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We develop an optimal Bayesian solution for jointly inferring secondary signals in the cosmic
microwave background (CMB) originating from gravitational lensing and from patchy screening during
the epoch of reionization. This method is able to extract full information content from the data, improving
upon previously considered quadratic estimators for lensing and screening. We forecast constraints using
the marginal unbiased score expansion method, and show that they are largely dominated by CMB
polarization, and depend on the exact details of reionization. For models consistent with current data which
produce the largest screening signals, a detection (3 σ) of the cross-correlation between lensing and
screening is possible with SPT-3G and a detection of the autocorrelation is possible with CMB-S4. Models
with the lowest screening signals evade the sensitivity of SPT-3G but are still possible to detect with
CMB-S4 via their lensing cross-correlation.
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I. INTRODUCTION

The large-scale structure of the Universe is backlit by
cosmic microwave background (CMB) photons as they
travel from the last scattering surface towards us. Maps of
the CMB anisotropies can therefore be used to image
gravitational potentials—through weak gravitational lensing,
integrated Sachs-Wolfe and Rees-Sciama effects—and the
gas distribution—through Thomson and inverse Compton
scattering processes like the Sunyaev-Zel’dovich effects
(e.g., [1–5]). The current generation of CMB surveys such
as Planck [6], South Pole Telescope (SPT) [7] and Atacama
Cosmology Telescope (ACT) [8] has started to tap into
the promising potential of these CMB secondary anisotro-
pies. Next-generation experiments—including the Simons
Observatory (SO) [9], FYST/CCAT-prime [10], and CMB-
S4 [11]—will provide a transformative high fidelity view of
the secondary CMB anisotropies in intensity and polariza-
tion over large areas of the sky, revealing fundamental
insights into both cosmology and astrophysics [12].
Mapping out the spatial distribution of diffuse ionized

gas throughout the Universe can, for example, help us
understand the physics of reionization, at high redshifts
(z≳ 6), and of the intergalactic medium, at lower redshifts

(z≲ 6) (e.g., [13,14]). One approach to achieve this is by
searching for the characteristic spatially-dependent sup-
pression of the CMB temperature and polarization anisot-
ropies produced by different scattering histories along
different lines of sight, an effect known as “patchy screen-
ing.” The magnitude of the effect is proportional to e−τðn̂Þ,
where τðn̂Þ is the direction-dependent optical depth.
The so-called “quadratic estimator” (QE) has become the

workhorse for extracting sources of statistical anisotropies,
such as patchy screening and lensing, from CMB maps
(e.g., [15–17]). The QE in the context of inhomogeneous
optical depth reconstruction has been introduced by
Dvorkin and Smith [18] and applied to WMAP and
Planck data in [19–21] but the spatial fluctuations of τ
have not been detected yet. While the QE has been
successfully used on current datasets, it has some short-
comings. First, the presence of other distorting fields,
like lensing, point sources, and inhomogeneous noise, will
introduce additional non-Gaussianities in the data which in
turn, lead to biases in the reconstructed field [22]. “Bias-
hardened” estimators offer a solution to this problem at the
cost of a signal-to-noise (S=N) ratio degradation, which can
be as large as ≈ 40% (e.g., [21,22]). Second, the QE will
become significantly suboptimal at the instrumental noise
levels soon-to-be reached by the most sensitive experiments
[23,24]. At these depths, secondary anisotropies, rather
than instrumental noise, limit the variance of the estimated
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field. To improve upon the QE, a variety of methods based
on the full CMB Bayesian posterior have been proposed
to extract the higher-order information and restore near
optimality (e.g., [25–30]). Machine-learning approaches
are also being currently investigated, but while promising,
additional work towards the characterization of these
methods and their biases is needed before they can be
reliably applied to real data [31,32].
In this paper, we develop a complete Bayesian solution

that unifies the optimal inference of the optical depth τ and
CMB lensing potential ϕ together with delensing and
cosmological parameter inference. Our method presents
a number of appealing features. First of all, by making use
of the full Bayesian posterior, the method is capable of
optimally extracting the information content in CMB data
at all noise levels. Furthermore, by simultaneously forward
modeling the effects of lensing and screening on CMB
observables, we are able to naturally account for any
contamination (of lensing to screening and vice versa) in
the reconstruction and to enhance the sensitivity to screen-
ing through the cosmic variance reduction due to delensing.
Our method can also internally measure the correlation
hϕτi between the CMB lensing potential and optical depth
fluctuations, which is larger than hττi, contains additional
information on the relation between the ionized gas and
dark matter distribution, and is expected to be detected with
upcoming CMB surveys [33]. Finally, the CMB data are
effectively “descreened” by our procedure, which can in
turn mitigate any residual B-mode bias from screening to
tensor-to-scalar ratio r searches [although the contamina-
tion is expected to be at the level of r ∼ 10−4 for standard
reionization histories, see, e.g., [34,35], therefore not a
significant concern for experiments targeting Oð10−3Þ].
We begin the paper with a review of the theoretical

background and the effect of patchy screening on CMB
observables in Sec. II. We present our method and illustrate
its performance in Sec. III before concluding in Sec. IV. In
the Appendix we provide a more detailed description of the
halo model used to predict the patchy screening signal.

II. MODELING

A. Optical depth

The electron scattering optical depth measures the
integrated electron density along the line-of-sight and is
given by

τðn̂Þ ¼ σT

Z
dχ a neðn̂; χÞ; ð1Þ

where neðn̂; χÞ is the free electron number density at
comoving distance χ along the direction n̂, σT is the
Thomson scattering cross section, and a is the scale factor.
The mean number density of free electrons can be
expressed as n̄e ¼ ð1 − 3=4YPÞρ̄b0=mpa−3x̄e ¼ n̄p0x̄e=a3,
where YP is the primordial helium abundance, ρb0 is the

present-day baryon density, the proton mass ismp, x̄e is the
mean ionization fraction, and we assumed that helium is
singly ionized. We model the evolution of the volume-
averaged ionization fraction x̄e using a simple tanh fitting
function parametrized by the redshift of reionization zre,
defined as the redshift at which x̄e is half of its maximum,
and the duration of reionization Δz, i.e., the difference
between the redshifts at which the Universe is 5% and
95% reionized, [36]

x̄eðzÞ ¼
1

2

�
1þ tanh

�
yre − y
Δyre

��
; ð2Þ

where yðzÞ¼ð1þzÞ3=2, yre¼yðzreÞ, andΔyre¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þzre

p
Δz.

Perturbations in the free electron number density δne can
be sourced both by ionization fluctuations δx ¼ δxe=x̄e and
by inhomogeneities in the gas density δ [14]. The former
are only generated during the epoch of reionization, while
the latter are produced both when reionization occurs, as
well as in the postreionization universe. Fluctuations in the
free electron density will then induce spatial fluctuations in
the optical depth (e.g., [37]),

τðn̂Þ ¼ σTnp0

Z
dχ
a2

x̄eðχÞð1þ δxðn̂; χÞÞð1þ δðn̂; χÞÞ ð3Þ

¼ τ̄ þ δτðn̂Þ: ð4Þ

The contribution to the τ anisotropies from the spatial
distribution of free electrons in galaxies and clusters is then
given by the redshifts below in which x̄e ¼ 1.
Under the Limber approximation [38], valid for

angular scales l ≫ 20 relevant for this work, the angular
power spectrum of the optical depth fluctuations can be
evaluated as

Cττ
l ¼ σ2Tn

2
p0

Z
dχ
a4χ2

Pδeδeðkl; χÞ; ð5Þ

where Pδeδe is the power spectrum of the density-weighted
ionization fraction fluctuations, and kl ¼ ðlþ 1

2
Þ=χ.

The quantity Pδeδe encodes all the relevant astrophysical
aspects of the epoch of reionization, including its morphol-
ogy and timing. Modeling reionization and the spatial
distribution of free electrons is a challenging task due to
the complexity of the physical processes involved and the
limited observational access we currently have to those
cosmic epochs. Therefore, instead of specifying a given
physical mechanism of reionization (e.g., [39]), we choose
to adopt the “bubble model” introduced in [14,18,40]
that allows us to phenomenologically parametrize the HII

spectrum, Pδeδe . In this framework, the HII regions around
the ionizing sources, such as galaxies or quasars, are biased
tracers of the underlying dark matter halos. The ionized
bubbles are assumed to be spherical with an average radius
R̄ (in Mpc), while their radii distribution is modeled as a

FEDERICO BIANCHINI and MARIUS MILLEA PHYS. REV. D 107, 043521 (2023)

043521-2



log-normal distribution of width σlnR, i.e., skewed towards
smaller bubble sizes. The size and evolution of these HII

bubbles are sensitive to the mass and brightness of the
ionizing sources. As time advances, the HII bubbles grow in
size and percolate, eventually leading to a complete reioni-
zation of the intergalactic medium. In the Appendix we
provide a more detailed discussion of the halo model.
To summarize, our inhomogeneous reionization model-

ing is described by a set of four parameters: the redshift and
duration of reionization fzre;Δzg, which specify the mean
ionization history x̄eðzÞ, and the characteristic size and
standard deviation of the log-normal bubble radius distri-
bution, fR̄; σlnRg.

B. Cross-correlation with CMB lensing

In this work we are also interested in evaluating the
correlation between the optical depth fluctuations and the
integrated matter distribution along the line-of-sight as traced
by the CMB lensing potential ϕðn̂Þ defined as (e.g., [3])

ϕðn̂Þ ¼ −2
Z

dχ
χ − χ�
χχ�

Ψðn̂; χÞ: ð6Þ

Here, Ψðn̂; χÞ is the Weyl (gravitational) potential, that in
standard cosmologies can be directly related to the comoving
matter perturbations δðn̂; χÞ through the Poisson equation,
and χ� is the comoving distance to the last scattering surface
at z� ≃ 1090.
A cross-correlation between optical depth fluctuations

and CMB lensing is naturally expected since the same dark
matter halos signposted by the HII bubbles at high redshift
(z≳ 6) and by galaxies and galaxy clusters at low redshift
(z≲ 6) act as lenses for the CMB photons. In fact, the CMB
lensing kernel has nonzero support out to high redshift and
it is about half of its maximum around z ≈ 10.
Using Eq. (6), the cross-power spectrum between the

fluctuating part of τ and CMB lensing potential takes the
following form:

Cϕτ
l ¼ 3H2

0ΩmσTnp0
cl2

Z
dχ
a3

χ − χ�
χχ�

Pδδeðkl; χÞ; ð7Þ

where H0 is the Hubble constant, and Pδδeðkl; χÞ denotes
the three-dimensional cross spectrum between the matter
density contrast δ and the free electron fluctuations δe.

C. Fiducial scenarios

While we do not specify a given physical model for
reionization, here we consider two limiting reionization
scenarios to study the performance of our approach and to
get a sense for the expected S=N ratio with current and
upcoming surveys.
In the first case (optimistic model), reionization starts

early on, proceeds for an extended period of time, and is
driven by larger bubbles with a broad radii distribution

spread. For this scenario we fix fzre;Δz; R̄; σlnRg ¼
f10; 4; 5; lnð2Þg. Aside from giving a signal which is large
but not currently detectable, a value of σlnR ¼ lnð2Þ, is on
the upper end of allowed values given existing cross-
correlations between QE reconstructions of τ and
Compton y-maps using Planck data [21]. In the second
case (pessimistic model), reionization occurs at lower red-
shift, and its duration is shorter, while the bubbles that
reionize the Universe are smaller in size, and their radii
distribution is narrower.When analyzing this scenariowe set
fzre;Δz; R̄; σlnRg ¼ f7; 1; 1; 0.1g. As we will see, the
nomenclature of optimistic or pessimistic refers to the
prospects of detecting the patchy screening effect in
the two cases.
In the left-hand panel of Fig. 1, we show the two

reionization histories. The higher redshift of reionization
in the optimistic model results in a larger integrated mean
optical depth τ̄ than in the pessimistic model. Both values
are consistent within 2σ with the constraint from Planck on
τ̄ ¼ 0.058� 0.012 [6]. The middle and right panels of
Fig. 1 show the optical depth fluctuation angular autospec-
trum and its cross-correlation with CMB lensing, respec-
tively. Qualitatively, a longer duration of reionization
translates to more pronounced fluctuations in τ, corre-
sponding to a larger overall amplitude of Cττ

l and Cϕτ
l . The

peak of these spectra is mostly determined by the effective
radius of the HII bubbles, with larger bubbles enhancing the
power spectra at lower multipoles.

D. Hierarchical model for CMB data

The patchy nature of the reionization process at z≳ 6 and
the clumpiness of the spatial distribution of free electrons at
lower redshifts (z≲ 6) lead to an anisotropic optical depth,
τ ¼ τðn̂Þ. In turn, spatial variations of the optical depth will
introduce new observational signatures in the CMB sky.
Three main effects can be identified. First, Thomson

scattering of the remote CMB temperature quadrupole
by ionized bubbles generates new polarization (e.g.,
[13,14,41–44]).1 Second, the radial peculiar velocity of
ionized bubbles relative to the observer sources a
temperature fluctuation through the kinematic Sunyaev-
Zel’dovich (KSZ) effect (e.g., [41,44–48]). Third, anisot-
ropies in the optical depth will induce a spatially-dependent
screening of the primary CMB anisotropies caused by the
CMB photons being scattered into and out of our line-of-
sight (e.g., [43,49]). In this paper, we focus exclusively on
the latter effect.
Considering an unperturbed CMB field f ∈ fT;Q;Ug,

the map-level effect of anisotropic screening is to spatially
modulate the amplitude of the CMB temperature and
polarization anisotropies by a factor e−τðn̂Þ as

1While new E-mode polarization is generated even in the case
of homogeneous reionization, additional B-modes can only be
sourced if the distribution of free electrons is inhomogeneous.
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ðSðτÞfÞðn̂Þ ¼ e−τðn̂Þfðn̂Þ; ð8Þ

where we have introduced the screening operator SðτÞ.
On the other hand, the gravitational potentials associated

to the intervening matter distribution between us and the
last scattering surface induce a remapping of the primary
CMB anisotropies, which we model (in the absence of
screening) as

ðLðϕÞfÞðn̂Þ ¼ fðn̂þ∇ϕðn̂ÞÞ; ð9Þ

where we have similarly introduced the lensing opera-
tor LðϕÞ.
In our treatment of the two effects, we make the

simplifying assumption that patchy screening happens first,
and the lensing operator is then applied to the screened
CMB fields,

ðLðϕÞSðτÞfÞðn̂Þ ¼ e−τðn̂þ∇ϕðn̂ÞÞfðn̂þ∇ϕðn̂ÞÞ: ð10Þ

Given these operators, we can model observed CMB
data as

d ¼ ALðϕÞSðτÞf þ n; ð11Þ

where d is the data, f are the unlensed and unscreened
CMB fields, and n is the instrumental noise. The
linear operator A≡MTB encodes the effects of the
instrumental beam B, the transfer function T , and any
pixel mask M.
The goal of this analysis is to simultaneously extract

lensing and patchy screening effects from noisy CMB
data. There are different ways to cast this problem. In
this work we choose to introduce three amplitude param-
eters θ ¼ fAϕϕ; Aττ; Aϕτg that rescale some fiducial
CMB lensing and optical depth fiducial isotropic power

spectra as CXY
l ¼ AXYC

XY;fid
l with X; Y ∈ fϕ; τg. This

allows us to rapidly explore the reionization parameter
space and to efficiently forecast the detection capabilities
of various surveys in different scenarios. While we adopt
this approach for the scope of this paper, we note that
nothing prevents us from carrying out the statistical
inference directly at the power spectrum level (e.g.,
[30]), or on the phenomenological parameters ðR̄; σlnRÞ
directly.
With this definition, the CMB screening and lensing

problem can then be formulated as

ðAϕϕ; Aττ; AϕτÞ ∼ Uð0;∞Þ; ð12Þ

f ∼N ð0;CfÞ; ð13Þ

ϕ; τ ∼N ð0;CϕτðθÞÞ; ð14Þ

d ∼N ðLðϕÞSðτÞf;CnÞ; ð15Þ

where U andN denote uniform and Gaussian distributions,
respectively. We assume that both the unperturbed CMB
and the experimental noise are Gaussian random fields
described by covariance operators Cn and Cf, respectively,
where the latter reads

Cf ¼

2
64CTT

l CTE
l 0

CTE
l CEE

l 0

0 0 CBB
l

3
75: ð16Þ

Here we adopt the prior that both ϕ and τ are correlated
Gaussian random fields with covariance given by

FIG. 1. Left: redshift evolution of the electron scattering optical depth based on the ionization fraction model of Eq. (2) assuming two
different reionization histories (blue and orange solid lines). The shaded blue bands show the 1 and 2σ constraints on τ̄ from Planck [6].
Middle: angular power spectrum of the optical depth calculated from the bubble model. The colors refer to the reionization history
parameters of the left panel. Right: cross-power spectrum between optical depth and CMB lensing potential (same color coding as the
middle panel).
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CϕτðθÞ ¼
"
AϕϕC

ϕϕ
l AϕτC

ϕτ
l

AϕτC
ϕτ
l AττCττ

l

#
; ð17Þ

where we emphasize the explicit dependence of Cϕτ on the
spectral amplitude parameters θ. Although the τ field is not
expected to be Gaussian, due to the nonlinear growth of the
ionizing bubbles, our choice to take a Gaussian prior is
made for simplicity and because it is in some sense the
conservative choice for a first detection. In this way,
inference will not attempt to extract any information from
higher-order statistics, which are more difficult to realis-
tically model.
With these ingredients, the joint likelihood distribution

takes the following form:

Pðd; f;ϕ; τ|fflffl{zfflffl}
z

jAττ; Aϕτ; Aϕϕ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
θ

Þ

∝
exp

n
− ðd−ALðϕÞSðτÞfÞ2

2Cn

o
detC1=2

n

exp
n
− f2

2Cf

o
detC1=2

f

exp
n
− ðϕ⊕τÞ2

2CϕτðθÞ
o

detCϕτðθÞ1=2
;

ð18Þ

where we have explicitly highlighted that the latent space z,
over which marginalization will be performed, is composed
by ff;ϕ; τg, and we recall that the parameters of interest θ
are the power spectra amplitudes fAϕϕ; Aττ; Aϕτg. In
Eq. (18), we denote the concatenation of the two abstract
vectors ϕ and τ using the symbol ⊕, and we use the
shorthand x2=N≡ x†N−1x.
We give the posterior function in Eq. (18) for

exposition, but we note that our code, implemented in

CMBLensing.jl,2 calculates it automatically using a probabi-
listic programming language given only the forward model
in Eq. (12), and calculates posterior gradients using
automatic differentiation [29]. This highlights the strength
of the Bayesian approach, which allows forward models to
be quickly turned into pipelines ready to use for inference.

III. RESULTS

A. Experimental setups

We consider a number of CMB surveys representative
of the current and upcoming experimental landscape. The
experimental specifications are listed in Table I (taken
from [50,51]).
Our noise spectra modeling includes a contribution from

both instrumental and atmospheric noise as

Nl ¼ Δ2
T

�
1þ

�
l

lknee

�
−αknee

�
; ð19Þ

where Δ2
T is the detector white noise, while lknee and αknee

parametrize the atmospheric 1=f noise.
We do not include emission from astrophysical fore-

grounds in our simulations but incorporate their impact by
considering the effective noise levels after component
separation through harmonic-space internal linear combi-
nation (ILC) methods (e.g., [52,53]). We model the total
covariance between different frequency channels at each
multipole l as a linear mixture of CMB, foregrounds, and
noise contributions,

TABLE I. Technical specifications for the CMB surveys considered in this work. We show the frequency band centers (in GHz), full
width at half maximum (FWHM) apertures (in arc min), temperature white-noise levels ΔT ½μK-arc min� (the polarization white-noise
level is ΔP ¼ ffiffiffi

2
p

ΔT), and atmospheric noise parameters (middle and bottom rows in each subpanel show the numbers for temperature
and polarization, respectively).

Experiment fsky

Beam θFWHM [arc min] Noise ΔT ½μK-arc min�
30 40 90 150 220 270 30 40 90 150 220 270

SPT-3G 3.6% 1.7 1.2 1.0 3.0 2.2 8.8
(1200,3.0) (1200,4.0) (1200,4.0)

(300,1)

SO 40% 7.4 5.1 2.2 1.4 1.0 0.9 71.0 36.0 8.0 10.0 22.0 54.0
(1000,3.5)
(700,1.4)

S4-wide 67% 7.3 5.5 2.3 1.5 1.0 0.8 21.8 12.4 2.0 2.0 6.9 16.7
(471,3.5) (428,3.5) (2154,3.5) (4364,3.5) (7334,3.5) (7308,3.5)

(700,1.4)

S4-deep 3% 8.4 5.8 2.5 1.6 1.1 1.0 4.6 2.94 0.45 0.41 1.29 3.07
(1200,4.2) (1200,4.2) (1200,4.2) (1900,4.1) (2100,3.9) (2100,3.9)
(150,2.7) (150,2.7) (150,2.6) (200,2.2) (200,2.2) (200,2.2)

2https://github.com/marius311/CMBLensing.jl
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Cl ¼ ee†CCMB
l þ CFG

l þNl; ð20Þ

where e is a column vector of all ones (for maps in
thermodynamic temperature units). The foreground con-
tributions in intensity include emission from radio point
sources, the cosmic infrared background, and diffuse
kinematic and thermal Sunyaev-Zel’dovich signals. The
polarized CMB sky contains emissions from galactic dust
and synchrotron. For simplicity, we adopt the “standard”
ILC noise that minimizes the total variance of the final
CMBþ KSZ map, so that the postcomponent separation
ILC noise curve can be calculated as follows:

NILC
l ¼

hX
ij
ðC−1Þijl

i
−1
: ð21Þ

Our forecasts are performed on 512 × 512 pixel flat-sky
maps with 2 arc min pixels, covering roughly 300 deg2 of
sky. These are then rescaled by an fsky factor to match
the expected sky coverage of each survey. Because both
lensing and patchy screening are spatially local operations,
we expect this scaling will give results very similar to
having performed the forecasts on larger sky areas directly,
but at much lower computational cost. We do not include
any masking, which we expect will be a <10% effect [30].

B. Joint MAPs

As a first check, we compute the joint maximum
a posteriori (MAP) estimate of the gravitational potential
ϕ and the optical depth τ on a suite of simulated data. MAP
estimates are only an intermediate step towards forecasting
or inference since they have biased power spectra, but they
are useful as a sanity check and to build intuition about the
problem. They are computed by fixing the spectral ampli-
tudes to some fiducial value (here unity) and maximizing
the posterior probability,

ðf̂J; ϕ̂J; τ̂JÞ ¼ argmax
f;ϕ;τ

log Pðf;ϕ; τjθ; dÞ: ð22Þ

We iteratively maximize the posterior using the coordinate
descent algorithm introduced in [28], with a modified
Newton-Raphson step that performs joint ðϕ; τÞ updates.
Figure 2 shows a typical τ̂J as compared to the simulation

truth, assuming S4-deep noise levels and using only
polarization. The contour levels are set at 0 and �1 times
the pixel root mean square of the MAP reconstruction and
can be visibly seen to trace the true field, with regions of
low τ encircled by blue contour regions of high τ encircled
by orange contours. More quantitatively, in Fig. 3, we show
the cross-correlation coefficient ρl at different scales
between the true ðϕ; τÞ maps and the corresponding joint
MAP estimates from the simulated data, averaged over
several realizations. We see that the MAP ϕ reconstruction
is correlated to the true ϕ map, as expected, and that the
MAP τ reconstruction is correlated to the true τ, indicating

the potential for a detection. We also see that the MAP τ is
correlated to the true ϕ. While this is also expected to some
degree, given that the true τ and ϕ fields are intrinsically
correlated, the fact that hτtrueϕMAPi ≠ hτMAPϕtruei implies
an additional lensing-induced bias in the power spectra
of the τ MAPs (beyond the suppression of power which is
typical of MAP estimates). This is not surprising, as it is
known that the τ QE contains a lensing-induced bias
[21,22], and MAP estimates asymptote to the QE in the
high-noise limit. We note that our Bayesian approach
implicitly deals with this when marginalizing over the
ff;ϕ; τg maps, allowing unbiased inference of parameters,
which control the theory auto and cross-correlation spectra
without having to explicitly compute any such bias. As an
additional check, in Fig. 3 we include the correlation
coefficients between the true τ and MAP ϕ (and vice
versa) when we turn off the intrinsic correlation between
the true τ and ϕ fields.

C. Forecasting results

The key challenge for inference or forecasting is the
marginalization over the ff;ϕ; τg fields. While we could
use an exact sampling algorithm like Hamiltonian
Monte Carlo (HMC) to perform this marginalization, we
instead use the approximate but much faster marginal
unbiased score expansion (MUSE) method [30,54,55].
For data vectors as large as ours here, MUSE is unbiased,
but in theory can be suboptimal. However, it was demon-
strated in [30] that for gravitational lensing inference, it
achieves uncertainties which are <10% away from the
optimal Fisher limit. We do not expect the addition of
patchy screening to qualitatively change this behavior,

FIG. 2. An example of MAP optical depth reconstruction τ̂J
shown as contours, compared to the true field for the input
simulation τtrue shown as the gray scale map. We assume S4-deep
noise levels and here, for clarity, show just a small cutout of the
larger maps, which are reconstructed as part of the forecasting
procedure. Some partial correlation is visible by eye.
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motivating its use here. Although we expect our results are
close to optimal, they should be regarded as an upper bound
on possible uncertainties, and whether tighter constraints
are possible could be checked by analyzing our posterior
probability function with HMC.
Following [30], we use MUSE to compute the J and H

matrices for the parameters set fAϕϕ; Aττ; Aϕτg, then use
these to form the marginal posterior covariance matrix. The
J matrix is the covariance of gradients of the log posterior
with respect to parameters at the joint MAP, and the H
matrix is akin to a “response function,” which quantifies
how the gradient with respect to each parameter responds to
injecting a shift in another parameter into the simulated
data. In practice, the computation involves only obtaining
MAP estimates of the kind pictured in Fig. 2 for a suite of
data simulations, and evaluating gradients of the posterior
in Eq. (18) at these points in parameter space. The MUSE
covariance, much like the inverse Fisher matrix, is already
averaged over data realizations and so directly gives us our
desired forecast.
We begin by examining the information content in

temperature vs polarization. In Fig. 4, we plot the fore-
casted covariance for the SPT-3G configuration with
lmax ¼ 3000 as one- and two-dimensional marginalized
contours. We find that there is almost no weight from
temperature on constraints to the overall lensing or

screening amplitudes. It is already known that at SPT-
3G noise levels, the total lensing S=N ratio is highly
dominated by polarization, and we find the same is true for
the screening effect. We expect this will only get more

FIG. 4. Forecasted constraints on lensing and screening am-
plitudes from temperature and/or polarization for SPT-3G,
assuming lmax ¼ 3000. We find that at these noise levels (and
below) and temperature adds negligible information in terms of
the overall amplitude parameters.

FIG. 3. Cross-correlation coefficient between the input CMB
lensing ϕ and optical depth τ fields and the corresponding MAP
estimates from simulated data, assuming S4-deep noise levels.
The solid line represents the mean correlation coefficient across
Nsim ¼ 100 simulations, while the shaded areas denote the 1σ
scatter for a single realization. The average cross-correlation
coefficient between the reconstructed MAP τ and input ϕ maps
is shown as a dashed red line (the opposite case is denoted by
the dashed green line). For reference, we also include the
correlation coefficient between the reconstructed MAP and true
maps when the input τ and ϕ fields are not intrinsically
correlated, i.e., Aϕτ ¼ 0, as the dotted lines (same color coding
as the Aϕτ ¼ 1 case).

FIG. 5. Forecasted constraints from polarization for different
experiments, given the optimistic reionization model and assum-
ing lmax ¼ 5000.
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drastic as noise levels decrease, thus for the forecasts
described below, we consider only polarization for sim-
plicity. By doing so, however, we are underestimating
constraints possible with SO, which has higher noise levels
and could receive a non-negligible contribution from
temperature. Doing such a forecast would depend on more
complex assumptions about temperature foregrounds, so
we leave this to a future work.
We now consider the potential for detecting the screen-

ing signal from different ongoing and future CMB surveys.
These results are summarized in Table II and Fig. 5. Below,
we will use the term “detection” to refer to constraining a
nonzero amplitude parameter at 3 σ. With SPT-3G, it will
be possible to make a detection of the patchy screening
correlation with the lensing potential given the optimistic
model, but not given the pessimistic model. With SO
polarization, it is not possible to detect either model. In
general, detecting the autocorrelation of the patchy screen-
ing is comparatively harder than detecting the cross
spectrum and is not possible with SPT-3G or SO, regardless
of model. For CMB-S4, either scenario leads to a guaran-
teed detection of the cross-correlation, and additionally, the
autocorrelation is detectable given the optimistic model.
We note that for CMB-S4, the deep survey contributes
slightly more weight than the wide survey. With the
pessimistic model, a guaranteed detection of the autocor-
relation of the screening effect will require at least a fifth
generation CMB survey.

D. Comparisons with other works

Forecasts similar to ours have been computed in previous
works, based on the QE instead of on Bayesian inference.
We do not attempt a careful quantitative comparison
with other works but comment briefly on similarities.

Roy et al. [56] computed the total S=N ratio in the QE
τ autospectrum, while arguing that lensing-induced biases
were ignorable for their purposes due to sufficient S=N
ratio. One of their forecasts considers a reionization model
with R̄ ¼ 5 and σlnR ¼ lnð2Þ, similar to our optimistic
model, with a similar total optical depth and lower assumed
noise levels for S4. For this case, they predict a 5 σ
detection is possible with S4. Our S4 optimistic forecast
gives a 10 σ detection of Aττ, despite our higher noise
assumptions. Feng and Holder [33] perform QE forecasts,
which account for lensing-induced biases, and additionally
consider the cross spectrum between lensing and screening
fields. We have computed theory spectra using the reioni-
zation parameters quoted in their paper, visually verifying
similar Cϕτ

l spectra, and performed a forecast for S4 with
their noise assumptions (more optimistic than ours). Their
result gives a total S=N ratio of 22 σ in the ϕðEBÞτðEBÞ
estimator, and we find a 23 σ detection of nonzero Aϕτ for
this case.
We also note that amplitude parameters only capture the

total S=N ratio, and for spectra, which are very red at small
scales such as the lensing and patchy screening spectra,
the S=N ratio is mainly limited by the large-scale sample
variance, not the reconstruction noise. This is the reason
why we do not see more improvement with lmax in Table II
and is also a reason why the above comparison is an
incomplete test of the exact improvements upon the QE
which are happening. An internal scale-dependent com-
parison of Bayesian and QE estimates of patchy screening,
however, is outside the scope of this work, as forming an
unbiased QE patchy reconstruction pipeline akin to [33] is
significantly nontrivial, and regardless, we expect theoreti-
cally that the Bayesian pipeline will extract the same or
more information than the QE pipeline. Our rough com-
parisons above indeed appear to be consistent with this
expectation.

IV. CONCLUSIONS

In this work, we have developed a Bayesian model
which can be used to simultaneously extract fluctuations in
the optical depth τ and gravitational lensing potential ϕ
together with delensed and descreened CMB fields, as well
as the theory spectra which describe their statistics. Here,
we have used MUSE to infer the (amplitudes of) the theory
spectra and to forecast their uncertainties from upcoming
probes. In the future, this code can directly be used to
directly obtain estimates of the amplitudes from data, or can
be used with HMC sampling or other inference tools to
obtain joint inference on the spectra and fields together.
The Bayesian approach allows us to optimally recover all

available information from the data and implicitly handles
any bias subtraction, such as the lensing-induced bias of the
τ QE. In practice, we find its strength is its simplicity,
requiring us only to code up a field-level forward model,

TABLE II. Forecasted 1 σ uncertainties from polarization for
various configurations. Each entry gives a range corresponding to
pessimistic and optimistic models (except in the SO case where
only the optimistic model is considered). In all cases, the
amplitude parameters are defined such that their fiducial value
is unity (and note that the first column is multiplied by 100).

lmax 100 σðAϕϕÞ σðAττÞ σðAϕτÞ
SO 3000 1.5– 2.3– 0.51–

5000 1.5– 2.2– 0.51–

SPT-3G 3000 1.4–1.4 0.97–3 0.29–0.44
5000 1.4–1.4 0.95–3 0.28–0.43

S4-wide 3000 0.38–0.38 0.29–2.6 0.080–0.18
5000 0.37–0.41 0.29–2.6 0.078–0.16

S4-deep 3000 0.57–0.55 0.13–1.3 0.066–0.110
5000 0.55–0.51 0.12–1.3 0.060–0.088

S4 3000 0.31–0.31 0.12–1.2 0.050–0.088
5000 0.31–0.30 0.11–1.2 0.047–0.072
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which includes lensing and screening, with the posterior
probability function and its gradients automatically
derived, and MUSE providing quick forecasting, which
requires only solving optimization problems. This type of
analysis can readily be extended to include other secondary
signals or foregrounds, and its equivalent could be applied
to other problems in cosmology which have computable
forward models. The trade-off is that any real analysis
requires high-fidelity modeling of observed data, but these
types of pipelines are being developed, including for the
next generation of CMB experiments.
We have found that at the low-noise levels characteristic

of the current most sensitive and upcoming CMB surveys
(ΔP ≲ 5 μK-arc min), polarization data carry the majority
of the constraining power on patchy reionization. Owing to
the faintness of the patchy screening effect, a definitive
detection of the optical depth fluctuations will prove
challenging in autocorrelation. Depending on the details
of the reionization history, a next-generation experiment
like CMB-S4 might be able to detect the signal, but for
more pessimistic scenarios, we would require a futuristic
Stage-5 mission. On the other hand, measuring the cross-
correlation between ϕ and τ holds great promise for
detecting optical depth anisotropies. For the full-depth
SPT-3G survey, we forecast a 3 σ detection of the cross-
correlation signal in the optimistic scenario, while CMB-S4
will be able to detect the signal with S=N ratio ≳10 even in
more pessimistic scenarios.
The next generation of CMB surveys will map the spatial

fluctuations of free electrons out to high redshifts, inform-
ing models of reionization and providing clues on the gas
physics around galaxies [57,58]. Moving forward, a com-
pelling avenue to explore would be to extend our modeling
to provide direct constraints on phenomenological or
physical reionization parameters, or the joint analysis with
observables probing other phases of matter, such as
Compton-y or 21-cm maps (e.g., [21,59,60]), or the galaxy
distribution itself.
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APPENDIX: A HALO MODEL
FOR REIONIZATION

In this appendix, we briefly review the basics of the
analytic halo model formalism we use to predict the power
spectrum of the optical depth field (ττ) and its cross-
correlation with CMB lensing potential (ϕτ).

The model presented here is largely based on the phe-
nomenological parametrization introduced in [14,18,40]. In
this picture, darkmatter halos host theHII regions surrounding
the ionizing sources such as galaxies or quasars. These
regions are modeled as fully ionized spherical bubbles of
radius R inside the neutral intergalactic medium. As time
progresses, the ionized bubbles grow and eventually overlap
with each other until the Universe is fully reionized.
To calculate the optical depth autospectrum Cττ

l we need
a model for the three-dimensional power spectrum of
the density-weighted ionization fraction fluctuations,
Pδeδeðk; zÞ. This quantity captures the physics and mor-
phology of reionization which sensitively depend on the
size distribution and evolution of the ionized bubbles,
which is the first ingredient of the model.
Assuming that the bubble sizes are drawn from a log-

normal distribution with characteristic size R̄ and variance
given by σ2lnR (e.g., [61–63]), we can write

PðRÞ ¼ 1

R
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2lnR
p e−½lnðR=R̄Þ�2=ð2σ2lnRÞ; ðA1Þ

so that the average bubble volume can be calculated as

hVbi≡
Z

dRVbðRÞPðRÞ ¼
4πR̄3

3
e9σ

2
lnR=2: ðA2Þ

While, in principle, both R̄ and σ2lnR are functions of z, and
would require complex radiative transfer simulations to be
evaluated, we follow the previous works and assume that
they do not evolve over cosmic time.
The model further assumes that the probability that a

given point in space r is ionized is determined by a Poisson
process with fluctuating mean,

hxeðrÞiP ¼ 1 − e−nbðrÞhVbi; ðA3Þ

where nbðrÞ is the density of HII bubbles, and the brackets
h…iP denote averaging over the Poisson process.
The HII bubbles are then assumed to trace the large-scale

structure with some bias b,

nbðrÞ ¼ n̄bð1þ bδWðrÞÞ; ðA4Þ

where δW ¼ R
d3r0δðrÞWRðr − r0Þ is the matter overdensity

δ smoothed by a top-hat window of radius R which in
Fourier space is given by

WRðkÞ ¼
3

ðkRÞ3 ½sinðkRÞ − kR cosðkRÞ�: ðA5Þ

For simplicity, we assume that the bubble bias does not
evolve with redshift and is independent of the bubble size.
Following previous works (e.g., [18,56]), in this paper
we fix b ¼ 6. With these definitions, the average bubble
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number density can be related to the mean ionization
fraction as n̄b ¼ − ln ð1 − x̄eÞ=hVbi. For completeness,
we further define the two-bubble and one-bubble window
functions averaged over the bubble radius distributions
respectively as follows:

hWRiðkÞ ¼
1

hVbi
Z

∞

0

dRPðRÞVbðRÞWRðkRÞ; ðA6Þ

hW2
RiðkÞ ¼

1

hVbi2
Z

∞

0

dRPðRÞ½VbðRÞWRðkRÞ�2: ðA7Þ

In analogy with the standard halo model of large-scale
structure (e.g., [64]), we can decompose the HII power
spectrum into the sum of a 1-bubble term, which dominates
at scales r ≪ R, and a 2-bubble contribution that prevails at
larger scales, r ≫ R: PδeδeðkÞ ¼ P1b

δeδe
ðkÞ þ P2b

δeδe
ðkÞ.3 The

analytic expressions of the 2-bubble and 1-bubble terms of
the ionized hydrogen power spectrum are given, respec-
tively, by

P2b
δeδe

ðkÞ ¼ ½ð1 − x̄eÞ ln ð1 − x̄eÞbhWRiðkÞ − x̄e�2PδδðkÞ;
ðA8Þ

P1b
δeδe

ðkÞ ¼ x̄eð1 − x̄eÞ½hVbihW2
RiðkÞ þ P̃ðkÞ�; ðA9Þ

where P̃ðkÞ can be approximated as [14,40]

P̃ðkÞ ≈ PδδðkÞhVbihσ2Riffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
δδðkÞ þ hVbi2hσ2Ri2

p ; ðA10Þ

and hσ2Ri is the matter density variance top hat smoothed
over the bubble radius distribution. In the formulae above,
PδδðkÞ denotes the linear matter power spectrum.
Similarly, the 2- and 1-bubble terms relative to the cross-

power spectrum between the ionization fraction fluctua-
tions and the matter density contrast can be evaluated as

P2b
δδe

¼ ½x̄e − ð1 − x̄eÞ ln ð1 − x̄eÞbhWRiðkÞ�PδδðkÞ ðA11Þ

P1b
δδe

≈ 0; ðA12Þ

where the term P1b
δδe

is zero since we assume the bubbles are
completely ionized.
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