðsÞ ¼ 4ð1 − 4κ3s − 2κ4s2Þ − 9κ6s4; ð14Þ

gðsÞ¼8ð2κ23þκ4Þs4þ16κ6s6−16κ3κ6s7−2κ4κ6s8

dðsÞ ; ð15Þ

fðsÞ ¼ 2ðκ3 þ κ4sÞsþ 3κ6s4

dðsÞ : ð16Þ

Formalisms for multifield inflation have been developed
by many authors, including [73–80]. Here we simply list a
few key equations; see, e.g., Appendix A of [61] for more
explanation. The background evolution is described by the
equations of motion for the multifields,

D _φa

dt
þ 3H _φa þGab∇bVðφcÞ ¼ 0; ð17Þ

together with the Friedmann equation

3H2 ¼ 1

2
Gab _φ

a _φb þ VðφcÞ: ð18Þ

The overdot is the derivative with respect to the cosmic
time, D stands for covariantized time derivative, and ∇
stands for the covariantized field space derivative.
On a given background, the dynamics of the perturba-

tions is found by solving the equations

Q̈σ þ 3H _Qσ þ
�
k2

a2
þMσσ − ω2 −

1

a3
d
dt

�
a3 _σ2

H

��
Qσ

¼ 2
d
dt

ðωQsÞ − 2

�
V;σ

_σ
þ

_H
H

�
ωQs; ð19Þ

Q̈s þ 3H _Qs þ
�
k2

a2
þMss þ 3ω2

�
Qs

¼ 4
ω

_σ

_H
H

�
d
dt

�
H
_σ
Qσ

�
−
2H
_σ
ωQs

�
; ð20Þ

whereQσ andQs are respectively the adiabatic and entropic
perturbations, and

_σ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gab _φ

a _φb
q

; ð21Þ

σ̂a ≡ _φa

_σ
; ð22Þ

ωa ≡ dσ̂a

dt
þ Γa

bc _φ
bσ̂c; ð23Þ

ŝa ≡ ωa

jωaj ; ð24Þ

Mσσ ≡ σ̂aσ̂
bMa

b; ð25Þ

Mss ≡ ŝaŝbMa
b; ð26Þ

Ma
b ≡Gac∇b∇cV −Ra

cdb _φ
c _φd; ð27Þ

V;σ ≡ σ̂a∇aV: ð28Þ

Here Ra
cdb is the field space Riemann tensor. The

curvature and isocurvature perturbations are then defined
as follows:

R ¼ H
_σ
Qσ; S ¼ H

_σ
Qs: ð29Þ

III. INFLATON TRAJECTORIES

We focus on the “cubic Kähler potential model” where κ6
is set to be zero and the “sextic Kähler potential model”
where κ3 ¼ 0. Furthermore we assume that the inflationary
trajectory starts in the large-h limit with a small s-field value.
In other words we study effects of the s field on the
otherwise standard single field nonminimal inflation model.2

For both cubic and sextic cases we initially have eight
free parameters; four potential parameters ðκ3 or κ6; κ4; ξ; y),
two initial field values ðhini; siniÞ, and two initial velocities

2Taking s ¼ 0, we recover the standard nonminimally coupled
Higgs inflation which is known to give observationally favored
prediction of the CMB spectrum.
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ð _hini; _siniÞ. For the initial velocities, we use the slow roll
background equations of motion which is a good approxi-
mation in the large-h limit. The parameter y enters in the
potential as an overall factor. We thus use y to match the
magnitude of the curvature power spectrum at the pivot
scale, namely Pζðk�Þ ≈ 2 × 10−9. The current observational
bound on the isocurvature perturbations is safely satisfied in
our model. Finally, the initial s-field value is chosen to be at
the potential minimum at h ¼ hini, and hini is set to be 0.12
which is enough to achieve 60e-folds. We are thus left with
three parameters (κ3 or κ6; κ4; ξ). For simplicity, we assume
that after inflation the Universe undergoes immediate
transition to radiation domination.3

A. Cubic case

To ensure the stability of the scalar potential the quartic
term needs to be positive, i.e., κ4 > 0. Typical shapes of the
Einstein frame potential (12) are shown in Fig. 1. One may
see that, as the κ4 parameter becomes smaller, two addi-
tional minima at s ≠ 0 start to appear in the potential, as
was pointed out in [58]. Turning on κ3 makes the scalar
potential tilted to one side in the s-field direction, intro-
ducing an asymmetry. Choosing an appropriate value for
κ3, we may adjust the inflaton trajectory in such a way that

it passes the saddle point between the true vacuum at s ¼ 0
and the false vacuum4 at s ≠ 0.
We show three examples of the inflaton trajectory for

different values of κ3 in Fig. 2, fixing κ4 ¼ 0.01 and
ξ ¼ 104. When κ3 ¼ 0, we obtain a straight trajectory,
while for a negatively large value of κ3, the trajectory falls
into a false vacuum at s ≠ 0.5 With an appropriate κ3 value,
the inflaton trajectory crosses the saddle point between the
false vacuum and the true vacuum at s ¼ 0 as shown in the
middle in Fig. 2. When the trajectory crosses the saddle
point, the first Hubble slow roll parameter ϵ1 ≡ − _H=H2

gets suppressed as shown in Fig. 3, indicating the ultraslow
roll regime. It hints at the possibility of curvature pertur-
bation enhancement and thus PBH formations.
From the perturbation equation for the entropic pertur-

bation (20), the effective entropic mass squared is defined
as μ2s ≡Mss þ 3ω2. As the inflaton trajectory crosses the
saddle point μ2s becomes negative as shown in Fig. 4. In
other words the entropic perturbation briefly enters the
tachyonic regime, sourcing the growth of the perturbation.
The growth of the entropic perturbation in turn may source
the curvature perturbation. This is a unique feature of
multifield inflation.

B. Sextic case

In the sextic case, κ6 > 0 is required for the stability of the
scalar potential. Figure 5 shows typical Einstein frame
potential shapes. Note that, unlike the cubic case, s ¼ 0 is
not a stable point at h ¼ hini. Similar to the cubic case, when

FIG. 1. Typical shapes of the Einstein frame potential VE for the cubic case ðκ6 ¼ 0Þ. From left to right we have set
fκ3; κ4g ¼ f0; 0.01g, f0; 0.06g, and f−0.01; 0.01g, with ξ ¼ 104. For smaller values of κ4 the potential develops two extra minima
at s ≠ 0. The κ3 parameter introduces an asymmetry and tilts the scalar potential in the s-field direction.

3The effects of the delay of thermalization due to noninstanta-
neous reheating would only change the number of e-folds from
our choice of 60. Deviation of the e-folding number would
slightly change the value of the y parameter and hence the
spectral index ns and the tensor-to-scalar ratio r. However, for the
class of inflationary models we consider, the change is known to
be small and safely within current observational bounds of the
latest Planck [81] and BICEP/Keck [82] observations. In single-
field models, this is discussed for example in Ref. [72].

4Although somewhat misnamed, we refer to the minimum at
s ¼ 0 as the “true vacuum” and the minimum at s ≠ 0 as the
“false vacuum,” regardless of the potential values at these points.

5For positively large values of κ3, the potential becomes tilted
in the opposite direction, and thus the trajectory falls into a false
vacuum at s < 0. We do not consider this case.
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κ4 ¼ 0, smaller values of κ6 introduce false vacua at s ≠ 0.
The role of the κ4 parameter is twofold. One is to shift the
potential minimum in the large-h limit toward a larger s-field
value. The other is to create or deepen false vacua at s ≠ 0.
We present four samples of the inflaton trajectory for

different values of κ4 in Fig. 6 with κ6 ¼ 0.5 and ξ ¼ 104.
One can clearly see the effect of κ4; once κ4 takes a
negatively large value, the inflaton trajectory gets trapped
in the false vacuum. Adjusting the value of κ4, we may
balance the heights of the false vacuum and the true vacuum.
In this case the inflaton undergoes an ultraslow roll regime.
This case demonstrated in Fig. 7 which shows the first
Hubble slow roll parameter ϵ1. Similar to the cubic case we
observe the suppression of ϵ1 near the ultraslow roll regime
which may lead to the enhancement of the curvature
perturbation. Moreover the tachyonic behavior is also seen
in the sextic case although the degree is less significant
compared to the cubic case. Thus the sextic case as well has
the possibility of PBH formations.

IV. CURVATURE POWER SPECTRUM

The suppression of the slow roll parameter ϵ1 suggests the
possibility of curvature perturbation enhancement. In this
section we demonstrate that this is indeed the case. To
compute the curvature power spectrum PζðkÞ we adopt
the transport method6 [83,84,89–95], which, with the
assumption of instantaneous reheating and small isocurvature
mode, evolves the system from deep inside the horizon7 until
the end of inflation specified by the condition ϵ1 ¼ 1.

�3 �2 �1 0 1 2 3
0.00

0.05

0.10

0.15

s

h

κ4=0.01, κ3=0

�3 �2 �1 0 1 2 3
0.00

0.05

0.10

0.15

s

h

κ4=0.01, κ3 0.00064

�3 �2 �1 0 1 2 3
0.00

0.05

0.10

0.15

s

h

κ4=0.01, κ3=– =–0.005

FIG. 2. Examples of the inflaton trajectory for the cubic case ðκ6 ¼ 0Þ. From left to right κ3 ¼ 0, −0.00064, and −0.005, with
κ4 ¼ 0.01 and ξ ¼ 104. The initial condition for the h field is set to be 0.12. The initial s-field value is chosen to be at the potential
minimum at h ¼ 0.12. The initial field velocities are fixed by using the slow roll background equations of motion. As κ3 introduces a tilt
in the scalar potential along the s-field direction, the inflaton trajectory deviates from a straight line. For a large negative κ3 value, the
trajectory falls into a false vacuum. With an appropriate value of κ3, the inflaton trajectory may cross the saddle point between the false
vacuum at s ≠ 0 and the true vacuum at s ¼ 0 as shown in the middle.

FIG. 3. First Hubble slow roll parameter for κ3 ¼ −0.00064
and κ4 ¼ 0.01. As the inflaton trajectory crosses the saddle point
ϵ1 gets suppressed, entering the ultraslow roll regime.

FIG. 4. Effective entropic mass squared for κ3 ¼ −0.00064 and
κ4 ¼ 0.01. As the inflaton trajectory crosses the saddle point the
entropic mass squared becomes negative, i.e., tachyonic.

6Packages implementing the transport method are publicly
available, including mTransport [83], CppTransport [84,85], PyTran-
sport [84,86,87], and Inflation.jl [88].

7We have chosen 8e-foldings before the horizon exit and
checked convergence for larger values.
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In Fig. 8 the curvature power spectrum, normalized by
its value at the pivot scale, is shown as a function of the
wave number for different values of κ3 and κ4 for the cubic
case. For all the cases we have set ξ ¼ 104. We can see
that, for a fixed value of κ4, the κ3 parameter controls the
magnitude as well as the peak position of the enhancement.
For a fixed value of the curvature power spectrum, say
PζðkÞ=Pζðk�Þ ¼ 106, the κ4 parameter controls the posi-
tion of the peak; the peak position moves toward a smaller
wave number as κ4 increases.
Figure 9 shows the curvature power spectrum, normal-

ized by its value at the pivot scale as a function of the wave
number for different values of κ4 and κ6 for the sextic case.
We have again set ξ ¼ 104. Similar to the cubic case, the
peak position and the magnitude of the enhancement
are controlled by the κ4 parameter for a fixed value of
κ6. On the other words, the κ6 parameter is the key
controller of the peak position for a fixed value of the
curvature power spectrum; in this case, unlike the cubic

FIG. 6. Examples of the inflaton trajectory for the sextic case ðκ3 ¼ 0Þ. From left to right κ4 ¼ 0, −0.5, −0.96, and −1, with κ6 ¼ 0.5
and ξ ¼ 104. The initial condition for the h field is set to be 0.12. The initial s-field value is chosen to be at the potential minimum at
h ¼ 0.12. The initial field velocities are fixed by using the slow roll background equations of motion. Note that, unlike the cubic case,
s ¼ 0 is no longer a stable position at hini. As κ4 negatively increases, the false vacuum at s ≠ 0 becomes deeper than the true vacuum at
s ¼ 0; for example, we see that the inflaton trajectory gets trapped at the false vacuum when κ4 ¼ −1. With an appropriate κ4 value, one
may balance between the false vacuum and the true vacuum, generating an ultraslow roll regime.

FIG. 7. Typical shapes of the Einstein frame potential VE for the
sextic case (κ3 ¼ 0). From left to right we have set fκ4; κ6g ¼
f0; 0.0005g, f0; 0.1g, and f−0.5; 0.1g, with ξ ¼ 104.

FIG. 5. First Hubble slow roll parameter for κ6 ¼ 0.5 and κ4 ¼ −0.96. The suppression of ϵ1 indicates the curvature power spectrum
enhancement and thus PBH formations.
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case, the peak position moves toward a larger wave
number as κ6 increases.

V. PREDICTION OF THE MODEL AND FUTURE
DETECTABILITY

As a consequence of the curvature perturbation enhance-
ment, PBHs may form through the gravitational collapse at

the horizon reentry and constitute a large part of the today’s
dark matter relic density. Another consequence is the
generation of scalar-sourced stochastic gravitational waves
at the nonlinear order. In this section we discuss the
prediction of the model on the formation of PBHs and
the generation of the gravitational waves. Aligning with the
assumption of instantaneous reheating, we consider that the

FIG. 8. Curvature power spectrum for the cubic case. For a fixed value of κ4, the peak position and the magnitude of the enhancement
are controlled by the κ3 parameter. For a fixed value of the curvature power spectrum, the peak position is controlled by the κ4 parameter.
As κ4 increases, the peak position moves toward a lower wave number.

FIG. 9. Curvature power spectrum for the sextic case. For a fixed value of κ6, the peak position and the magnitude of the enhancement
are controlled by the κ4 parameter. For a fixed value of the curvature power spectrum, the peak position is controlled by the κ6 parameter.
As κ6 increases, the peak position moves toward a higher wave number.
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PBH formation and the generation of the gravitational
waves happen during the radiation-dominated era.8

A. Primordial black holes

The produced PBHs have the mass of

M ¼ γMH;0Ω
1=2
rad;0

�
g�;0
g�;f

�
1=6

�
k0
kf

�
2

; ð30Þ

at the formation time, where MH;0 ¼ 4π=H is the horizon
mass,Ωrad is the radiation energy density parameter, g� is the
effective degrees of freedom, the subscript f (0) denotes
the formation time (today), and the factor γ describes the
fraction of the horizon mass that turns into the PBHs.
Following simple analytical estimations [96] we use
γ ¼ 0.2.
The energy density of the PBHs today can be obtained

by redshifting that at the formation time, namely
ρPBH;0 ¼ ρPBH;fðaf=a0Þ3 ≈ γβρrad;fðaf=a0Þ3, since the
PBHs behave as matter. Here β denotes the probability
of the density fluctuation δ > δc, which is given by

β ¼
Z
δc

dδ
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

δ2

2σ2

�
; ð31Þ

where δc ¼ 1=3 [96] is a threshold value and σ2 is the
variance [97,98]

σ2 ¼ 16

81

Z
∞

0

dq
q

�
q
k

�
4

W2

�
q
k

�
PζðqÞ: ð32Þ

Note that we have assumed a Gaussian density fluctuation,
neglecting possible effects of non-Gaussianities [99–120],
and we take the Gaussian function for the window
function Wðq=kÞ ¼ expð−ðq=kÞ2=2Þ.
The total abundance is ΩPBH;tot ¼

R
d lnMΩPBH, with

ΩPBH expressed in terms of fPBH which is given by

fPBH ≡ ΩPBH;0

ΩCDM;0

≈
�

β

3.27 × 10−8

��
γ

0.2

�3
2

�
106.75
g�;f

�1
4

×

�
0.12

ΩCDM;0h2

��
M
M⊙

�
−1
2

; ð33Þ

where ΩCDM;0 is the today’s density parameter of the cold
dark matter, h is the rescaled Hubble rate today, and M⊙ is
the solar mass.
In Fig. 10 we present two benchmark points for the PBH

spectrum for the cubic and sextic cases. For the cubic case
κ4 ¼ 0.0163 is chosen and κ3 is tuned to match ftotPBH to be
unity. For the sextic model we chose κ6 ¼ 0.2, and κ4 is
tuned so that ftotPBH becomes unity. Thus both the cubic and
sextic models may produce enough PBHs to constitute all
of the current dark matter abundance.
Figure 11 shows the dependence on the parameters κ4

and κ3 for the cubic model case (the left panel) and on the
parameters κ6 and κ4 for the sextic model case (the right
panel). With these parameters the peak frequency of the
enhanced perturbations shifts, and thus the resulting PBH
mass spectrum also changes. The observationally viable
parameters are then constrained by the evaporation bounds
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FIG. 10. The spectrum of the produced PBHs. The left panel shows the case for the cubic model, where κ4 ¼ 0.0163 is chosen, and κ3
is tuned to match ftotPBH ≈ 1. The right panel is the sextic model, where κ6 ¼ 0.2 is chosen, and κ4 is tuned to match ftotPBH ≈ 1. We
consulted [12,121] for the constraints data. See also Refs. [122–124] for additional constraints such as those coming from gamma-ray
observations and the global 21 cm signal, and Ref. [125] for forecasted constraints from future gamma-ray telescopes.

8The effects of noninstantaneous reheating, which are model-
dependent, can be absorbed by a slight shift in the number of
e-folds and do not alter the conclusion of our paper; see also
footnote 3. Note further that the relative scale between the CMB
and the mode corresponding to PBHs and gravitation waves are
insensitive to the reheating process.
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and the microlensing bounds, see Fig. 10. We have found
0.01624≲ κ4 ≲ 0.01670 for the cubic model and 0.1435≲
κ6 ≲ 0.2466 for the sextic model. In both panels, the
dashed line indicates the model parameters yielding the
PBHs corresponding to the total dark matter abundance
(ftotPBH ¼ 1). The region under the line corresponds to
ftotPBH < 1. The region above the line corresponds to
trajectories that fall into one of the minima that does not
represent our Universe. There is a region right above the line
that gives overabundant PBH ftotPBH > 1, which is too
narrow to be visible.
As one can see from Fig. 11, the production rate ftotPBH is

rather sensitive to the choice of the Kähler potential
parameters κ3, κ4, κ6. This type of sensitivity is a common
feature in similar inflationary production mechanisms of
primordial black holes. Since our scenario is based on
supersymmetry, the prediction, while sensitive to the
parameters, is robust against radiative corrections com-
pared to other scenarios without supersymmetry.

B. Induced gravitational waves

In the subhorizon region the gravitational waves have the
energy density of [126,127]

ρGW ¼ 1

16a2
h∂khij∂khiji; ð34Þ

where the overline denotes the average over oscillations.
Let us decompose the tensor hij as

hijðt;xÞ ¼
Z

d3k

ð2πÞ3=2 ðh
þ
k ðtÞeþijðkÞ þ h×kðtÞe×ijðkÞÞeik·x;

ð35Þ

where

eþijðkÞ ¼
1ffiffiffi
2

p ðeiðkÞejðkÞ − ēiðkÞējðkÞÞ; ð36Þ

e×ijðkÞ ¼
1ffiffiffi
2

p ðeiðkÞējðkÞ þ ēiðkÞejðkÞÞ; ð37Þ

are the polarization tensors with eiðkÞ and ēiðkÞ being two
orthogonal unit vectors. Using the expression (35) in the
energy density (34) gives

ρGWðtÞ ¼
Z

d ln k
1

8

�
k
a

�
2

Phðt; kÞ: ð38Þ

Here Phðt; kÞ≡ Pþ;×
h ðt; kÞ, defined by

hhþk ðtÞhþq ðtÞi ¼ δ3ðkþ qÞ 2π
2

k3
Pþ

h ðt; kÞ; ð39Þ

hh×kðtÞh×q ðtÞi ¼ δ3ðkþ qÞ 2π
2

k3
P×

h ðt; kÞ: ð40Þ

We note that Pþ
h ðt; kÞ ¼ P×

h ðt; kÞ. Omitting the polariza-
tion index, we define the gravitational wave energy density
parameter as follows:

ΩGWðt; kÞ≡ ρGWðt; kÞ
ρcrit

¼ 1

24

�
k
aH

�
2

Phðt; kÞ: ð41Þ

To obtain the tensor power spectrum one may solve the
tensor perturbation equation [19,128,129]

FIG. 11. The dashed line indicates the parameters ðκ4; κ3Þ of the cubic mode (the left panel) and the ðκ6; κ4Þ of the sextic model giving
ftotPBH ¼ 1, namely the primordial black holes comprise the total dark matter abundance today. The region below the line corresponds to
underabundance. The region above the line corresponds to overabundant PBHs and the trajectories that fall into one of the non-Standard
Model vacua (we call them false vacua) as shown in the rightmost panels of Figs. 2 and 6, but the overabundance region is so narrow that
it is not recognizable.
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h00k þ 2aHh0k þ k2hk ¼ 4Sk; ð42Þ

where the prime denotes the derivative with respect to the
conformal time. The source term Sk is given by

Sk ¼
Z

d3q

ð2πÞ3=2eijðkÞqiqj
�
2ΨqΨk−q

þ 4

3ð1þwÞðH
−1Ψ0

qþΨqÞðH−1Ψ0
k−qþΨk−qÞ

�
; ð43Þ

where w is the equation of state and Ψk is the Fourier
transform of the scalar perturbation in the conformal
Newtonian gauge where the metric is given by ds2 ¼
−ð1þ 2ΨÞdt2 þ a2½ð1 − 2ΨÞδij þ hij=2�dxidxj with the
anisotropic stress tensor being neglected. We assume that
the induced gravitational waves are generated in the
radiation dominated era. Then, at the generation time,
we obtain [128]

ΩGWðtf ; kÞ ¼
1

12

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2− ð1þv2 −u2Þ2

4uv

�
2

×PζðkvÞPζðkuÞ
�
3ðu2þv2− 3Þ

4u3v3

�
2

×

��
−4uvþðu2þ v2− 3Þ log

				3− ðuþvÞ2
3− ðu−vÞ2

				
�

2

þ π2ðu2þ v2− 3Þ2θðvþu−
ffiffiffi
3

p
Þ
�
: ð44Þ

Multiplying the present day radiation energy density
parameter Ωrad;0, we find the energy density parameter
today ΩGW ¼ Ωrad;0ΩGWðtfÞ [128,130].

The spectrum of the scalar-sourced second order gravi-
tational waves generated from the cubic and sextic
models is shown in Fig. 12 together with the sensitivity
curves for future experiments such as LISA [131,132],
DECIGO [133–137], BBO [138–140], and SKA [141–143].
We observe that the signals are within the reach of LISA,
DECIGO, and BBO.

VI. FINAL REMARKS

In this work we analyzed models of two-field inflation
which are well motivated from high energy physics and
particle phenomenology. We demonstrated by numerical
studies that these models can produce primordial black
holes during the radiation dominated era which are of
interest as a candidate of the present day dark matter. We
investigated two sample cases in detail, one with the
Kähler potential including the cubic term of the singlet
field, and the other with the sextic term of the singlet field.
We have found that in both cubic and sextic cases
significant enhancement of the curvature perturbation
can be achieved. In both the cubic and sextic cases the
enhancement can be large enough so that the produced
primordial black holes are abundant enough to account for
the whole present day dark matter abundance. We have
also computed the spectrum of the gravitational waves
resulting as the secondary effect of the large scalar
perturbation. We have found that, for both cubic and
the sextic cases, the model can generate gravitational
waves in the target range of detectors, including LISA,
DECIGO, and BBO.
The focus of this paper has been on the features of the

Kähler potential and the trajectory of the inflaton that may
lead to the production of primordial black holes. While we
used the simple superpotential (2), this may be generalized
to more realistic phenomenological examples. It would be
certainly interesting to analyze various cases based on
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FIG. 12. The spectrum of the gravitational waves generated from the curvature perturbations. The left panel shows the cubic model and
the right panel shows the sextic model. The chosen parameters are the same as those presented in Fig. 10. The data for the sensitivity
curves are obtained from [144,145].
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specific particle physics models. For example, in the
SUð5Þ GUT model [61] the inflaton trajectory needs to
settle to the Standard Model vacuum with broken SUð5Þ
symmetry, and it would be interesting to investigate
whether such trajectories are compatible with the primor-
dial black hole production. We plan to examine such
questions in the future.
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